SUPPORTING INFORMATION

Route determination of sulfur mustard using non-targeted chemical attribution signature screening

Karin Höjer Holmgren, Lina Mörén, Linnea Ahlinder, Andreas Larsson, Daniel Wiktelius, Rikard Norlin and Crister Åstot*

astot@foi.se

Department of CBRN Defence & Security, The Swedish Defence Research Agency (FOI), Cementvägen 20, Umeå, SE-901 82, Sweden

Table of Contents

Tables

Table S1	
Table S2	
Table S3	
Table S4	

Figures

Figure S1	
Figure S2	

ID	Peak ID	Classification	Molecular formula	CAS number
number	Ret. time and m/z	method		
$M1_{crude}_1$	peak @ 9.05 102.01	RF	$C_3H_6ClS(T)(\Delta=1.0)$	
$M1_{crude}_2$	peak @ 10.36 75.94	RF	Uid	
M1 _{crude} _3	peak @ 9.51 155.96	RF and OPLS-DA	$C_{4}H_{6}Cl_{2}S(C) #$	873408-12-9
$M1_{crude}_4$	peak @ 10.11 119.98	RF	Uid	
$M1_{crude}_5$	peak @ 11.76 140.93	RF and OPLS-DA	$C_4H_5Cl_3S(T)(\Delta = 0.5)$	
M1 _{crude} _6	peak @ 11.90 118.97	OPLS-DA	Uid	
$M1_{crude}7$	peak @ 12.20 157.97	RF	Uid	
M1 _{crud} _8	peak @ 12.38 153.90*	RF and OPLS-DA	$C_4H_6Cl_2S_2$ (T) ($\Delta = 0.04$)	
M1 _{crude} _9	peak @ 12.58 78.99	RF and OPLS-DA	C ₄ H ₅ Cl ₃ S (C) #	153628-01-4
$M1_{crude} 10$	peak @ 12.74 78.99	OPLS-DA	C ₄ H ₅ Cl ₃ S (C) (stereoisomer) #	153628-01-4
M1 _{crude} 11	peak @ 17.00 180.99	RF	Uid	
$M1_{crude} 12$	peak @ 18.33 137.94	RF and OPLS-DA	Uid	
$M1_{crude} 13$	peak @ 18.51 251.92	RF and OPLS-DA	$C_{6}H_{9}Cl_{3}S_{2}(C) #$	
M1 _{crude} _14	peak @ 18.92 183.90	OPLS-DA	$C_{6}H_{8}Cl_{4}S_{2}(C) #$	
$M1_{crude}_{15}$	peak @ 19.16 60.00	RF	$C_{4}H_{8}Cl_{2}S_{4}(C) #$	90586-78-0
$M1_{crude}_{16}$	peak @ 19.47 257.85	RF and OPLS-DA	$S_8 \#$	10544-50-0
$M1_{crude}_{17}$	peak @ 19.65 192.92	RF and OPLS-DA	Uid	
M1 _{crude} _18	peak @ 19.65 222.88	RF and OPLS-DA	$C_{6}H_{8}S_{2}Cl_{4}(C) #$	
$M1_{crude}$ 19	peak @ 20.42 182.92	OPLS-DA	$C_6H_8Cl_2S_3$ (T) ($\Delta = 0.1$)	
M1 _{crude} _20	peak @ 20.88 151.95	OPLS-DA	$C_6H_9Cl_3S_3$ (T) ($\Delta = 0.1$) #	
M1 _{crude} _21	peak @ 21.05 283.89	RF and OPLS-DA	$C_6H_9Cl_3S_3$ (T) (Δ =0.1) (stereoisomer) #	
M1 _{crude} 22	peak @ 21.24 207.95	OPLS-DA	Uid	

Table S1. Most important variables in $M1_{crude}$ models separating ethylene R(10-11) or TDG routes R(1-9) in crude HD samples listed according to retention time.

*= found in matrix models, T=tentative molecular formula, calculated by HRMS data, C= molecular formula was confirmed by GC-HRMS, # = compound detected in LR GC-MS¹, Uid= unidentified compound. Δ = ppm deviation of calculated value from theoretical elemental composition.

Table S2. The most important variables in $M2_{crude}$ models separating the chlorination methods of TDG routes (R(1,4,7), R(2,5,8) and R(3,6,9)) in crude HD samples, listed according to retention time.

ID	Peak ID	Classification	Correlated to	Molecular formula
number	Ret. time and m/z	method		
M2 _{crude} _1	peak @ 9.58 68.06	RF and OPLS-DA	R(3,6,9)	C ₇ H ₁₃ ClS (C) #
$M2_{crude}_2$	peak @ 11.57 137.02	RF and OPLS-DA	R(1,4,7)	Uid
$M2_{crude}_3$	peak @ 11.59 203.92	RF and OPLS-DA	R(1,4,7)	Uid
$M2_{crude}4$	peak @ 12.51 91.03	OPLS-DA	R(3,6,9)	Uid
$M2_{crude}_5$	peak @ 12.62 345.02	OPLS-DA	R(2,5,8)	$C_{10}H_{18}O_7PS_2$ (T) ($\Delta = -0.1$) #
$M2_{crude}_{6}$	peak @ 12.65 137.02	RF and OPLS-DA	R(3,6,9)	C ₇ H ₁₄ Cl ₂ S (C) #
M2 _{crude} _7	peak @ 12.85 69.07	OPLS-DA	R(3,6,9)	Uid
$M2_{crude}$	peak @ 13.39 93.96	RF and OPLS-DA	R(2,5,8), R(3,6,9)	$C_4H_9OClS_2(T) (\Delta = 1.2)$
$M2_{crude}_9$	peak @ 13.40 212.99	RF and OPLS-DA	R(1,4,7)	Uid
$M2_{crude}_{10}$	peak @ 13.43 189.94	RF and OPLS-DA	R(2,5,8), R(3,6,9)	$C_{4}H_{8}Cl_{2}S_{2}(C) #$
M2 _{crude} _11	peak @ 14.04 85.01	RF and OPLS-DA	R(2,5,8)	C ₄ H ₉ O ₃ PS (C) #
$M2_{crude}_{12}$	peak @ 14.90 101.04	OPLS-DA	R(2,5,8)	$C_5H_{10}O_2ClPS(T) (\Delta = 0.3)$
$M2_{crude}_{13}$	peak @ 15.66 137.02*	RF and OPLS-DA	R(2,5,8)	$C_6H_9Cl_3S$ (T) ($\Delta = -0.2$) #
M2 _{crude} 14	peak @ 16.99 85.01*	RF and OPLS-DA	R(2,5,8)	C ₄ H ₉ O ₃ PS ₂ (C) #
$M2_{crude}$ 15	peak @ 20.98 223.89	OPLS-DA	R(2,5,8)	Uid

^{*=} found in matrix models, T=tentative molecular formula, calculated by HRMS data, C= molecular formula was confirmed by GC-HRMS, # = compound detected in LR GC-MS¹, Uid= unidentified compound. Δ = ppm deviation of calculated value from theoretical elemental composition.

¹ Holmgren, K. H.; Hok, S.; Magnusson, R.; Larsson, A.; Astot, C.; Koester, C.; Mew, D.; Vu, A. K.; Alcaraz, A.; Williams, A. M.; Norlin, R.; Wiktelius, D., Synthesis route attribution of sulfur mustard by multivariate data analysis of chemical signatures. *Talanta* **2018**, 186, 615-621.

o retention ti ID	Peak ID	Model	M3a, M3b or	Molecular formula	CAS
number	Ret. time and m/z		M3c		number
$M3_{crude}_1$	peak @ 5.10 77.98	RF and OPLS-DA	M3c		
M3 _{crude} _2	peak @ 5.16 49.98	RF and OPLS-DA	M3c		
M3 _{crude} _3	peak @ 5.90 104.03	OPLS-DA	M3a		
$M3_{crude}4$	peak @ 6.40 75.03	RF and OPLS-DA	M3a		
$M3_{crude}_5$	peak @ 8.52 43.02	OPLS-DA	M3b		
M3 _{crude} _6	peak @ 8.71 91.98	RF and OPLS-DA	M3a, M3c	$C_4H_8S_2$	505-29-3
M3 _{crude} 7	peak @ 8.72 60.00*	RF and OPLS-DA	M3a		
M3 _{crude} 8	peak @ 8.78 200.84	OPLS-DA	M3b		
M3 _{crude} 9	peak @ 8.96 115.92	OPLS-DA	M3a		
$M3_{crude}_{10}$	peak @ 9.18 43.02	OPLS-DA	M3a, M3b		
M3 _{crude} _11	peak @ 9.28 150.03	OPLS-DA	M3b	$C_6H_{11}SCl(T) (\Delta = 0.7 \text{ ppm})$	
M3 _{crude} 12	peak @ 9.35 127.97	OPLS-DA	M3c	$C_4H_{11}O_2SCl(T) (\Delta = 0.9 \text{ ppm})$	L
M3 _{crude} 13	peak @ 10.04 137.02	OPLS-DA	M3c		
M3 _{crude} 14	peak @ 10.32 46.98	RF and OPLS-DA	M3b		
M3 _{crude} 15		RF and OPLS-DA	M3a, M3c		
M3 _{crude} 16		RF and OPLS-DA	M3a, M3b, M3c	$C_5H_{11}S_2Cl(T) (\Delta = 0.2 \text{ ppm})$	
M3 _{crude} 17	peak @ 10.80 41.04	RF and OPLS-DA	M3a		
M3 _{crude} 18	peak @ 11.53 120.01	RF	M3b		
M3 _{crude} 19	peak @ 11.63 71.05	OPLS-DA	M3b		
M3 _{crude} _20	peak @ 12.03 193.93	OPLS-DA	M3a, M3b		
M3 _{crude} _21	peak @ 12.64 67.05	RF	M3c		
M3 _{crude} 22	peak @ 12.67 202.02	RF	M3c		
M3 _{crude} _23	peak @ 13.16 156.03	RF and OPLS-DA	M3c		
M3 _{crude} _24	peak @ 13.18 155.03	RF and OPLS-DA	M3a, M3c		
M3 _{crude} _25	peak @ 13.39 93.96	RF	M3a		
M3 _{crude} _26	peak @ 13.40 59.00	RF	M3a, M3c		
M3 _{crude} _27	peak @ 13.43 189.94	RF	M3c		
M3 _{crude} _28	peak @ 13.53 193.96	OPLS-DA	M3c		
M3 _{crude} 29	peak @ 13.54 140.98	OPLS-DA	M3b		
M3 _{crude} _30	peak @ 13.55 186.00	OPLS-DA	M3c	$C_6H_{12}SCl_2$ (T) ($\Delta = 0.3$ ppm)	L
M3 _{crude} 31	peak @ 13.63 171.98	RF	M3b		2
M3 _{crude} _32	peak @ 14.19 170.98	OPLS-DA	M3a		
M3 _{crude} _33	peak @ 14.49 184.96	OPLS-DA	M3c		
M3 _{crude} _34	peak @ 14.57 145.04*	OPLS-DA	M3a		
M3 _{crude} _35	peak @ 14.72 205.16	RF and OPLS-DA	M3a, M3b, M3c		
M3 _{crude} _36	peak @ 14.75 184.96	OPLS-DA	M3c		
M3 _{crude} _30	peak @ 14.80 43.02	RF and OPLS-DA	M3b, M3c		
M3 _{crude} _37	peak @ 14.84 69.07	RF and OPLS-DA	M3a, M3b		
M3 _{crude} _39	peak @ 15.05 86.02	OPLS-DA	M3b		
M3 _{crude} _40	peak @ 15.41 89.01	OPLS-DA	M3b		
M3 _{crude} _40	peak @ 15.52 105.99	OPLS-DA	M3b	$C_5H_{10}S_2Cl_2$ (T) ($\Delta = -0.3$ ppm)	63869-13-6
M3 _{crude} _41	peak @ 15.52 105.99	OPLS-DA	M3c M3c	\sim $1002012 (1) (\Delta - 0.5 ppm)$	05007-15-0
M3 _{crude} _42	peak @ 15.59 41.04	RF	M3b		
M3 _{crude} 44	peak @ 16.39 91.03*	OPLS-DA	M3a, M3c		
M3 _{crude} 45	peak @ 16.81 60.00	OPLS-DA	M3b		
M3 _{crude} 45	peak @ 16.92 91.03	OPLS-DA	M3a		
$M3_{crude}$ 40 $M3_{crude}$ 47	peak @ 16.92 91.03	OPLS-DA OPLS-DA	M3b		
M3 _{crude} 47 M3 _{crude} 48	peak @ 10.99 122.00 peak @ 17.01 123.00	RF	M3b		
M3 _{crude} _48 M3 _{crude} _49	peak @ 17.01 125.00 peak @ 17.23 215.96	RF and OPLS-DA	M3b	$C_6H_{10}S_2Cl_2$ (T) ($\Delta = 1.1$ ppm)	
$M3_{crude}_{49}$ $M3_{crude}_{50}$	peak @ 17.23 213.96 peak @ 17.43 116.98	OPLS-DA	M3b	$C_{6} = 1_{10} S_2 C_{12} (1) (\Delta = 1.1 \text{ ppm})$	
	peak @ 17.45 110.98 peak @ 18.10 69.07.1	RF	M30 M3a		
$\frac{M3_{crude} 51}{M3}$				C + OSCI(T)(A - 0.6 mm)	
$M3_{crude}52$	peak @ 18.37 243.06	RF and OPLS-DA	M3a M3a	$C_{13}H_{19}OSCl(T) (\Delta = 0.6 \text{ ppm})$	
$M3_{crude}$ 53	peak @ 19.24 199.11	OPLS-DA	M3a M2a		
$M3_{crude}54$	peak @ 19.51 123.00	OPLS-DA	M3c	lata A = nnm deviation of calculate	

Table S3. Most important variables in $M3_{crude}$ models separating TDG production methods in crude HD samples, listed according to retention time.

*= found in matrix models, T=tentative molecular formula, calculated by HRMS data. Δ = ppm deviation of calculated value from theoretical elemental composition.

ID	Peak ID	Correlated to	Best match of molecular formula of fragment
number	Ret. time and m/z		
M2 _{matrix} 1	peak @ 13.29 139.97	R(2,5,8)	$C_2H_5O_3PS (\Delta = -1.1)/C_3H_5O_2ClS (\Delta = -2.4)$
M2 _{matrix} _2	peak @ 20.85 166.99	R(2,5,8)	$C_4 H_8 O_3 PS (\Delta = 0.3)$
M2 _{matrix} _3	peak @ 17.29 137.02	R(2,5,8)	$C_5H_{10}ClS (\Delta = 0.3)$
M2 _{matrix} _4	peak @ 15.31 105.05	R(3,6,9)	$C_5H_{10}Cl~(\Delta = 0.4)$
M2 _{matrix} _5	peak @ 13.63 140.98	R(2,5,8)	$C_{3}H_{6}O_{2}ClS (\Delta = 0.3)/C_{2}H_{6}O_{3}PS (\Delta = 1.6)$
M2 _{matrix} _6	peak @ 18.01 159.92	R(3,6,9)	$C_2H_5ClS_3 (\Delta = -0.9)$
M2 _{matrix} 7	peak @ 15.60 123.00	R(2,5,8)	$C_4H_8ClS (\Delta = 0.2)$
M2 _{matrix} _8	peak @ 16.73 215.96	R(2,5,8)	$C_6H_{10}Cl_2S_2 \ (\Delta = 1.2)$
M2 _{matrix} 9	peak @ 15.45 105.05	R(3,6,9)	$C_5 H_{10} Cl \ (\Delta = 0.5)$
M2 _{matrix} 10	peak @ 5.43 60.00	R(2,5,8)	$C_2H_4S (\Delta = -1.0)$
M2 _{matrix} 11	peak @ 16.36 123.95	R(1,4,7)	$C_2H_4S_3 (\Delta = 2.7)$
M2 _{matrix} 12	peak @17.06 85.01	R(2,5,8)	$C_4H_5S (\Delta = 0.6)$

Table S4. Most important variables in RF and OPLS-DA M2_{matrix} models separating chlorination methods.

 Δ = ppm deviation of calculated value from theoretical elemental composition.

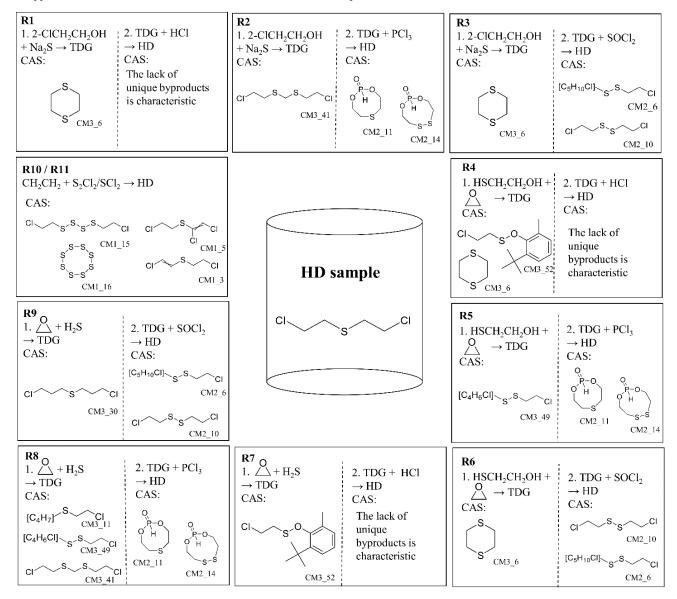


Figure S1. HD synthesis descriptions and representative CAS.

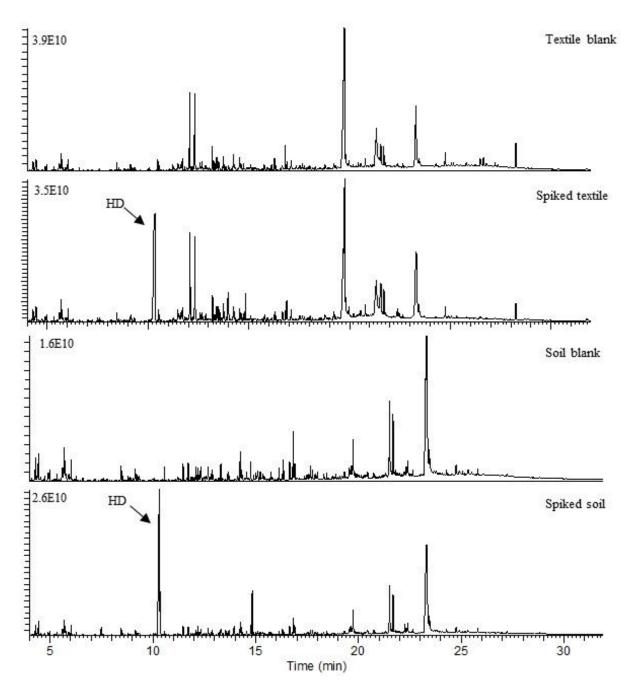


Figure S2. Total ion chromatogram of blank matrix samples and spiked (R8) matrix samples. The HD (*) peak is seen at a retention time of 10.1 minutes.