Supplementary Information

Understanding the intricate evaluation of fentanyl and carfentanil decontamination: field and laboratory perspectives

Pernilla Lindén^{1,δ}, Lina Mörén^{1,δ}, Johanna Qvarnström¹, Nina Forsgren¹, Cecilia Springer Engdahl¹, Magnus Engqvist¹, Jiri Henych², Tobias Tengel¹, Lars Österlund³, Lina Thors¹, Andreas Larsson¹, Susanne Johansson^{1,*}

¹ Swedish Defence Research Agency, Division of CBRN Defence and Security, 901 82 Umeå, Sweden.

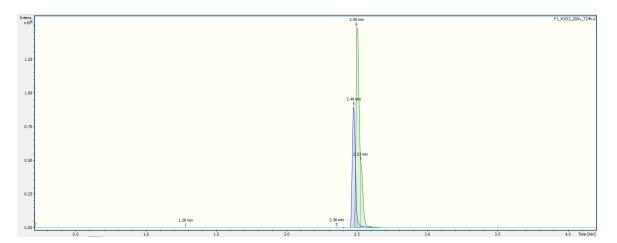
² Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic; <u>https://orcid.org/0000-0002-5509-2139</u>

³ Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, P. O. Box 35, SE-75103, Uppsala, Sweden. <u>https://orcid.org/0000-0003-0296-5247</u>

 $^{\delta}$ The authors contributed equally to this work.

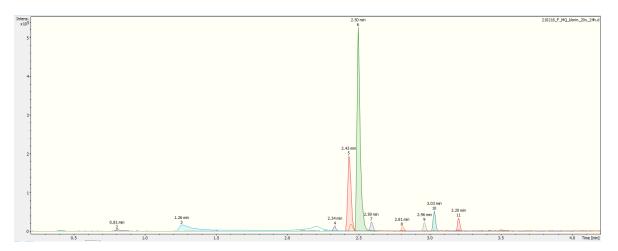
* Corresponding author. Email: susanne.johansson@foi.se

Table of Contents


LC/HRMS data for detected degradation products	S2
GC/HRMS data for detected degradation products	S7
Dose-response curves for N-oxide activation of the human μ -opioid receptor	S8
Metabolism data of fentanyl- and carfentanil N-oxides in human liver microsomes	S8
Representative SEM images	S9
Stability of fentanyl, fentanyl N-oxide and carfentanil in water and acetonitrile	S11

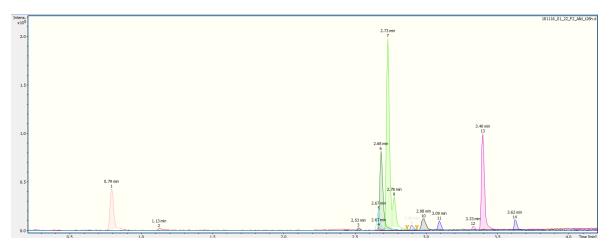
LC/HRMS data for detected degradation products

#	RT (min)	% signal of fentanyl reference	EIC (<i>m</i> / <i>z</i>)	Ion formula (incl. H ⁺)	Comment
1	1.28	<1	233.165	$C_{14}H_{21}N_2O$	-C ₈ H ₈ (norfentanyl)
2	2.32	<1	353.222	$C_{22}H_{29}N_2O_2$	+ O
3	2.36	<1	353.222	$C_{22}H_{29}N_2O_2$	+ O
4	2.40	<1	353.222	$C_{22}H_{29}N_2O_2$	+ O
Fentanyl	2.48	34	337.227	$C_{22}H_{29}N_2O$	
6	2.50	59	353.222	$C_{22}H_{29}N_2O_2$	+ O (N-oxide)
7	2.53	14	353.222	$C_{22}H_{29}N_2O_2$	+ O (N-oxide)


Supplementary table S1. Degradation products of fentanyl in 10 % H₂O₂ detected by UHPLC-HRMS after 24 h.

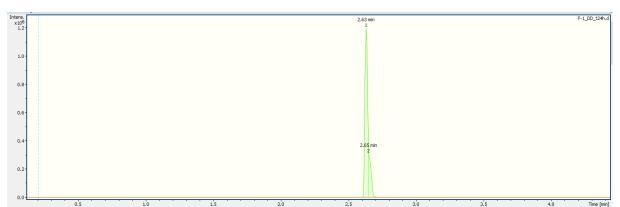
Extracted ion chromatogram = EIC, retention time = RT.

Supplementary figure S1. Chromatogram of degradation products of fentanyl in 10 % H₂O₂ detected by UHPLC-HRMS after 24 h.


if y tuble b	Degradation pro	sadets of femany i m	oleden deteeted of	
RT (min)	% signal of fentanyl reference	EIC (<i>m</i> / <i>z</i>)	Ion formula (incl. H ⁺)	Comment
0.81	<1	192.100	$C_{11}H_{14}NO_2$	
1.26	2.7	233.165	$C_{14}H_{21}N_2O$	-C ₈ H ₈ (norfentanyl)
2.34	<1	266.100	C ₁₃ H ₁₆ NO ₅	$-C_9H_{13}N + O_4$
2.43	7.6	355.202	$C_{21}H_{27}N_2O_3$	-CH ₂ +O ₂
2.48	< 0.3	337.227	$C_{22}H_{29}N_2O$	
2.50	20	353.220	$C_{22}H_{29}N_2O_2$	+O (N-oxide)
2.59	<1	437.222	C22H27N2O3Cl2	
2.81	<1	369.217	$C_{22}H_{27}N_2O_3$	$-H_2 + O_2$
2.96	<1	351.207	$C_{22}H_{27}N_2O_2$	$-H_2 + O$
3.03	1.4	267.126	C14H20N2OC1	$-C_8H_9 + Cl$ (norfentanyl+Cl?)
3.20	1	389.163	C21H26N2O3Cl	$-CH_3 + ClO_2$
	RT (min) 0.81 1.26 2.34 2.43 2.48 2.50 2.59 2.81 2.96 3.03	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

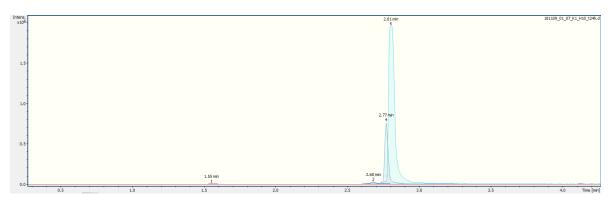
Supplementary figure S2. Chromatogram of degradation products of fentanyl in bleach detected by UHPLC-HRMS after 24 h.

Supplementary table S3. Degradation products of fentanyl in alldecont MED, detected by UHPLC-HRMS after 26 h.


#	RT (min)	% signal of fentanyl reference	EIC (m/z)	Ion Formula (incl. H ⁺)	Comment
1	0.79	3.5	192.102	$C_{11}H_{14}NO_2$	$-C_{11}H_{15}N + O$
2	1.13	<1	233.165	$C_{14}H_{21}N_2O$	-C ₈ H ₈ (norfentanyl)
3	2.53	<1	266.103	C ₁₃ H ₁₆ NO ₅	
4	2.67	<1	255.202	$C_{21}H_{27}N_2O_3$	
5	2.67	1.7	150.091	C ₉ H ₁₂ NO	$-C_{13}H_{17}N$
Fentanyl	2.68	6.7	337.227	$C_{22}H_{29}N_2O$	
7	2.73	14.4	353.222	$C_{22}H_{29}N_2O_2$	+ O, N-oxide
8	2.78	2.3	353.222	$C_{22}H_{29}N_2O_2$	+ O, N-oxide
9	2.90	<1	437.139	$C_{22}H_{27}N_2O_3Cl_2$	$-H_2 + Cl_2O_2$
10	2.98	1.3	244.191	C ₁₃ H ₂₆ NO ₃	
11	3.09	<1	258.089	C ₁₂ H ₁₇ NO ₃ Cl	$-C_{10}H_{12}N + ClO_2$
12	3.33	<1	351.207	$C_{22}H_{27}N_2O_2$	$-H_2 + O$
13	3.40	7.5	267.126	$C_{14}H_{20}N_2OCl$	$-C_8H_9 + Cl$ (norfentanyl+Cl?)
14	3.62	<1	389.163	$C_{21}H_{26}N_2O_3Cl$	$-CH_3 + ClO_2$

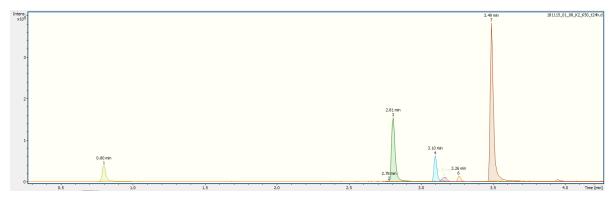
Supplementary figure S3. Chromatogram of degradation products of fentanyl in alldecont MED detected by UHPLC-HRMS after 26 h.

#	RT (min)	% signal of fentanyl reference	EIC (<i>m</i> / <i>z</i>)	Ion formula (incl. H ⁺)	Comment
Fentanyl	2.59	<0.3	337.227	$C_{22}H_{29}N_2O$	
1	2.63	107	353.222	$C_{22}H_{29}N_2O_2$	+ O (N-oxide)
2	2.65	27	353.222	$C_{22}H_{29}N_2O_2$	+ O (N-oxide)


Supplementary table S4. Degradation products of fentanyl in DahlgrenDecon detected by UHPLC-HRMS after 24 h.

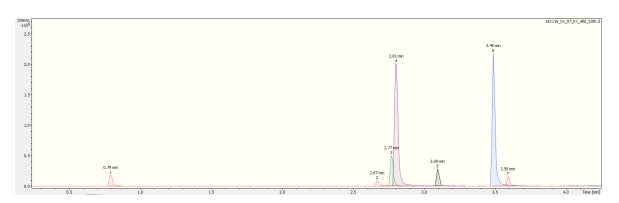
Supplementary figure S4. Chromatogram of degradation products of fentanyl in DahlgrenDecon detected by UHPLC-HRMS after 24h

Supplementary table S5. Degradation products of carfentanil in 10 % H₂O₂ detected by UHPLC-HRMS after 24 h.


#	RT (min)	% signal of carfentanil reference	EIC (<i>m</i> / <i>z</i>)	Ion formula (incl. H ⁺)	Comment
1	1.55	<1	291.170	$C_{16}H_{23}N_2O_3$	Norcarfentanil
2	2.68	<1	427.2227	$C_{24}H_{31}N_2O_5$	$+O_2$
3	2.74	<1	427.2227	$C_{24}H_{31}N_2O_5$	$+O_2$
4 Carfentanil	2.77	13	395.233	$C_{24}H_{31}N_2O_3$	
5	2.81	84	411.228	$C_{24}H_{31}N_2O_4$	+ O (N-oxide)

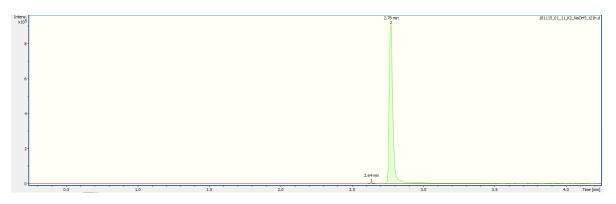
Supplementary figure S5. Chromatogram of degradation products of carfentanil in 10 % H₂O₂ detected by UHPLC-HRMS after 24 h.

#	RT (min)	% signal of carfentanil reference	EIC (<i>m</i> / <i>z</i>)	Ion formula (incl. H ⁺)	Comment
1	0.80	2.5	192.102	$C_{11}H_{14}NO_2$	-C ₁₃ H ₁₇ NO
Carfentanil	2.78	<1	395.233	$C_{24}H_{31}N_2O_3$	
3	2.81	10.6	411.227	$C_{24}H_{31}N_2O_4$	+ O (N-oxide)
4	3.10	3.4	258.089	$C_{12}H_{17}NO_3Cl$	$-C_{12}H_{14}NO + Cl$
5	3.16	<1	383.195	$C_{22}H_{27}N_2O_4$	$-C_{2}H_{4} + O$
6	3.26	<1	228.078	$C_{11}H_{15}NO_2Cl$	$-C_{13}H_{16}NO + Cl$
7	3.49	24	325.14	$C_{16}H_{22}N_2O_3Cl$	$-C_8H_9 + Cl$ (Norcarfentanyl+Cl?)


Supplementary table S6. Degradation products of carfentanil in bleach detected by UHPLC-HRMS after 24 h.

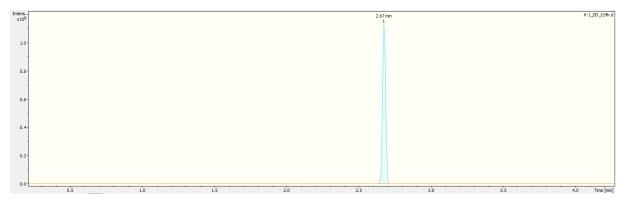
Supplemetary figure S6. Chromatogram of degradation products of carfentanil in bleach detected by UHPLC-HRMS after 24 h.

Supplementary table S7. Degradation products of cartentain in andecont MED, detected by OHFLC-HKWS after 20 ii.							
#	RT (min)	% signal of carfentanil reference	EIC (m/z)	Ion formula (incl. H ⁺)	Comment		
1	0.79	<1	192.102	$C_{11}H_{14}NO_2$	-C ₁₃ H ₁₇ NO		
2	2.67	<1	150.091	C ₉ H ₁₂ NO	$-C_{15}H_{19}NO_2$		
Carfentanil	2.77	1.6	395.233	$C_{24}H_{31}N_2O_3$			
4	2.81	7.5	411.228	$C_{24}H_{31}N_2O_4$	+ O (N-oxide)		
5	3.09	<1	258.089	$C_{12}H_{17}NO_3Cl$	$-C_{12}H_{14}N + Cl$		
6	3.49	6.6	325.14	$C_{16}H_{22}N_2O_3Cl$	$-C_8H_9 + Cl$ (norcarfentanil+Cl?)		
7	3.59	<1	361.071	$C_{15}H_{19}N_2O_4Cl_2$	$-C_9H_{12} + Cl_2O$		


Supplementary table S7. Degradation products of carfentanil in alldecont MED, detected by UHPLC-HRMS after 20 h.

Supplementary figure S7. Chromatogram of degradation products of carfentanil in alldecont MED detected by UHPLC-HRMS after 20 h.

Supplementary ta	ble S8. Deg	radation proc	luct of car	rfentanil in	NaOH dete	cted by	UHPLC-H	RMS after 21 h.


#	RT (min)	% signal of carfentanil reference	EIC (<i>m</i> / <i>z</i>)	Ion formula (incl. H ⁺)	Comment
1	2.64	<1	281.2173	$C_{23}H_{29}N_2O_3$	-CH ₂
Carfentanil	2.77	21	395.233	$C_{24}H_{31}N_2O_3$	

Supplementary figure S8. Chromatogram of degradation products of carfentanil in NaOH detected by UHPLC-HRMS after 21 h.

Supplementary table S9. Degradation products of carfentanil in DahlgrenDecon detected by UHPLC-HRMS after 24 h.

#	RT (min)	% signal of carfentanil reference	EIC (<i>m/z</i>)	Ion formula (incl. H ⁺)	Comment
Carfentanil	2.65	<0.3	395.233	$C_{24}H_{31}N_2O_3$	
1	2.67	99	411.228	$C_{24}H_{31}N_2O_4$	+ O (N-oxide)

Supplementary figure S9. Chromatogram of degradation products of carfentanil in DahlgrenDecon detected by UHPLC-HRMS after 24 h.

GC/HRMS data for detected degradation products

Aliquots (100 μ L) of degradation solutions were extracted using 2 × 500 μ L of dichloromethane. The percentage signal of the fentanyl reference was determined. The extracts were analyzed by GC-HRMS using a Thermo Scientific Exactive GC Orbitrap GC/MS system. The experimental GC conditions were as follows: initial temperature of 40 °C for 1 minute, followed by ramping the temperature at 10 °C per minute until 300 °C, then maintaining the temperature at 300 °C for 5 minutes. A DB-5MS column (30 m length, 0.25 mm inner diameter, 0.25 µm film thickness), injection volume of 1 µL and injection temperature of 280 °C were used. Mass spectrometry parameters were as follows: scan range 30-750 m/z, scan rate 12 Hz, resolution 30k, ion source temperature 230 °C, transfer line temperature 250 °C. Data analysis was performed using Thermo Xcalibur software in combination with NIST17.

decontamination solutions presented as % signal of the fentanyl/cartentanil reference.									
	Decontamination solution	C ₉ H ₁₁ NO Mw 149.19	C ₈ H ₈ Mw 104.15	Norfentanyl $C_{14}H_{20}N_2O$ Mw 232.32	C ₆ H ₄ ClNO ₂ Mw 157.55	C ₁₆ H ₂₂ N ₂ O ₃ Mw 290.36	C ₈ H ₈ O Mw 120.15	C ₆ H ₃ Cl ₂ NO ₂ Mw 192.00	C ₆ H ₂ Cl ₃ NO ₂ Mw 226.44
Fentanyl	H ₂ O ₂ (10 %)	8 %	11 %	5 %					
	alldecont MED	2 %	< 1 %						
	bleach	< 1 %			< 1 %			<1%	< 1%
Carfentanil	H ₂ O ₂ (10 %)	12 %	16 %			4 %	< 1 %		
	alldecont MED	2 %	< 1 %			< 1%			
	bleach	2 %	< 1 %			< 1 %			

Supplementary table S10. Degradation products of fentanyl and carfentanil detected by GC-HRMS in different signal of the fant anvl/corfentanil refe

Molecular Formula: C₉H₁₁NO Formula Weight: 149.19

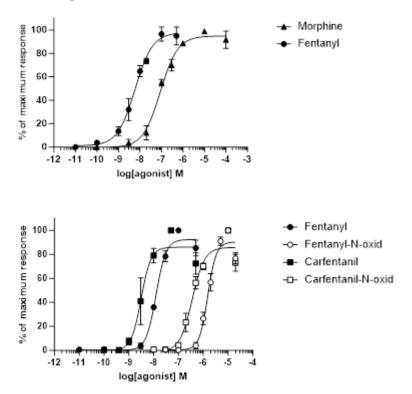
Molecular Formula: C₈H₈ Formula Weight: 104.15

Molecular Formula: C14H20N2O Formula Weight: 232.32

Molecular Formula: C₄H₄CINO₂ Formula Weight: 157.55

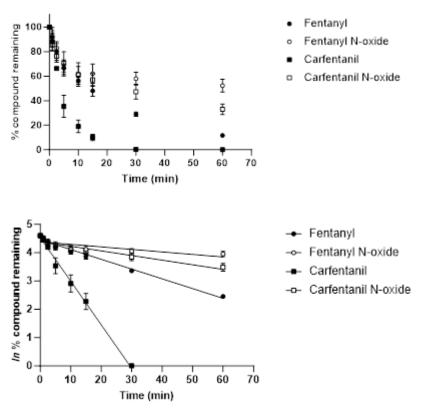
Molecular Formula: C₆H₂Cl₃NO₂

Molecular Formula: C₁₆H₂₂N₂O₃ Formula Weight: 290.36


Molecular Formula: C₈H₈O Formula Weight: 120.15

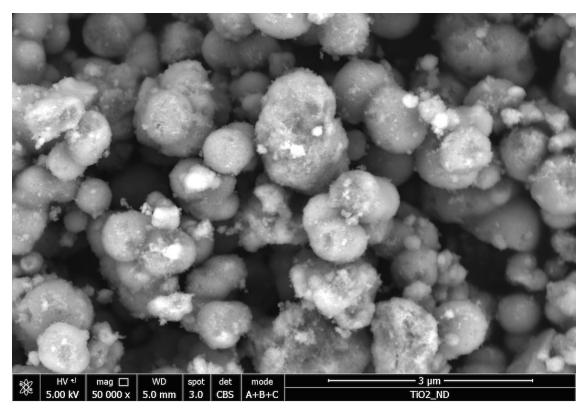
Molecular Formula: C₆H₃Cl₂NO₂ Formula Weight: 192.00

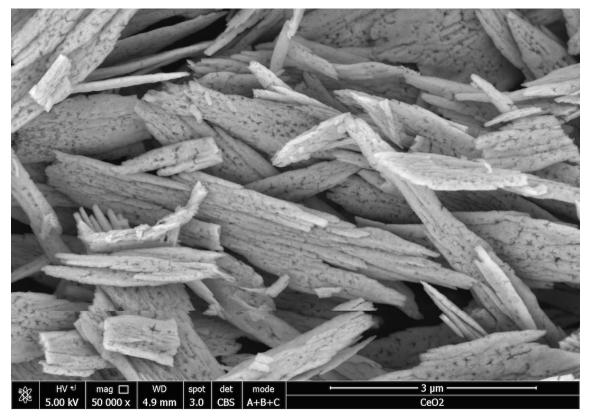
Formula Weight: 226.44


Supplementary figure S10. Degradation products of fentanyl and carfentanil detected by GC-HRMS in different decontamination solutions.

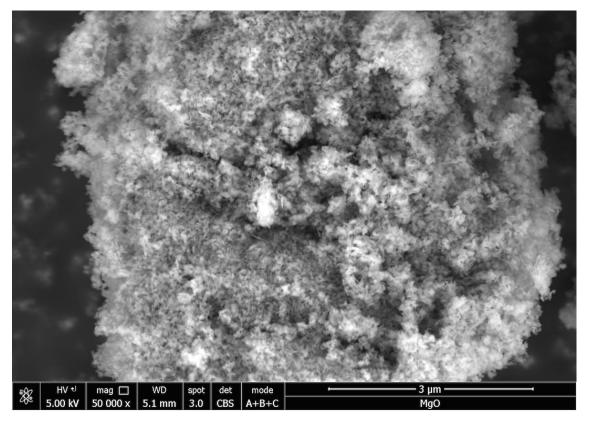
Dose-response curves for N-oxide activation of the human μ -opioid receptor

Supplementary figure S11. Dose-response curves measured in the human μ -opioid receptor activation assay.

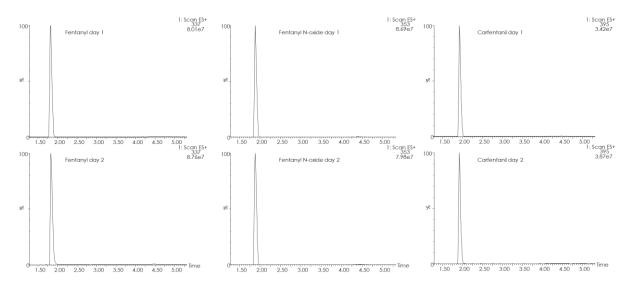

Metabolism data of fentanyl- and carfentanil N-oxides in human liver microsomes


HLM incubations

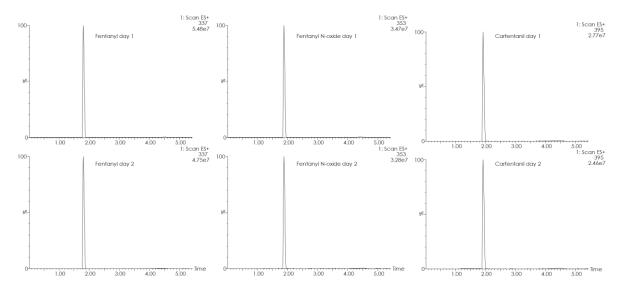
Supplementary figure S12. Human liver microsome (HLM) incubations. Compound depletion over 60 minutes, and log linear regression of percentage of compound remaining against time for calculation of compound half-life in HLM.


Representative SEM images

Supplementary figure S13. Representative SEM image of the TiO₂-ND sample. The crystallite size was about 10 nm, the BET surface area 232 m^2/g and total pore volume 0.28 cm³/g.



Supplementary figure S14. Representative SEM image of the CeO₂ sample. The crystallite size was about 28 nm, BET surface area 85 m²/g and total pore volume 0.07 cm³/g.



Supplementary figure S15. Representative SEM image of the MgO sample. The BET surface area was about $125 \text{ m}^2/\text{g}$.

Stability of fentanyl, fentanyl N-oxide and carfentanil in water and acetonitrile The compounds were dissolved in both Milli-Q water and acetonitrile to a concentration of 10 μ g/ml and 2 μ g/ml, respectively. The same sample were then analyzed for two consecutive days, and stored in room temperature in-between analysis. The samples were also analyzed three times in a row to calculate the relative standard deviation (RDS%) between runs. The results showed that the RDS% between runs were between 3-6 % depending on compound. As shown in Figure S16 and S17, fentanyl, fentanyl N-oxide and carfentanil where all stable in both water and acetonitrile when stored in room temperature for two days.

Supplementary figure S16. Mass chromatogram of fentanyl (m/z = 337), fentanyl N-oxide (m/z = 353) and carfentanil (m/z = 395) dissolved in Milli-Q water. The same sample was analysed for two consecutive days. The relative standard deviation was between 0.5 % for N-oxide and 8.0 % for carfentanil.

Supplementary figure S17. Mass chromatogram of fentanyl (m/z = 337), fentanyl N-oxide (m/z = 353) and carfentanil (m/z = 395) dissolved in acetonitrile. The same sample was analysed for two consecutive days. The relative standard deviation was between 2.2 % for fentanyl and 8.3 % for fentanyl N-oxide.