Science Advances

Supplementary Materials for

Opposite effects of stress on effortful motivation in high and low anxiety are mediated by CRHR1 in the VTA

Ioannis Zalachoras*, Simone Astori*, Mandy Meijer, Jocelyn Grosse, Olivia Zanoletti, Isabelle Guillot de Suduiraut, Jan M. Deussing, Carmen Sandi*

*Corresponding author. Email: carmen.sandi@epfl.ch (C.S.); izalacho@hotmail.com (I.Z.); simone.astori@epfl.ch (S.A.)

> Published 23 March 2022, *Sci. Adv.* **8**, eabj9019 (2022) DOI: 10.1126/sciadv.abj9019

The PDF file includes:

Figs. S1 to S6 Tables S1 and S2

Other Supplementary Material for this manuscript includes the following:

Source data

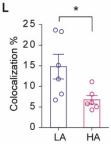


Fig. S1. Additional data on progressive ratio test performance. (A) Plasma corticosterone (CORT) levels at different time points following rats' exposure to the elevated platform (EP, n = 11) and in non-stressed rats in which blood samples were taken at equivalent time points (home cage, n = 8). Two-way ANOVA showed a significant effect of stress ($F_{(1,17)}$ = 22.49, p = 0.0002), a significant effect of time ($F_{(3,51)}$ = 14.07, p < 0.001) and a significant interaction ($F_{(3,51)} = 9.728$, p < 0.0001). Insert, lack of correlation between peak CORT response and trait anxiety, as measured by % of time spent in the open arm (OA) of the elevated plus maze (r = -0.149, p = 0.628), supporting the view that all animals are stressed regardless their individual anxiety levels. (B) No difference in training performance was observed between LA and HA rats involved in stress experiments. Two-way repeated measures ANOVA revealed a non-significant session x anxiety interaction ($F_{(5,190)} = 0.6091$, p = 0.693), a non-significant effect of anxiety ($F_{(1,38)} = 0.105$, p = 0.748) and a significant effect of session (F(5, 190) = 36.00, p < 0.001). (C) Necessary (the number of nosepokes rats needed to carry out after acquiring the previous reward in order to acquire the next one) and cumulative nosepokes (all nosepokes rats needed to perform from the beginning of the task to reach each reward) for each reward in the PR test. (D) Two-way ANOVA showed a non-significant interaction effect ($F_{(1,36)}$ = 2.378, p = 0.132), a non-significant effect of anxiety ($F_{(1,36)}$ = 0.145, p = 0.705) and a significant effect of stress ($F_{(1,36)}$ = 10.70, p = 0.0024) on the number of incorrect nosepokes performed. (E) Two-way ANOVA showed a non-significant interaction effect ($F_{(1,34)} = 0.9755$, p = 0.330), a non-significant effect of anxiety $(F_{(1,34)} = 0.729, p = 0.399)$ and a non-significant effect of stress $(F_{(1,34)} = 0.312, p = 0.580)$ on the number of timeout nosepokes. (F) All rats consumed 20 pellets when they were given access to them in a home cagelike environment, regardless of stress exposure, intra-VTA treatment or anxiety levels. (G-I) When the same rats were used for both conditions (control-stress) for the PR test session, the observed effect resembled the stress effect seen when rats were used either as controls or after stress exposure. (G) Twoway repeated measures ANOVA revealed a significant stress x anxiety interaction ($F_{(1, 19)} = 9.949$, p = 0.0052), a non-significant effect of anxiety ($F_{(1, 19)} = 0.117$, p = 0.736) and a non-significant effect of stress $(F_{(1,19)} = 0.2786, p = 0.604)$ on breakpoint. (H) Two-way repeated measures ANOVA revealed a significant stress x anxiety interaction ($F_{(1,19)}$ = 25.57, p < 0.0001), a non-significant effect of anxiety ($F_{(1,19)}$ = 0.043, p = 0.8384) and a non-significant effect of stress ($F_{(1,19)}$ = 1.175, p = 0.2919) on the number of correct nosepokes performed. (I) Two-way repeated measures ANOVA revealed a significant stress x anxiety interaction ($F_{(1,19)} = 13.04$, p = 0.0019), a non-significant effect of anxiety ($F_{(1,19)} = 0.003$, p = 0.958) and a non-significant effect of stress ($F_{(1,19)} = 0.0296$, p = 0.865) on the number of obtained rewards. (J-K) Expression of CRHR1 protein (red) in TH⁺ cells (green) (DA neurons), along with nuclear staining with DAPI (blue) and merged image in the VTA of LA (J) and HA rats (K). (L) LA rats had higher CRHR1 protein expression in DA neurons than HA rats (two-tailed t-test, $t_{(10)} = 2.546$, p = 0.029). Asterisks denote significant differences at respective t-tests or post-hoc tests (***, p < 0.001, **, p < 0.01, *, p < 0.05, #, p < 0.1).

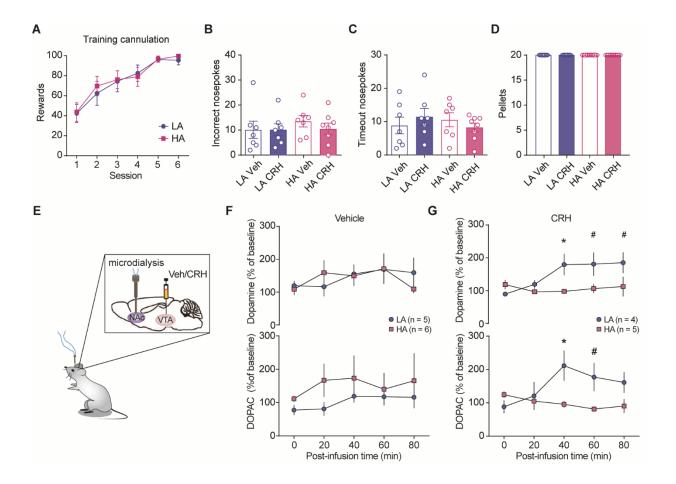
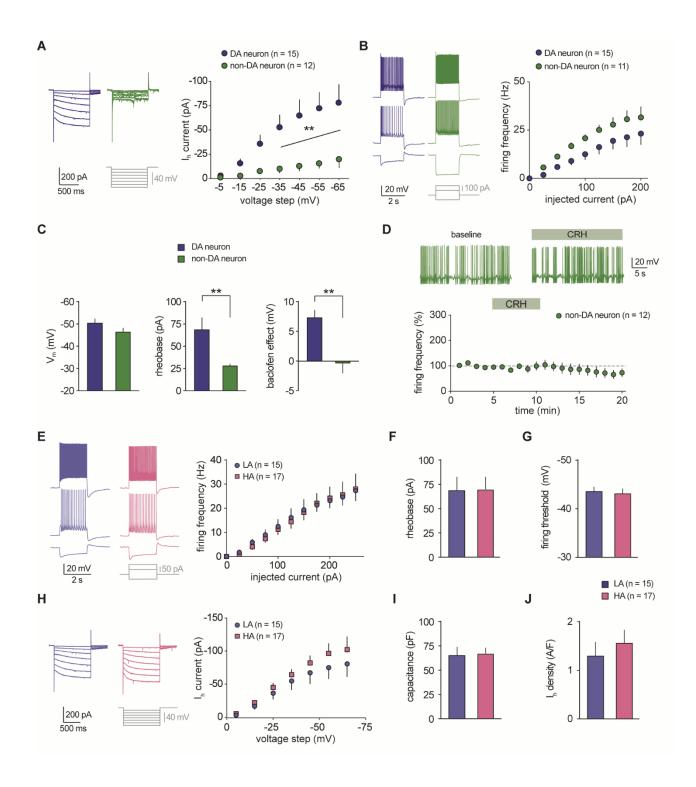



Fig. S2. Effects of intra-VTA CRH treatment on progressive ratio test performance and NAc DA release. (A) No difference in training performance was observed between cannulated LA and HA rats. Two-way repeated measures ANOVA revealed a non-significant session x anxiety interaction ($F_{(5,135)} = 0.162$, p = 0.976), a non-significant effect of anxiety ($F_{(1,27)} = 0.055$, p = 0.817) and a significant effect of session ($F_{(5, 7)}$) $_{135}$ = 20.45, p < 0.001) in cannulated rats. (B) Two-way ANOVA showed a non-significant anxiety x treatment interaction effect ($F_{(1,25)} = 0.342$, p = 0.564), a non-significant effect of anxiety ($F_{(1,25)} = 0.519$, p = 0.478) and a non-significant effect of treatment ($F_{(1,25)}$ = 0.342, p = 0.564) on the number of incorrect nosepokes. (C) Two-way ANOVA showed a non-significant anxiety x treatment interaction effect ($F_{(1,25)}$ = 1.335, p = 0.259), a non-significant effect of anxiety ($F_{(1,25)} = 0.12$, p = 0.732) and a non-significant effect of treatment ($F_{(1,25)} = 0.003$, p = 0.9531) on the number of timeout nosepokes. (D) All rats consumed all 20 pellets when they were given free access to them, regardless of anxiety or treatment. (E) Scheme for measurement of DA and DOPAC release in the NAc following intra-VTA treatment with vehicle or CRH. (F), Two-way ANOVA revealed no difference in DA and DOPAC release following intra-VTA vehicle treatment in HA and LA rats (DA: Interaction: $F_{(4,36)} = 1.177$, p = 0.338, anxiety: $F_{(1,9)} = 0.014$, p = 0.908, time: $F_{(4,36)} = 0.908$, time: $F_{$ 1.870, p = 0.133; DOPAC: interaction: $F_{(4,36)}$ = 0.425, p = 0.79, anxiety: $F_{(1,9)}$ = 0.757, p = 0.407, time: $F_{(4,36)}$ = 1.197, p = 0.329); n = 5-6 per group. (G) Effects of intra-VTA CRH treatment on NAc DA and DOPAC release. LA rats had higher DA and DOPAC release in the NAc compared to HA rats. DA: Two-way ANOVA revealed a significant anxiety effect ($F_{(1,7)} = 9.406$, p = 0.018) and a marginally non-significant anxiety x time interaction ($F_{(4,28)}$ = 2.589, p = 0.058). DOPAC: Two-way ANOVA revealed a significant anxiety x time interaction ($F_{(4,28)} = 6.302$, p = 0.001) and a non-significant anxiety effect ($F_{(1,7)} = 3.132$, p = 0.12); n = 4-5per group. (*, p < 0.05, #, $p \le 0.07$).

Fig. S3. Additional data on DA VTA firing. (A) Hyperpolarization-activated currents (I_h) induced by negative voltage steps in putative DA and non-DA neurons in the VTA (Two-way ANOVA for factor cell type, $F_{(1,172)} = 38.87$, p < 0.0001). Representative color-coded traces and voltage protocol are shown on the left. **(B)** Frequency-current (F-I) curves of cell firing evoked by 2-s-long somatic current injections in putative DA and non-DA VTA neuron (Two-way ANOVA for factor cell type, $F_{(1,216)} = 17.71$, p < 0.0001). Color-coded traces on the left are representative voltage responses elicited by -100 pA, 100 pA and 200 pA current steps. **(C)** Membrane potential (V_m , two tailed t-test, $t_{(24.79)} = 1.512$, p = 0.143), rheobase (Mann-Whitney test, U = 38, p = 0.0087) and hyperpolarization induced by GABA_BR-activation (baclofen effect,

Mann-Whitney test, U = 17, p = 0.0012) in putative DA and non-DA VTA cells. **(D)** Lack of effect on spontaneous firing of non-DA VTA neurons upon batch application of CRH (500 nM). **(E)** Frequency-current (F-I) curves of cell firing evoked by 2-s-long somatic current injections in DA VTA neurons from LA and HA rats held at -60 mV (Two-way ANOVA for factor anxiety, $F_{(1,330)} = 0.08$, p = 0.776). Color-coded traces on the left are representative voltage responses elicited by -50 pA, 50 pA and 100 pA current steps. **(F-G)** Rheobase and threshold of evoked firing did not differ between LA and HA rats (LA, n = 15 vs. HA, n =17; p = 0.81 for rheobase and p = 0.86 for threshold). **(H)** I_h currents in DA VTA neurons from LA and HA rats (Two-way ANOVA for factor anxiety, $F_{(1,209)} = 4.658$, p = 0.03; Fisher's LSD post-hoc comparison p > 0.05). Representative traces and voltage protocol are shown on the left. **(I-J)** Cell capacitance and I_h density (maximal I_h current normalized by cell capacitance) did not differ between LA and HA rats (p = 0.53 for capacitance and p = 0.20 for I_h density). (**, p < 0.01).

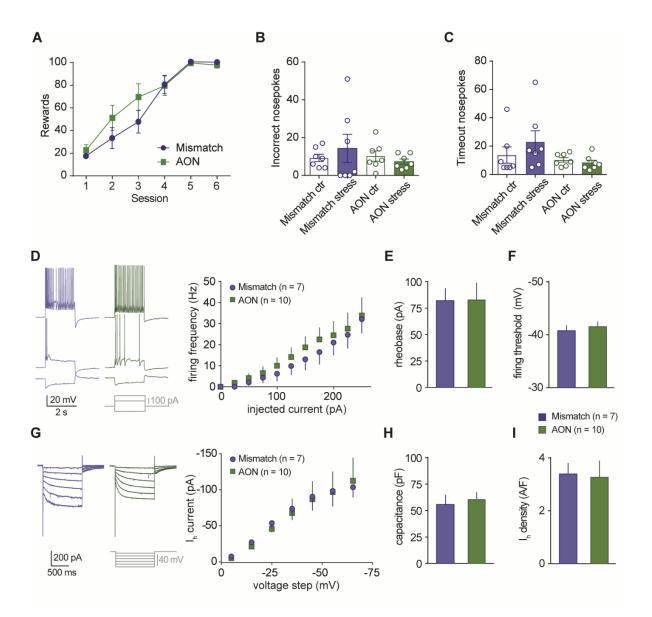
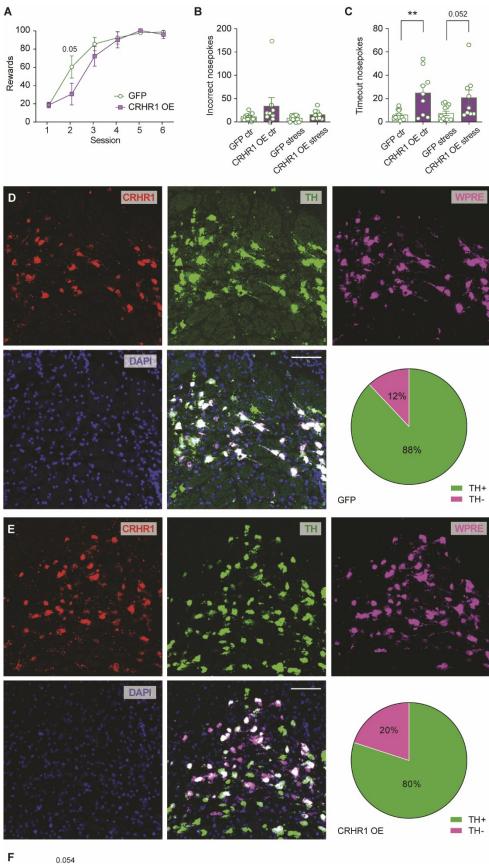
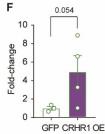
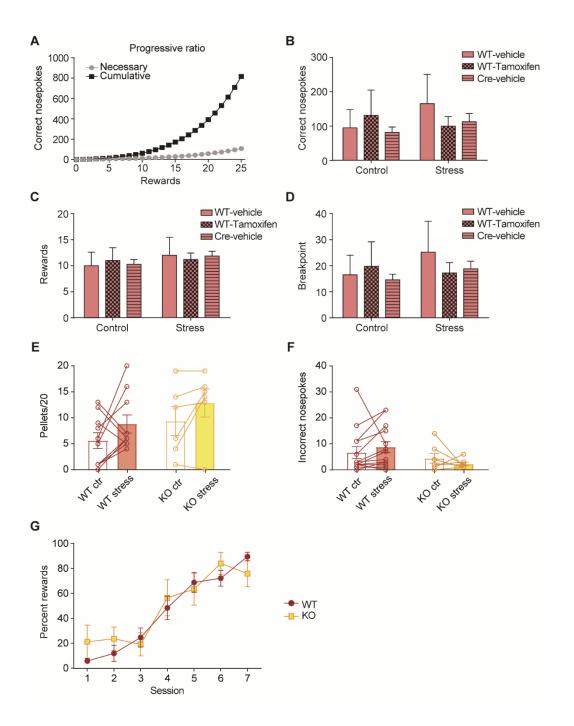





Fig. S4. Additional data on progressive ratio test performance in AON-treated rats. (A) Training performance was similar between the mismatch-treated and the AON-treated groups (Two-way repeated measures ANOVA: interaction effect $F_{(5,130)} = 1.486$, p = 0.199, AON effect $F_{(1,26)} = 1.117$, p = 0.300, Time effect $F_{(5,130)} = 54.87$, p < 0.0001). (B) No difference was observed between groups in incorrect nosepokes, regardless of AON treatment or stress exposure (Two-way ANOVA: interaction effect: F_(1,24) = 0.931, p = 0.344, AON effect $F_{(1,24)} = 0.524$, p = 0.476, Stress effect $F_{(1,24)} = 0.058$, p = 0.81). (C) No difference was observed between groups in timeout nosepokes, regardless of AON treatment or stress exposure (Twoway ANOVA: interaction effect $F_{(1,24)} = 1.291$, p = 0.267, AON effect $F_{(1,24)} = 3.306$, p = 0.082, Stress effect F_(1,24) = 0.505, p = 0.484). (D) Frequency-current (F-I) curves of cell firing evoked by 2-s-long somatic current injections in DA VTA neurons from mismatch-treated and AON-treated rats held at -60 mV (Two-way ANOVA for factor treatment, F_(1,163) = 2.042, p = 0.155). Color-coded traces on the left are representative voltage responses elicited by -100 pA, 100 pA and 200 pA current steps. (E-F) Rheobase and threshold of evoked firing did not differ between groups (mismatch, n = 7 vs. AON, n =10; p = 0.98 for rheobase and p = 0.62 for threshold). (G) I_h currents in DA VTA neurons from mismatch-treated and AON-treated rats (Two-way ANOVA for factor treatment, $F_{(1,103)} = 0.024$, p = 0.877). Representative traces and voltage protocol are shown on the left. (H-I) Cell capacitance and I_h density (maximal I_h current normalized by cell capacitance) did not differ between groups (p = 0.88 for capacitance and p = 0.15 for I_h density).

Fig. S5. Additional data on the effects of CRHR1 OE on PR test performance. (A) CRHR1 OE and GFP rats did not differ in their training performance (session x treatment interaction, $F_{(5,95)} = 1.580$, p = 0.173, treatment effect, $F_{(1,19)} = 2.839$, p = 0.108, session effect, $F_{(5,95)} = 45.68$, p < 0.001). (B) There was no difference in the number of incorrect nosepokes between GFP and CRHR1 OE rats (Two-way repeated measures ANOVA, treatment x stress interaction: $F_{(1,19)} = 1.057$, p = 0.3168; stress effect: $F_{(1,19)} = 2.059$, p = 0.1675; treatment effect: $F_{(1,19)} = 3.238$, p = 0.0878). (C) CRHR1 OE rats performed more timeout nosepokes than GFP rats (Two-way repeated measures ANOVA, treatment x stress interaction: $F_{(1,19)} = 0.210$, p = 0.652; treatment effect: $F_{(1,19)} = 0.0048$)(**, p < 0.01). (D-E) Representative images of viral expression in TH+ cells in the VTA of GFP (D) and CRHR1 OE rats (E) (scale bar = 50 µm). Quantification of viral expression in TH+ cells. In both groups >80 % of WPRE+ cells were TH+, 88% in the GFP rats and 80% in the CRHR1 OE rats. (F) Treatment with the CRHR1 OE virus resulted in marginally non-significant upregulation of CRHR1 expression in DA neurons (one-tailed t-test $t_{(3.080)} = 2.248$, p = 0.054).

Fig. S6. Additional data on the effects of CRHR1 deletion in DA neurons in mice on PR test performance. (A) Necessary and cumulative nosepokes for each reward in the progressive ratio test for mice. **(B)** No difference between wild type groups ('WT-vehicle': Cre⁻ vehicle-treated; 'WT-Tamoxifen': Cre⁻ tamoxifen-treated; 'Cre-vehicle': DAT-CRHR1 vehicle-treated mice) under control conditions or after stress in the number of correct nosepokes (Two-way ANOVA, group effect $F_{(2,13)} = 0.166$, p = 0.849). **(C)** No difference between wild type groups was observed under control conditions or after stress in the number of rewards (Two-way ANOVA, group effect $F_{(2,26)} = 0.0013$, p = 0.999). **(D)** No difference between wild type groups was observed under stress in the breakpoint reached (Two-way ANOVA, group effect $F_{(2,13)} = 0.1381$, p = 0.872). **(E)** Number of pellets consumed out of 20, when WT and DAT-CRHR1 (KO) mice were allowed to freely eat them in a home cage-like setting. No significant stress x genotype interaction ($F_{(1,14)} = 0.009$, p = 0.926), no significant effect of genotype ($F_{(1,14)} = 2.368$, p = 0.146) and a

marginally non-significant effect of stress were observed ($F_{(1,14)} = 4.471$, p = 0.053). (F) No difference was observed in the number of incorrect nosepokes between genotypes, or between control and stress. No significant interaction ($F_{(1,19)} = 1.641$, p = 0.216), genotype ($F_{(1,19)} = 2.384$, p = 0.14) or stress ($F_{(1,19)} = 0.0$, p > 0.99) effects were observed. (G) Two-way repeated measures ANOVA revealed a significant effect of session ($F_{(6,147)} = 22.31$, p < 0.0001), but no effect of genotype ($F_{(1,147)} = 0.468$, p = 0.495) or interaction effect ($F_{(6,147)} = 0.8025$, p = 0.5695) in training performance.

Figure	Variable	Test details	Mean 1	Mean 2	Mean Diff.		N1	N2	t	DF	P Value Holm- Sidak's test
		LA ctr vs. HA ctr LA ctr vs. LA stress	51.64 51.64	67.9 86.5	-16.26 -34.86	11.22 11.22	11 11	10 10	1.45	36 36	0.1557
1C	breakpoint	LA ctr vs. LA stress HA ctr vs. HA stress	67.9	38.78	-34.86	11.22	11	10	2.469	36	0.0111
		LA stress vs. HA stress	86.5	38.78	47.72	11.79	10	9	4.046	36	0.0012
1D		LA ctr vs. HA ctr LA ctr vs. LA stress	214.3	272.8	-58.53 -127.9	45.33	11	10	1.291	36	0.2048
	correct nosepokes	HA ctr vs. HA stress	214.3 272.8	342.2 169.6	103.2	45.33 47.66	11 10	10 9	2.822	36 36	0.023
		LA stress vs. HA stress	342.2	169.6	172.6	47.66	10	9	3.622	36	0.0035
	rewards	LA ctr vs. HA ctr	12.45	13.2	-0.7455	0.6019	11	10	1.238	36	0.2236
1E		LA ctr vs. LA stress HA ctr vs. HA stress	12.45 13.2	14 11.67	-1.545 1.533	0.6019	11 10	10 9	2.567	36 36	0.0432
		LA stress vs. HA stress	14	11.67	2.333	0.633	10	9	3.686	36	0.0027
	breakpoint	LA Veh vs. HA Veh	31.71	69.75	-38.04	12.97	7	8	2.933	26	0.0206
3B		LA Veh vs. LA CRH HA Veh vs. HA CRH	31.71 69.75	81 43.38	-49.29 26.38	13.4 12.53	7	7	3.679 2.105	26 26	0.0043
		LA CRH vs. HA CRH	81	43.38	37.63	12.55	7	8	2.105	20	0.0451
		LA Veh vs. HA Veh	132.3	329.1	-196.9	50.37	7	7	3.908	26	0.0024
3C	correct nosepokes	LA Veh vs. LA CRH	132.3	262.8	-130.5	48.77	7	8	2.675	26	0.0253
		HA Veh vs. HA CRH LA CRH vs. HA CRH	329.1 262.8	167.5 167.5	161.6 95.25	48.77 47.12	7	8 8	3.314 2.021	26 26	0.008
		LA Veh vs. HA Veh	11	13.5	-2.5	0.6645	7	8	3.762	26	0.0027
3D	rewards	LA Veh vs. LA CRH	11	13.86	-2.857	0.6863	7	7	4.163	26	0.0018
		HA Veh vs. HA CRH LA CRH vs. HA CRH	13.5	12 12	1.5 1.857	0.6419	8	8 8	2.337	26 26	0.0274
		mis. ctr vs. AON ctr	13.86 36.86	32.29	4.571	10.78	7	8	2.795	20	0.019 0.6752
5C	breakpoint	mis. ctr vs. mis. stress	36.86	67.14	-30.29	10.78	7	7	2.81	24	0.0382
50		AON ctr vs. AON stress	32.29	22.86	9.429	10.78	7	7	0.8748	24	0.6283
<u> </u>		mis. stress vs. AON stress mis. ctr vs. AON ctr	67.14 147.4	22.86 127.3	44.29 20.14	10.78 48.68	7	7	4.109	24 24	0.0024
		mis. ctr vs. AON ctr mis. ctr vs. mis. stress	147.4	284.6	-137.1	48.68	7	7	2.817	24	0.6741
5D	correct nosepokes	AON ctr vs. AON stress	127.3	91	36.29	48.68	7	7	0.7454	24	0.9266
		mis. stress vs. AON stress	284.6	91	193.6	48.68	7	7	3.976	24	0.0024
		mis. ctr vs. AON ctr	11.43 11.43	11 13.29	0.4286	0.8165	7	7	0.5249	24 24	0.597
5E	rewards	mis. ctr vs. mis. stress AON ctr vs. AON stress	11.43	13.29	-1.857 0.8571	0.8165	7	7	2.275	24	0.064 0.9129
		mis. stress vs. AON stress	13.29	10.14	3.143	0.8165	7	7	3.849	24	0.0031
6B	breakpoint	GFP ctr vs. CRHR10E ctr	26.75	63.11	-36.36	9.859	12	9	3.688	38	0.0014
		GFP stress vs. CRHR1 OE stress GFP ctr vs. CRHR1 OE ctr	30.17 109.75	55.67 261.11	-25.5 -151.4	9.859 40.28	12 12	9 9	2.586	38 38	0.0271
6C	correct nosepokes	GFP stress vs. CRHR1 OE stress	125.92	224.67	-98.75	40.28	12	9	2.451	38	0.0375
6D	rewards	GFP ctr vs. CRHR1OE ctr	10.58	12.89	-2.306	0.6661	12	9	3.461	38	0.0027
00	iewaius	GFP stress vs. CRHR1 OE stress	10.92	12.67	-1.75	0.6661	12	9	2.627	38	0.0245
	breakpoint	WT - KO Control	14	11.14	2.857	4.405	15	7	0.6486	40	0.5203
		Stress	19.07	5.857	13.21	4.405	15	7	2.999	40	0.0093
6F		Control - Stress									
		WT	14	19.07	-5.067	2.061	15	15	2.458	20	0.0459
		ко wt - ко	11.14	5.857	5.286	3.017	7	7	1.752	20	0.0951
		Control	78.73	55	23.73	32.19	15	7	0.7372	40	0.7141
6G	correct nosepokes	Stress	116.3	24.14	92.12	32.19	15	7	2.861	40	0.0133
00		Control - Stress				15.07					0.057.1
		ко	78.73 55	116.3 24.14	-37.53 30.86	15.97 23.38	15	15 7	2.35	20 20	0.0574
		WT - KO	00	24.14	00.00	20.00		,	1.02	20	0.0020
	rewards	Control	9.8	8		1.675	15	7	1.075	40	0.2889
6H		Stress	11.6	5.286	6.314	1.675	15	7	3.77	40	0.002
		Control - Stress WT	9.8	11.6	-1.8	0.7996	15	15	2.251	20	0.0707
		ко	8	5.286	2.714	1.171	7	7	2.319	20	0.0926
	incorrect nosepokes	LA ctr vs. HA ctr	15.55	21.6	-6.055	4.339	11	10	1.395	36	0.5109
S1D		LA ctr vs. LA stress	15.55	10.1	5.445	4.339	11	10	1.255	36	0.4297
		HA ctr vs. HA stress LA stress vs. HA stress	21.6 10.1	6.444 6.444	15.16 3.656	4.563 4.563	10 10	9 9	3.322 0.8012	36 36	0.0082
		Control - Stress	10.1	0.111	0.000	4.000	10		0.0012	00	0.4200
	breakpoint	LA	52.73	62	-9.273	4.873	11	11	1.903	19	0.0723
S1G		HA LA - HA	58.9	45.9	13	5.11	10	10	2.544	19	0.0392
		Control	52.73	58.9	-6.173	14.96	11	10	0.4126	38	0.6822
		Stress	62	45.9	16.1	14.96	11	10	1.076	38	0.494
		Control - Stress									
S1H		LA HA	196.5 234.6	257.8 194.9	-61.36 39.7	13.79 14.46	11 10	11 10	4.45 2.745	19 19	0.0005
	correct nosepokes	LA -HA	234.0	194.9	39.7	14.40	10	10	2.745	19	0.0129
		Control	196.5	234.6	-38.15	60.75	11	10	0.6279	38	0.5338
		Stress	257.8	194.9	62.92	60.75	11	10	1.036	38	0.5196
		Control - Stress LA	12	12.82	-0.8182	0.3284	11	11	2.492	19	0.0339
~		HA	12.9	12.82	-0.8182	0.3284	10	10	2.492	19	0.0339
S1I	rewards	LA - HA									
		Control	12	12.9	-0.9	0.8036	11	10	1.12	38	0.4667
	Dopamine	Stress LA - HA	12.82	12	0.8182	0.8036	11	10	1.018	38	0.4667
		0	89.42	118.5	-29.03	30.05	4	5	0.966	35	0.5653
		20	119.4	96.58	22.78	30.05	4	5	0.758	35	0.5653
S2G		40	179.6	97.83	81.74	30.05	4	5	2.72	35	0.0495
		60 80	180.9 185.3	106.3 112.6	74.56 72.64	30.05 30.05	4	5 5	2.481 2.417	35 35	0.0703
	DOPAC	80 LA - HA	100.3	112.0	12.04	50.05	4	5	2.417		0.0703
		0	88.15	124.4	-36.26	36.92	4	5	0.9821	35	0.5548
		20	120.7	105.1	15.61	36.92	4	5	0.4228	35	0.6751
		40 60	211.4 177	95.58 81.35	115.8	36.92	4	5 5	3.138	35	0.0171
		80	1//	81.35 90.44	95.66 70.6	36.92 36.92	4	5	2.591	35 35	0.0543
		GFP ctr vs. CRHR1 OE ctr	6.08	24.89	-18.81	5.832	12	9	3.224	38	0.0052
S5C	timeout nosepokes				-13.47	5.832	12	9	2.31	38	

Table S1. Details on statistical tests. Details from the *post hoc* Holm-Sidak's tests performed in datasets for which a Two-way ANOVA revealed a significant difference.

	Forward	Reverse					
Primer pair 1	TGAAATCTGCTGCTTACTGAGCCC	TGGGCAAGGAATGCGTACCTCTTA					
Primer pair 2	GCACTTTCCCTCCAACAACCCTA	ACTCTGTTCTCAGCACACTGGACA					
Primer pair 3	ATCGCATGACCTACAGCAACTCCA	TCTTGAGTACCCAGAAGCACCGAA					
Primer pair 4	TGGATCTTGTCCAGTGTGCTGAGA	AACTAAGCGTCTGTCTGTTTGGTC					
Primer pair 5	GCCCGCTGTCTCCACTTATC	TGCTGAACCTCGTCTCCC					
Primer pair 6	AGAGGAGGGAGAAAGAGGAGGG	CTTCAGAGATCCAGGTAGAGGACAT					
Primer pair 7	CAGCCACCGGAGACCGCAG	GGTTCACCACCACCTTTC					

Table S2. List of primers.