Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The solution-derived non-stoichiometric nickel oxide (NiOx) is a promising hole-injecting material for stable quantum dot light-emitting diodes (QLEDs). However, the carrier imbalance due to the misalignment of energy levels between the NiOx and polymeric hole-transporting layers (HTLs) curtails the device efficiency. In this study, the modification of the NiOx surface is investigated using either 3-cyanobenzoic acid (3-CN-BA) or 4-cyanobenzoic acid (4-CN-BA) in the QLED fabrication. Morphological and electrical analyses revealed that both 4-CN-BA and 3-CN-BA can enhance the work function of NiOx, reduce the oxygen vacancies on the NiOx surface, and facilitate a uniform morphology for subsequent HTL layers. Moreover, it is found that the binding configurations of dipole molecules as a function of the substitution position of the tail group significantly impact the work function of underlying layers. When integrated in QLEDs, the modification layers resulted in a significant improvement in the electroluminescent efficiency due to the enhancement of energy level alignment and charge balance within the devices. Specifically, QLEDs incorporating 4-CN-BA achieved a champion external quantum efficiency (EQE) of 20.34%, which is a 1.8X improvement in comparison with that of the devices utilizing unmodified NiOx (7.28%). Moreover, QLEDs with 4-CN-BA and 3-CN-BA modifications exhibited prolonged operational lifetimes, indicating potential for practical applications.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.

Funding 


Funders who supported this work.

National Natural Science Foundation of China (2)

Natural Science Foundation of Jiangsu Province (1)

Undergraduate Training Program for Innovation and Entrepreneurship of Soochow University (1)