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Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in
cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling
molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of
ROS/RNS have been demonstrated in cardiovascular diseases due to increased production or
decreased scavenging, which have been considered as common pathways for the initiation and
progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and
congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or
activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and
cytokines via different signaling cascades control the expression and activity of these enzymes and
of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is
regulated in cardiovascular systems remain poorly characterized. Investigations by us and others
suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and
modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that
AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems.
In this review, we summarize our current understanding of how AMPK functions as a
physiological repressor of NAD(P)H oxidase.
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Introduction
Overwhelming evidence indicates that reactive oxygen species (ROS) and reactive nitrogen
species (RNS) are pathogenic species that cause tissue injury and/or impair tissue repair,
mechanisms shared by many cardiovascular disease states including hypertension,
atherosclerosis, stroke, (re)stenosis, and cardiac failure [1]. Emerging evidence suggests that
ROS/RNS are essential signals in maintaining fundamental biological processes and
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physiological function [2]. ROS/RNS are established signaling molecules which regulate
multiple cellular processes such as proliferation, differentiation, migration, and apoptosis in
response to stimulation by growth factors, cytokines, and vasoactive agents [3].

Among the various cellular ROS-generating enzymes in the cardiovascular system,
including xanthine oxidase, cyclo- and lipo-oxygenases, uncoupled endothelial nitric oxide
synthase (eNOS) [4], mitochondrial respiratory enzymes [5], and peroxidases, reduced-form
nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidases (Nox) appear to be the
major contributors of ROS associated with cardiovascular diseases and health [6–11].
Cellular ROS can be scavenged by an additional set of enzymes, which includes superoxide
dismutase (SOD), catalase, and glutathione peroxidase. The expression and activation of
Nox isoforms and regulatory proteins can be regulated by different stimuli and signaling
pathways.

Adenosine monophosphate-activated protein kinase (AMPK) is reported to be a critical
energy sensor that regulates oxidative stress [12–14]. Recently, emerging data have
indicated that Nox in the cardiovascular system can be regulated by AMPK [15]. In this
review article, we will discuss our current understanding of cardiovascular Nox, particularly,
their roles and regulation in physiological and pathological conditions. Furthermore, we will
address AMPK regulation and function in the cardiovascular system as well as AMPK
signaling pathways involved in cardiovascular Nox regulation. We will also emphasize the
capacity of AMPK to lower the burden of cardiovascular disease (CVD).

NAD(P)H oxidases are major sources of ROS in cardiovascular systems
The Nox enzymes, also known as respiratory burst oxidases, are a family of multiple-subunit
complex enzymes that generate O2

•− via one-electron reduction of oxygen using NAD(P)H
as an electron source (NAD(P)H +2O2 → NADP+ + H+ + 2O2

•−) [16]. Originally
designated as phagocytic oxidases (phox) involved in defense and innate immunity, the Nox
family is now formally recognized to be widely expressed in different cell types.
Importantly, Nox family members are pivotal and “professional” ROS generators in
cardiovascular systems including vascular endothelial cells (ECs), vascular smooth muscle
cells (VSMCs), adventitial fibroblasts, and cardiomyocytes [7, 9, 17, 18]. Seven Nox
isoforms in mammalian cells have been identified: Nox1 to Nox5, and Dual oxidases
(Duox1 and Duox2) [17, 19]. All Nox isoforms are transmembrane proteins with six
transmembrane domains. Different Nox complexes with unique combinations of different
subunits are found to function in various cardiovascular cells (Fig. 1). With regard to
physiological responses, Nox-derived ROS have been linked to ECs migration and
ischemia-induced angiogenesis [20]. Results from experimental animals [21] (Table 1)
indicate that Nox isoforms have been implicated in cardiac fibrosis [22], preconditioning
(PC) [23], cardiac remodeling post-myocardial infarction (MI) [24], angiotensin II (AngII)-
mediated cardiac hypertrophy [25, 26], atherosclerosis [27–29], aortic aneurysm formation
[30], and response to arterial injury [31]. Emerging evidences indicate that moderately
elevated ROS have protective effects in multiple cells including in cardiomyocytes [32] and
ECs [33, 34]. Thus, there are ample evidences for the role of Nox-derived ROS in
modulating cardiovascular physiology and pathophysiology.

NAD(P)H oxidases in the cardiovascular system
All ECs and VSMCs express the catalytic subunits Nox1 [35–39], Nox2 [38, 40–42], Nox4
[20, 39, 41, 43–48], and/or Nox5 [49, 50] (Table 2). Expression of both Nox2 and Nox4 has
been described in adventitial fibroblasts [51, 52]. Both Nox2 [53, 54] and Nox4 [32, 55] are
expressed in the heart. Additionally, Nox2 is also expressed in neutrophil [56], monocyte/
macrophage [57, 58], and platelet [59]. Recently, it is reported that monocyte/macrophage
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express Nox4 [60]. Different Nox isoforms have distinct subcellular localization, regulation,
and function (Table 2). Nox4 and Nox2 are abundantly expressed, while Nox1 is less
expressed, in ECs [61, 62]. Nox1 and Nox4 are present in higher amounts than Nox2 in
VSMCs [39]. Generally, the most abundant vascular Nox isoform is Nox4 [36, 45, 63, 64],
based on the gene expression data. Unlike Nox1 and Nox2, Nox4 is constitutively active in
cardiovasculature [65, 66], and generates predominantly H2O2 rather than O2

•− [67, 68].
Several reports suggest that Nox4 is Rac1 independent [69–72], although some reports
imply that Nox4 activation may be partially regulated by Rac1[73, 74]. Recently, two Nox4-
binding proteins, polymerase (DNA-directed) δ-interacting protein 2 (Poldip2) in VSMCs
[75], and tyrosine kinase substrate with five Src homology 3 domains (Tks5) [76], have been
shown to be important (Fig. 1). Nox4 has been associated with CVDs such as hypertension,
atherosclerosis, and cardiovascular and renal complications of diabetes, and is involved in
the remodeling of pulmonary arteries during hypoxia-induced pulmonary hypertension [48,
77, 78], although the precise mechanisms are unclear. Recent studies suggest that Nox4 may
also have protective effects. Specifically, Nox4-null mice develop exaggerated contractile
dysfunction, hypertrophy, and cardiac dilatation in response to chronic overload, whereas
the cardiomyocyte-targeted expression of Nox4 protects transgenic mice from these effects
due to Nox4-enhanced myocardial angiogenesis [32]. In addition, elevated endothelial Nox4
promotes angiogenesis and flow recovery from limb ischemia in an eNOS-dependent
manner [20], augments vasodilation, and decreases blood pressure [93]. These results
suggest that Nox4 may be a potential therapeutic target for manipulating angiogenesis and
tissue repair. Nox1 has been implicated in VSMCs migration, proliferation, and extracellular
matrix production; these effects are mediated by cofilin [81]. Studies on transgenic mice
suggest a possible role for Nox1 in acute, but not chronic, forms of AngII-dependent
hypertension [79, 96–98] as well as in atherosclerosis, neointima formation of post-injury
[81], endothelial dysfunction, and stroke [99]. In spite of the extensive experimental data
implicating Nox1 in vascular disease (Table 1), there is a paucity of clinical data, although
the expression of Nox1 and Nox activator 1 (NoxA1) is induced in human atherosclerotic
vessels [100]. The physiological functions of Nox2 in the cardiovasculature remain unclear,
but pathological increases in Nox2 contribute to oxidative injury and cardiovascular
damage, including endothelial dysfunction [15, 42], vascular inflammation [42], and
structural remodeling [54, 92].

Regulation of NAD(P)H oxidases
Different Nox complexes have respective partners (Fig.1). For example, cardiovascular
Nox2 activity generally requires the association of a membrane-bound catalytic Nox subunit
with a variety of regulatory subunits including Rac1 GTPase, cytosolic phox proteins
including p40phox, p47phox, and p67phox, and proteins of the cytoskeleton including p22phox.
This process is controlled through at least three distinct mechanisms: activation of Rac1
[101], the presence of lipids such as arachidonic acid and phosphatidic acid, as well as
phosphorylation, oligomerization, and translocation of cytoplasmic subunits to the plasma
membrane [102].

The translocation and oligomerization of the classical cytoplasmic domains (p47phox,
p67phox, and p40phox) are initiated by the phosphorylation of p47phox by multiple kinases
including protein kinase C (PKC) [112] and p21-activated kinase 1 (PAK1) [113]. P47phox

acts as a scaffolding, transport, and molecular compass facilitating the arrival of p67phox at
the correct cellular location. At the membrane, p67phox interacts with active Rac (GTP-
loaded), which resides at the plasma membrane. Active Rac binds to proteins containing
specific domains, such as the tandem tetratricopeptide repeat (TPR) motif in p67phox [114].
Therefore, not only is Rac necessary for Nox-dependent production of ROS, but the
translocation of cytoplasmic subunits to the plasma membrane is also required before Rac
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can activate Nox. It is well known AngII exert its pathological functions via Nox activation
in cardiovascular cells [115, 116]. Moreover, both high glucose level and palmitate enhance
ROS production via PKC-mediated Nox activation in cultured vascular cells [117]. We
recently found that Nox2 activation due to p67phox membrane translocation mediated by
PKCζ contributes to elevated O2

•− formation in ECs in response to thromboxane A2
receptor (TP) activation [118].

Besides the regulation of Nox activity by assembly, changes in the gene expression of Nox
subtypes are essential for their function. Tumor necrosis factor α (TNFα) treatment
increases the mRNA and protein levels of Nox subunits p47phox, p67phox, and gp91phox, as
well as Nox activity in ECs (Wang S and Zou MH, unpublished data), MonoMac1 cells, and
monocytes [119], suggesting the transcriptional upregulation of three essential Nox genes
via the nuclear factor kappa B (NF-κB) pathway. In human aortic SMCs, NF-κB and
activator protein-1 (AP-1) are important regulators of Nox activity and p22phox

transcription, and a Janus tyrosine kinase/signal transducers and activators of transcription
(JAK/STAT)-dependent mechanism is involved in the modulation of Nox1 and Nox4
expression and Nox-derived superoxide anion production [108, 120, 121]. These data
indicate that cooperation among multiple transcription factors, co-activators, and co-
repressors is essential for the precise control of Nox transcription and function.

AMPK in cardiovascular systems
AMPK, a critical regulator of energy metabolic homeostasis at the cellular and whole
organism levels [122], is a serine/threonine kinase which has been highly conserved during
evolution. AMPK exists as a heterotrimeric complex consisting of a catalytic α subunit and
regulatory β and γ units. There are two isoforms of α (α1 and α2) and β (β1 and β2) and
three γ subunits (γ1, γ2, and γ3), which are differentially expressed in mammalian tissues
(Fig. 2). AMPK is activated by allosteric regulation via an increased ratio of adenosine
monophosphate (AMP) to adenosine triphosphate (ATP), and its activity is maintained by
the inhibition of dephosphorylation through ADP binding [46, 123], and by the
phosphorylation of the α subunit (T172) via upstream kinases including liver kinase B1
(LKB1) [124, 125], Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) [126,
127], and transforming growth factor-β-activated kinase 1(TAK1) [128, 129]. Protein
phosphatase 2A (PP2A) [130, 131] and PP2C [132] are shown to dephosphorylate AMPK at
T172. Moreover, both α1- and α2-containing AMPK complexes are inactivated by PP2C,
and the α1 isoform is more resistant than α2 to inactivation by PP2A [133]. Recently, both
protein kinase B (PKB) [134] and PKA [135] have been reported to phosphorylate
AMPKα1/α2 at S485/491, which inhibits AMPK phosphorylation at T172. More recent
evidence has shown that AMPKα1 phosphorylation at T172 can be impeded by AMPKα1
phosphorylation at S173 mediated by PKA in primary mouse adipocytes [136] (Fig.2).

Although AMPK is activated as a consequence of any cellular process, normal or
anomalous, that either decreases ATP levels or increases AMP concentrations [137], AMPK
is also activated by a variety of stimuli including cytokines (leptin, adiponectin, ghrelin,
cannabinoids, IL-6) [138, 139], ciliary neutrotrophic factor (CNTF) [140], certain drugs
including metformin [141], thiazolidinediones (TZD), which is PPARγ-independent [142],
and may be AMP-dependent [143, 144], and some plant-derived compounds including
berberine [145, 146], resveratrol [147], and curcumin [148]. Once AMPK is activated, it
switches on catabolic pathways that can generate ATP (e.g., cellular uptake and utilization
of glucose), while at the same time, terminates processes that consume ATP (e.g., cellular
synthesis pathways). Thus, AMPK orchestrates the regulation of energy-generating and –
consuming pathways. The rapid “switching” required to closely and quickly regulate and
balance cellular energy resources is achieved by brisk phosphorylation of metabolic
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enzymes and of various transcription factors and co-activators that control gene expression
[137].

AMPK in the heart
AMPKα2 is the predominant AMPKα isoform expressed in the mouse and rat hearts [150],
whereas both α1 and α2 subunits of AMPK equally contribute to total AMPK activity in the
human heart [151]. The heart expresses both γ1 and γ2 isoforms but lacks the γ3 isoform.
γ1 isoform complexes account for 70% of AMPK activity in the ischemic heart [150], but
mutations in the γ2 subunit of AMPK causes familial hypertrophic cardiomyopathy [152].
AMPK can be activated in the heart by several factors, such as adiponectin [153],
macrophage migration inhibitory factor (MIF) [154], follistatin-like 1 (Fstl1) [155],
resveratrol, a cardioprotective polyphenol from red wine [156], and cardiac ischemia [157,
158]. Conversely, insulin inhibits AMPK activation [159, 160].

Animal experiments indicate that AMPK has distinct functions in the heart (Table 3).
AMPK carries out important physiological roles such as regulating fatty acid and glucose
metabolism in the heart [161, 162]. AMPK activation has been shown to reduce myocardial
ischemic injury [163, 164]. AMPK activation may inhibit myocardial hypertrophy [156,
165, 166] and impede the transition from cardiac hypertrophy to heart failure [151]. In
addition, the cardiac hypertrophy induced by isoproterenol or pressure-overload in
AMPKα2−/− mice is significantly higher than in wild-type (WT) animals and is associated
with p70S6K activation [167, 168]. AMPKα2 has been implicated in the positive regulation
of myocardial estrogen-related receptor-α (ERRα) expression which is negatively
associated with congestive heart failure [169]. Further, AMPK plays an important role in
ischemia-induced autophagy in cardiomyocytes [170]. More recently, our research indicates
that AMPKα2 inhibition impedes myocardium autophagy, accentuates cardiac dysfunction,
and increases mortality in diabetic mice [171].

AMPK in endothelial cells
Both α subunits of AMPK are expressed in ECs [172, 173]. No compensatory upregulation
of AMPKα2 or AMPKα1 is observed in either AMPKα1−/− or AMPKα2−/− mouse aortic
ECs, respectively, although AMPKα1 is the predominant isoform of AMPKα in human and
mouse ECs and aortae [42, 172, 174]. AMPKα2 however, has more important physiological
functions such as anti-atherogenic effects [172] and pro-angiogenic effects in response to
hypoxia [175, 176].

In ECs, stimuli such as peroxynitrite [177–179], the anti-diabetic drug metformin [178], and
the lipid-lowing drug statin [180] have been reported to activate AMPK via LKB1
phosphorylation and activation. Furthermore, flow shear stress activates either AMPK
signaling event for NO bioavailability [181] or extracellular signal-regulated kinase 5
(ERK5)-mediated PPARγ1 signaling pathway to facilitate antiinflammatory response in
ECs [182]. However, AMPK can be inactivated in ECs by free fatty acids such as palmitate
[131] as well as by high glucose [183]. Moreover, AMPK activity was lower in the aortic
endothelium of obese rats compared to control rats [184].

AMPK plays an important role in maintaining vascular endothelial function [185]. First,
AMPK signaling contributes to vasodilation of conduit and resistance vessels via the
upregulation of eNOS phosphorylation at Ser1177 and Ser633 [186] and the subsequent
association of phosphorylated eNOS with heat shock protein 90 (Hsp90) [187, 188]. In
addition, AMPK activation by metformin or 5′-aminoimidazole-4-carboxamide
ribonucleoside (AICAR) impairs high glucose/diabetes-induced 26S proteasome activity,
which mediates the degradation of GTP cyclohydrolase 1 (GTPCH1), the rate-limiting
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enzyme in the de novo synthesis of tetrahydrobiopterin (BH4), an essential cofactor for
eNOS. Thus, in vivo activation of AMPK attenuates diabetes-enhanced GTPCH1
degradation and restores the impaired endothelium-dependent relaxation in diabetic mice
[183]. However, aortae from AMPKα2−/− mice, which exhibit elevated 26S proteasome
activity, have reduced levels of GTPCH I and BH4, and consequent endothelial dysfunction
[183]. Second, AMPK performs its role of counteracting oxidative stress in ECs via the
upregulation of both manganese superoxide dismutase (MnSOD) and uncoupling protein 2
(UCP2) and the downregulation of Nox. Third, AMPK exerts a pivotal role in angiogenesis.
Treatment of endothelial cell progenitor cells with AICAR increases their ability to form
capillary-like tubes in vitro through an NO-dependent mechanism [189]. Inhibition of
AMPK signaling suppresses both human umbilical-vein endothelial cell (HUVEC)
migration and in vitro differentiation into tube-like structures in hypoxic, but not normoxic
cultures. Dominant-negative AMPK also impairs in vivo angiogenesis in Matrigel plugs
implanted subcutaneously in mice [175]. The AMPK-p38 MAPK signaling cascade elevates
VEGF production in muscle and promotes angiogenesis in skeletal muscle in response to
ischemic injury [190]. More recently, our research indicates that AMPK inhibition with
either a pharmacological inhibitor (compound C) or by genetic means (transfection of
AMPKα-specific siRNA or either AMPKα1 or AMPKα2 deletion) significantly lowers
tube formation in HUVEC or mouse aortic ECs, associated with impaired UCP2 expression
[191]. Finally, AMPK activation ameliorates hypoxia and glucose deprivation-induced ECs
apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin [192].

AMPK in vascular smooth muscle cells
We and another group have found that both catalytic α subunits of AMPK are expressed in
VSMCs. No compensatory upregulation of AMPKα2 or AMPKα1 is observed in
AMPKα1−/− or AMPKα2−/− VSMCs, respectively, although AMPKα1 is the predominant
isoform contributing to total AMPKα and its activation in VSMCs [198, 206]. AMPK in
cultured VSMCs can be activated by the TP agonists IBOP and U46619, in a H2O2-
dependent manner, whereas SQ29548, a selective TP antagonist, significantly attenuates TP-
enhanced AMPK activation [207].

AMPK activation exerts its anti-proliferative role in VSMCs. Igata et al. [208] reported that
the AMPK activator AICAR significantly inhibits proliferation of human aortic SMCs
induced by both platelet-derived growth factor-BB (PDGF-BB) and fetal calf serum (FCS).
Consistent with this finding, AICAR treatment inhibits the expression of p21 but not p27.
AICAR increases p53 protein levels and p53-S15 phosphorylation in human aortic SMCs,
with both of these effects being blocked by AMPK inhibition. These data suggest that
AMPK suppresses VSMCs proliferation by blocking cell cycle progression through p53 up-
regulation. Another study has shown that subcutaneous injection of AICAR for 2 weeks
suppresses neointimal formation after transluminal mechanical injury of the rat femoral
artery by blocking the phosphorylation of extracellular signal-regulated kinase 1/2 [209].
Recently, a potent anti-tumor agent, β-lapachone (3,4-dihydro-2,2- dimethyl-2H-
naphtho[ 1,2-b]pyran-5,6-dione), was shown to inhibit FCS- or PDGF-induced proliferation
of VSMCs and to reduce neointimal formation in balloon-injured rat carotid arteries through
the LKB1-AMPK-p53-p21 pathway [210]. We have also found that AMPK activation
inhibits VSMCs hypertrophy induced by thromboxane receptor activation [207].
Interestingly, our recent work revealed that AMPKα2 deletion exacerbates neointima
formation through the upregulation of E3 ligase S-phase kinase-associated protein 2 (Skp2)
mediated by the activation of p52 NF-κB-2, leading to p27 downregulation and a resultant
accelerated cell cycle in VSMCs. AMPK activation by metformin blunts neointimal
hyperplasia after carotid artery injury in WT mice [198]. In addition, AMPK activation in
VSMCs has been implicated in attenuated smooth muscle contraction via direct

Song and Zou Page 6

Free Radic Biol Med. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



phosphorylation of myosin light chain kinase [211] and consequent vasorelaxation [193].
Moreover, we reported that AMPKα2 deletion accentuates agonist-induced vascular smooth
muscle contraction and high blood pressure in mice [197].

AMPK in blood cells
AMPK is also expressed and exerts critical effects in blood cells. It is well known that
AMPKα1 is the predominant AMPKα isoform expressed in both human and mouse
monocytes/macrophages; however, AMPKα2 is almost undetectable in macrophages [212,
213]. Either anti-inflammatory or proinflammatory stimuli rapidly activate or inactivate
AMPK in macrophages, respectively. Activated AMPK supresses the production of
proinflammatory cytokines and promotes macrophage polarization to an anti-inflammatory
functional phenotype in a manner associated with NF-κB inhibition [212, 213], which
results from SIRT1-mediated p65 deacetylation [213]. It has been reported that the
stimulation of glycolysis by hypoxia in activated monocytes requires the phosphorylation
and activation of inducible 6-phosphofructo-2-kinase (iPFK-2) by AMPK [214].
Interestingly, AMPK inactivation within monocytic MM6 cells has been implicated in the
exercise-induced immunosuppression [215]. Further, it is reported that berberine represses
proinflammatory responses through AMPK activation in macrophages [216]. AMPK
activation also blunts proinflammatory cytokine production in neutrophils [217]. Recently,
Bae et al. found that AMPK activation elevates the ability of both neutrophils and
macrophages to ingest bacteria (Escherichia coli), and the capacity of macrophages to ingest
apoptotic cells, due to cytoskeletal reorganization mediated by Rac1 activation. In vivo,
AMPK activation leads to augmented phagocytosis of bacteria in the lungs [218]. These data
imply that AMPKα1 may be a promising target for immunoregulation including the innate
immune and adaptive immune response.

We and other groups have found that AMPKα1 is the predominant isoform of AMPKα
expressed in murine erythrocytes [219-221]; however, AMPKα2 is nearly undetectable in
erythrocytes [221]. The life span of erythrocytes from AMPKα1−/− mice is shorter than that
in their WT littermates, possibly due to the increased osmotic fragility associated with
elevated ROS levels and oxidized proteins [219]. AMPKα1−/− erythrocytes are significantly
more susceptible to the eryptotic effect of energy depletion due to increased cytosolic Ca2+

[220]. Further, AMPKα1−/− erythrocytes have less deformability in response to shear stress,
limiting their membrane flexibility [221]. Finally, AMPKα1−/−, but not AMPKα2−/−, mice
are anemic despite excessive reticulocytosis, and exhibit severe splenomegaly [219, 220].
Interestingly, treatment of AMPKα1−/− mice with the antioxidant tempol results in reduced
reticulocyte amounts and improved erythrocyte survival [219].

Both AMPKα1 and AMPKα2 isoforms are expressed in human and murine platelets [222].
Either thrombin or insulin activates AMPK in platelets [222, 223]. AMPK inhibition
significantly impairs thrombin-induced platelet aggregation and clot retraction. Furthermore,
compared with WT mice, AMPKα2−/−, but not AMPKα1−/−, mice have disrupted clot
retraction, higher frequency of rebleeding, and unstable thrombi formation induced by
FeCl3, which is attributed to the blunted Thr12 phosphorylation of Fyn, a Src-family kinase,
and the consequently impaired Tyr747 phosphorylation of αIIbβ3 integrin [222]. These data
suggest that AMPKα2, rather than AMPKα1, positively regulates platelet function.

Redox regulation of AMPK
Recent studies by our laboratory and others demonstrate that AMPK activity can be
regulated by oxidative stress. Interestingly, AMPKα1 is more sensitive to oxidative stress
[224], while AMPKα2 is much more sensitive to an increase in AMP concentration [133,
224]. Different oxidative stress mediates AMPK activity via a distinct mechanism, including
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either AMP/ATP ratio-dependent, upstream kinase-mediated, or oxidative modification
manner. Our laboratory was the first to demonstrate that low concentrations of ONOO− (<10
μM) increase the activity of AMPK and its downstream enzymes such as eNOS and ACC in
ECs [225, 226]. We have shown that ONOO−-dependent AMPK activation occurs after
hypoxia-reoxygenation [227] and in metformin- [226], simvastatin- [180], or berberine-
[146] stimulated ECs, and ONOO− is capable of activating AMPK independently of changes
in AMP/ATP ratio [226, 227]. AMPK is also activated by hypoxia via mitochondrial ROS
through an unknown mechanism [228] or the upstream kinase LKB1 [229]. Recently,
Mungai et al. reported that hypoxia triggers AMPK activation even when there is an
apparent lack of AMP elevation, through ROS-dependent calcium release-activated calcium
(CRAC) channel activation, leading to an elevation of cytosolic Ca2+ that activates the
AMPK upstream kinase CaMKKβ [230]. Moreover, we found that thromboxane receptor
activates AMPK in VSMCs via LKB1 in an H2O2-dependent manner [207]. H2O2
transiently activates AMPK in a dose-dependent manner, which is associated with an
increased AMP/ATP ratio [231] or via an unknown mechanism without altering the ratios of
AMP/ATP [224]. Interestingly, H2O2 directly causes the oxidative modification of AMPKα
including S-glutathionylation of C299/304 without depletion of cellular ATP, which
contributes to AMPK activation [232]. On the other hand, AMPK becomes inactivated
under disease conditions including diabetes and obesity [183], which is reportedly
associated with elevated oxidative stress [233]. Collectively, several ROS/RNS acutely
activate AMPK and cellular functions mediated by this molecule, including the maintenance
of redox homeostasis, such that AMPK might function as an “early warning system” in
response to oxidants to attenuate oxidative injury [234].

AMPK activation suppresses oxidative stress
Either AMPKα1 or AMPKα2 deletion/inhibition elevates oxidative stress in different cell
types/tissues through distinct mechanisms [15, 42, 219]. For example, AMPKα1 silencing in
HUVEC downregulates the expression of genes involved in antioxidant defense, including
MnSOD, catalase, γ-glutamylcysteine synthase, and thioredoxin [174]. Furthermore,
AMPKα1 deletion significantly downregulates Foxo3 and ROS scavenging enzymes
including catalase, MnSOD, and glutathione peroxidase (GPx-1) in mice erythroblasts [219].
In contrast, Ruderman et al have reported [235] that AMPK activation diminishes oxidative
stress in ECs. There is emerging evidence that AMPK signaling pathways can ameliorate the
oxidative stress associated with cardiovascular disease by upregulating the expression of
endogenous antioxidant genes. For example, AMPK activation by metformin or AICAR
normalizes hyperglycemia-induced mitochondrial ROS production by induction of MnSOD
and promotion of mitochondrial biogenesis, via the activation of the AMPK-peroxisome
proliferator-activated response-gamma coactivator-1α (PGC-1α) pathway [236]. AMPK
activation by AICAR or metformin attenuates either AngII- or lipopolysaccharide-induced
oxidative endothelium injury, and c-Jun N-terminal kinase (JNK) activation, via
mitochondrion stabilization and increased mitochondrial biogenesis by PGC-1α [237].
Additionally, our work demonstrates that AICAR upregulates the AMPK-dependent
mitochondrial uncoupling protein 2 (UCP2) via p38, which is associated with a reduction in
both O2

•− and prostacyclin synthase nitration in diabetic WT mice, but not in their
AMPKα2−/− counterparts [238]. Collectively, these results establish that chronic AMPK
activation functions as a conductor of the redox orchestra.

Regulation of NAD(P)H oxidases by AMPK
Nox enzymes are generally regulated via either Nox complex assembly or Nox subunits
expression. Several lines of research indicate that AMPK activation may function as a Nox
inhibitory mechanism. AMPK activators, such as AICAR or 5′-AMP, are reported to
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attenuate both phorbol 12-myristate 13-acetate (PMA)- and formyl methionyl leucyl
phenylalanine (fMLP)-stimulated p47phox phosphorylation and translocation to the cell
membrane in human neutrophils, which is consistent with reduced O2

•− production [12].
AMPK activation by rosiglitazone may inhibit PKC [142], which phosphorylates p47phox at
several serine sites [112], mediating p47 membrane translocation associated with Nox
activation (Fig. 3). Thus, AMPK activation mitigates glucose-induced oxidative stress via
Nox inhibition in ECs [142, 235]. These data suggest that AMPK may restrain Nox
activation in the cardiovascular system [239] via assembly inhibition. Additionally,
metformin, an AMPK activator, also suppresses Nox activity by an unknown mechanism in
podocytes [13].

Our recent work might reveal an alternative mechanism for AMPK-mediated Nox inhibition
[15]. In that study, we found that AMPK negatively regulates NF-κB activation by
inhibiting the 26S proteasome-dependent IκBα degradation pathway and the consequent
expression of Nox4, Nox2 and its partners p47phox and p67phox. The finding that either
AICAR-induced AMPK activation or constitutively active AMPK increases IκBα protein
levels in TNFα-treated ECs, without affecting IκBα mRNA levels, suggests that AMPK
regulates IκBα only at the protein level. The ability of pharmacological inhibition of NF-κB
to block the endothelial Nox gene as well as protein expression induced by either TNFα or
AMPKα deletion suggests that both stimuli regulate Nox gene transcription via NF-κB. In
addition, the ability of NF-κB inhibition to decrease components p67phox and p47phox

protein levels in the absence of either stimulus suggests that the basal expression of these
subunits is also regulated by the NF-κB pathway. These results are consistent with several
recent reports indicating that AMPK activation by either metformin, AICAR, or NO inhibits
NF-κB activation by decreasing IKK-dependent IκBα phosphorylation in ECs [240, 241].
More recently, Foretz et al. report that Nox2, neither Nox1 nor p22phox, is upregulated by
unknown means in the aortae of AMPKα1−/− mice chronically infused with AngII at low
subpressor doses; this is associated with elevated Nox activity [42]. In addition, AMPK
inhibition by high glucose upregulates Nox4 via an unreported mechanism, increases Nox
activity, and causes podocyte apoptosis through p53 upregulation [242]. These results
indicate that AMPK may exert its anti-oxidant role by inhibiting the expression of Nox
subunits. Although these studies are highly suggestive of potential crosstalk between AMPK
and Nox, how AMPK suppresses Nox remains to be established. Additionally, it is reported
that JAK/STAT inhibitors significantly diminish the interferon γ (IFNγ)-mediated
upregulation of Nox1 and Nox4 expression, Nox activity, and resultant O2

•− production in
human VSMCs [108]. Interestingly, AMPKα2−/− VSMCs show elevated STAT1/3
activation (Song P and Zou MH, unpublished data). Whether AMPK activation blunts Nox
expression via STAT warrants further investigation.

Taken together, AMPK activation suppresses Nox activity may via either blocking Nox
assembly by inhibiting p47phox phosphorylation and translocation to cell membrane or
inactivation of transcription factors including NF-κB and STAT for Nox or the expression
of its partners (Fig.3). In contrast to a direct phosphorylation of IKK at Ser-177/181 by
AMPKα2 in vitro [241], currently there is no evidence suggesting that AMPK can
phosphorylate p47phox, IκBα, NFκB components, or STATs. Thus, how AMPK regulates
Nox in monocytes/macrophages and platelet remains to be established.

AMPK and NAD(P)H oxidases in cardiovascular diseases
Numerous cellular and animal experiments (Table 3) report cardiovascular-protective effects
of AMPK [234, 243–246]. Many therapeutic agents used for the treatment of diabetes and
atherosclerosis, including metformin [141, 226], thiazolidinediones [142], and statins [180,
247] may exert their cardiovascular protective effects by the activation of AMPK. AMPK
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activation has a number of potentially beneficial anti-atherosclerotic effects including
reducing the adhesion of inflammatory cells to the blood vessel endothelium, reducing lipid
accumulation and the proliferation of inflammatory cells caused by oxidised lipids,
stimulation of gene expression responsible for cellular antioxidant defenses [248], and
stimulation of enzymes responsible for NO formation [181, 183, 249].

Recently, we showed that AMPKα2 deletion upregulates Nox2/4 and its partners p67phox

and p47phox via NF-κB activation. Increased Nox activity results in elevated O2
•−

production in ECs, which leads to endothelial dysfunction contributing to exacerbated
atherosclerosis in low-density lipoprotein receptor knockout (LDLr−/−) mice given a high-fat
diet [15]. AMPKα1 deletion also upregulates Nox2, associated with elevated Nox activity in
response to AngII. The increased Nox activity contributes to augmented O2

•− production
and the resultant endothelial dysfunction [42]. In addition, we found that oxidized and
glycated LDL (HOG-LDL) enhances the p47phox membrane translocation associated with
Nox activation [196]. Augmented Nox activity causes ROS elevation, which oxidizes the
sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA), and subsequently increases
cytosolic Ca2+, which is associated with endoplasmic reticulum (ER) stress in ECs. The
aberrant ER stress results in impaired endothelium-dependent vasorelaxation in isolated
aortae from ApoE−/−/AMPKα2−/− mice fed a high-fat diet, which contributes to severe
atherosclerosis. However, AMPK activation by AICAR blunts p47phox membrane
translocation and ER stress. These data indicate that AMPK activation suppresses HOG-
LDL–induced ER stress by inhibiting Nox–derived ROS. More recently, it is reported that
early atrial fibrillation (AF) causes to the upregulation of Nox2 expression and activity. Ex
vivo atorvastatin inhibits atrial Rac1 and Nox2 activity by unknown method in patients with
postoperative AF [54]. Whether the function of statin is mediated by AMPK warrants
further investigation. Overall, AMPK activation attempts to suppress oxidative injury by
suppressing Nox-derived ROS and associated ER and mitochondria dysfunction. This
feedback mechanism might be essential for maintaining cardiovascular homeostasis,
therefore AMPK exerts its critical role in preventing cardiovascular disease including heart
disease [151], atherogenesis [15, 196, 250], neointima formation [198, 209], and
hypertension [197, 251].

Conclusions and perspectives
Several reported cellular and animal experiments indicate that either the expression of Nox
and its partners or the assembly and activation of Nox complex are regulated by AMPK via
different mechanisms (Fig.3). AMPK activators such as metformin may exert their
cardiovascular protective function through Nox inhibition by AMPK activation. It is not
clear whether other clinical AMPK activators including TZD and statin elicit their
cardiovascular protective function via Nox inhibition mediated by AMPK. Treatment of
Nox isoform knock out animals or Nox/AMPK double-knock out animals with these drugs
will be beneficial for answering the question.

The AMPKα1 and α2 isoforms have ~90% homology in their N-terminal catalytic domains
and ~60% homology in their C-terminal domains [252], suggesting that they likely have
distinct upstream and downstream signaling pathways [133], although both AMPKα
isoforms have common downstream pathways. It is therefore important to develop activators
which specifically target different AMPKα isoforms. Different AMPK isoforms are
predominantly expressed in different cardiovascular cell types and tissues. Nox subcellular
localization and its components may be differentially regulated by distinct AMPKα
isoforms via its respective molecular mechanisms. Tissue-specific conditional knockout of α
isoforms in mouse/rat would afford the ability to assign downstream signaling to individual
α subunits of AMPK for Nox regulation. It is also critical to re-evaluate the distinct
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functions of the different catalytic AMPKα subunits in both normal and pathological
settings.
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Abbreviations

7-KC 7-ketocholesterol

AAA abdominal aortic aneurysm

AICAR 5′-aminoimidazole-4-carboxamide ribonucleoside

AMPK adenosine monophosphate-activated protein kinase

AngII angiotensin II

ApoE apolipoprotein E

BH4 5,6,7,8-tetrahydrobiopterin

CAD coronary artery disease

CaMKKβ Ca2+/calmodulin-dependent protein kinase kinase β

CRAC calcium release-activated calcium

CVD cardiovascular disease

ECs endothelial cells

EGF epidermal growth factor

eNOS endothelial nitric oxide synthase

ER endoplasmic reticulum

ERRα estrogen-related receptor-α

ET-1 Endothelin 1

GPx-1 glutathione peroxidase

GTPCH1 GTP-cyclohydrolase 1

H2O2 hydrogen peroxide

HF heart failure

HUVEC human umbilical vein endothelial cells

LKB1 liver kinase B1

MI myocardial infarction

MPO myeloperoxidase

NAD(P)H nicotinamide adenine dinucleotide phosphate reduced form

NF-κB nuclear factor kappa B
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NO nitric oxide

Nox NAD(P)H oxidase

NoxA1 Nox activator1

NoxO1 Nox organizer 1

O2
•− superoxide anion

ONOO− peroxynitrite

PC preconditioning

PDGF platelet-derived growth factor

PDI protein disulfide isomerase

PGC-1α peroxisome proliferator-activated response-gamma coactivator-1α

PKA protein kinase A

PKC protein kinase C

PM plasma membrane

RAS renin-angiotensin system

RNS reactive nitrogen species

ROS reactive oxygen species

SERCA sarcoplasmic/endoplasmic reticulum Ca2+ ATPase

Skp2 S-phase kinase-associated protein 2

SOD superoxide dismutase

TAC transverse aortic constriction

TAK1 transforming growth factor-β-activated kinase 1

TGF-β1 transforming growth factor β1

TNFα Tumor necrosis factor α

TP thromboxane A2 receptor

TPR tetratricopeptide repeat

TZD thiazolidinediones

SMC smooth muscle cell

VSMCs vascular smooth muscle cells

WT wild-type
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Highlights

• AMPK is activated by oxidants;

• AMPK suppresses NAD(P)H oxidase;

• Dysfunctional AMPK results in oxidative stress.
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Fig. 1.
Distribution and regulation of NAD(P)H oxidases in cardiovascular systems. With the
exception of Nox4, the Nox homologues are basally inactive. Regulation of the
cardiovascular Nox complex is mediated by variations of Nox isoform structure as well as
interactions with various partners. See text for details.

Song and Zou Page 29

Free Radic Biol Med. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Structure features of the catalytic α and regulatory β and γ subunits of AMPK. Residues
phosphorylated by AMPKK (LKB1, CaMKKβ, TAK1), PKA, and Akt are shown within the
α subunit. This figure is modified from Viollet et al [149]. Refer to the text for expanded
forms of abbreviations.
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Fig. 3.
Schematic summary of available information on the regulation of cardiovascular Nox by
AMPK. Refer to the text for expanded forms of abbreviations.
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Table 1

NAD(P)H oxidase knockout or transgenic mouse models associated with cardiovascular disease.

KO or Tg mouse model Phenotype or related cardiovascular outcome Reference(s)

Nox1 null Attenuated renal-sensitive signaling [79]

Nox1 null Lower blood pressure, reduction in aortic media hypertrophy [80]

Nox1 null Reduced neointima formation [81]

Nox2 null Attenuated cardiac remodeling and PC effect [22–24]

Beneficial effects on neovascularization [82, 83]

Impaired ischemia-induced flow recovery [84, 85]

Decreased neointima formation [31]

Attenuated AngII-induced hypertrophy but not TAC [25, 26, 86]

Nox2 null/ApoE null No significant effects on atherogenesis [87]

Nox2 null/ApoE null Reduced early atherosclerosis [27]

Nox4 null Exaggerated contractile dysfunction, hypertrophy, and cardiac dilatation [32]

p47phox null Impaired pressor responses to AngII [88]

p47phox null/ApoE null Reduced atherosclerosis and AngII-induced AAA [28–30]

Cardiomyocyte-specific Rac1 null Attenuated AngII-induced hypertrophy [89]

Tg-SMC-Nox1 Elevated AngII-induced hypertension and VSMC hypertrophy [90, 91]

Tg-tie2-Nox2 Elevated AngII-induced EC dysfunction and hypertension [92]

Tg-VECad-Nox4 Promote EC angiogenesis [20]

Tg-tie2-Nox4 Lower systemic blood pressure [93]

Tg-αMHC-Nox4 Protective myocardial angiogenesis to overload stress [32]

Tg-SMC-p22phox Elevated AngII-induced vascular hypertrophy [94]

Tg-SMC-p22phox Enhanced carotid arterial lesions [95]

Refer to the text for expanded forms of abbreviations.
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Table 3

AMPK and transgenic or knockout mouse models related to cardiovascular disease

Animal model Tissue specificity Phenotype or related cardiovascular outcome Reference(s)

AMPKα1 KO Whole body Impaired eNOS activation in EC [187]

Whole body Impaired AICAR-enhanced vasorelaxation [193]

Whole body Aggravated endothelial dysfunction and vascular inflammation in response
to AngII

[42]

Whole body Impaired angiogenesis [191]

AMPKα2 KO Whole body More rapid onset of ischemia-induced contracture, Impaired glucose
transport and glycogen metabolism in heart

[194, 195]
[194, 195]

Whole body Higher cardiac hypertrophy induced by isoproterenol or pressure-overload [167]

Whole body Endothelial dysfunction, elevated atherosclerosis in LDLr−/− mice [15]

Whole body Impaired SERCA activity, aberrant ER stress, Elevated atherosclerosis in
ApoE−/− mice

[196]

Whole body Impaired angiogenesis [191]

Whole body Hypertension [197]

Whole body Elevated neointima formation after injury. [198]

TgAMPKγ2(CA-T400N) Heart Glycogen storage cardiomyopathy, greater infarct sizes and apoptosis after
ischemia-reperfusion

[199]

TgAMPKγ2(CA-N488I) Heart Glycogen storage cardiomyopathy [200, 201]

TgAMPKγ2(DN-R531G) Heart Glycogen accumulation and hypertrophy [202]

TgAMPKγ2(DN-R302Q) Heart Glycogen accumulation cardiomyopathy [203]

TgAMPKα2(DN-K45R) Heart Impaired glucose uptake and glycolysis, and elevated injury after ischemia-
reperfusion

[163]

TgAMPKα2(DN-D157A) Heart Impaired glucose uptake, [204]

Increase myocardial infarct size, [205]

Impaired autophagy, aggravated cardiomyopathy and mortality in diabetic
mice

[171]

Refer to the text for expanded forms of abbreviations.
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