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Abstract
High-dimensional problems arising from robot motion planning, biology, data mining, and
geographic information systems often require the computation of k nearest neighbor (knn) graphs.
The knn graph of a data set is obtained by connecting each point to its k closest points. As the research
in the above-mentioned fields progressively addresses problems of unprecedented complexity, the
demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional
data sets increases, exceeding resources available to a single machine. In this work we efficiently
distribute the computation of knn graphs for clusters of processors with message passing. Extensions
to our distributed framework include the computation of graphs based on other proximity queries,
such as approximate knn or range queries. Our experiments show nearly linear speedup with over
one hundred processors and indicate that similar speedup can be obtained with several hundred
processors.
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1 Introduction
The computation of proximity graphs for large high-dimensional data sets in arbitrary metric
spaces is often necessary for solving problems arising from robot motion planning [14,31,35,
40,45,46,56], biology [3,17,33,39,42,50,52], pattern recognition [21], data mining [18,51],
multimedia systems [13], geographic information systems [34,43,49], and other research fields.
Proximity graphs are typically based on nearest neighbor relations. The nearest neighbor or,
in general, the k nearest neighbor (knn) graph of a data set is obtained by connecting each point
in the data set to its k closest points from the data set, where a distance metric [11] defines
closeness.

As an example, research in robot motion planning has in recent years focused on the
development of sampling-based motion planners motivated by the success of the Probabilistic
RoadMap (PRM) method [31] for solving problems involving multiple and highly complex
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robots. Sampling-based motion planning algorithms [14,31,41,45,46] rely on an efficient
sampling of the solution space and construction of the knn graph for the sampled points. The
knn graph captures the connectivity of the solution space and is used to find paths that allow
robots to move from one point in the environment to another while satisfying certain constraints
such as avoiding collision with obstacles.

The use of knn graphs combined with probabilistic methods also has promise in the study of
protein folding [3,17,52]. Other applications of knn searches and graphs in biology include
classifying tumors based on gene expression profiles [42], finding similar protein sequences
from a large database [33,39], and docking of molecules for computer-assisted drug design
[50].

In pattern recognition and data mining, nearest neighbors are commonly used to classify objects
based upon observable features [13,18,21,51]. During the classification process, certain
features are extracted from the unknown object and the unknown object is classified based on
the features extracted from its k nearest neighbors.

In geographic information systems [34,43,49], a commonly encountered query is the
computation of knn objects for points in space. Examples of queries include finding “the nearest
gas stations from my location” or “the five nearest stars to the north star.”

As research in robot motion planning, biology, data mining, geographic information systems,
and other scientific fields progressively addresses problems of unprecedented complexity, the
demand for computing knn graphs based on arbitrary distance metrics and large high-
dimensional data sets increases, exceeding resources available to single machines [48]. In this
paper, we address the problem of computing the knn graph utilizing multiple processors
communicating via message passing in a cluster system with no-shared memory and where the
amount of memory available to each processor is limited. Our model of computation is
motivated by many scientific applications where the computation of the knn graph is needed
for massive data sets whose size is dozens or even hundreds of gigabytes. Since such
applications are also computationally intensive and the knn graph constitutes only one stage
of the overall computation, it is important to fit as much of the data as possible in the main
memory of each available processor in order to reduce disk operations. The challenge lies in
developing efficient distributed algorithms for the computation of the knn graph, since nearest-
neighbors computations depend on all the points in the data set and not just on the points stored
in the main memory of a processor.

The contribution of our work is to develop a distributed decentralized framework that
efficiently computes the knn graph for extensively large data sets. Our distributed framework
utilizes efficient communication and computation schemes to compute partial knn results,
collect information from the partial results to eliminate certain communication and
computation costs, and gather partial results to compute knn queries for each point in the data
set. The partial knn results are computed by constructing and querying sequential knn data
structures [8,23,26–28,55] stored in the main memory of each processor. Our distributed
framework works with any sequential knn data structure and is also capable of taking advantage
of specific implementations of sequential knn data structures to improve the overall efficiency
of the distribution.

Our distributed framework supports the efficient computation by hundreds of processors of
very large knn graphs consisting of millions of points with hundreds of dimensions and arbitrary
distance metrics. Our experiments show nearly linear speedup on one hundred and forty
processors and indicate that similar speedup can be obtained on several hundred processors.
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Our distributed framework is general and can be extended in many ways. One possible
extension is the computation of graphs based on approximate knn queries [4,16,32,36,38,47,
54]. In an approximate knn query, instead of computing exactly the k closest points to a query
point, it suffices to compute k points that are within a (1+ε) hypersphere from the k-th closest
point to the query point. Approximate knn queries provide a trade-off between efficiency of
computation and quality of neighbors computed for each point. Another possible extension is
the computation of graphs based on range queries [5,9,19]. In a range query, we are interested
in computing all the points in the data set that are within some predefined distance from a query
point. Range queries are another type of proximity queries with a wide applicability.

The rest of the paper is organized as follows. In section 2 we review related work. In section
3 we formally define the problem of computing the knn graph, describe the distributed model
of computation, and then present a distributed algorithm for computing knn graphs. We also
discuss how to extend our distributed framework to compute graphs based on approximate
knn and range queries. In section 4 we describe the experimental setup, the data sets for testing
the efficiency of the distribution, and the results obtained. We conclude in section 5 with a
discussion on the distributed algorithm.

2 Related Work
The computation of the knn graph of a data set S is based on the computation of the k nearest
neighbors for each point s ∈ S. The computation of the k nearest neighbors for a point s ∈ S
is referred to as a knn query and s is referred to as a query point. In this section we review work
related to the sequential and distributed computation of knn queries and knn graphs.

Motivated by challenging problems in many research fields, a large amount of work has been
devoted to the development of efficient algorithms for the computation of knn queries [4,8,
15,23,26–28,36,55]. The computation of knn queries usually proceeds in two stages. During a
preprocessing stage, a data structure TS is constructed to support the computation of knn queries
from a given a data set S. During the query stage, searches are performed on TS to compute the
k nearest neighbors of a query point s, denoted TS(s, k). The same data structure TS can be used
for the computation of the k nearest neighbors from the data set S to any query point; TS is
modified only when points are added to or removed from S. In knn literature, references to the
knn data structure encompass both the structure of the data, TS, and the algorithms to query the
data structure to obtain the k nearest neighbors, TS(s, k).

Researchers have developed many efficient data structures for the computation of knn queries
based on Euclidean distance metrics [4,15,23,26,36]. However, many challenging applications
stemming from robot motion planning, biology, data mining, geographic information systems,
and other fields, require the computation of knn queries based on arbitrary distance metrics.
Although a challenging problem, progress has been made towards the development of efficient
data structures supporting knn queries based on arbitrary distance metrics [8,28,55]. During
the preprocessing stage, usually a metric tree [53] is constructed hierarchically as the data
structure TS. One or more points are selected from the data set and associated with the root
node. Then the distances from the points associated with the root node to the remaining points
in the data set are computed and used to partition the remaining points in the data set into
several smaller sets. Each set in the partition is associated with a branch extending from the
root node. The extension process continues until the cardinality of the set in the partition is
smaller than some predefined constant. For example, in the construction of vantage-point trees
[55], the median sphere centered at the point associated with the root is used to partition the
data set into points inside and outside the sphere, while in the construction of GNAT [8], the
data set is clustered using an approximate k-centers algorithm and each center is associated
with a branch extending from the root. Figure 1 illustrates the construction of a metric tree for
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GNAT. During the query stage, precomputed distances, lower and upper bounds on the
distances between points associated with the nodes of the tree, triangle inequality, and other
properties and heuristics are used to prune certain branches of the tree in order to improve the
efficiency of computing knn queries.

In addition to the development of more efficient sequential knn algorithms, distributed
algorithms that take full advantage of all the available resources provide a viable alternative
for the computation of knn queries. Research on distributed knn algorithms mostly focuses on
the development of algorithms for computing knn queries based on Euclidean distance metrics.
The work in [43] addresses parallel processing of knn queries in declustered spatial data in 2-
dimensional Euclidean spaces for multiple processors communicating through a network. The
work is based on the parallelization of nearest neighbor search using the R-tree data structure
[26] and could be generalized to d-dimensional Euclidean spaces. The work in [29] shows how
to compute knn queries for 3-dimensional Euclidean point sets for a shared-memory grid
environment utilizing general grid middle-ware for data intensive problems. In [49], knn
queries are computed efficiently in an integration middleware that provides federated access
to numerous loosely coupled, autonomous data sources connected through the internet.

There is also research on distributed algorithms for computing knn graphs, but the focus again
is on knn graphs based on Euclidean distance metrics. In [20], an algorithm is presented for
the computation of the knn graph for a 2-dimensional Euclidean point set for coarse grained
multicomputers that runs in time Θ(n log n/p + t(n, p)), where n is the number of points in the
data set, p is the number of processors, and t(n, p) is the time for a global-sort operation. The
work in [12] develops an optimal algorithm for the computation of the knn graph of a point set
in d-dimensional Euclidean space based on the well-separated pair decomposition of a point
set that requires O(log n) time with O(n) processors on a standard CREW PRAM model.

Recent progress in the development of parallel and distributed databases and data mining has
spawned a large amount of research in the development of efficient distributed algorithms for
the computation of knn queries [44,57]. In [1], the PN-tree is developed as an efficient data
structure for parallel and distributed multidimensional indexing and can be used for the
computation of knn queries for certain distance metrics. The computation of knn queries using
the PN-tree data structure depends on clustering of points into nodes and projections of nodes
over each dimension, which is not generally possible for arbitrary distance metrics. In [7], a
parallel algorithm is developed for computing multiple knn queries based on arbitrary distance
metrics from a database. Experimental results on Euclidean data sets and up to 16 servers show
close to linear speedup. We note that the focus of parallel and distributed databases and data
mining is on applications that are usually I/O intensive and require the computation of one or
several knn queries. The focus of the work in this paper is different. This paper targets
applications that are computationally intensive, require the computation of the knn graph, and
the computation of the knn graph constitutes only one stage of the entire computation. Our
motivation comes from our research in robot motion planning and biology [14,22,30,37,40,
45,46], where the knn graph is computed to assist in the computation of paths for robots or
exploration of high-dimensional state spaces to analyze important properties of biological
processes.

3 Distributed Computation of the knn Graph
Our distributed algorithm for the computation of the knn graph utilizes sequential knn data
structures, such as those surveyed in section 2, for the partial computation of knn queries and
efficient communication and computation schemes for computing the k nearest neighbors of
each point in the data set. The description of the distributed algorithm is general and applicable
to any knn data structure. We initially present the distributed algorithm by considering the knn
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data structure as a black-box and later discuss how to take advantage of the specific
implementations of the knn data structures to improve the efficiency of the distributed
algorithm for the computation of the knn graph. At the end of this section, we also discuss
possible extensions to the distributed framework including computation of graphs based on
approximate knn and range queries.

3.1 Problem Definition
Let the pair (S, ρ) define a metric space [11], where S is a set of points and ρ : S × S → ℝ ≥0

is a distance metric that for any x, y, z ∈ S satisfies the following properties: (i) ρ(x, y) ≥ 0 and
ρ(x, y) = 0 iff x = y (positivity); (ii) ρ(x, y) = ρ(y, x) (symmetry); and (iii) ρ(x, y) + ρ(y, z) ≥ ρ
(x, z) (triangle inequality). Let S = {s1, s2, …, sn} ⊂ S be a collection of n points defining the
data set. Let k ∈ ℕ be an integer representing the number of nearest neighbors. The k nearest
neighbors (knn), denoted by NS(si, k), of a point si ∈ S are defined as the k closest points to
si from S − {si} according to the metric ρ. The knn graph of S, G(S, k) = (V, E), is an undirected
graph where V = {v1, …, vn}, with vi corresponding to si, and E = {(vi, vj) ∈ V2 : si ∈ NS(sj,
k) V sj ∈ NS(si, k)}.

3.2 Model of Computation
Let P = {P1, P2, …, Pp} be the set of all the available processors for the computation of G(S,
k). Let S1, S2, …, Sp be a partition of S, i.e., S = S1 ∪ S2 ∪ … ∪ Sp and Si ∩ Sj = Ø for all i,
j ∈ {1, 2, …, p} and i ≠ j. Let TSi be a data structure that computes knn queries for the set Si,
i.e., querying TSi with s ∈ S and k ∈ ℕ, denoted TSi(s, k), produces NSi(s, k), where NSi(s, k)
denotes the k closest points to s from Si − {s}.

In our model of computation, processors communicate via message passing and there is no-
shared memory available. We assume restrictions on the memory available to each processor
Pi ∈ P, similar to [20]. Processor Pi is capable of storing the set Si, the data structure TSi, a
small number of query points Ci ⊂ S − Si, knn query results for |Si| + |Ci| points, and a small
amount of bookkeeping information. In addition, processor Pi is equipped with a small
communication buffer to exchange messages, query points, and results with other processors.

Our model of computation is particularly well-suited for many scientific applications in
different research fields such as robot motion planning, biological applications, etc., which
often generate hundreds of gigabytes of data and require the computation of the knn graph G
(S, k) for such extensively large data sets S. In addition to storage requirements, such
applications are also computationally intensive and the computation of the knn graph G(S, k)
constitutes only one stage of the overall computation. Therefore, effective distribution
schemes, as the one we propose in this work, should use most of the main memory of each
processor to store as much of the data set S as possible.

3.3 Local Nearest Neighbor Queries
Each processor Pi ∈ P constructs a knn data structure TSi for the computation of knn queries
NSi(s, k) for any point s ∈ S. The objective of the knn data structure TSi is the efficient
computation of knn queries NSi(s, k) based on arbitrary distance metrics for any point s ∈ S.
Several examples of efficient knn data structures can be found in [4,8,15,23,28,36,55]. The
distributed algorithm considers the knn data structure TSi as a black-box it can query to obtain
NSi (s, k) for any point s ∈ S. In this way, the distributed algorithm is capable of computing
the knn graph utilizing any knn data structure TSi. In addition, the distributed algorithm is also
capable of taking advantage of specific implementations of the knn data structures, as we
discuss in section 3.5.7. It is important to note that processor Pi cannot query the knn data
structure TSi to obtain NS(s, k), since only the portion Si of the data set S is available to processor
Pi. In our distributed algorithm we show how to compute NS(s, k) for all s ∈ S efficiently.
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3.4 Data and Control Flow
Before relating the details of the distributed algorithm, we discuss data and control flow
dependencies. The computation of the knn query NS(si, k) for a point si ∈ Si requires the
combination of results obtained from querying the knn data structures TS1, …, TSp associated
with the processors P1, …, Pp, respectively, since S is partitioned into S1, …, Sp. Under our
model of computation, each processor Pi is capable of storing only one knn data structure, i.e.,
TSi, due to the limited amount of memory available to processor Pi. Furthermore, each processor
Pi is equipped with only a small communication buffer which makes the communication of
the data structure TSi from Pi to other processors prohibitively computationally expensive.
Therefore, the only viable alternative for computing the knn query NS(si, k) is for processor
Pi to send the point si to other processors which in turn query their associated knn data structures
and send back the results to Pi.

An efficient distribution of the computation of the knn graph G(S, k) can be achieved by
maximizing useful computation. For each processor Pi ∈ P, the useful computation consists
of (i) the computation of knn for points owned by processor Pi and (ii) the computation of knn
for points owned by other processors. In order to maximize the useful computation by reducing
idle times, it is important that each processor Pi handles requests from other processors as
quickly as possible [25,58].

The computation of knn queries for points owned by processor Pi requires no communication,
while the computation of knn queries for points owned by other processors requires
communication. Each processor Pi has a limited cache Ci, thus only a small number of points
from other processors can be stored in Ci. Following general guidelines set forth in [25,58] for
efficient distribution algorithms, in order to accommodate as many points from other
processors as possible, it is important that processor Pi empties its cache Ci quickly. Hence,
before computing any knn queries for points it owns, processor Pi first computes any knn
queries pending in the cache Ci. Furthermore, in order to minimize the idle or waiting time of
other processors, processor Pi also handles any communication requests made by other
processors before computing any knn queries for the points it owns. In this way, processor Pi
gives higher priority to requests from other processors and computes knn queries for points it
owns only when there are no pending requests from other processors. The overall effect of this
schema is shorter idle and waiting times for each processor which translates into better
utilization of resources for useful computations.

We have designed a decentralized architecture for our distributed implementation of the
computation of the knn graph G(S, k). We utilize only asynchronous communication between
different processors in order to minimize idle and waiting times. Each processor Pi is
responsible for the computations of knn queries utilizing the data structure TSi, posting of
requests to other processors for the computation of knn queries for points it owns, and ensuring
a timely response to requests made by other processors.

3.5 Distributed Computation
The distributed knn algorithm DKNNG proceeds through several stages, as illustrated in
Algorithm 1. After initializing the cache Ci to be empty and constructing the knn data structure
TSi associated with the points in Si (lines 1–2), each processor Pi enters a loop until the
computation of the knn graph G(S, k) is complete (lines 3–24). Inside the loop, each processor
Pi tests if there are pending computations in the cache Ci (lines 4–7), if the cache Ci needs to
be filled (lines 8–9), if there are pending requests from other processors (lines 10–20), or if it
should compute knn queries from the points Si it owns (lines 21–24). As the computation
proceeds, certain issues arise including how processor Pi processes queries pending in the
cache, removes and adds queries to the cache, communicates with other processors to fill its
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cache and the cache of other processors with query points. Processor Pi considers the different
stages in an order that attempts to minimize the idle and waiting times of other processors by
handling pending requests from other processors [25,58] as quickly as possible before it
computes knn queries for the points it owns. We now describe each stage of DKNNG in more
detail.

3.5.1 Cache is Not Empty—Processor Pi selects one point s from the cache Ci and computes
its nearest neighbors utilizing the knn data structure TSi. The selection of the point s can be
done in a variety of ways. One possibility is to apply the first-in first-out principle and select
from the cache Ci the point s that has been in the cache Ci for the longest time. Processing the
points in the order of addition to the cache has the benefit of guaranteeing that each point will
eventually be processed and thus avoids the starvation problem. On the other hand, since other
processors will possibly send to processor Pi several points at a time, processing of points in
the cache Ci from processor P″ will start only after all the points in the cache Ci from processor
P′ have been processed (assuming that points from processor P′ were added to the cache Ci
before the points from processor P″.)

In order to ensure a timely response to the requests from other processors, we introduce
randomization to the selection process. A weight ws is associated with each point s in the cache
Ci. The weight ws is directly proportional to the time the point s has been in the cache Ci and
inversely proportional to the number of points in the cache Ci owned by the processor that
owns the point s. The constant of proportionality can be defined to also include a measure of
the state of computation for each processor and the importance of the computation of the nearest
neighbors for the point s to the processor that owns the point s. A probability ps is computed
as ps = ws/Σs′∈Ci ws′ and a point s is selected with probability ps from the cache Ci. The weight
ws of a point s increases the longer s waits in the cache Ci, since ws is directly proportional to
the waiting time of s. Therefore, as s waits in the cache, the probability ps increases and thus
the likelihood that s will be the next point selected from Ci increases as well. In order to
guarantee that there is no starvation and to ensure that points in the cache do not wait for long
periods of time, we use a first-in first-out strategy to select points that have been in the cache
for longer than a predefined maximum amount of time.

3.5.2 Cache is Not Full—The objective of processor Pi is to maximize the useful
computation [25,58]. Consequently, it is important that there are always some points in the
cache Ci, so that processor Pi can spend useful computation time computing knn queries on
behalf of other processors. In this way, processor Pi postpones the computation of knn queries
for its points as much as possible – these computations require no communication and can be
done anytime.

Processor Pi requests from other processors to send to it several points in order to fill its cache
Ci. In order to avoid communicating the same request over and over again, processor Pi sends
the request only to those processors that have responded to a previous similar request. Processor
Pi maintains a flag fj for each processor Pj ∈ P − {Pi} that indicates if processor Pj has
responded to a “cache is not full” request from processor Pi. Processor Pi sends the request to
processor Pj only if the flag fj is set to true. After posting the request to processor Pj, processor
Pi sets the flag fj to false. The flag fj is set again to true when processor Pi receives a response
from processor Pj. Initially, processor Pi assumes that every other processor Pj has responded
to its request to fill the cache Ci.

When processor Pj receives a request from Pi to fill the cache Ci, processor Pj selects one or
more points uniformly at random from Sj and sends the selected points to processor Pi. The
selected points are never again considered by processor Pj for filling the cache Ci of processor
Pi. In order to ensure that the same point is never sent to a processor more than once, processor
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Pj associates with each point sj ∈ Sj and each processor Pi ∈ P − {Pj} a single bit bsj, Pi that
indicates if point sj has been sent to processor Pi. A point sj is considered for selection iff
bsj, Pi is set to false. The bit bsj, pi is set to true when the point sj is sent to processor Pi.

The bookkeeping information requires the additional storage of (|P| − 1) + (|P| − 1)|Sj| bits by
each processor Pj ∈ P. This additional amount of bookkeeping is very small compared to the
size of the data Sj. As an example, if |P| = 100, Sj is 2GB large, each point sj ∈ Sj has 200
dimensions, and each dimension is represented by a 64-bit double, the amount of bookkeeping
is 15.84MB or equivalently 0.77% of the size of Sj.

3.5.3 Received Points—Processor Pi receives points from other processors only as a
response to the request of Pi to fill its cache Ci. If there is room in the cache Ci, the received
points are added to the cache Ci. Otherwise, processor Pi selects one point from the cache Ci,
using the selection process discussed in section 3.5.1, and computes the knn query associated
with it. This process continues until all the received points are added to the cache Ci.

3.5.4 Received Results—Processor Pi associates with each point si ∈ Si the combined
results of the knn queries computed by Pi and other processors. Let NS(si, k) be the current
knn results associated with the point si. Initially, NS(si, k) is empty. Let NSj(si, k) be the knn
results computed by processor Pj utilizing the knn data structure TSj. The set NS(si, k) is updated
by considering all the points s ∈ NSj (si, k) and adding to NS(si, k) the point s iff |NS(si, k)| <
k or ρ(s, si) < mins′∈NS(si, k) ρ(s′, si). In other words, processor Pi merges the knn results
computed by processor Pj with the current results. In the merging process, only the k closest
neighbors are associated with the result NS(si, k).

3.5.5 No Pending Requests—If there are no pending requests, processor Pi has computed
all the knn queries associated with the points in the cache Ci and has requested from other
processors to fill its cache Ci. Furthermore, processor Pi has handled all the requests from other
processors and, thus, it is free to compute knn queries from the points Si it owns. Therefore,
processor Pi selects one of the points si ∈ Si, which has not been selected before, and computes
the knn query NSi(si, k) utilizing the data structure TSi. The computed results NSi(si, k) are
merged with the current results NS(si, k), as described in section 3.5.4.

Processor Pi uses the computations of the knn queries for points it owns to avoid possible idle
or waiting times when it has handled all the requests from other processors. Doing such
computations only when it is necessary increases the effective utilization of processors [25,
58] and consequently results in an efficient distribution of the computation of the knn graph G
(S, k).

3.5.6 Termination Criteria—The computation of the knn graph G(S, k) is complete when
NS(s, k) has been computed for each s ∈ S. Since S is partitioned into S1, …, Sp, it suffices if
for each Si and each si ∈ Si, the computation of NS(si, k) is complete. Observe that the
computation of NS(si, k) is complete iff processor Pi, which owns the point si, has combined
the knn query results NS1(si, k), …, NSp(si, k), i.e., each processor Pj has computed the knn
queries for the point si utilizing the knn data structure TSj and processor Pi has gathered and
combined all the computed results into NS(si, k).

When the computation of NS(si, k) is complete for all si ∈ Si, processor Pi notifies all the other
processors that the computation of knn queries for Si is complete. Processor Pi meets the
termination criteria when the computation of knn queries for Si is complete and when processor
Pi receives from all the other processors Pj ∈ P − Pi the notification that the computation of
knn queries for Sj is complete.
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Processor Pi detects the completion of the computation of NS(si, k) for all si ∈ Si by maintaining
a counter. The counter is initially set to 0 and incremented each time processor Pi computes a
query for a point it owns or when processor Pi receives results from another processor. When
the counter reaches the value |P||Si|, the computation of NS(si, k) is complete for each point si
∈ Si, since each processor has computed knn queries using each point si ∈ Si.

3.5.7 Exploiting Properties of the knn Data Structure—Each processor Pi utilizes the
knn data structure TSi for the computation of knn queries. As presented in Algorithm 1 (line
6), DKNNG considers each knn data structure TSi as a black-box. However, DKNNG not only
works with any knn data structure, but it can easily take advantage of special properties of the
knn data structure TSi to improve the overall performance.

The general idea consists of utilizing information gathered during the computation of knn
queries by processor Pi or other processors to prune future computations of knn queries. Past
computations could provide information that can be used to eliminate from consideration points
in a data set that are too far from a query point to be its nearest neighbors. Such an idea has
been successfully used by many efficient nearest neighbors algorithms [4,8,15,23,28,36,55].
The overall effect is that the computation of knn queries by other processors for some of the
points owned by processor Pi may become unnecessary and thus the efficiency of DKNNG is
improved since certain communication and computation costs are eliminated.

Pruning local searches: For the clarity of exposition, we illustrate how to take advantage of
the knn data structures by considering GNAT [8] and kd-trees [23] as the data structure TSi.
The description, however, is applicable to many knn data structures [4,15,28,36,55].

GNAT is a hierarchical data structure based on metric trees [53] that supports the efficient
computation of nearest neighbor searches. At the root level, the set Si is partitioned into smaller
sets using an approximate k-centers algorithm and each center is associated with a branch
extending from the root. The construction process continues recursively until the cardinality
of the set in the partition is smaller than some predefined constant. An illustration is provided
in Figure 1.

GNAT is a suitable choice since it is efficient for large data sets and supports the computation
of knn queries for arbitrary metric spaces, which is important in many research areas such as
robot motion planning, biological applications, etc. An important property of GNAT is that
the efficiency for the computation of knn for a point si ∈ S can be improved by limiting the
search only to points that are inside a small hypersphere B(si) centered at si, as illustrated in
Figure 2. We compute the radius rB(si) of B(si) as the largest distance from si to a point in
NS(si, k). When NS(si, k) is empty, rB(si) is set to ∞. As described in section 3.5.5, NS(si, k)
contains the partial results of the knn query for the point si. The computation of the knn query
NSj(si, k) by processor Pj can significantly be improved by sending to it, in addition to si, the
radius rB(si), since a point sj ∈ Sj cannot be one of the k closest neighbors to si if it is outside
B(si), since there are already at least k points inside B(si).

Other knn data structures, such as kd-trees [23] could be exploited in a similar way. A kd-tree
constructs a hierarchical representation of the data set based on axis-aligned hyperplane
decompositions. At each level, an axis and a hyperplane through that axis is chosen and the
data set is split into two sets depending on the side of the hyperplane each data point is located.
The hyperplane is typically chosen to be the median of the points with respect to the coordinates
of the chosen axis. The process is repeated recursively until the cardinality of the remaining
data set is smaller than some predefined constant. The efficiency of the knn search can be
improved by pruning subtrees whose associated hyperplane does not intersect with B(si), since
points in these subtrees cannot be closer to si than points already in B(si). Therefore, the radius
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rB(si) can be used by processor Pj to prune certain branches during the computation of NSj(si,
k).

Reducing communication and computation costs: The idea of pruning the knn search by
limiting it to points inside a small hypersphere around the query point can be further utilized
in other parts of DKNNG to improve its efficiency. During initialization, each processor Pi
selects several points Ci ⊂ Si as center points and associates each point si ∈ Si with the closest
center ci ∈ Ci. The computation of the centers can be done in a variety of ways including
algorithms similar to k-means [6] or approximate k-centers [8]. The radius of the hypersphere
B(ci) is computed as the largest distance from ci ∈ Ci to a point associated with ci. Processor
Pi then sends ci and rB(ci) for each ci ∈ Ci to all other processors. Consider now the computation
of NSj(si, k) by processor Pj for some point si ∈ Si. A point sj ∈ NSj (si, k) will be merged with
NS(si, k) iff ρ(sj, si) < rB(si). Since sj ∈ Sj is contained inside B(cj) for some cj ∈ Cj, then we
know sj cannot be merged with NS(si, k) if B(si)∩B(cj) = Ø. Hence, processor Pi can avoid
sending to processor Pj any point si ∈ Si such that B(si)∩B(cj) = Ø for all cj ∈ Cj, since none
of the points in NSj(si, k) will be merged with NS(si, k). Such pruning further reduces the
communication and computation costs of DKNNG. The idea is illustrated in Figure 3.

3.5.8 Improving the Distribution by Preprocessing the Data Set—The efficiency of
DKNNG can be further improved by partitioning the set S into sets S1, …, Sp, such that the
partitioning improves the pruning of the knn search as discussed in section 3.5.7. One
possibility is to partition S into p clusters of roughly the same size and assign each cluster to
one processor. The clusters can be again computed using algorithms similar to k-means [6] or
approximate k-centers [8]. The partition of the set S into clusters increases the likelihood that
B(ci) ∩ B(cj) = Ø for ci ∈ Ci and cj ∈ Cj, since points in Si belong to a different cluster than
points in Sj. Consequently, the likelihood that, for si ∈ Si, B(si) ∩ B(cj) = Ø for all cj ∈ Cj, also
increases. In such cases, the computation of the knn query NSj(si, k) becomes unnecessary and
thus reduces overall computational and communication costs.

3.6 Extensions to DKNNG
Although DKNNG is presented for the computation of the knn graph, the proposed framework
can be extended and generalized in several ways. We now discuss how to apply and extend
our distributed framework to compute graphs based on approximate knn queries and range
queries.

3.6.1 Computation of Graphs Based on Approximate knn Queries—The
computation of graphs based on approximate knn queries is a viable alternative to the
computation of graphs based on knn queries for many applications in robot motion planning,
biology, and other fields, especially for large high-dimensional data sets. In an approximate
knn query, instead of computing exactly the k closest points to a query point, it suffices to
compute k points that are within a (1 + ε) hypersphere from the k-th closest point to the query
point. As the number of points and the dimension of each point in the data set increases, the
computation of knn queries becomes computationally expensive and can be made more
efficient by considering approximate knn queries. Approximate knn queries provide a trade-
off between efficiency of computation and quality of neighbors computed for each point.

The DKNNG algorithm of Algorithm 1 easily supports the computation of graphs based on
approximate knn queries. Since each data structure TSi is considered as a black-box, it suffices
to use data structures TSi that support the computation of approximate knn queries instead of
knn queries. Furthermore, efficient approximate nearest-neighbors algorithm exploit past
computations to prune future searches in a similar fashion as exact nearest-neighbors
algorithms [4,16,36]. Therefore, all the exploitations of the knn data structures to improve the
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efficiency of DKNNG, as discussed in section 3.5.7, are applicable to approximate knn data
structures as well.

3.6.2 Computation of Graphs Based on Range Queries—Another extension is the
computation of range queries instead of knn queries. In a range query, we are interested in
computing all the points s ∈ S that are within some predefined distance ε from a query point
si ∈ S, i.e., RS(si, ε) = {s ∈ S : ρ(s, si) ≤ ε}. Thus, we would like to compute RS(si, ε) for all the
points si ∈ S. This is easily achieved by using data structures that support range queries instead
of data structures that support knn queries. As in the case of the knn search, a large amount of
work has been devoted to the development of efficient algorithms for the computation of range
queries (see [19] for extensive references). One potential problem with range queries that could
affect the performance of DKNNG is that the communication of the range results RSj(si, ε)
from processor Pj to processor Pi could be less efficient than the communication of NSj(si, k),
since it is possible that |RSj(si, ε)| > k. On the other hand, the update of range results is more
efficient than the update of knn results, since processor Pi updates range results by simply
appending RSj(si, k) to RS(si, k). Furthermore, in the cases where the application we are
interested in do not require processor Pi to store the results of RS(si, ε), i. e., the results RS(si,
ε) can be stored in any of the available processors, then the communication of the range results
RSj(si, k) from processor Pj to processor Pi is unnecessary. Unlike in the case of the computation
of knn queries where results computed from other processors can be used to reduce the radius
of the hypersphere centered at the query point, in the case of range queries, the radius of the
hypersphere centered at the query point remains fixed to ε throughout the distributed
computation. Therefore, processor Pj can avoid communicating the range results RSj(si, ε) to
processor Pi and keep the results stored in its memory. In cases where storing RSj(si, ε) exceeds
the memory capacity available to processor Pj, then processor Pj writes the range results
RSj(si, ε) to a file.

4 Experiments and Results
Our experiments were designed to evaluate the performance of DKNNG compared to the
sequential implementation.

4.1 Hardware and Software Setup
The implementation of DKNNG was carried out in ANSI C/C++ using the MPICH
implementation of MPI standard for communication. Code development and initial
experiments were carried out in Rice Terascale Cluster, PBC Cluster, and Rice Cray XD1
Cluster ADA. The experiments reported in this paper were run on the Rice Terascale Cluster,
a 1 TeraFLOP Linux cluster based on Intel® Itanium® 2 processors. Each node has two 64-
bit processors running at 900MHz with 32KB/256KB/1.5MB of L1/L2/L3 cache, and 2GB of
RAM per processor. The nodes are connected by a Gigabit Ethernet network. For the DKNNG
experiments, we used two processors per node.

4.2 Data Sets
In this section, we describe the data sets we used to test the performance of DKNNG, how
these data sets were generated, and the distance metrics we used in the computation of the knn
graph.

4.2.1 Number of Points and Dimensions—We tested the performance of DKNNG on
data sets of varying number of points and dimension. We used data sets with 100000, 250000,
and 500000 points and 90, 105, 174, 203, 258, and 301 dimensions. The 18 data sets obtained
by combining all possible variations in the number of points and dimension varied in capacity
from 83MB to 1.3GB. In addition, we also used data sets with 1000000, 2000000, and 3000000
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points and 504 and 1001 dimensions. The additional 6 data sets obtained by combining all
possible variations in the number of points and dimensions varied in capacity from 3.75GB to
22.37GB.

4.2.2 Generation of Data Sets—Each data set was obtained from motion planning
benchmarks, since motion planning is our main area of research. The objective of motion
planning is to compute collision-free paths consisting of rotations and translations for robots
comprised of a collection of polyhedra moving amongst several polyhedral obstacles. An
example of a path obtained by a motion planning algorithm is shown in Figure 4(a). In our
benchmarks, the robots consisted of objects described by a large number of polygons, such as
3-dimensional renderings of the letters of the alphabet, bent cylinders, and the bunny, as
illustrated in Figure 4(b), and the obstacles consisted of the walls of a 3-dimensional maze, as
illustrated in Figure 4(c). Floor and ceiling are removed from Figure 4(c) to show the maze.

Efficient motion planning algorithms, such as [24,31,41,45,46], construct the knn graph using
points representing configurations of the robots. The configuration of a robot is a 7-dimensional
point parameterized by a 3-dimensional position and an orientation represented by a 4-
dimensional quaternion [2]. (We note that the robot has only 6 degrees of freedom, three for
translation and three for rotation. The fourth parameter in the parameterization of the rotation
is redundant, since unit quaternions suffice for the representation of rotations.) The
configuration of l robots is a 7l-dimensional point obtained by concatenating the configurations
of each robot. The distance between two configurations of a single robot is defined as the
geodesic distance in SE(3) [10]. For multiple robots, the distance between two configurations
is defined by summing the SE(3) distances between the corresponding configuration
projections for each robot [14]. The computation of the geodesic distance is an expensive
operation as it requires the evaluation of several sin, cos, and square root functions.
Alternatively, in order to improve on the efficiency of the computation, the knn graph can be
based on the Euclidean distance defined for embeddings of configurations [14]. The knn graph
based on embedding points provides a trade-off between efficiency of computation and quality
of neighbors computed for each point. An embedding of a single robot configuration is a 6-
dimensional point obtained by rotating and translating two 3-dimensional points selected from
the geometric description of the robot as specified by the configuration and concatenating the
transformed points.

Data sets generated and used by PRM: The data sets generated by the motion planning
algorithm PRM [31] are described in Table 1(a). PRM constructs a knn graph by sampling
configurations of the robot uniformly at random and connecting each configuration to its k
closest neighbors by a simple path. The algorithm guarantees that the sampled configurations
and the connections between configurations avoid collisions with the obstacles. In order for
PRM to find paths for multiple robots in environments with many obstacles or narrow passages,
millions of configurations are typically sampled. As described in Table 1(a), we used data sets
consisting either of configuration points or embedding points. All data sets are generated by
using PRM [31] to solve motion planning problems in the maze environment of Figure 4. The
number of robots was set to 15, 29, and 43 to obtain configuration points of 105, 203, and 301
dimensions and embedding points of 90, 174, and 258 dimensions, respectively. The robots
consisted of 3-dimensional renderings of the letters of the alphabet, where the i-th robot is the
(i mod 26)-th letter of the alphabet.

Large data sets: We generated large data sets consisting of 1000000, 2000000, and 3000000
points of 504 and 1001 dimensions by sampling configurations uniformly at random, as
described in Table 1(b). We did not use these large data sets for planning because (i) the scope
of this paper is the distributed computation of the knn graph and not planning and (ii) time
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limitations, since planning involves collision checking of configurations and paths and for the
data sets of Table 1(b) would require several weeks of computation.

4.3 Efficiency of DKNNG
To measure the efficiency of DKNNG, we ran the distributed code on various data sets, as
described in section 4.2, using different numbers of processors.

4.3.1 Description of Experiments
Number of nearest neighbors: We tested the performance of the sequential and DKNNG
algorithms for various values of k ∈ {15, 45, 150}. We found very little variation in the running
times for the sequential algorithm and DKNNG, thus in all our experiments we only report
results obtained for k = 15.

Measuring the computation time of the sequential algorithm: The computation time
required by the sequential algorithm is estimated by randomly selecting 500 points from the
data set, computing the associated knn queries and calculating the average time required to
compute one knn query. The total time is then obtained by multiplying the average time to
compute one knn query by the number of points in the data set and adding to it the time it takes
to construct the knn data structure. Our experiments with data sets of 100000 and 250000 points
and 90, 105, and 174 dimensions showed little variation (less than 60 seconds) between
estimated sequential time and actual sequential time.

Each data set can be stored in a single machine: The sizes of the data sets described in Table
1(a) vary from 83MB to 1.3GB. These sizes were chosen to make a fair comparison between
DKNNG and the sequential algorithm by ensuring that each data set fits in the main memory
of a single machine (see section 4.1 for a description of the hardware we used.) The efficiency
of DKNNG would be even higher if each data set does not fit in the main memory of a single
machine, as it is often the case in emerging applications in robot motion planning [40, 45,
46] and biology [3, 33, 39, 42, 50, 52], since the performance of the sequential implementation
would deteriorate due to frequent disk access. For each of the 18 data sets of Table 1(a), we
ran DKNNG on 64, 80, and 100 processors. Table 2 contains a summary of the results. For
each experiment, we report the computation time required by the sequential version and the
efficiency obtained with p processors. The efficiency is calculated as t1/(tp · p), where t1 is the
time required by a single processor to compute the knn graph and tp is the time required by
DKNNG to compute the knn graph when run on p processors.

Storing each data set requires several machines: We also tested the performance of DKNNG
on the data set of Table 1(b). The purpose of these data sets, which vary in size from 3.75GB
to 22.37GB, is to test the efficiency of DKNNG for large data sets, where several machines
are required just to store the data. We ran DKNNG using 20, 100, 120, and 140 processors.
We based the calculations of the efficiency on the running time for 20 processors, since each
processor is capable of storing 1/20-th of the data set in its main memory. This again ensures
a fair computation of the efficiency as the number of processors is increased, since the
performance of DKNNG on 20 processors does not suffer from frequent disk access. The
efficiency is calculated as 20t20/(tp · p), where t20 is the running time of DKNNG on 20
processors, and tp is the running time of DKNNG on p processors, for p = 100, 120, 140. The
results are presented in Table 3.

4.3.2 Results—The overall efficiency of DKNNG is reasonably high on all our benchmarks.
From the results in Table 2, the efficiency on 64 processors ranges from 0.889 to 0.998 with
an average of 0.974 and median of 0.989. When the number of processors is increased to 80,
the efficiency ranges from 0.853 to 0.998 with an average of 0.966 and median of 0.986. The

Plaku and Kavraki Page 13

J Parallel Distrib Comput. Author manuscript; available in PMC 2009 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



efficiency of DKNNG still remains high even on 100 processors, where the efficiency ranges
from 0.813 to 0.998 with an average of 0.958 and median of 0.982.

For each dimension, we observe that the efficiency of DKNNG increases as the number of
points in the data set increases. As an example, for d = 90 and p = 100, the efficiency of DKNNG
is 0.889 for 100000 points, 0.958 for 250000 points, and 0.976 for 500000 points. One
important factor that contributes to the increase in the efficiency is that each processor Pi has
now more points Si and thus more opportunities to fill in possible idle or waiting times by
computing knn queries for points si ∈ Si it owns.

Our experiments also indicate a high efficiency of DKNNG even when different metrics are
used. Even though the computation of the Euclidean metric is much faster than the computation
of the multiple geodesic metric in SE(3), the efficiency of DKNNG remains high in both cases.

For a fixed number of points, we observe that the performance of DKNNG increases as the
cost of computing the distance metric increases. For a fixed number of points and a fixed
distance metric, we observe that the performance of DKNNG decreases as the dimension
increases. The increase in the cost of computing the distance metric increases the useful
computation time since more time is spent computing queries. The increase in the dimension
increases communication costs since more data is communicated over the network when
sending queries from one processor to another. Hence, depending on whether the increase in
useful computations dominates over the increase in communication costs, the performance of
DKNNG either increases or decreases, respectively. As an example, when using the Euclidean
metric, the efficiency of DKNNG for n = 250000 and p = 100 is 0.958 for d = 90, 0.944 for
d = 174, and 0.931 for d = 258. When using a computationally more expensive metric, such
as the geodesic metric, the efficiency of DKNNG for n = 250000 and p = 100 is 0.994 for d =
105, 0.995 for d = 203, and 0.996 for d = 301.

Figure 5(a) compares the ideal efficiency to the worst, average, median, and the best efficiency
obtained for all the data sets of Table 1(a) when DKNNG is run on 64, 80, and 100 processors.
Figure 5(a) indicates a nearly ideal efficiency for the DKNNG algorithm.

Figure 5(b) presents logged data for the data set with d = 105 and n = 500000, when DKNNG
is run on 100 processors, showing the percentage of time spent computing knn queries. The
plot in Figure 5(b) is characteristic of the behavior of DKNNG on the other data sets as well.
Figure 5(b) indicates that most of the time, ranging from 99.35% to 99.77%, is spent doing
useful computation, i.e., computation of knn queries on behalf of other processors and
computation of knn queries for points owned by the processor, which results in a highly efficient
distributed algorithm.

The results in Table 3 indicate that DKNNG achieves high efficiency for large data sets. As
discussed earlier, increasing the number of points and the cost of computing the distance metric
increases the useful computation time since more time is spent computing knn queries, resulting
in an almost ideal efficiency for DKNNG.

5 Discussion
Our work is motivated by increasingly high-dimensional problems arising from motion
planning [14,31,35,40,45,46], biological applications [3,33,39,42,50,52], pattern recognition
[21], data mining [18,51], multimedia systems [13], geographic information systems [34,43],
and many other research fields, which often require efficient computations of knn graphs based
on arbitrary distance metrics. This paper presents an algorithm for efficiently distributing the
computation of such graphs using a decentralized approach.
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Our distributed framework is general and can be extended in many ways. Possible extensions
include the computation of graphs based on other types of proximity queries, such as
approximate knn or range queries, as discussed in section 3.6. In addition, our distributed
framework allows for the exploitation of certain properties of the data structures used for the
computation of knn queries, approximate knn queries, or range queries, to improve the overall
efficiency of the DKNNG algorithm.

The efficiency of DKNNG derives in part from a careful prioritization and handling of requests
between processors and a systematic exploitation of properties of knn data structures.
Throughout the distributed computation, each processor uses computations that do not require
communications to fill in idle times and gives a higher priority to computations requests by
other processors in order to provide a timely response. Information collected during the
computation of knn queries by one processor is shared with other processors which use it to
prune the computations of their knn queries. The information sharing in some cases makes the
computation of certain knn queries completely unnecessary and thus reduces communication
and computation costs. Our experimental results suggest that our distributed framework
supports the efficient computation by hundreds of processors of very large knn graphs
consisting of millions of points with hundreds of dimensions and arbitrary distance metrics.

We intend to integrate DKNNG with our motion planning algorithms [45,46] and use it for the
solution of robot motion planning problems of unprecedented complexity. While recent motion
planners can successfully solve robot motion planning problems with tens of dimensions, our
objective is to solve robot motion planning problems consisting of thousands of dimensions.
Other challenging applications stemming from biology, pattern recognition, data mining, fraud
detection, geographic information systems that rely on the computation of knn graphs could
benefit similarly from the use of our distributed DKNNG framework.
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Fig. 1.
The hierarchical structure of the metric tree in GNAT [8]. Illustrated are the points of the data
set and the spheres, represented as circles, associated with each node of the tree.
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Fig. 2.
Querying the GNAT [8] data structure. The empty circle drawn with a thick black perimeter
represents the hypersphere B(si) centered at si. During the computation of the query TSi (si,
k), there is no need to consider points inside the circles with the solid lines, since these circles
do not intersect B(si).
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Fig. 3.
Additional pruning of knn searches. The hypersphere B(si) is represented by the empty circle
with the thick black perimeter, while the centers B(cj) are represented by the circles with the
points inside. Processor Pi can avoid sending the point si to processor Pj, since B(si) does not
intersect any of the hyperspheres B(cj). Any point sj ∈ Sj is at least a distance rB(si) away from
si and thus cannot be in NS(si, k), since NS(si, k) already contains k points that are inside B(si).
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Fig. 4.
A motion planning benchmark. The objective of the motion planning is to compute collision-
free paths consisting of rotations and translations for robots comprised of a collection of
polyhedra moving amongst several polyhedral obstacles in 3-dimensional environments.
Rendering of objects is not on the same scale. (a) A path where the robot goes from one side
of a wall to the other side of the wall by wiggling its way through a small hole. Illustrated are
several consecutive poses of the robot as it follows the path. The arrows indicate the direction
of motion from one pose to the other. (b) Several different robots varying from 3-dimensional
renderings of the letters of the alphabet to a collection of bent cylinders and complex geometric
models such as the bunny. (c) A 3-dimensional maze representing the environment where the
robots are allowed to move.
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Fig. 5.
Performance of the DKNNG algorithm. (a) Comparison of the ideal efficiency with the worst,
average, median, and the best efficiency obtained for all the data sets of Table 1(a). (b)
Characterization of the useful computation for p = 100 for the data set with d = 105 and n =
500000 by showing what percentage of the time is spent computing knn queries.
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Algorithm 1
High-level description of the distributed computation of the knn graph. The pseudocode is applicable to each processor
Pi ∈ P. The computation of the knn graph proceeds in stages and at the end of the computation each processor Pi stores
the knn results NS(si, k) for each point si ∈ Si.
DKNNG Algorithm: Distributed Computation of the knn Graph

Input: Si ⊂ S = {s1, s2, …, sn}, points k, number of nearest neighbors Output: NS(si, k) for each si ∈ Si

Computation by processor Pi. All communications are done asynchronously.
1: initialize cache Ci ← Ø 14: request results from P′
2: construct knn data structure TSi 15: if received points then
3: while computing G(S, k) is not over do 16: if cache Ci is full then
4: if cache Ci is not empty then 17: create room in Ci
5: select and remove one point s from Ci 18: add received points to Ci
6: compute query TSi(s, k) 19: if received results then
7: send results to owner of s 20: update results
8: if cache Ci is not full then 21: if no pending requests then
9: post request to fill Ci 22: select one point s from Si
10: if received “cache is not full” then 23: compute query TSi(s, k)
11: P′ ← processors posting the request 24: update results
12: select points from Si to send to P′ 25: end while
13: send the selected points to P′
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