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ABSTRACT

FUSION OF MULTIMODAL INFORMATION FOR MULTIMEDIA
INFORMATION RETRIEVAL

Yilmaz, Turgay
Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazici

September 2014, 237 pages

An effective retrieval of multimedia data is based on its semantic content. In order
to extract the semantic content, the nature of multimedia data should be analyzed
carefully and the information contained should be used completely. Multimedia
data usually has a complex structure containing multimodal information. Noise in
the data, non-universality of any single modality, and performance upper bound of
each modality make it hard to rely on a single modality. Thus, multimodal fusion is
a practical approach for improving the retrieval performance. However, two major
challenges exist; ‘what-to-fuse’ and ‘how-to-fuse’. In the scope of these challenges, the
contribution of this thesis is four-fold. First, a general fusion framework is constructed
by analyzing the studies in the literature and identifying the design aspects of general
information fusion systems. Second, a class-specific feature selection (CSF) approach
and a RELIEF-based modality weighting algorithm (RELIEF-MM) are proposed to
handle the ‘what-to-fuse’ problem. Third, the ‘how-to-fuse’ problem is studied, and
a novel mining and graph based combination approach is proposed. The approach
enables an effective combination of the modalities represented with bag-of-words
models. Lastly, a non-linear extension on the linear weighted fusion approach is
proposed, by handling both of the ‘what-to-fuse’ and ‘how-to-fuse’ problems together.
We have conducted comprehensive experiments on CalTech101, TRECVID 2007,
2008, 2011 and CCV datasets with various multi-feature and multimodal settings; and



validate that our proposed algorithms are efficient, accurate and robust ways of dealing
with the given challenges of multimodal information fusion.

Keywords: Multimodal fusion, multimedia information retrieval
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COGULORTAM BILGI ERIiSIMI iCIN COK KiPLi BILGININ BIRLESTIRILMES]

Yilmaz, Turgay
Doktora, Bilgisayar Miihendisligi Boliimii

Tez Yoneticisi : Prof. Dr. Adnan Yazici

Eyliil 2014, 237 sayfa

Cogulortam verilerine etkili bir erigim, verideki mantiksal icerik {izerine bina edilir.
Mantiksal icerigin ¢ikarilmasi i¢in, ¢ogulortam verisi dikkatlice analiz edilmeli ve
bilgi verinin igerdigi tiim bilgi kullanilmalidir. Cogulortam veriler, icinde cok kipli
bilgi barindiran karmagik bir yapiya sahiptir. Verideki giiriiltii, herhangi bir tekil kipin
genelgecer bilgi icerememesi ve her kipin performans iist limiti sebebiyle, herhangi
bir kipten saglanacak bilgiye giivenmek miimkiin degildir. Bu yiizden, bilgi erisimi
isleminin performansini artirmak i¢in ¢ok kipli bilginin birlestirilmesi kullanigh bir
yontem olarak ortaya ¢ikmaktadir. Fakat, bu yontemle ilgili olarak iki temel zorluk
bulunmaktadir; ‘ne’ ve ‘nasil’ birlestirilmeli. Verilen bu zorluklar kapsaminda, bu
tezin katkilar1 dort baglik altinda incelenebilir. Ik olarak, literatiirdeki calismalar:
incelenerek ve genel bilgi birlestirme sistemlerinin tasarim kriterleri saptanarak genel
bir birlestirme gergeveleri ortaya konmustur. Ikinci olarak, ‘ne’ birlestirilmeli proble-
mini ¢cozmek amaciyla, sinifa 6zgii 6znitelik secim (CSF) yontemi ve RELIEF-tabanl
bir kip agirliklandirma algoritmasi (RELIEF-MM) énerilmistir. Ugiincii olarak, ‘na-
sil” birlestirilmeli problemi ele alinip, madencilik ve ¢izge tabanli yeni bir yontem
onerilmigtir. Bu yontem kelime torbalar1 modeliyle temsil edilen kiplerin etkili bir
sekilde birlestirilmesini saglamaktadir. Son olarak, bahsedilen iki problem birlikte ele
alinarak, dogrusal agirliklandirmali birlestirme iizerine, dogrusal olmayan bir ilave
yapilmistir. CalTech101, TRECVID 2007, 2008, 2011 and CCV veri kiimelerinde
cesitli cok Oznitelikli ve ¢ok kipli ayarlar ile kapsamli deneyler yapilmis, ve Onerilen
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algoritmalarin belirtilen problemlerin ¢oziimiinde verimli, etkin ve saglam yontemler
oldugu ortaya konmustur.

Anahtar Kelimeler: Cok kipli birlestirme, ¢ogulortam bilgi erisimi
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CHAPTER 1

INTRODUCTION

“ The hand of one fell on the trunk: he said ‘This creature is like a water-pipe’.
The hand of another touched its ear: to him it appeared to be like a fan.
Since another handled its leg, he said, ‘I found the elephant’s shape to be like a pillar’.

Another laid his hand on its back: he said ‘Truly, this elephant was like a throne’ ”

The elephant in the dark'

Increase in the use of digital images and videos in recent years has shown the need for
modeling and querying the multimedia data. Free-browsing and text-based retrieval of
previously annotated data are not enough due to the limitations for querying. Therefore,
developing techniques for the retrieval of multimedia data based on the semantic
content has attracted many researchers [73, 118]. However, the gap between the low
level features and the semantic content of the multimedia data makes the semantic
content extraction issue a challenging problem, and impedes achieving consistently
high retrieval accuracies in many potential “real-world” applications. In order to

handle such impediment, one or more of the routes below may be followed [24]:

e Developing superior content extraction methods than the currently available

ones

e Optimization of components (preprocessing, feature extraction, classification,

etc.) of currently available methods

e Fusion of multiple classifiers, features/modalities or information sources

1 A poem from Rumi (Masnavi 3:1267-1270). Similar stories are also famous in various religious traditions
like Sufi, Buddhist, Hindu and Jain lore.



Development of new extraction methods and making optimization on the available
ones are traditional ways of dealing with the given problem. The usual solution
approach in such studies includes an experimental assessment of alternative designs
(by means of the utilized features, classifiers, etc.), and building the solution on the best
design alternative. However, different design alternatives can provide complementary
information about the patterns to be extracted [61]. Thus, fusing multiple information
sources, classifiers or features is a popular approach for semantic content extraction,

in the last few decades.

In addition to the route followed for semantic content extraction, the content of the
multimedia data is another crucial aspect. In order to extract the semantic content from
the multimedia data more effectively, the nature of the data must be examined carefully
and information contained in the data should be used as completely as possible. The
multimedia data usually has a complex structure containing multimodal information
(i.e. audio, visual and/or textual modalities). In the context of semantic content
extraction, using a single modality may not be enough to obtain a successful retrieval
solution, because of the potential noise in sensed data, non-universality of any single
modality and the performance upper bound of each modality [98]. In addition, each
modality abstracts multimedia data from a different aspect. Thus, different modalities
complement each other [51]. Eventually, fusing multimodal information in multimedia

data improves the retrieval performance.

1.1 The Problem

As stated above, information fusion is an effective way of improving the retrieval per-
formance. However, combining a set of modalities, features, classifiers or information
sources includes several difficulties. In order to understand such difficulties clearly,
we can make an analogy with a committee of experts [30]. Assume a committee of
experts trying to give decisions on the issues they asked. Considering that the experts
in the committee may have different backgrounds and expertise areas, each of them
could give different decisions. Then, how does such a committee arrive at a final
decision? What is the decision-making process of the committee? How can the final

decision of the committee be arrived? Is voting a good way or does it neglect the
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experts’ differences in skills? Should every expert give a vote on every subject or
should the authorities of experts be limited according to their expertise area and skills?
In addition, is there a way to decide whether any of the experts is faking or really
an expert? Should we believe every expert without any questioning? Assume we
found some ways to solve above problems. Should we always trust these solutions?
Or should we keep in mind that any of the experts can change his mindset, or some
experts can have progress on their expertise while some others lose their abilities and

expertises in time?

The analogy makes us distinguish the mostly known, thereof mostly studied, problems
of the fusion systems. The analogy represents two major problems; (i) selecting
appropriate committee members and determining their effect on the final decision,
based on the given problem, (ii) finding an appropriate mechanism to combine the
decisions of the selected committee members. Actually, these are the problems pointed
out by many researchers in the information fusion domain. The major two problems
of information fusion, which have not been adequately addressed yet and are still

attractive research areas [4,98, 143] are:

e What to fuse: Determining the best components for fusion,

e How to fuse: Finding the best fusion methods.

In addition to the above given problems, another important issue is the lack of a well
defined general framework for information fusion [63, 64, 143]. The literature on
information fusion shows that several disparate research areas utilize information
fusion [63] and a big number of studies from these research areas try to find some
optimum solutions to the above given problems [70]. Nevertheless, almost all of the
solution are ad-hoc strategies [2] and does not present a general framework which
defines all factors affecting the fusion process [47]. Building a general framework for
information fusion helps us see the big picture of the whole fusion process and identify

which variables are effective during fusion.



1.2 Scope & Contributions

The scope of this dissertation includes the construction of a general fusion framework
by performing a literature survey, and the above given two core issues of information
fusion in the context of multimedia information retrieval. For the What to fuse problem,
firstly, a class-specific feature/modality selection approach is proposed. Then, this
approach is extended into RELIEF-based feature/modality weighting algorithm. For
the How to Fuse problem, a novel mining and graph based combination approach
which enables an effective combination of the modalities represented with Bag-Of-
Words models is proposed. In addition, a non-linear weighted averaging approach,
which attacks the What to Fuse and How to Fuse problems together, is proposed.

Below, each of these work items are described in brief.

The thesis study is started with a literature survey, primarily analyzing the information
fusion literature and identifying the design aspects of a general information fusion
system. The analysis enabled us to propose a general framework which helps to
represent a big picture for information fusion systems. In the framework, each design
aspect is accepted as an affecting variable for the Fusion Process. In accordance with
the problem definition, the process is composed of two primary tasks; Defining What
to Fuse and Defining How to Fuse. In addition, another task named Defining Fusion
Scenario takes place before the Fusion Process. Defining Fusion Scenario task is
based on the inputs of fusion and helps to define overall architecture of the Fusion
Process. Besides, the task of Defining What to Fuse requires an effective and efficient
selection of the fusion elements and is configured with following parameters: Selection
of Sources and Fusion Strategy. After performing this task, Selected Fusion Elements
are obtained, which are related with the variables Content Representation and Normal-
ization of Sources. Finally, Defining How to Fuse task is performed, which defines
how we combine the selected elements. The task is configured with the following

variables: Fusion Level, Fusion Method, Operation Modes and Synchronization.

After identifying the design aspects of fusion systems, two core problems of fusion are
focused. As a first step, the What to Fuse and How to Fuse problems are considered
together, and an effective fusion architecture is investigated by regarding the most

frequently utilized approaches in the literature. The most frequently utilized approach
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is the Linear Weighted Fusion [37, 133, 145], due to its simplicity and reasonable
performance despite its simplicity. However, it suffers from the performance upper-
bound of linearity and dependency on the selection of weights. In this context, the
study is focused on two questions, considering two important deficiencies of Linear
Weighted Fusion: (i) Can we find a method which is as simple as the linear weighted
fusion and can exceed the performance upper bound of linear weighted fusion? (ii)
Can we find a method which is less-dependent on the selection of the weights? Aligned
to these aspects, a ‘simple’ alternative for linear combination is introduced, which
is a non-linear extension on it. The approach is based on the Analytical Network
Process [109], which is a popular approach in Operational Research, but never applied
to multimodal information fusion before. The approach benefits from two major
ideas; interdependency between classes and dependency of classes on the features.
The proposed method is evaluated with Columbia Consumer Video (CCV) Database
by using multimodal features of SIFT, MFCC and STIP. Experiments demonstrate
that proposed approach outperforms linear combination and other simple approaches,

moreover it is less-dependent on the selection of weights.

Secondly, the problem of What to fuse is studied in the context of multimodal infor-
mation fusion. As a contribution, a class-specific feature/modality selection (CSF)
approach for the fusion of multiple features/modalities is proposed. In order to elimi-
nate the high-dimensionality of multiple features and provide efficient querying over
the multimedia documents, a dissimilarity based approach is used. The class-specific
features are captured through a training phase, in which the class-specific features
are determined by using the representativeness and discriminativeness of features for
each class / concept. The calculations of representativeness and discriminativeness are
based on the statistics on the dissimilarity values of the training data. The proposed
approach is firstly evaluated in a multi-feature setting by using the CalTech 101 dataset
with 8 MPEG-7 visual features and compared with the retrieval performance of single
features, simple combination approaches and exhaustive search approach. Then several
experiments in a multimodal environment are conducted by using TRECVID 2007
dataset with 3 visual, 2 audio and 1 textual modalities. Lastly, the proposed approach
is utilized for efficient feature selection and combination in a Wireless Video Sensor

Networks application [94]. The results obtained from all three test configurations show



that proposed class-specific feature selection approach is an effective and efficient

feature selection method.

Thirdly, the proposed CSF approach is extended and converted into a RELIEF al-
gorithm extension, due to the similarities between CSF and RELIEF. The RELIEF
algorithm is considered one of the most successful weighting algorithms [105] and
in which the calculations are based on the distances between training samples. Yet,
there exists no usage of the RELIEF algorithm for multimodal feature selection in
multimedia retrieval, to the best of our knowledge. Employing the RELIEF algorithm
for multimodal feature selection on multimedia data enables us to identify some weak-
nesses of the algorithm in the following major issues: class-specific feature selection,
complexities with multi-labeled data and noise, handling unbalanced datasets, and
using the algorithm with classifier predictions. Considering the characteristics of
multimedia data and multimedia retrieval systems, the original RELIEF algorithm is
extended for the given issues, and the RELIEF for multimedia data (RELIEF-MM)
algorithm is proposed. RELIEF-MM employs an improved weight estimation function,
which exploits the representation and reliability capabilities of modalities, as well as
the discrimination capability, without any increase in the computational complexity.
The comprehensive experiments conducted on TRECVID 2007, TRECVID 2008 and
CCV datasets validate RELIEF-MM as a timely-efficient, accurate and robust way of

modality weighting for multimedia data.

Lastly, but not least, the problem of How fo fuse is studied, in order to propose an
effective combination approach. The most popular and effective methods in multimedia
analysis studies in the last decade are based on the use of local parts / features in
multimedia documents and employing Bag-of-Words (BoW) approaches. Thus, the
last part of the thesis is focused on combining the Bags of Words obtained from
different modalities. Most of the currently available studies focus on combining the
BoWs with early or late fusion schemes [50, 52, 81, 122]. However, most of the
studies do not use intramodal and intermodal relations effectively [10]. In order
to combine all available information provided by any single modality, correlations
within a modality and correlations between different modalities; we propose a novel
mining and graph based combination approach. In order to combine all available

information effectively, the classification outputs of each single modality, intramodal



process and intermodal process are combined with a late fusion approach. For the late
fusion, a linear weighted averaging approach is utilized with the weights generated
by using RELIEF-MM algorithm. Throughout the intramodal process, the words of
each modality and the correlation between these words are converted into a graph
representation, and then the meaningful phrases are extracted by using these words.
In order to extract the phrases, the most together occurring £ number of words are
extracted from the constructed word graph. The intermodal process is similar with
the intramodal process. Differently, in intermodal process, the correlation between
the extracted phrased of different modalities are calculated and converted into a graph
representation. Then, the multimodal phrases are extracted from the graph. Both of
these processes end up with using the extracted phrases for classification. Experiments
conducted on TRECVID 2011 dataset with visual, audio and text modalities provide

promising results.

1.3 Organization

In Chapter 2, an introduction to the basic concepts used in this dissertation is given.
The chapter first gives a brief definition of pattern recognition and classification. Then,
the concept of information fusion is described with a brief definition, history, reasons

for fusion and expectations from fusion. Lastly, the multimodality concept is defined.

Chapter 3 presents the literature survey on information fusion and proposes a general

framework representing the big picture for designing an information fusion system.

In Chapter 4, the Non-Linear Weighted Averaging based fusion approach, which is
based on Analytical Network Process, is introduced. The chapter includes a brief de-
scription on Analytical Network Process, related work, the description of the proposed

approach, experiments and the evaluation.

In Chapter 5, the class-specific feature selection approach is described. The chapter
first describes multi-feature modeling in dissimilarity space. Then the class-specific
feature selection approach is given in detail. After the description of the approach,
experiments with multi-feature and multimodal settings are presented. In addition, the

utilization of the approach in a Wireless Video Sensor Networks application is given.
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In Chapter 6, the RELIEF-MM algorithm for modality weighting is presented. The
chapter first given a detailed related work, as well as the description of the original
RELIEF family algorithms. Then, the proposed algorithm is given in detail. Lastly,
the experiments conducted on TRECVID 2007, TRECVID 2008 and CCV datasets

are presented with evaluations.

Chapter 7 presents the mining and graph based fusion approach for combining the
Bags of Words obtained from different modalities. The chapter includes gives a brief
definition on the approaches frequently utilized by the state-of-the-art studies. Then,
after a discussion on alternative approaches for combining the Bags of Words, the

proposed approach is described and the experiments conducted are presented.

In Chapter 8, a demo application for multimedia information retrieval is presented.
Throughout the chapter, first the need for such an application is discussed, and the
application is presented with several screenshots. Lastly, an evaluation on the demo

application is given.

Lastly, Chapter 9 provides a broad summary and conclusion on the dissertation, as

well as the future work.



CHAPTER 2

BACKGROUND INFORMATION

In this chapter, the fundamental concepts about the study are presented. Consider-
ing the thesis title, the study includes issues on Pattern Recognition, Classification,
Data/Information Fusion (with a Pattern Recognition point of view) and multimodality.
Corresponding sections are presented in this chapter. The major goal of this chapter is
to give the readers some brief information about the building stones of the proposed

study.

2.1 Pattern Recognition and Classification

In machine learning, pattern recognition is defined as;

“The assignment of some sort of output value (or label) to a given input
value (or instance), according to some specific algorithm.” [140]

Classification (or categorization) is a subset of pattern recognition that attempts to
assign input values to some predefined pattern classes. A pattern class is a collection of
similar (not necessarily identical) objects. Classes are defined by using class samples,

which are any of training/learning samples, prototypes or paradigms.

More formally, classification can be defined as assigning an input s; to a class c;
by approximating a function ¢ : S x C' — {T, F'} by maximizing the coincidence
of ¢ with the actual classification ¢, where S = s1, o, .., s, is the set of inputs,
C = ¢,c9,..,0, 18 the set of classes and {7, F'} are boolean values that defines

whether the classification is true or false [114].
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A classifier (or learner) is defined as the algorithm performing the classification. More
concretely, the function implementing the classification algorithm can be called as
a classifier. Classifiers accept instances of classes as input and tries to determine
the correct class of it. During classification process, instances are represented with
features. Features can have different types of values; categorical/nominal (i.e. “male”
or “female”), ordinal (i.e. an ordered set: “large”, “medium” or “small”), integer-
valued, real-valued, etc. [138]. As the output, a simple classifier can give the label of
the corresponding class. More complicated classifiers can give score values for the

classification results. Furthermore, it is possible to return a ranked list of probable

classes according to calculated score values.

Classification is a supervised (learned) procedure, that means a classifier learns classi-
fying inputs by using a training set of class instances. Besides, there exists another
subset of pattern recognition which is an unsupervised procedure, called as Clustering.
Since clustering enables only grouping instances according to their similarities and

cannot give labels to these groups; it is out of our scope in this study.

Sensor
Input from raw data Pre- .
real world processing

Enhanced
raw data

Feature
Extraction
Feature

vector ‘

Classification Post- ey Output to

Class labels/ processing real world
scores/ranks

Figure 2.1: A Typical Classification Process

A typical pattern recognition process is summarized in Figure 2.1. Considering the
figure, the process starts with the perception of some input from the real world via some
hardware called sensors. A sensor converts physical inputs (i.e. sounds or images) into
signal data. Then, this raw data of sensors are preprocessed. The preprocessing step
can include enhancement and segmentation operations that makes the raw data more
easily processable and removes unnecessary parts of it. After preprocessing, a feature
extraction step is employed and several important properties of the real world input

that are useful for classification are extracted by using the sensor data. Afterwards,
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features are used for classification. The classification results with a class label, a score
or a ranked list. Lastly it is possible to have an enhancing post-processing mechanism

on the results.

2.2 Data/Information Fusion

Data/information fusion is the process of combining data/information from multiple
sources in order to infer new results that may not be resulted by any of the single
sources or obtain more efficient and accurate results than any of the single sources. A

typical fusion system is illustrated in Figure 2.2.

Source,

Source, -
= .
5 Fusion
£ Result
o
O

Source,,

Figure 2.2: A Typical Fusion System

In a fusion system like in Figure 2.2, the ‘source’ can be any of the followings: sensor,
feature, modality, classifier, information resource (dataset, library, different real world
situations etc).! 2 Explanations for combining each source type are given below, with

corresponding examples:

e Sensors: The fusion system combines outputs of multiple sensors. For instance,

combining outputs of a RGB and a NIR camera.

1 Meanwhile, it should be noted that the fusion scope of pattern recognition or multimedia retrieval systems
do not involve the fusion studies in sensor level, in principle. Studies in these areas deal with the features of the
objects as the lowest level, not with the signal inputs or raw sensor data. Thus, no details will be given for sensor
fusion although some introductory information is presented.

2 Since the scope of this study is “Fusion of Multimodal Information in Multimedia Information Retrieval”,
the thesis usually refers fusion process as combining modalities or features. Considering the fact that the source
for a fusion system can be any of sensor, feature, classifier or information resource; these phrases can also be
interchangeably used with the phrase “source”. Also, any of these source types is applicable for a generic fusion
structure.
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e Features: The fusion system combines instances of different features. For

instance, combining color and shape features to recognize an object.

e Modalities: The fusion system combines data of different modalities. This case
is not much different from multiple features case, considering that modalities
consist of several related features. An example for multimodality is combining

face and hand-shape modalities in a biometrics system.

e (lassifiers: The fusion system combines multiple different classifiers. Creating
different classifiers can be don by several ways. In [30] Duin et al. presents
methods of generating different classifiers. Some of them include using dif-
ferent classification algorithms, having different algorithm-parameter choices,
performing different initializations. Examples for these cases, respectively, are

as follows:

— combining results of a Bayesian classifier and a decision tree for the same

inputs
— combining k-NN classifiers with different number of neighbors

— combining differently-initialized neural network classifiers

e Information resources: The fusion system can combine information of different
datasets/instances/situations. In other words, the system can combine multiple
outputs (in time-based manner) of a single sensor, different instances of a
single feature, classifiers trained with different datasets (classification algorithm,
parameters, initializations, etc. are the same) or different instances of single

modality. Corresponding examples are:

— combining satellite images of an area that are taken at different times

— combining shape features of a person such that the shapes are from different

perspectives to obtain a more robust shape recognition

— combining two decision-tree classifiers that are trained over different

datasets

— combining two face recognizers of a biometrics system where one of
them is trained in good light conditions, the other one is trained for dark

situations
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A more imposing definition is presented by JDL/DFG? [63,74]:

“Information fusion is an Information Process dealing with the associa-
tion, correlation, and combination of data and information from single
and multiple sensors or sources to achieve refined estimates of param-
eters, characteristics, events, and behaviors for observed entities in an
observed field of view”(Figure 2.3)

The JDL/DFG introduced a model of data fusion that identifies levels of fusion process-
ing, types of fusion functions, and candidate algorithms for performing fusion. This
model and related techniques have been applied to several non-military applications
such as environmental modeling, control of complex systems and medical applications,
as well as their primary scope of military domain [74]. Nevertheless, the detailed
studies of the JDL/DFG group is beyond our scope, considering that the group studies
on military-based domain and consequently their aspect of fusion is mostly on the

sensor fusion.

Refined estimates of
Parameters,
Characteristics,
Events,
Behaviors

Single/Multiple Association,
Sources Correlation,

(Redundant or Combination
Complementary) of Data

‘To improve estimates
about those things

Related to
things of interest

Multiple types of data

Figure 2.3: JDL/DFG Definition of Fusion

Information fusion is utilized in a vast number of research areas, some of which are
pattern recognition, information retrieval systems, geospatial information systems,
cheminformatics, bioinformatics, wireless sensor networks, biometrics systems. In
different research areas information fusion has different meanings [20]. In applied
sciences, engineering and military applications, information fusion is mostly identified
with sensor fusion. Studies aim to combine data of multiple sensors or multiple data

instances of a single sensor. In pattern recognition and machine learning, information

3 JDL/DFG is the Data Fusion Group in Joint Directors of Laboratories. JDL/DFG is established in 1984,
under U.S. Department of Defense.
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fusion is mostly explained with combining classifiers to increase classification accuracy
or handling classifier ensembles according to their outputs by resampling the input.
The distinction between the research areas originates from what they work on. The
areas working on input signals of systems prefer sensor fusion, whereas the working on
features and feature-based recognition or retrieval choose classifier fusion. However,
as mentioned in the Section 2.2.1, recent studies tend to relax such distinction and

extend their working area to more generic information fusion.

One more remarkable issue on the information fusion is the diversity of studies even
in classifier combination, the pattern recognition point of view on information fusion.
Due to the diversity of studies, there are many different names in the literature [69]:
combination of multiple classifiers, classifier fusion, mixture of experts, committees of
neural networks, consensus aggregation, voting pool of classifiers, dynamic classifier
selection, composite classifier system, classifier ensembles, divide-and-conquer classi-
fiers, pandemonium system of reflective agents, change-glasses approach to classifier

selection.

2.2.1 A Brief History

In the literature of pattern recognition, previously, main effort focused on designing
one good classifier. Then it is argued that building a number of classifiers with
low dimensionality and high performance, and combining them could achieve more
successful results. Thus, information fusion studies has begun [144]. The roots of the

fusion studies can be found in the neural network literature, as early as 1960’s [63,64].

Early approaches, until the beginning of 2000’s, aimed to combine results of multiple
classifiers [61]. They did not consider multimodality [63], moreover many of them
studied combining multiple classifiers on only single feature [61]. Later on, several
studies found out that using a different classifiers for different feature gives better

results [31,61,67].

After 2000, the area of information fusion has become more attractive, even a confer-
ence series named “International Workshop on Multiple Classifier Systems” started in

2000.
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In the contemporary approaches, the sense of fusion began to extend from combin-
ing classifiers to combining information, where information can be any of features,
modalities, classifiers or data sources. Correspondingly, the importance of multimodal-
ity issue has increased [98, 123]. In addition, studies on dependency/correlation of
sources has begun to increase in this decade, whereas most of the studies had preferred

independent sources in the earlier years [62,64].

2.2.2 Reasons for Fusion

Information fusion primarily aims at having more efficient and accurate result by
combining currently available (multiple) systems/components. Some of the reasons

for not relying on a single source are given below:

e Fusion of complementary sources provides a more complete representation of
the world. Fusion of redundant (cooperative or competitive) sources reduces the

uncertainty and increases the robustness [63].

e A practical benefit of fusion is that it lowers unreliable sources. It cannot be
known during design time how each feature, modality or data source performs in
real world environments and which of them are the most reliable. So, by fusion,

dependency on any of the sources can be decreased [63].

e Noise in the sensed data causes inefficiencies in recognition. Having multiple
sources can decrease the effect of noise. For instance; consider person recogni-
tion. The same face under changing lighting condition appear more differently,
then different faces can be captured. Designing multimodal system not based on

only face traits can resolve the problem [46,98].

e None of the sources is universal for the recognition problem; each of them have
a usage area. While no single source is perfect, a combination of them should
ensure wider coverage of usage area, hence improving accessibility. For instance,
consider person recognition, again. An iris recognition system may be unable to
obtain the iris information of a person with long eyelashes, dropping eyelids or
certain pathological conditions of the eye. Thus, designing a multimodal system

not only based on iris recognition can increase the usability [46,98].
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e Each single system or source has an upper bound on system performance. The
recognition performance of any single system cannot be continuously improved
by tuning the feature extraction, classifier, or some other steps. There is an
implicit upper bound on the number of distinguishable patterns by using a
determined methodology and features. Thus, no single source or methodology

is totally perfect. Integrating them can give better results [46, 98, 144].

2.2.3 Expectations

There are several expectations from a fusion system to be more efficient, effective and

practicable.

Fusion should increases robustness and performance of classification [20, 63,
128].

A correct fusion system should be at least as effective as any of its parts [63].

A fusion system should be flexible (it should handle any new sources blindly) [15].

A fusion system should be fast (online learning should be possible) [15].

2.3 Multimodality

The meaning of the word “modality” in our usages comes from the domain semiotics.

In semiotics, the definition of modality is as follows:

“A modality is a particular way in which the information is to be encoded
for presentation. It refers to a certain type of information and/or the
representation format in which information is stored.” [139]

According to the definition, modality is a vague concept that can be concretized
in different ways. Considering our domain of pattern recognition and information
retrieval, the building stone to represent the objects is the features. At one extreme,
each of the features can be treated as separate modalities. At the other extreme, all of

the features can be treated as one modality [143]. A mid-point can be grouping the
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features according to some criteria. For instance it can be regarded that the extracted
features of a video object can be grouped according to their media-source: formulating
visual, audio, and caption modalities with related features. However, each of these
modalities can be expanded. For instance; even visual data can be defined with several

modalities like color, shape, texture, face, etc.

The multimedia community employs one the above given approaches for the selection
of modalities. But there is no absolute evidence on which of these feature compositions

yield the optimal result [143].

In the literature of fusion, the multimodality issue mostly occurs in the multimedia
and biometrics domains. The multimedia domain needs multimodality to express
the complex structure of multimedia data including content from different media-
sources. The biometrics domain tries to recognize humans based upon their physical
and behavioral traits. Since recognition with only a single trait is not enough, the

studies regard each trait as a different modality for fusion.

In this study, in principle, each different media source (i.e. visual, audio and text) is
taken as a different modality. We also consider that different features from the same
media source, but containing a significant amount of complementary information,
should be regarded as different modalities. For instance ‘motion’ related features are
extracted from the visual part of the video, however, we accept motion as a different
modality. In addition, the ‘color’, ‘shape’, ‘texture’ features extracted from the visual
media source abstract the information from different aspect, thus we accept these
features as different modalities, wherever necessary. In brief, the criteria of being
a modality for this study is to have a different aspect of representing the data and a

significant amount of complementary information with other modalities.
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CHAPTER 3

THE BIG PICTURE & LITERATURE SURVEY

In this chapter, a literature survey on the information fusion systems is presented. The
survey identifies the design aspects of a general information fusion system. In addition,
a general framework which helps to represent a big picture for information fusion
systems, is proposed. The chapter gives detailed descriptions of the affecting variables

of fusion systems and references to the state-of-the-art studies.

3.1 General Framework for Fusion

There is a vast number of studies utilizing information fusion, but each individual
study describes the fusion method in its context of theory. A detailed literature survey
can provide insight to understand what factors have an effect on the success of the
fusion. However, a general framework that combines all variables having effect on
the fusion results into a unified view is still missing. In addition, traditional work on
multimodal fusion is mostly heuristic-based and ad-hoc solutions. Studies usually
solve the problem empirically and then justify the solution theoretically. Hence,
construction of a general framework is a crucial contribution for the information fusion
literature. In this section, a formal representation of the general framework for fusion

is introduced with the variables / factors affecting the success of the fusion system.

Our proposed framework is illustrated in Figure 3.1. The framework is presented
with an Input-Process-Output (IPO) model, where Fusion Input is converted to Fusion
Output through a Fusion Process. Fusion Input is multiple of any source like sensors,

features, classifiers or information resources. Fusion Output is the combined informa-
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tion. Fusion Process is the core of the architecture that handles the combination of
sources. The process is composed of two primary tasks; ‘Defining What to Fuse’ and
‘Defining How to Fuse’. In addition, another task named ‘Defining Fusion Scenario’

takes place before the Fusion Process.

‘Defining Fusion Scenario’ task bases on the Fusion Inputs and helps to define overall
architecture of the Fusion Process. The task includes evaluating the sources that are
provided as Fusion Input; and constituting a fusion architecture that defines multiples
of which source types are handled during the Fusion Process. For instance, considering
a multi-feature case, we want to combine 3 different types of features. Here, we can
consider both feature and classifier source types. Thus it is possible to create the

following scenarios:

e Scenario 1: (Multi-feature, single-common-classifier) Create the same type
of classifier for each feature separately, process each feature in the classifier,

combine results of the classifiers

e Scenario 2: (Multi-feature, single-unique-classifier) Create a separate (in differ-
ent type) classifier for each feature, process the feature in the classifier, combine

results of the classifiers

e Scenario 3: (Multi-feature, multi-classifier) Create some defined number of
classifiers for each feature, process the feature in each of the classifiers, combine

results of all classifiers

The number of possible scenarios depends on the source types provided as the Fusion
Input. The ‘Fusion Setting’ variable defines which scenario is applied for the Fusion

Process.

After defining a fusion scenario, two primary problems of information fusion should
be handled; selecting what to fuse and finding out how to fuse. ‘Defining What to Fuse’
task requires an effective and efficient selection of fusion elements. The ‘Selection of
Sources’ and ‘Fusion Strategy’ variables define how to select them. After performing
this task, ‘Selected Fusion Elements’ are obtained. There are two important variables
affecting the ‘Selected Fusion Elements’ for the flexibility and the processing time of

the overall system: ‘Content Representation’ and ‘Normalization of Sources’. The
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second task, ‘Defining How to Fuse’, requires constituting a fusion approach in order
to obtain maximum gain from the selected fusion elements. ‘Fusion Level’, ‘Fusion
Method’, ‘Operation Modes’ and ‘Synchronization’ variables define the required

approach with the several crucial aspects.

3.1.1 Fusion Setting

Fusion setting defines and determines which source types will be combined in the
designed system. As mentioned in Section 2.2, the source types are; sensors, features,
classifiers and information resources. The selection of each type can be either single
or multiple. Using a single source (i.e. single sensor, single feature, single classifier,
etc.) type means there will not be a fusion process for that source type. On the other
hand, having multiple source types (i.e. multiple sensors, multiple features, multiple
classifiers, etc.) means performing a fusion for that source type. It is clear that at least
one of these source types should be multiple, in order to have a fusion system. Also,
it is possible to have more than one configuration item as multiple but such a case
increases the complexity of the system. Therefore, the studies in the literature usually
set one of the configuration items as multiple and make others single for the fusion

experiments [46, 106].

Generating all possible combinations with appropriate single and multiple selections
gives all possible fusion scenarios. In addition, the number of scenarios can be
increased by incorporating relations between these source types (i.e. having a common

or unique classifier for each feature in multi-feature, single-classifier scenario).

One ‘Fusion Setting’ related issue in the literature is the discussion of “Selection
or Fusion'” [67] that is analyzed in the section for Fusion Strategy (Section 3.1.3).
Selection refers to a configuration that each classifier involved in the combination
process is experienced on some local area of feature space. Besides, Fusion is a
configuration which all the classifiers are equally experienced on the whole feature
space. In a fusion setting aspect, Selection refers to multi feature setting and Fusion 1s

a multi classifier setting. Many studies in the literature ( [9,31,67,69,96]) has attended

! This definition of “Fusion” should not be compared, confused or supposed same with our general scope of
fusion.
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this discussion and experimental evidences showed that combining multiple features

is more beneficial than combining multiple classifiers.

Independently from above discussion, in [31], Duin et al. compare a multi-feature
setting (using a classifier for each feature) with a multi-classifier setting (different
classification algorithms for the same features) and experimentally show that multi-
feature setting gives better results than multi-classifier setting. Also, they conclude
that a multi-feature and multi-classifier setting (different classification algorithms for

different features) is much better.

3.1.2 Selection of Sources

‘Selection of Sources’ variable enables deciding which sources are the best and should
be selected for fusion. Selection is a critical issue that directly affects the performance
of the fusion system. The selection can be either a hard selection which picks some
of the features and leaves others out, or a soft selection that determines effect of
each source to the fusion (like weighting). There are several consideration points for

selecting sources.

The most important consideration on the selection of the sources is the contribution
of them to the fusion result. It is crucial to determine how much gain a source can
provide or find out whether including a source affects positively or negatively. Thus,
some evaluation methods are necessary to understand which sources are better. For
instance, during sensor fusion, available sensors should be evaluated according to their
noise level and cost of computation [63]. In [98], Poh et al. argue that quality and
reliability of sources can help selection of sources. In addition, they give mathematical
formulations of some example quality measures. However, they leave the reliability
measure of sources as an open issue. In [120], Snidaro et al. present a quality metric for
sensor selection, so that fusion process is dynamically regulated with the performance
of the sensors. In addition they give a review of effective image quality evaluation
methods. These methods can be beneficial for feature/modality selection. In [17],
Callan et al. introduce an efficient way of resource selection and present some quality

and reliability measures, which can also be useful for selection of sources.
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Another important consideration point is the compliance of the sources with the
designed fusion system, actually the selected fusion algorithm. The dependency/inde-
pendency of sources should be carefully analyzed and compliant ones with the fusion
method should be used. Not taking this issue into consideration can lead to dramatic
decreases and inconsistencies in the performance of the system. Thus ‘Fusion Strategy’
variable has an important effect on the ‘Selection of Sources’ variable. This issue is

analyzed in Section 3.1.3 in detail.

The ‘Selection of Sources’ variable contains three major attributes:

e Selection Type: Selection type can be either static or dynamic. In static selection,
the selection is performed once during the construction of the system or during
the training phase. In dynamic selection, sources are selected during the running
of the system. A dynamic selection mostly refers to an ‘Adaptation’ capability.

Thus, ‘Adaptation’ variable is an affecting variable on the ‘Selection of Sources’.

e Context Relation: A selection procedure can be either context sensitive or insen-
sitive. A context sensitive procedure perform selection depending on currently
available conditions and information. For example; performing different selec-
tion schemes for different categories of objects or different video categories.
Besides, a context insensitive procedure behaves equally for all conditions and

always results with the same selection scheme.

e Selection Method / Metric: The method / metric defines selection procedure.

3.1.3 Fusion Strategy

In a fusion system, the sources, which are input for the combiner, can either be
complementary or redundant sources. ‘Fusion Strategy’ of a fusion system determines
how the system behaves the input, as complementary or redundant sources. Either
case can be beneficial for the fusion process. Complementary sources reflect different
sides of the problem domain like different feature spaces or uncorrelated data sources.
Fusion of complementary sources provides a more complete representation of the
world and resolves ambiguity and incompleteness. Besides, redundant sources can be

cooperative or competitive, that provides data on the same side of the problem domain.
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Fusion of redundant sources provides reduced uncertainty and increased robustness.

Also it improves accuracy and reliability [63,72]

A fusion system can prefer any of these two, or both of them at the same time. However
an important restriction exists. Complementarity and redundancy are two contradictory
cases for sources. More clearly, complementary sources refer to independent inputs,
whereas redundant sources mean dependent inputs. Usually, the mathematical models
do not function with both of these two models. Each method defines their input as
either independent or dependent. Still, it is possible to use both of these two types of

information in a complex system that employs more than one mathematical model.

In the literature, two main directions on strategy exist for fusion [64]:

e Fusion of independent(complementary) information: Two sub-types exist.

— By assuming independency: This is the approach of early years’ studies.
Using methodologies just assume that the inputs are independent. Its
success is based on the simplicity and some good luck. The approaches
using this assumption are usually late fusion approaches, since it is not
possible to find out dependencies of features/modalities. For this usage, it

is obvious that violation of independence hurts the success of fusion.

— By creating independency: Independency is obtained with the help of some
independence analysis methods. The approaches that can apply this step
are usually feature level fusion, considering that the dependencies can be
obtained by analyzing features/modalities. Applying such a step before

fusion, guarantees independence and enables more robust systems.

e Fusion of dependent(redundant) information: Using information of dependent
sources can be obtained by exploiting statistical dependencies between features/-
modalities. As mentioned, before feature level fusion is required for such a

process.

Although several studies insist on using dependent sources and exploiting relationships
between features / modalities [62—64,98], with current evidences and experiments it is

not possible to say any of these approaches is superior.
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Complementarity and redundancy have more different names in the literature except
the ones given above (independent and dependent). In the literature of “Multiple Classi-
fiers”, using complementary and redundant sources is named differently: Selection for
complementary strategy and Fusion® for redundant strategy [141]. Selection refers to
a configuration that each classifier involved in the combination process is experienced
on some local area of feature space. In Selection, when a feature vector is submitted
for classification, related classifier has the authority. Often, but not necessarily, more
than one classifier can have the authority. Besides, Fusion is a configuration which
all the classifiers are equally experienced on the whole feature space. For any feature

vector, all classifiers are taken into account for decision. [67]

Another important discussion topic on the use of dependent sources is the order of
dependency [64]. Most of the studies dealing with dependency issue assume the
dependency is bivariate and use linear transformation methods like Principle Compo-
nent Analysis (PCA), Independent Component Analysis (ICA), Factor Analysis, etc.
to create independency or exploit linear statistical dependencies. However, it is not
known whether higher order dependencies exist in between the features/modalities.
In [64], Kludas et al. claim that information interaction (an information-theoretic
dependence measure which is multivariate, high dimensional) is superior to the tra-
ditional (bivariate) dependence measures. But their experimental studies have not

verified this theoretical idea.

3.1.4 Content Representation

Diversity of combined features/modalities causes complexity and difficulty in fusion
and learning. Each feature can have its own feature space, dimensionality, feature value
types (i.e. continuous, symbolic, etc.), feature value boundaries, etc. This heterogeneity
of features/modalities causes the learning and fusion systems to have complex setups.
But still, it is possible to have a homogeneous representation of the features. For a fast
(providing online learning) and flexible (handling any new features/modalities blindly)
fusion system, we should have a homogeneous representation of the involved features,

that is regardless of the intrinsic dimensionality and scale of each feature/modality. [15]

2 This definition of “Fusion” should not be compared, confused or supposed same with our general scope of
fusion.
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When the heterogeneity of the representation is discussed, a normalization mechanism
is required on the features/modalities. Thus, ‘Normalization of Sources’ variable
in the general framework has an effect on the ‘Content Representation’. Details on
normalization of sources in order to use a heterogeneous representation in a fusion

system is described in Section 3.1.5

Another important issue for a fusion system, related to the content representation, is
when the preferred representation is constructed. To obtain an efficient system, the
representation construction of the classifier model should be offline, i.e. during training.
For instance, considering an information retrieval system which uses some number
of features for recognition, recognition information (related to the used features) of
training instances should be extracted and indexed in an appropriate representation
during the training phase. Then, during query phase, such information can be used
easily and fast. Not doing so causes extraction of this information during query phase,

which results in a very slow retrieval system.

In [15], Bruno et al. analyze the studies in the literature at three different representa-

tions:

e Feature-based Representation: Feature-based representation is a straightfor-
ward approach and mixes heterogeneous vectors of various dimensions and
scales. In order to use such representation, different dimensionalities should
be projected and different scales should be normalized. This causes a complex
setup for the fusion system. Thus, the fusion system becomes very dependent on
the parameter settings of the currently used features and less flexible for adding
new features to the system. A way of handling various dimensions and scales can
be the conversion of included modalities into a single modality and representing
the features in a unimodal approach. In [121], Snoek et al. give design of such
system for multimodal video processing: Visual and auditory modalities can be
converted into textual modality by using some Optical Character Recognition

(OCR) and speech recognition methods.

e Similarity-based Representation: Similarity-based representation uses simi-
larity or distance values of features for representing data. Using similarities

make the fusion system independent from the intrinsic dimensionality of the
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features. It should be noted that calculating the similarity and distance values
are performed via some similarity functions. In similarity-based representation,
the system still becomes dependent to the scales of the used similarity and
distance values. So the similarity values should be normalized before combining
them. Very often, different scales of expert outputs make them non-comparable.
Normalization is a way to make them comparable, which is discussed in Sec-
tion 3.1.5. In [16], Bruno et al. utilize similarity-based representation. Also,

in [15] and [16], they give a list of other studies utilizing this representation.

e Preference-based Representation: Preference-based representation is one step
ahead of the similarity-based one. The problem of different scales of feature
similarities can be solved by using preference-based approach. In this represen-
tation, ranks of the features according to their similarities are held. It provides
a dimensionality-independent and scale-independent system, which can be de-
fined as fully homogeneous. But it should be noted that it causes a problem of
combining several ranked lists. In [15], Bruno et al. utilize preference-based
representation. However, finding out different preferences is an open research

issue.

3.1.5 Normalization of Sources

During a fusion process, in order to utilize the fusion elements, all of them should
have values in the same value types (i.e. continuous, symbolic, etc.), boundaries, scale
etc. However, usually they are represented in different types, boundaries and scales.

‘Normalization of Sources’ variable is used to configure such requirement.

In the literature there are several normalization techniques. In [46], Jain et al. system-
atically study the effects of different normalization techniques. They give definitions
of several normalization techniques and perform experiments on them. They study on
the following normalization methods: Min-max, Decimal scaling, z-score, Median

and MAD, Double Sigmoid, tanh-estimators and bi-weight estimators.

Results of their experiment show that Min-max, z-score and tanh-estimators methods

followed by a simple sum fusion are superior to other techniques. Min-max and z-score
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are sensitive to outliers, whereas tanh-estimators is robust and efficient. If location
and scale parameters are known, Min-max and z-score methods can be preferred for

efficiency. Otherwise, tanh-estimators method should be preferred.

In addition, in [98], Poh et al. give some other useful way of transforming outputs into
a common domain for comparison. They suggest transforming outputs into probability
or log-likelihood ratio domain, and giving successful examples on transforming into

log-likelihood domain.

3.1.6 Fusion Level

Decision

Level
Less information

Rank Less complexity
Level Less gain via fusion
Score
Level
Feature
Level
Sensor
Level

Figure 3.2: Fusion Levels

More information
More complexity
More gain via fusion

In the literature, the fusion process is performed at 5 different levels [9, 46, 63, 98,
113,124,128, 144]. Figure 3.2 gives an illustration of the fusion levels. The selected
level for the fusion differentiates the information available for fusion and computation
complexity of the system. At the lower levels, more information is available but using
such detailed information causes a computationally complex system; whereas at the
higher levels, less information is provided for the fusion operation and it is easier to
combine them. Besides, lower levels provide more gain via fusion than the higher
levels, due to the usable information available. The levels of fusion will be discussed

in the following subsections.
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5 different levels of fusion are also grouped at two higher classes according to when

the classification of the features is performed: Early Fusion and Late Fusion.

Early Fusion is the fusion performed before the classification. The available informa-
tion before classification is still considerably much —less from signal-based fusion,
but still much more than late fusion— since the system can obtain the unprocessed
(unclassified) data. It is possible to exploit relations in between the data (i.e. features)
but also it is hard and computationally expensive to combine them. In addition, the
combination can result in a high-dimensional data, the curse of dimensionality problem.
Then, training of such a system requires a lot of training data. Having more training
examples may create a risk of over-fitting data. Thus, Early Fusion is an effective but

computationally complex and risky way of fusion. [63, 124]

A typical feature-based early fusion scheme is presented in Figure 3.3. Firstly features
of the sample are extracted. Then features are directly combined without any classifi-
cation or recognition process. Such combination (i.e. concatenating them) is a difficult

task. After combination, a learning process is performed. [123, 124]
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Figure 3.3: General Early Fusion Scheme
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Besides, Late Fusion is the fusion performed after the classification. Contrary to early
fusion, this fusion type is simpler since it uses a processed and interpreted data by the
classification. However, the information available is very limited, which means there
is a potential loss of correlations between features/modalities. Thus, late fusion is a

less effective but computationally much better way of fusion. [63]

A typical late fusion scheme is given in Figure 3.4. Firstly features of samples are
extracted and learning (classification) process of each modality/feature is performed
separately. Then, results of these classifications are combined into an appropriate
representation. Final decision of fusion is obtained either by a second-level learner or

a simple aggregation method. [123]
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Figure 3.4: General Late Fusion Scheme

It should be noted that, whole process of the late fusion process can be computationally-
expensive considering that it contains many classifiers, although the combination

process is much simpler than that of the early fusion.

Considering feature-based fusion (classifier combination) studies in the literature,

using correlations of features is not very popular and frequently studied, as discussed
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in Section 3.1.3. Using early fusion without obtaining correlation gain is not beneficial.
Also simplicity of late fusion makes it attractive. Therefore, most of the studies in the
literature prefer late fusion [123]. Furthermore, these studies usually reach at good
results with late fusion. In [123], Snoek et al. compare late fusion methods with early
fusion methods (without exploiting correlations) experimentally and concludes that

late fusion is superior to the early fusion.

3.1.6.1 Sensor Level

Sensor level fusion is the fusion level having the richest source of information, but the
fusion process is the most complex one. Dealing with sensor data requires much more
effort than other fusion levels because of the extensiveness of the data. Additionally

the data includes noise. [98]

Sensor level fusion includes;

e combining multiple sensors (i.e. Image fusion with RGB and NIR sensors)

e combining multiple snapshots with a single sensor (i.e. Image fusion by using

images taken at different times with single sensor)

3.1.6.2 Feature Level

In feature level fusion, the feature sets originating from multiple feature extraction
algorithms are combined into a single feature set. The combination method requires
appropriate feature transformation, reduction and normalization strategies due to the
differences in feature spaces and types. The primary benefit of feature level fusion is the

detection of correlated feature values, which improves the recognition accuracy. [98]

Besides, the feature level fusion may have several drawbacks [63, 124] due to;

e The ‘curse of dimensionality’ caused by dealing with several features,

e Different feature spaces and types of features,
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e Computational expensiveness caused by the transformation, dimensionality
reduction and normalization procedures to solve the problem of differences in

feature spaces and types,

e Needing a lot of training data in order to perform dimensionality reduction and

normalization procedures,

e Risk of over-fitting data caused by using a lot of training data.

3.1.6.3 Score Level

In score level fusion, the classification process results with match scores and match
scores of multiple classifiers are fused during the combination process. The score
level fusion is the mid-point among fusion levels. Although it is not possible to extract
correlation information, some valuable information still exists. Also ease of accessing
and processing match scores (compared to lower levels) makes score level fusion more
interesting. Thus, fusion at this level is the most commonly discussed approach in

literature [98].

Despite the ease of accessing such valuable information, using it still requires some
challenge. Different sources can have different intervals of matching score, so fusion
process should handle the variance in the intervals of scores (i.e. normalization on the

match scores).

3.1.6.4 Rank Level

In rank level fusion, the usable information for fusion becomes less and only ranks for
the classification results are available. The fusion process combines rank outputs of
multiple classifiers. Using rank lists as inputs to the fusion makes the fusion process
much simpler since using rank lists do not require a normalization process and the
rank lists of different sources are directly comparable. So, in this level of fusion it is

simpler to implement a fusion system than the score level.

Still, rank level fusion has a problem to deal with: Combining multiple rank lists (from

multiple sources) without any score information requires a rank aggregation technique.
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3.1.6.5 Abstract Level

Abstract level fusion is the highest level fusion. In this level of fusion, the least
information is available for fusion: the final recognition decisions of classifications.
This level is the simplest to implement a fusion system. However, the gain obtained

via fusion is the minimum, compared to the other levels of fusion.

This level of fusion is only suitable for combining COTS systems since most of the

COTS recognition systems provide access only to the final recognition decision [98].

3.1.7 Fusion Methodology

Fusion Methodology defines which algorithm is used for combining sources. The
literature includes a lot of methods proposed and experimented for fusion. However, a
superior fusion algorithm has not been accepted by the researchers [143]. It is difficult
to predict whether a combination is superior, so no clear preference of one combination

method is compromised [67].

The algorithms utilized in the literature can be analyzed in two groups according to
whether they have a learning step: Non-trained and Trained methods [9, 30, 46,47,
61,130,143, 145]. Non-trainable (Combination/Linear/Fixed Rule) methods bases on
linear aggregation and voting methods. Mostly used ones are product aggregation,
sum aggregation, minimum selection, maximum selection, median selection, majority
voting, concatenation, weighted average aggregation, linear combination. Success of
these methods is based on their simplicity and they are usually preferred due their
simplicity. Besides, Trainable (Classification/Learning-based) methods contains more
complicated classification algorithms and requires a training step in order to obtain
a model for the classification. Mostly utilized methods include Bayesian networks,
neural networks, Gaussian mixture models, factor graphs, decision templates, genetic
algorithms, adaptive weighting, borda count, logistic regression, belief functions,
Dempster-Shafer techniques, fuzzy integrals, bagging, boosting, random subspaces,

k-nearest neighbor, decision trees, support vector machines and label ranking.

It is possible to group the algorithms in several different manners. For instance,
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in [121] Snoek et al. group the studies as knowledge-based and statistical approaches.
Knowledge-based approaches use (predetermined or trained) knowledge base rules,
whereas statistical approaches prefer statistical correlations between sources and

classes.

An important issue in fusion methodology is the relation between fusion level and
methodology. Fusion level directly affects the choice of fusion algorithm. Some of
the methods can be used in all levels, whereas most of them can be used for only one
level. The relations between the methods and the levels are given in Table 3.1 [15,46,

47,61, 62]. Note that this table is an exhaustive one, not a complete table.

As seen on the table, the Trainable - Score Level section contains the most of the
methodologies. In fact, this is not because of the usability of the methods, but most
of the studies deal with score level fusion, therefore the number of algorithms in that

section 18 more than others.

The table also shows that there are so many methods available to be used for fusion.
Although there is not clear superiority of one fusion method [67], several studies
argue and experimentally show that learning-based (trainable) methods are better
than the non-trainable ones [30, 31, 46, 124, 130, 143]. However, there exist some
counter-examples. In [46] Jain et al. show that combination approach is better than

some classification approaches (decision trees and linear discriminant analysis).

3.1.8 Operation Modes

A fusion system can operate in one of three different modes: serial mode, parallel
mode, or hierarchical mode. Operation modes in fusion defines whether the sources
will be used incrementally (serial), at once (parallel) or combination of these two

(hierarchical).

In a serial architecture (Figure 3.5(a)), fusion is performed at more than one step. At
each step, one new source is fused with the result of the previous fusion step. The
output of one source is typically used to narrow down the number of possible results
before the next source is used. Therefore, multiple sources of information do not have

to be acquired simultaneously. Further, a decision could be made before acquiring all
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Table 3.1: Relation of Fusion Algorithms with Fusion Levels

Trainable Non-trainable
Knowledge-base Rules Majority Voting
Boosting Product (AND) Aggregation
Abstract Level Neural Networks Sum (OR) Aggregation
Gaussian Mixture Models
Label Ranking
Borda Count Highest Rank
Logistic Regression
Rank Level Dempster-Shafer
Rank Boost
Adaptive Weighting Product Aggregation
Logistic Regression Sum Aggregation
Bagging Minimum Selection

Score Level

Fuzzy Integrals
Dempster-Shafer
Belief Functions

Random Subspaces
Decision Templates
Genetic Algorithms
Neural Networks
Gaussian Mixture Models
Factor Graphs
K-Nearest Neighbor
Decision Trees
Support Vector Machines

Maximum Selection
Median Selection
Weighted Average

Linear Combination

Feature Level

Latent Semantic Analysis
Probabilistic LSA
Canonical Correlation Analysis

Concatenation
Weighted Average
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the sources. This can reduce the overall recognition time and make the system less

dependent on each of the sources. [106]

In a parallel scheme (Figure 3.5(b)), all of the sources are ready at the fusion time and
fused at once. The information from multiple sources is used simultaneously in order

to perform recognition.

In a hierarchical scheme (Figure 3.5(c)), both of serial and parallel types are employed.
At each step, some of the sources are fused in a parallel way and the result is forwarded

to the next fusion step.

A special sub-type of serial mode can be an Iterated architecture, where the same
source used for a number of times (serially). Such architecture can provide the system
from unnecessary operations and make the system runnable on low-performance

hardwares by performing the fusion process in some defined number of steps.

While the parallel fusion strategy is the most commonly used for information fusion
in the literature [98, 121], there are several advantages of serial fusion. It offers the
possibility of making reliable decisions with only a few sources, leaving only difficult
samples to be handled by the remaining sources [98]. Also using a serial architecture
can be beneficial in the systems that obtain their data sequentially. A video data
is a good example for such a situation. In [121], Snoek et al. give some of the
studies performing iterated fusion are; [6, 84, 125], which are processing video data

incrementally.

An important issue in operation modes is the processing of different modalities for a
multimodal resource with a parallel operation mode. To perform the fusion operation
all of the modalities should be ready at the time of fusion. Such requirement exposes
the need of synchronization (or alignment) of the modalities according to each other.
For instance, assume a video data having text, audio and visual modalities. Extracted
information from each of these modalities should be aligned in order to perform fusion
in a correct way. The alignment is configured by the ‘Synchronization’ variable, which

is introduced in Section 3.1.9
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3.1.9 Synchronization

An important aspect for multimodal fusion is the synchronization and alignment of
the different modalities according to each other so that all modalities have a common
time-line. For instance, assume a video data having text, audio and visual modalities.
Extracted information from each of these modalities should be aligned in order to
perform fusion in a correct way. In the literature, usually timestamps on the modalities
are utilized and timestamps of the secondary modalities are converted to the timestamp
of primary modality [121]. However, timestamps are not always available on the
modalities. In such cases, domain and application specific, ad-hoc solutions are

applied.

3.1.10 Adaptation

Choosing the best sources to combine and best combination method are crucial and
difficult tasks that directly affect the performance of the fusion system. Since most
of the solutions are ad-hoc strategies; it is crucial to have a careful analysis on the
sources and methodologies [2]. However, careful analysis means careful setup on
inputs which makes the system dependent on specific conditions. Also, it cannot be
known during design time how each feature, modality or data source performs in
real world environments and which of them are the most reliable. Solution to this

dependency is to make the fusion system adaptive.

Having an adaptive system requires making the system adaptable to changing data
environment for choosing the best sources to combine and best combination method.
Such capability can be achieved by re-configuring the ‘Selection of Sources’, ‘Fusion
Strategy’, ‘Fusion Level’ and ‘Fusion Methodology’ variables in the fusion architec-

ture.

[47], Jain et al. summarize the adaptive and non-adaptive fusion methodologies used
in the literature. Some of the adaptive fusion techniques are; Adaptive weighting,
Mixture of local experts (MLE), Hierarchical MLE, Associative switch. Some of the
non-adaptive fusion techniques are; Voting, Sum Aggregation, Product Aggregation,

Minimum Selection, Maximum Selection, Mean Selection, Borda Count, Logistic
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Regression, Dempster-Shafer, Fuzzy Integrals, etc. However, these lists are constructed
using the currently available studies in the literature. It is always possible to convert
non-adaptive methods to some adaptive version, with some extra effort and new

methodology.

3.2 Open Issues In Fusion

The best way to define the problems in the information fusion research area is to
investigate the currently available studies. The problems worked on and the future
directions pointed out are exactly the problems of the area. Below, the open research

issues depicted from the literature are presented.

The problems of information fusion is based on selecting the best sources to combine
and finding the best way to combine them. In [143], Wu et al. state such problems as
arguing two core issues have not been adequately addressed yet: (i) How to determine
best modalities? (ii) How to best fuse them? In [68], Kuncheva addresses the problems
similarly: (i) Choosing a suitable combination method is a difficult problem, (ii)It is
not known how to use a data set and which classifier to select with it. In addition,
Kuncheva comments on the research area that combining classifiers is an promising
area and still, there are many experimental and heuristic studies to be offered. Likewise,
in [98] Poh et al. claim that there is a huge space of different fusion architectures that
has not been explored yet. In [2] Arevalilli et al. highlight a crucial point; ad-hoc
(experimental or heuristic) strategies requires careful analysis for choosing the best
method to combine features. Such judgment leads us to the adaptability issue that
eases and relaxes the process of careful analysis. However, in [98] Poh et al. state
that adaptability is an open research issue and requires some well-defined quality and

reliability measures of sources and fusion methods.

In [62], Kludas gives some different important points as fusing dependent sources and
predicting the performance improvement by fusing different modalities/sources/sam-
ples. Kludas mentions that most of the studies in the literature deals with independent
sources. In [145], Yan et al. study on the second consideration of Kludas (in a limited

domain of rank aggregation) and state the open problems as; (i) What are the limits for
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combination having the scores of each different source? (ii) Is linear(non-trainable)

combination sufficient? (iii) How the scores of sources should be normalized?

Interestingly, in 1992, in [144] Xu et al. list most of these problems as new problems to
be studied in the literature: (i) Is it possible to determine recognition rate theoretically
instead of experimentally? (i1) Current assumption on fusion is that individual classi-
fiers are independent. It is necessary to develop approaches for dependent classifiers.

(ii1)) How many classifiers/features are appropriate for fusion?

Beyond these problems, another crucial open research issue on consensus is the lack
of a general theoretical framework for information fusion. In [143], Wu et al. state
that traditional work on multimodal fusion is mostly heuristic-based and lacks theories
to answer questions on selecting modalities and fusion methods. In [64], Kludas et al.
complain about the fact that a general theoretic framework is still missing, although
information fusion is an independent research area over last decades. In [63], they
summarize the current state of the literature as follows: A vast number of disparate
research areas utilize information fusion, but they describe the fusion methods in their
context of theory. Also, in multimedia, relation between basic features and content
description is limited, namely the semantic gap, so the fusion problem is solved
empirically then justified theoretically. Thus, a general formal theoretical framework
is missing for information fusion. In [63], they highlight an important point: Due to
the lack of a formal theoretical framework and ambivalent fusion results in several
studies in the literature; there exists a vibrant discussion on the theoretical achievable
performance improvement boundaries of fusion system compared to single source

systems.

Besides, in [67], Kuncheva appreciates currently available studies on a theoretical
framework but finds them immature since they are only for special cases, usually
assuming independent classifier outputs. Yet, she founds currently available heuristic
and ad-hoc solutions useful as a pre-phase towards a more general theory of classifier
combination. Similarly, in [47], Jain et al. state that there exists only a few theoretical
explanations on classifier combination and most of them apply to simplest schemes
under rather restrictive assumptions. Actually, current studies are still lacking to

state a general theoretical framework. For instance; in [61], Kittler et al. introduce a
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theoretical framework but only for some special combination methods like product,
sum, min, max and majority voting. In [145], Yan et al. present a theoretical framework

for average precision boundaries.
In brief, the following list identifies the problems in information fusion research area.
Actually, this list is in accordance with the variables given in Section 3.1:

e Lack of a general theoretical framework.

e Determining limiting theoretical upper bounds of performance.

e How to determine best sources?

e How to best fuse them?

e Dealing with dependent sources.

e Normalization problems of different sources.

e Well-defined quality and reliability measures for selection and adaptability of

sources.
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CHAPTER 4

NON-LINEAR WEIGHTED AVERAGING!

Linear combination is a popular approach in information fusion due to its simplicity.
However, it suffers from the performance upper-bound of linearity and dependency
on the selection of weights. In this chapter, we introduce a ‘simple’ alternative for
linear combination, which is a non-linear extension on it. The approach is based
on the Analytical Network Process, which is a popular approach in Operational
Research, but never applied for fusion before. The approach benefits from two major
ideas; interdependency between classes and dependency of classes on the features.
Experiments conducted on CCV dataset demonstrate that our proposed approach
outperforms linear combination and other simple approaches, moreover it is less-

dependent on the selection of weights.

4.1 Overview

Combining the information gathered from multiple modalities is an empirically vali-
dated approach to increase the retrieval accuracy [4]. Among the various combination
methods that have been proposed, most frequently utilized approach is the Linear
Weighted Fusion (or Linear Combination) [37, 133, 145], due to its simplicity and
reasonable performance despite its simplicity. Some other well-known methods are as

follows: Majority Voting, Support Vector Machines, Bayesian Inference, Dempster-

!This chapter was published as [149].
© 2012 IEEE. Reprinted, with permission, from T. Yilmaz, A. Yazici and M. Kitsuregawa, Non-linear weighted av-
eraging for multimodal information fusion by employing Analytical Network Process, 21st International Conference

on Pattern Recognition (ICPR), 2012.
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Shafer, Neural Networks, Decision Templates and Borda Count [4].

When compared with the linear combination, these approaches are; (a) either has a
simple design as the linear combination but worse/equal in performance, (b) or better
in performance but require complex training setups in order to obtain an adequate
performance. Moreover, the approaches in the latter group are usually not limited
to linear approximations. So, it can be argued that the use of linearity in combiner
design causes a performance upper bound on retrieval accuracy. A detailed analysis
on the performance limits of linear combiners can be found in [145]. Besides, another
important drawback with the linear combiners is the high dependency of the combiner
performance on the selection of the weights. However, the selection of the optimal
weights is one of the important issues that have not been adequately addressed yet in

the fusion domain [4,98].

Aligned to above given issues, we would like to investigate for a combination approach
which (i) is as simple as the linear weighted fusion, (ii) can achieve the performance
upper bound of linear weighted fusion, and (iii) is less-dependent on the selection of the
weights. Through this study, we resemble the multimodal fusion problem to the real-
life multi-criteria decision making problem in Operations Research domain and would
like to introduce two popular approaches, Analytical Hierarchy Process (AHP) [108]
and Analytical Network Process (ANP) [109]. AHP is a linear solution approach
having the same principles with the linear weighted averaging method. However, ANP
is a quite different solution that extends the linear weighted averaging method into a
non-linear one, and has never been applied in the information fusion domain before.
Thus, in this study, we adapt and extend the calculation approach and parameters of
ANP for multimodal fusion. We show that it can be utilized as a ‘simple’, ‘non-linear’
and ‘less-weight-dependent’ way of fusion, which overcomes the problems listed
above. We evaluate the approach by using the Columbia Consumer Video (CCV)
dataset against several different approaches and obtain convincing results. Moreover,
we empirically show that non-linear weighted averaging makes the accuracies less

dependent on the selection of weights.
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4.2 Linear Weighted Averaging and AHP

We focus on a score-based late fusion scheme, with a setting that each classifier is
dedicated for a single feature (as given in Figure 4.1). Each of the classifiers performs
multi-class classification and outputs of classifiers are homogeneous, giving score
values for the same set of retrieval classes. Also, assume that we have m number of

retrieval classes and n number of features.
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Figure 4.1: A Score-based Late Fusion Scheme

In a such a fusion architecture, the outputs of several classifiers are aggregated in order
to make a final decision. In linear weighted fusion methods, the information obtained
from multimodal features is combined by assigning some particular weight for each
modality and performing a summation or product operation to combine. Considering

a summation preference, the final decision is calculated by;

S, =DWp 4.1)

where D is a m X n matrix, containing the output scores of classifier in each column;
Wy is a n-sized vector, containing the weights of each feature; and Sy, is a m-sized

vector, containing the combined decision scores for each retrieval class.
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Fusion Goal

Criteria

Alternatives

Figure 4.2: AHP Decision Hierarchy

AHP presents Equation 4.1 with a more concrete representation. First the multi-criteria
decision making problem is modeled with a simple hierarchical model consisting
of a goal, criteria and alternatives nodes. Figure 4.2 presents a hierarchy for the
multimodal information fusion problem with m number of classes and n number of
features. Here, it should be noted that the edges between nodes are unidirectional, as
a result of being a ‘hierarchy’. In order to find the combined decisions, the total of
alternative path lengths from each alternative to goal is calculated, where a path length
is the product of the values on the edges along the path. A detailed description of AHP
can be found in [108].

A crucial step in this approach is the determination of weights, which directly affects
the fusion performance. An optimal solution is not guaranteed without an exhaustive
search in the feature space. However, several heuristic solutions can be applied. As
the most simplistic case, the weights of features can be selected equally (w; = 1/N)
which is also called Simple Averaging. Furthermore, some well-known heuristics are
RELIEF [59], Information Gain [43] and Gain Ratio [101]. In this study, we utilize

RELIEF and exhaustive search for experimental purposes. We use also a random
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weight selection approach to show the effect of weight selection.

4.3 Non-linear Weighted Averaging and ANP

ANP is a generalization of AHP and created with a consideration that many decision
problems cannot be modeled with a simple hierarchy because they can involve in-
teractions/dependencies of the included nodes [109]. Thus, ANP proposes to model
the decision problem with a network which allows to define bidirectional transitions
between the nodes. A network model, which is designed for the multimodal fusion
problem with m number of classes and n number of features, is given in Figure 4.3.
Combined decision calculation is similar with AHP. However in ANP, the number of
alternative paths is more than AHP, even indefinitely many, considering the possible

bidirectional transitions between the nodes.

Fusion Goal

Criteria

Alternatives

Figure 4.3: ANP Decision Network

Considering the ANP approach, we can extend the linear weighted averaging approach
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into a non-linear approach by employing an additional weight factor.

Sy = WiS.,
= W;(DWp), (4.2)

where Wy, represents the direct weights, which are the traditional feature weights
as used in linear weighted averaging. Besides, W; is used for the indirect weights,
which can be described by incorporating two crucial ideas, in a multimodal fusion
problem: (i) interdependency between the retrieval classes, and (ii) class-specific
feature selection. The former idea provides exploiting the interdependencies between
classes and benefit from the correlation as a weighting factor. In order to obtain the
correlation between the classes, outputs of the classifiers are utilized. The correlation
between the classifier outputs are usually ignored by many of the late fusion approaches,
and only the corresponding output score of each classifier with the retrieval class is
used during combination. For instance, in linear weighted averaging, the fusion result
for C; is calculated by using only the scores for C of each classifier. To exploit the
interdependency, we incorporate all score outputs of all classifiers while performing
fusion. Furthermore, the latter idea is based on the dependency of classes on the
features. Although feature weighting methods usually propose solutions such that the
resulting feature set is selected independent of the classes, defining feature weights that
are specific to each class is an intuitive and promising approach [151]. For instance,
in a multimodal scenario of multimedia data, the audio features are more useful for a
MusicPer formance class, whereas it is better to utilize visual modality for detecting
a Beach occurrence. In order to obtain class-specific feature weights, the feature
weight calculation methods can be used separately for each feature, in a one-against-all

fashion.

Considering these two ideas, the indirect weights W; are calculated as;
W; = (DV)", (4.3)

where D is a m X n matrix, containing the output scores of classifier in each column;
and V is a n X m matrix, containing the class-specific weights. In V, each column holds
the feature weights for a retrieval class. Considering that the product DV provides a
square matrix, any power of this term is applicable. It should be noted that having D

in the calculation of W; and using powers provide ‘non-linearity’ into the solution. In
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addition they provide an implicit feature weighting estimation capability and make
the solution ‘less-dependent’ on the weights W; and V. The resulting W; contains
linear combination results by using own class-specific features on the diagonal and
linear combination results by using the class-specific weights of other classes as the

rest. Thus, the final non-linear weighted averaging formulation is as follows;

v = (DV)'(DWp) . (4.4)
In order to obtain the most appropriate value of 7, we focus on three solutions: First
one is based on the converging characteristic of Equation 4.4. Solution is converting
Equation 4.4 into a general eigenvalue problem at the convergence point. However, it
is not guaranteed to obtain the best fusion performance for the converged Sy value.
Second solution is searching for the 7 value between 1 and convergence-based ¢ value,
which gives the best accuracy, via a training set. For the third one, the class-specific
approach is mentioned again and it is argued that it is most likely to see the ¢ value
being different for each class. Thus, the ¢ value is optimized for each class separately,

similarly with the second approach.

4.4 Experiments

The experiments are carried out on the Columbia Consumer Video (CCV) Database
[55], based on the semantic retrieval of classes. The dataset contains multimodal
features —visual (SIFT), audio (MFCC), motion (STIP)- of 9,317 videos for 20 se-
mantic classes listed on Table 4.1. The dataset is equally divided into training and test
sets. Feature details can be found in [55]. To measure the retrieval accuracy, Average

Precision (AP) and Mean Average Precision (MAP) metrics are used.

As the first test, non-linear weighted averaging method (NWA) is compared against;
(i) Single features, (ii) Simple combination; Simple Averaging (AVG), Minimum
Selection (MIN), Maximum Selection (MAX), (ii1) Learning based combination;
Naive Bayes (NB), Support Vector Machines (SVM), (iv) Linear weighted averaging
(LWA) methods. For the feature weight selection of LWA and NWA, a RELIEF based
feature weighting is used. For the NWA calculation, the ‘best class accuracy’ based

approach is preferred. During all tests, first a classification process is performed with
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Table 4.1: Accuracy comparisons. The best result for each category is highlighted in bold.

SIFT STIP | MFCC AVG MIN MAX NB SVM LWA NWA
Basketball 66.95% | 63.37% | 44.65% || 73.11% | 67.16% | 70.04% || 22.87% | 72.55% || 69.35% | 75.89%
Baseball 40.30% | 18.38% | 9.17% || 43.15% | 31.18% | 39.00% || 24.39% | 46.37% || 46.01% | 48.91%
Soccer 49.29% | 39.18% | 17.59% || 53.68% | 49.65% | 47.63% || 25.40% | 54.98% || 53.98% | 58.26 %
IceSkating 81.18% | 65.82% | 16.18% || 81.37% | 71.27% | 79.79% || 73.63% | 83.77% || 82.90% | 85.32%
Skiing 76.85% | 60.27% | 29.73% || 74.31% | 68.47% | 72.03% || 64.77% | 78.50% || 75.27% | 78.18%
Swimming 68.84% | 53.80% | 15.35% || 68.89% | 56.70% | 65.65% || 57.30% | 70.65% | 71.30% | 72.61%
Biking 36.85% | 23.52% | 11.36% || 39.52% | 29.90% | 36.75% || 32.68% | 41.35% || 38.73% | 42.76 %
Cat 34.24% | 23.82% | 17.40% || 39.37% | 33.94% | 34.19% || 41.65% | 41.75% || 35.27% | 40.02%
Dog 25.48% | 27.64% | 22.10% || 37.80% | 35.07% | 31.03% || 9.92% | 39.00% || 28.81% | 42.99%
Bird 17.40% | 14.12% | 17.63% || 26.60% | 22.81% | 22.97% || 16.34% | 26.21% || 19.86% | 28.80%
Graduation 31.58% | 22.09% | 12.44% || 36.23% | 36.66% | 28.28% || 26.80% | 40.05% || 35.34% | 44.94%
Birthday 33.32% | 15.38% | 35.94% || 49.43% | 41.39% | 41.27% || 45.92% | 47.04% | 40.54% | 55.53%
Wed.Reception || 18.65% | 22.54% | 12.41% || 24.15% | 27.65% | 20.29% || 2.98% | 22.39% || 17.37% | 26.22%
Wed.Ceremony || 35.20% | 32.88% | 35.04% || 50.79% | 58.64% | 40.83% || 37.86% | 54.39% || 38.74% | 55.63%
Wed.Dance 56.68% | 47.61% | 28.01% || 61.19% | 54.52% | 54.95% || 46.45% | 61.17% || 59.53% | 66.62%
MusicPerf. 48.20% | 37.75% | 56.711% || 65.74% | 60.51% | 61.27% || 61.68% | 67.90% || 53.77% | 68.87 %
NonMusicPerf. || 45.21% | 53.23% | 29.78% || 59.61% | 51.77% | 54.50% || 11.79% | 53.22% || 53.31% | 64.60%
Parade 48.71% | 39.19% | 25.62% || 58.85% | 56.82% | 51.26% || 46.13% | 58.58% || 55.17% | 65.33%
Beach 69.99% | 47.49% | 37.34% || 71.41% | 64.16% | 67.97% | 3.83% | 74.02% || 71.83% | 75.43%
Playground 44.59% | 30.26% | 23.83% || 51.30% | 49.62% | 43.72% || 51.11% | 52.28% || 49.51% | 57.90%
MAP 46.48% | 36.92% | 24.91% || 53.32% | 48.39% | 48.17% || 35.18% | 54.31% || 49.83% | 57.74%
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SVM classifiers, then the results of these classifications are combined. The multi-class
classification with SVM is performed with a one-against-all approach. When needed,
Naive Bayes implementation of MatLab Statistics Toolbox and LibSVM [18] are used.
In Table 4.1, the APs of each class and the MAPs are presented for each combination
approach. In Figure 4.4, the MAPs of all approaches are visually compared.
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Figure 4.4: MAP comparisons

As a secondary test, LWA and three NWA calculation approaches, which are convergence-
based (NWA-CB), best common accuracy (NWA-BCo) and best class accuracy (NWA-
BCl), are compared against three different feature weighting methods: Random,
RELIEF and Exhaustive Search. The comparison is presented in Table 4.2 and Fig-
ure 4.5 For the ‘Random’ weighting approach, a random feature weighting process is
repeated 1000 times, and the minimum (Rand-Min) and the mean (Rand-Avg) values

obtained is presented in the table.

Table 4.2: LWA, NWA vs. Weighting Methods

Rand-Min | Rand-Avg | RELIEF | Exh.Search
LWA 30.135% | 47.618% | 49,829% 57.783%
NWA-CB 55.139% | 56.944% | 57.734% 57.734%
NWA-BCo | 56.031% | 57.082% | 57.740% 57.783%
NWA-BCl | 56.242% | 57.287% | 57.741% 57.966%
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Figure 4.5: LWA, NWA vs. Weighting Methods

Considering the results given in Table 4.1 and Table 4.2, NWA easily achieves the
performance upper-bound of linearity and outperforms all other approaches. Simple
methods like MIN and MAX seems not adequate for fusion, since they lack the
advantage of combining multiple features; though they perform better than the best of
the single features. Besides, the AVG method, which is also a linear approach with
equal weights, is more accurate than LWA. This is the result of a probable deficiency
of RELIEF method to assign weights. However, NWA eliminates such deficiency and
obtains the best accuracy values despite the use of RELIEF weights. Thus, the most
crucial evaluation is the superiority of NWA solutions on LWA, independent from
the feature weights. In addition, particularly focusing on Table 4.2, NWA seems to
be less dependent on the selection of weights than the LWA method and can provide
reasonably good results even with a worse selection of feature weights. A last comment
on this table can be the slight but robust increase in the accuracy by the extensions

made on the NWA-CB.

4.5 Evaluation of Fusion System Design

Considering the general fusion framework proposed in Section 3.1, an evaluation of
the fusion architecture described in this chapter is given below. Having a ‘multi-modal,

multi-classifier’ fusion scenario and focusing on a non-linear weighting solution, the
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proposed approach contributes to both ‘What to Fuse’ and ‘How to Fuse® problems.

Below, how each affecting factor is handled through the proposed solution is described.

e Fusion Setting: The approach combines multiple modalities, each of the modality
being a different feature. Before combination, the data of each modality is

classified with a separate classifier, and the results of the classifiers are combined.

e Selection of Sources: The approach uses a static feature weighting scheme based
on the non-linear weighting. Since the approach enables being less-dependent
on the selection of weights, the weights can be calculated with any weighting
mechanism. The approach requires the assignment of two types of weights; (i)
direct weights, which are the traditional weights for each feature (ii) indirect
weights, which are based on the product of class-specific feature weights and

output scores from classifiers.

e Fusion Strategy: The approach focuses on the use of complementary information

for fusion.

o Content Representation: A feature-based representation is preferred. During the
tests, bag-of-words (BoW) based features are utilized, thus the representation

can be also be accepted as BoW based.

e Normalization of Sources: The fusion inputs are classifier outputs, where each
of them lays in between [0, 1|. Thus, a normalization process is not applied on

the fusion inputs.
e Fusion Level: The approach is a late fusion approach.

e Fusion Methodology: In this study, a new fusion methodology is proposed. The
approach is non-linear weighted averaging, which is an extension on the linear

averaging approach.
e Operation Modes: The mode for operation is a parallel scheme.

e Synchronization: The utilized dataset provides synchronized features from
different modalities, based on the video start / end intervals. Thus, an additional

synchronization is not required.
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e Adaptation: The approach is not fully adaptive since a small dependency still
exists on the static feature weights. However dependency on these weights is
limited, and the indirect weights which are calculated during fusion has more

effect. Thus, the approach is accepted as ‘almost-adaptive’.

4.6 Remarks

In this chapter, an ANP-based non-linear weighted averaging method is introduced
for the multimodal fusion problem. The method extends linear weighted fusion with
two crucial ideas; interdependency between classes and dependency of classes on
the features. The approach is tested on CCV dataset in a multimodal fusion scenario.
The results demonstrate that introduced non-linear weighting approach is superior to
linear combination as well as the other basic approaches and is less-dependent on the

selection of weights.
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CHAPTER 5

CLASS-SPECIFIC FEATURE SELECTION!

In this chapter, a class-specific feature/modality selection mechanism is introduced.
Throughout the chapter, firstly the approach is presented in detail. Then the evaluations
of the approach are given. The approach is firstly designed for combining multi-
features of images, and evaluated in a multi-feature setting by using the CalTech101
dataset with 8 MPEG-7 visual features. The approach is compared with the retrieval
performance of single features, simple combination approaches and exhaustive search
approach. Then it is also applied to a multimodal setting by using TRECVID 2007
dataset with 3 visual, 2 audio and 1 textual modalities. Lastly, the proposed approach
is utilized for efficient feature selection and combination in a Wireless Video Sensor

Networks application.

5.1 Overview

CBIR systems aim to retrieve pictures from large image repositories according to the
needs of the users [26]. In CBIR systems, images are usually modeled with a set of

low level features, such as color, texture or shape, from which underlying similarity

ISection 5.1 through 5.4 of this chapter was published as [151]. Section 5.6 was published as [94].
[151] © 2011 Springer. Reprinted, with permission from Springer, license number 3434750028424. Springer and
the original publisher /journal title, volume, year of publication, page, chapter/article title, name(s) of author(s),
figure number(s), original copyright notice) is given to the publication in which the material was originally
published, by adding; with kind permission from Springer Science and Business Media.
[94] (© 2012 IEEE. Reprinted, with permission, from H. Oztarak, T. Yilmaz, K. Akkaya, and A. Yazici, Efficient and
accurate object classification in wireless multimedia sensor networks, 21st International Conference on Computer

Communications and Networks (ICCCN), 2012.
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functions are used to perform queries [2].

The ultimate goal of designing CBIR systems is to achieve the best possible retrieval
accuracy. To achieve high accuracy on a retrieval task, traditional approaches prefer
creating superior low level features than the currently available ones, or optimization
of them [24,61]. However, the noise in sensed data, non-universality of any single low
level feature and performance upper bounds prevent relying on a single feature [98].
Furthermore it has been observed that the sets of patterns misclassified by the different
methodologies would not necessarily overlap and complementary information pro-
vided by different features improves the performance [61]. In the information fusion
literature, fusing multiple features is an empirically validated approach for increasing

the retrieval performance [31,61, 67, 144].

Dealing with multiple features entails processing intrinsic high dimensionality of each
feature and handling heterogeneous dimensions / scales of different features. Modeling
the CBIR system to operate in feature space (storing image features in the database)
makes the system struggle with the heterogeneity of different features and prevents
it from being fast and flexible [15], which refer to a fast retrieval operation and the
system can handle any new features blindly, respectively. A CBIR operating in feature
space is not fast since similarity calculation is done at query-time. Also, it cannot be
flexible either, considering that handling a new feature requires renewing the system for
processing the dimensionality and scale of the new feature. Therefore, an alternative
approach, that regards the fastness and the flexibility issues, is modeling the system in
dissimilarity space. In accordance with the ideas of [86,97] for representing images
with dissimilarities, Bruno et al. [16] present fusing multiple features in dissimilarity
space. In dissimilarity space, the images in the database are represented with the
dissimilarity values to prototype objects of the particular image categories. Thus, the
retrieval operation is faster and adding new features to the system is easier as long as

the distance function is available at once for processing the images in the database.

Beyond the representation problem of images, another crucial issue is to find out
the features that are more beneficial for fusion. This problem, namely the feature
selection problem, tries to determine which subset of features yield to an optimal

result. In [47], Jain et al. group widely-used techniques with a general aspect of
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view: exhaustive search, branch-and-bound search, best individual features, sequen-
tial forward/backward selection, sequential forward/backward floating search. The
methods except the exhaustive search provide computationally more efficient ways
of finding an optimal set, however, exhaustive search guarantees to find the optimal
solution. For each of these methods, selection criteria during forward/backward selec-
tion operations can differ; information gain, previously-defined quality metrics or the
complexity can be a consideration. With a more specific view on the problem, some
of the recent approaches in the information fusion literature can be listed as: Finding
principal/independent components [64, 143], selecting the most coherent and less
complex features according to the heterogeneity issue [63], calculating the information

gain obtained [5, 58] and defining quality and reliability metrics on features [98, 120].

Although there are many different approaches for the selection of features, all of
them have a common preference: The selection process is independent of the category
(semantic meaning) of the images. However, considering the idea that different features
can be more effective, representative and discriminative for different image categories,

using a category dependent feature selection approach can be more beneficial.

Here, a class-specific feature selection approach for the fusion of multiple features
is proposed. In order to eliminate the high-dimensionality of multiple features and
provide efficient querying over the images, we prefer a dissimilarity based approach.
To learn the class-specific features, we carry out a training phase. During the training,
the class-specific features are determined by using the representativeness and discrimi-
nativeness of features for each image class. The calculations of representativeness and
discriminativeness are based on the statistics on the dissimilarity values of training

images.

5.2 Multi-Feature Modeling in Dissimilarity Space

The literature of information fusion agrees on the idea that combining multiple features
enhances the efficiency. However, how to combine such information is still a research
topic. One of the discussed issues is the representation of images. In feature based

representation, an image is usually represented with a multi-dimensional feature vector
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and having multiple features causes dealing with multiple of such multi-dimensional
feature vectors, each having different dimensions and scales. Handling the complexity
of different dimensions and scales of different features makes the CBIR system more
dependent on the currently available features and less flexible to new features. In [15],
Bruno et al. discuss these issues in detail. Still, a more crucial flaw for feature-based
representation is the inefficiency of the fast querying capabilities. Having features in

the database requires calculating the similarities of related images for every query task.

A more convenient way is the dissimilarity based representation [15,32,86,97]. In
dissimilarity based representation, feature values are not stored in the database; instead
the dissimilarity values of images are stored. Thus, the CBIR system does not need
to deal with the intrinsic dimensionality of features to combine them. In addition, a
query task is simpler; it does not require similarity calculations for each query. The
dissimilarity values of images are calculated once, before including the image into the
CBIR system. To calculate the dissimilarity values, the dissimilarity functions of each
feature are utilized. Hence dissimilarity-based representation is a more flexible and

fast way of representing the images in a CBIR system employing multiple features.

In dissimilarity based representation, the dissimilarities between each image couple
is not necessary. Instead, the dissimilarities of the images in the image database with
prototype images of the system are enough (Figure 5.1). The number of prototype
images is quite smaller than the size of the image database. Usually, the prototype
images are grouped according to their image classes (semantic meanings of images)
in order to meet semantic query requirements. In a multi-feature CBIR system, such
distance values between the images in the image database and the prototype images

should be stored separately for each feature.

More formally, assuming that F' = {f, f,..fx} is the set of features available for
the CBIR system having £ number of features, C' = {c,ca, .., ¢} is the image
database having m number of images, P = {P;, P,,..P,} is the set of prototype
image classes containing n number of image classes, each prototype image class is
P, = {p}, p}, ..pi} where number of prototype images is ¢ and ¢ is not necessarily the

same in all prototype image classes; the multi-feature CBIR system has following
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| Prototype Images |

Figure 5.1: Dissimilarity based representation

distance-based representation for each image class ¢ and feature f:

dp(cr,pl)  dg(e,ph) -+ dy(er,pf)

. ds(co,pt)  di(ca,ps) -+ de(ca,pl
D} _ f( 2 P1) f( 2 P5) ' f( 2 i) , (5.1)

df(cm7pzi) df(cmapé) e df(crmpi)

where d(z,y) is the dissimilarity between the database image x and the prototype

image y for feature f.

A semantic query (for instance “Find pictures of cars”) executed in this kind of CBIR
system is handled as follows: The distance matrices of D}s are evaluated, where ¢ is
the class of ‘car’ images and f € F'. First, for each matrix, prototype aggregation with
a predefined algorithm is performed and an aggregated distance vector that represents
the distances of all images in the image database to the ‘car’ semantic image class is
obtained. Then k£ number of distance vectors, each representing a different feature,
are combined with a feature selection algorithm. The combination of k£ number of
distance vectors results with a single distance vector which shows the distances of all

database images to the ‘car’ class.

In this study, we propose a class-specific feature selection approach for the feature
selection problem stated above. The prototype aggregation problem is beyond the
scope of this study. However, two different basic aggregation methods (minimum

and average) are utilized during the empirical study in order to see the effect of using
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different aggregation techniques.

5.3 Exploiting Class-specific Features

In CBIR systems, as mentioned in Section 1, a particular feature or a common set
of features is usually used to compare the query image with the database images. In
these systems, the features are selected to represent the problem domain. However,
if the size of the database and/or the diversity of image collection is increased, these
methods fail to give satisfactory results. Specifically, using the same features for
different domains and types of objects yields unsatisfactory results. Finding a solution
to the problem is quite simple: using different features for different object types. For
example, shape features are more important than color features for a ‘car’ object
whereas a ‘sea’ object can be defined with color and texture features. Another example
is presented in Figure 5.2 visually. A ‘ball’ object can be in any color but the shape is
the ‘ball’ is always circle. However, a ‘sky’ object can be in any shape, but is always

‘blue’. Besides, both shape and color are important for a ‘banana’ object.

color

Category: Sky

Being Blue

Category: Ball

Being Yellow

Category: Banana

shape

Being Banana-shaped Being Circle

Figure 5.2: Examples for Class-specific Features

To describe the approach more formally, assume an image database having images
from 2 semantic classes. It is assumed that class C'; contains n; number of images and

(5 contains ny number of images in the database. Also, it is assumed that the images of
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class ('] can be defined better with color features and the images of C'; can be defined
better with shape features. If this database is used in a CBIR system that compares
images according to only color features or shape features, the performance of the
system is nearly 50% in terms of accuracy. If color features are used, the performance
of the system is satisfactory for C'y, but not for C'y. To obtain a satisfactory performance

for the whole system, different features should be used for different classes.

By considering this idea, in [134], Uysal et al. utilized an approach identifying the
Best Representative Feature (BRF) for each object class, which maximizes the correct
match in a training set. Similarly, in [127] Swets et al. propose to use Most Expressive
Features and Most Discriminating Features. However, these approaches lack the

advantages of fusing multiple features since they select only one feature for each class.

Besides, Jain et al. [45] apply the idea in biometrics domain. They propose combining
multiple traits by selecting person-specific traits for recognition. However, they do not
propose a feature selection methodology. They obtain the person-specific traits after

an exhaustive search process on the training data.

In this study, we propose a class-specific feature selection mechanism by finding out
the representative and discriminative features for each image class. Representative
characteristics of features are calculated according to the dissimilarities of images
within the same class, and discriminative characteristics are calculated according to
the ability of features to distinguish between different image classes. Using these
characteristics, the importance values of features for each image class are calculated
as detailed below. The importance values of features for each category are also
called the Class-Specific Features (CSF) index. The mechanism is based on statistical
calculations over the dissimilarity values of all prototype images. Providing such
prototype images can be considered as the training phase of the CBIR system. The

CSF indices are used as the weights of the features during feature combination process.

5.3.1 Calculation of CSF Indices

To calculate the CSF indices, firstly the dissimilarity values of prototype images to

each other is calculated and a dissimilarity matrix is obtained as D}(P) for each f,
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similar to the one given in Section 2. Differently, D}(P) includes dissimilarities of

prototype images in image class ¢ to all prototype images of all image classes. D;}(P)

contains 7 - t rows and ¢ columns.

D

)

f

(P)

ds(pi,p
dy(p3, p

dg(py,pt)

ds(pt, pt)
dys(py. p)

ds(p}, pt)

dys(p1,ph)
dy(p3, ph)

ds(p;,ph)

ds(pt, )
dy(ps,p})

dy(p}, )

dy(p1,p})
ds(p3, pt)

ds(p;,p})

ds(pt, p})
ds(p5,p})

ds(p}, p})

(5.2)

After obtaining the dissimilarity matrices D}(P) for each feature and image class,
dissimilarity values of each image category in each matrix are aggregated both column-
wise and row-wise. Thus, the mean and standard deviation vectors are obtained as
follows;

) S . T
u(Dy(P)) = [ Tl i ] : (5.3)

. , . .17
U(D}(P))z[ajgl ot a;”] : (5.4)

Here, ,uééj denotes the mean of dissimilarities from all images in class ¢ to all images

in class j for feature f. Also, aj;j denotes the corresponding standard deviation.

To obtain the CSF indices, four important parameters are extracted from the above

given vectors of p(D5(P)) and o(D%(P)):

e Mean of Class (,uj;i): u}l is the average dissimilarity value of a class to itself, for
a particular feature f. Mean of Class is a representative characteristic for features.
For a selected class, the features with lower dissimilarity values represent the
image class better. Thus, the CSF index is inversely proportional to the mean of

the category.

e Standard Deviation of Class (a?i): J;;i is another important representative
property. For any class, a feature with small standard deviation entails close

image-to-image dissimilarity values within the class. Such a feature can be
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considered as a better feature. Thus, the CSF index is inversely proportional to

the standard deviation of an image class.

e Standard Mean Distance to Other Classes (5}): Standard mean distance to other
classes is a discriminative feature which is calculated by using the dissimilarities
of a class to other classes. It is calculated as follows:

n i igye
jv: \/ijl (Nf Ky ) 7 (5.5)

n

where n is the number of image classes. This calculation gives us the average
dissimilarity of an image class ¢ to all other classes. Thus, having a greater
dissimilarity means better discrimination among all categories, which means

that the CSF index is directly proportional to 5}.

e Correctness Ratio (w}): Although the three parameters given above are important
and provide good representation and discrimination, the issue of correctness
of the feature is not considered. It is important for a feature to give the lowest
dissimilarity values for the images in a class which is the same with the class
of the query images. Correctness ratio of a particular feature f can be defined
as what percentage of the means in a y(D%(P)) vector are larger than the mean
value of the class ¢ (,uj;i). As the correctness ratio decreases, the representation

ability decreases, which means that the CSF index is directly proportional with

the correctness ratio.

Considering the effects of the above parameters, the CSF index of a particular feature
f on a particular image class 7 is calculated using the formula below;
(L —p3") - 0% - wh

X
f

CSFi = (5.6)

5.3.2 Normalization on Dissimilarities

As mentioned before, CBIR system having dissimilarity-based representation does not
need to deal with the intrinsic dimensionality of features to combine them. However,
different scales of different features are still a problem to be solved. Different scales of

the values contained in the features causes dissimilarity values to be in different scales.
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In the literature, there are several normalization methods to handle the different scales
of multiple features [46]: Min-max, decimal scaling, z-score, median, double sigmoid,
tanh estimators, bi-weight estimators. In [46], Jain et al. empirically show that
min-max, z-score and tanh estimators methods are superior. Also they note that
the simplest method (min-max) would suffice when the minimum and maximum
values are known. Min-max normalization transforms values from a known (or
estimated) range [min, maz] into [0, 1] range with the following basic formulation:
x' = (z —min)/(max — min). Considering that we have the prototype images and
dissimilarity values of prototype images to themselves, it is easy to find the minimum
and maximum dissimilarity values for each feature. Thus the min-max normalization

approach is preferred in this study.

5.4 [Evaluation of CSF in Multi-Feature Setting

To demonstrate the validity of the proposed approach, a number of experiments are
carried out. For the experiments, the CalTech 101 image dataset [34] is used. It
contains pictures of objects belonging to 101 categories. During the tests, all of the
101 classes in the dataset are used. Randomly selected 10 images for each class,
hence a total of 1010 images, are treated as the prototype images. For the query
purposes, randomly selected 20 images for each class and a total of 2020 images
are employed the image database. In addition, as the features to be combined, 8
visual features of MPEG-7 [78] in three types are utilized: Color descriptors of Color
Layout(CL), Color Structure(CS), Dominant Color(DC), Scalable Color(SC); Shape
descriptors of Contour Shape(CSh), Region Shape(RS); Texture descriptors of Edge
Histogram(EH), Homogeneous Texture(HT). The dissimilarities of the images for these
features are calculated by using the MPEG-7 reference software (eXperimentation

Model, XM) [83].

The tests are mainly performed on semantic retrieval of images; the semantic classes
are queried over the image database. The images are fetched and sorted according to
the dissimilarity values. To measure the retrieval accuracy, Precision, Recall, Average
Precision(AP) and Mean Average Precision(MAP) metrics are used. Precision is the

fraction of retrieved images that are relevant to the search, whereas Recall is the ratio
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Figure 5.3: Precision-Recall Graph for Semantic Retrieval

of the number of relevant images retrieved to the total number of relevant images in the
collection. The AP is the sum of the precision at each relevant hit in the retrieved list,
divided by the minimum between the number of relevant documents in the collection
and the length of the list. Considering that image collection in our test contains 2020
images, AP is measured at 2020. MAP is the AP averaged over several image classes.
In other words, the AP of each image class is calculated separately, then the MAP is

found by averaging them.

As the primary test, the accuracy of the proposed method on semantic retrieval is mea-
sured. In order to perform a detailed comparison, this test is executed in four steps. As
the first step, the retrieval accuracies of each single feature is calculated. For the second
step, following simple combination approaches are tested: Minimum Distance(MD),
Average Distance(AD), Euclidean Distance(ED). The combined dissimilarity is ob-
tained by selecting the minimum dissimilarity (distance) in MD, averaging all available
dissimilarities in AD and calculating an Euclidean distance on the available dissimilar-

ities in ED. For the third step, feature selection by an exhaustive search approach is
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applied and the combined dissimilarity is calculated by averaging the dissimilarities of
resultant features from the feature selection. An exhaustive search for feature selection
requires calculating all combinations of available features, 2° cases in total for our test.
Considering that performing an exhaustive search during each query is not applicable
due to the time cost, the selection process is executed once on the prototype images.
Then, 10 best selections (ES[1-10]) are found and semantic retrieval test is performed
for each of these 10 feature selections. As the last step, the approach proposed in this
study is performed for feature selection. Calculated CSF indices are used to combine
the dissimilarity values with a weighted-sum approach. Not only the CSF index, but
also the four parameters of the CSF are tested separately in order to see which one is
more influential. In Figure 5.3, the Precision-Recall graphs of these methods are given.
In addition, the AP of some sample categories, MAP of Best 10, 20, 50 and all 101
categories are presented in Table 5.1. Also, how many times each method has the best
score and mean ranks of each method are included in the table. The results given in

the table are visualized in Figure 5.4.

Considering the test results, it is observed that obtaining an increase in the accuracy
requires a good selection on the features. Simple methods like MD, AD and ED are not
enough for selection. MD lacks the advantages of combining multiple features whereas
AD and ED always combine all of the features and are affected by the unfavorable
features. Besides, the exhaustive search guarantees to find the optimal feature selection
by evaluating all possible combinations. Therefore ES1 outperforms the other methods.
However the ES[1-10] ranking obtained at the training phase is not the same during the
querying. For instance, ESS performs better than ES2, ES3 and ES4. Such situation is
caused by difference between training and query images. Although it is not observed
in this test conditions, it could be possible that the best combination obtained during
the training phase do not give best results during querying. It is possible to handle
such incompliance by executing the exhaustive search during each query, but it causes

time inefficiency.

On the other hand, our proposed method of CSF gives successful accuracy results that
are very close to the best selection in total and even better for one fourth of the image
classes. Regarding that the results of the best selection in ES can be considered as

the upper-bound for the retrieval task, the CSF method can be qualified as a robust
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Table 5.1: Semantic Query Results
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CL 0.013 | 0.035 | 0.127 | 0.376 | 0.023 0.406 || 0.259 0.129 || 0.073 0 22.6

. CS 0.028 | 0.135 | 0.037 | 0.388 | 0.021 0.361 0.241 0.119 || 0.066 0 23.0
g CSh 0.865 | 0.766 | 0.725 | 0.253 | 0.361 0.841 0.743 0.542 || 0.339 3 13.9
§ DC 0.020 | 0.033 | 0.055 | 0.427 | 0.019 0.258 0.171 0.088 0.050 0 23.6
Lb-’n EH 0.895 | 0.874 | 0.633 | 0.827 | 0.928 0.924 || 0.855 0.667 0.424 6 10.1
E/E) HT 0.006 | 0.063 | 0.159 | 0.235 | 0.029 0.304 0.210 0.112 0.063 0 23.0
RS 0.097 | 0.120 | 0.153 | 0.624 | 0.114 || 0.354 || 0.233 0.121 0.070 0 224

SC 0.016 | 0.065 | 0.057 | 0.654 | 0.064 0.352 0.229 0.116 0.066 1 22.8

o MD 0.401 | 0.253 | 0.190 | 0.253 | 0.733 0.703 0.550 || 0.318 0.176 0 19.1
g AD 0.029 | 0.614 | 0.734 | 0.863 | 0.615 0.813 0.716 0.493 0.310 1 14.2
“  ED 0.014 | 0.563 | 0.704 | 0.792 | 0.542 0.766 0.677 0.457 0.284 0 15.9
ES1 0.958 | 0.964 | 0.870 | 0.856 | 0.970 || 0.963 0.927 0.806 || 0.563 36 5.0

ES2 0.841 | 0919 | 0.763 | 0917 | 0.830 || 0.895 0.820 || 0.630 || 0.418 3 9.6
ES3 0.565 | 0951 | 0.831 | 0.985 | 0.898 0.923 0.828 0.616 || 0.400 1 11.1

@ ES4 0.928 | 0.960 | 0.806 | 0.880 | 0.797 0.923 0.862 0.693 0.459 5 8.0
§ ES5 0.934 | 0916 | 0.844 | 0910 | 0.973 0.927 0.872 || 0.704 || 0.484 7 6.9
ﬁ ES6 0.815 | 0.885 | 0.720 | 0.811 | 0.794 || 0.867 0.780 || 0.609 || 0.405 4 10.5
M ES7 0.641 | 0968 | 0.911 | 0.981 | 0.959 0.932 || 0.855 0.663 0.441 6 8.7
ES8 0.587 | 0916 | 0.785 | 0.935 | 0.854 || 0.896 || 0.797 0.594 || 0.387 2 11.3
ES9 0.578 | 0972 | 0.844 | 0.979 | 0.852 || 0.927 0.845 0.634 || 0.409 3 10.6
ES10 0.746 | 0.942 | 0.886 | 0.981 | 0.841 0.926 0.864 0.714 0.482 8 7.1

- M 0.583 | 0.700 | 0.762 | 0.893 | 0.653 0.834 0.747 0.556 0.359 2 12.3
% o 0.174 | 0.878 | 0.786 | 0.959 | 0.803 0.876 || 0.787 0.567 0.362 1 11.5
§' 1) 0.867 | 0.887 | 0.835 | 0.961 | 0.959 0.942 || 0.866 0.683 0.458 4 7.4
W 0.315 | 0.617 | 0.734 | 0.862 | 0.640 || 0.817 0.722 0.518 0.333 1 13.1
CSF 0.955 | 0.981 | 0.889 | 0.987 | 0.957 0.970 || 0.928 || 0.769 || 0.521 24 55
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and successful approach. In addition, our claim of exploiting class-specific features
can be supported by the results of ES method. Different feature combinations in ES
selections perform better in different image classes, which results different classes

requires the use of different features.

Another observation on the results is the superiority of § parameter of CSF approach
among other parameters. Therefore, it can be stated that the discriminativeness

characteristics of features are more effective than the representativeness.

An important discussion for combining multiple features is the independency of
features. Using complementary features with the methods requiring independent
inputs can cause a decrease in the accuracies. Therefore, many studies exist in the
information fusion literature that performs an independence analysis [64]. In this
empirical study, the features utilized are not fully independent. It is previously stated
that simple methods like MD, AD and ED are not successful enough for the selection
task. One important reason in their inefficiency is the fact that they cannot eliminate
complementary information and the violation of independence assumption decreases
their performance. However, the ES and CSF approaches enable selecting different

combinations and eliminates complementary features.

As mentioned in Section 2, a prototype aggregation is necessary to combine the
dissimilarities of multiple prototypes. Although prototype aggregation is beyond our
scope, a secondary test is performed to show the effect of prototype aggregation.
During the first test, averaging is used for aggregation. In this test, the previous test
is repeated with a minimum aggregation method. The comparison of two methods
is given in Figure 5.5. It is clearly shown that averaging is superior than minimum.
However, these two are very simplistic methods and there are better ways of exploiting

the information included in the prototypes.

As the last test, the time complexities of our proposed method and exhaustive search
are compared. The query execution times of these two approaches are quite the same
since querying includes only a weighted/unweighted summation of several features.
However, the execution times for the training phases, which are carried out in order
to find out the optimal set of features, differ much. Time complexity of exhaustive

search is O(m? - 2™) where m is the total number of prototype images and 7 is the
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Figure 5.5: Comparison of Average and Minimum Aggregation Methods

number of features. Whereas, time complexity of our proposed method is O(m? - n).
Time-measurements obtained in this test validated these theoretical definitions. Results
are given in Table 5.2. The results show us that CSF approach is 50 times better than
the ES approach, in our case. If the number of features increases, execution time for
ES could be worse.

Table 5.2: Execution Times for Training Phases

Total Execution Time
Exhaustive Search 1,049,652 msec
CSF Calculation 19,802 msec

5.5 Evaluation of CSF in Multimodal Setting

After evaluating the CSF mechanism in multi-feature setting and resulting that it is a
timely-efficient, accurate and robust way of feature selection, it is decided to evaluate
the validity of the CSF mechanism with a multi-modal setting. So, some additional

experiments are performed with a multi-modal setting on multimedia data. In this
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section, the tests with a multimodal setting are presented in detail.

5.5.1 Test Setup

Evaluations on multimodal setting are based on the international benchmark for video
information retrieval TRECVID. TRECVID is a popular workshop in video infor-
mation retrieval, proposing a large corpora of videos which are manually annotated.
Considering that the shot segmentations and labeling are available, video datasets
provided by TRECVID are attractive widely-used. In our tests, TRECVID 2007 is
considered [91]. TRECVID 2007 corpus is composed of 100 hours of multilingual
video, roughly equally divided into training and test sets. The development data
comprises 110 videos and 30.6 GB, whereas the test data is 109 files and 29.2 GB.
The annotations on the TRECVID 2007 dataset is provided in a multi-label manner,
which means each shot can contain more than one label. The distribution of shots
according to labeled concepts is presented in Table 5.3. A performance comparison of

TRECVID 2007 participants and further details can be found in [91].

In our setup, for shot segmentation, the outputs of common shot reference is used
as the video shots. The dataset contains 21,532 reference shots for training and
18,142 reference shots for test. In the experiments, we used the 20 semantic concepts
which were selected in TRECVID 2007 evaluation. During the tests, the shots are
considered as individual and independent documents, which no contextual information

or interaction is taken into account between shots.

Considering a multi-modal setting; visual, audio and textual features are extracted
from the videos. For visual features, one key frame per shot is adopt and the middle
frame for each shot is selected as the key frame. For audio features, entire audio of
each shot is processed. For the textual features, the automatic speech recognition
(ASR) and Machine Translation (MT) texts, which are provided by TRECVID, are
employed.

For visual modalities, 8 visual features of MPEG-7 [78] in three types are utilized:
Color descriptors of Color Layout(CL), Color Structure(CS), Dominant Color(DC),
Scalable Color(SC); Shape descriptors of Contour Shape(CSh), Region Shape(RS);
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Table 5.3: Shot counts for each concept type in TRECVID 2007 dataset

Training Test Total
Class Multi-labelled | Single-labelled | Total || Multi-labelled | Single-labelled | Total
Airplane 19 39 58 23 124 147 410
Animal 140 705 845 27 224 251 2192
Boat_Ship 237 60 297 56 110 166 926
Car 141 531 672 103 332 435 2214
Charts 60 55 115 3 61 64 358
Computer_TV-screen 232 297 529 29 177 206 1470
Desert 25 42 67 5 21 26 186
Explosion_Fire 9 37 46 8 44 52 196
Flag-US 7 5 12 2 4 6 36
Maps 25 92 117 4 89 93 420
Meeting 221 521 742 34 673 707 2898
Military 205 225 430 11 30 41 942
Mountain 45 79 124 21 75 96 440
Office 337 794 | 1131 37 173 210 2682
People-Marching 69 201 270 14 58 72 684
Police_Security 147 108 255 23 66 89 688
Sports 19 263 282 22 102 124 812
Truck 79 47 126 88 128 216 684
Waterscape_Waterfront 380 522 902 80 209 289 2382
Weather 25 9 34 1 5 6 80
Total 2422 4632 | 7054 591 2705 | 3296 || 20700
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Texture descriptors of Edge Histogram(EH), Homogeneous Texture(HT). These fea-
tures are grouped in three modalities according to the type they belong. The feature
extraction and distance calculation tasks are performed by using the MPEG-7 reference

software (eXperimentation Model, XM) [83].

As the audio features, Linear Predictor Coefficients(LPC), Zero Crossing Rate (ZCR),
Energy and Mel-frequencies cepstrum coefficients (MFCC) are used. The features are
included into the test as two modalities according to their dimensionalities; LPC, ZCR
and Energy in one modality and MFCC in another modality. The feature extraction is
performed by using the Yaafe toolbox [12]. The distance measure used is the Euclidean

distance.

For the textual modality, the term frequency inverse document frequency (TF-IDF)
weights [112] are calculated as features. During calculation, no stop-word filtering or

preprocessing is done. For the distance calculation, Cosine similarity metric is used.

Therefore, the final list of modalities as follows: Visual-color, Visual-shape, Visual-

texture, Audio-Simple, Audio-Complex, Textual.

Similar to the evaluation in Section 5.4, the tests are performed on semantic retrieval of
images; the semantic classes are queried over the video (shot) database. The shots are
fetched and sorted according to the similarity values. The similarities are calculated in

three different ways of prototype aggregation:

e minimum prototype aggregation, by using 1 prototype instance for each class

e k-minimum prototype aggregation, by using 20 prototype instances for each

class

e averaging prototype aggregation, by using all prototype instances of each class

It should be noted that the 1-prototype and all-prototype configurations correspond
to the minimum and averaging prototype selection/aggregation approaches evaluated
in Section 5.4, respectively. So, here a new prototype selection approach is also
evaluated: k-minimum (or prototype selection with k=20. In our tests, a separate

classifier is created for each modality, so a total of 6 classifiers are used.
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To measure the retrieval accuracy, Average Precision(AP) and Mean Average Preci-
sion(MAP) metrics are used. The AP is the sum of the precision at each relevant hit in
the retrieved list, divided by the minimum between the number of relevant documents
in the collection and the length of the list. Regarding the evaluation rules of TRECVID,
AP is measured at 2000. MAP is the AP averaged over several image classes. In other
words, the AP of each image class is calculated separately, then the MAP is found by

averaging them.

In order to perform a detailed comparison, the tests of each classifier configuration are
executed in four steps. As the first step, the retrieval accuracies of each single feature
is calculated. For the second step, modality selection by an exhaustive search approach
is applied and the combined dissimilarity is calculated by averaging the dissimilarities
of resultant features from the modality selection. An exhaustive search for modality
selection requires calculating all combinations of available modalities, 2° cases in total
for our test. The tests are performed for each combination. It should be noted that,
exhaustive search is performed in a way that the modality selection is done independent
of the classes and selected modalities are applied on all of the classes. For the third
step, a well-known and widely used feature selection algorithm, RELIEF-F [66], is
tested. As the last step, the CSF approach is performed for modality selection. Not
only the CSF index, but also the four parameters of the CSF are tested separately
in order to see which one is more influential. Different from the CSF evaluations
in Section 5.4, the CSF formulation is updated as follows;
(1= ) (5)° -}

o
f

CSF} =

; (5.7)
and the effect of different v values is observed.

As the fusion approach, a late fusion with a simple linear weighting approach is
preferred for simplicity. Thus, during the exhaustive search, RELIEF-F and CSF
steps, calculated weights are used to combine the similarity/dissimilarity values with a

weighted-sum approach.

5.5.2 Test Results

Table 5.4, Table 5.5 and Table 5.6 present the AP of all concept types and the MAP
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values, for each classifier configuration listed above. Also, in Table 5.7, a general
comparison of all tests are given in terms of MAPs. In Figure 5.6, a visual comparison
of MAP values for each classifier configuration is presented. In Figure 5.7, the effect

of v parameter in CSF formula is illustrated.

il

ug‘ §§§§’ JHHEHEHE

Single Features ‘ Exhaustive Search RELIEF CsF ‘

-
=

*minimum *k-minimum © averaging

Figure 5.6: Comparison of MAPs for each classifier configuration
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Figure 5.7: Effect of v on retrieval

5.5.3 Evaluation and Discussion

Considering presented test result, following evaluations can be done:

e Combination of different modalities give better results than the single modalities.
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Table 5.4:

Semantic Query Results (minimum prototype aggregation)

Single Features Exhaustive Search Relief-F CSF
51 _ =3 Z = —

> O|> ©n|> =< B|< O| & 23 B < N < < I < & = | » | = | 0|0 20 2|0 2|0 2
Airplane || 0.080 | 0.330 | 0.094 | 0.036 | 0.029 | 0.023 || 0.068 | 0.088 | 0.062 | 0.048 | 0.053 || 0.377 || 0.042|0.045|0.046 | 0.046 | 0.050 | 0.052 | 0.072 | 0.089

Animal || 0.082 | 0.101 | 0.142 | 0.071 | 0.094 | 0.120 || 0.132 | 0.137 | 0.114 [ 0.109 | 0.132 || 0.127 |/ 0.123]0.127|0.123 | 0.126 | 0.127 | 0.128 | 0.127 | 0.121
Boat_Ship || 0.051 | 0.077 | 0.092 | 0.066 | 0.067 |0.045 || 0.074 | 0.071 | 0.075 | 0.078 | 0.075 || 0.079 || 0.063 | 0.068 | 0.066 | 0.066 | 0.069 | 0.068 | 0.071 | 0.076
Car || 0.140 | 0.072 | 0.162 | 0.135 | 0.163 | 0.149 || 0.169 | 0.170 | 0.193 | 0.189 | 0.169 || 0.163 || 0.170|0.173 |0.172|0.173 | 0.175 | 0.178 | 0.183 | 0.187
Charts || 0.047 | 0.027 | 0.032 | 0.025 | 0.048 | 0.026 || 0.041 | 0.044 | 0.042 | 0.041 | 0.040 || 0.032 || 0.021 | 0.020 | 0.025 | 0.021 | 0.025 | 0.026 | 0.028 | 0.030
Computer_TV-screen || 0.092 | 0.082 | 0.099 | 0.082 | 0.074 | 0.068 || 0.125 | 0.119 | 0.096 | 0.096 | 0.124 || 0.158 || 0.140|0.142|0.133 [ 0.134| 0.135 | 0.131 | 0.131 | 0.136
Desert || 0.012 | 0.005 | 0.020 | 0.020 | 0.008 | 0.008 || 0.022 | 0.027 | 0.016 | 0.015|0.019 || 0.020 || 0.019|0.029 | 0.015 | 0.015| 0.022 | 0.014 | 0.009 | 0.008
Explosion_Fire || 0.026 | 0.032 | 0.030 | 0.028 | 0.016 | 0.012 || 0.056 | 0.027 | 0.074 | 0.063 | 0.055 || 0.031 || 0.014|0.013|0.013 | 0.016 | 0.014 | 0.014 | 0.014 | 0.013
Flag-US || 0.006 | 0.000 | 0.003 | 0.002 | 0.002 | 0.024 || 0.005 | 0.008 | 0.007 | 0.005 | 0.005 || 0.001 || 0.002 |0.002|0.003 |0.002| 0.003 | 0.003 | 0.004 | 0.005
Maps || 0.039 | 0.049 | 0.078 | 0.031 | 0.070 | 0.036 || 0.041 | 0.049 | 0.046 | 0.037 | 0.041 || 0.033 || 0.021 |0.022 | 0.018|0.037 | 0.038 | 0.038 | 0.038 | 0.039
Meeting || 0.312 | 0.309 | 0.324 | 0.264 | 0.242 | 0.247 || 0.403 | 0.375 | 0.427 | 0.439 | 0.403 || 0.365 || 0.410|0.388 | 0.392|0.398 | 0.407 | 0.412 | 0.405 | 0.392
Military || 0.041 | 0.020 | 0.023 | 0.021 | 0.008 | 0.011 || 0.061 | 0.054 | 0.025 | 0.028 [ 0.062 || 0.022 || 0.039 | 0.037 | 0.052 | 0.039 | 0.046 | 0.056 | 0.076 | 0.097
Mountain || 0.024 | 0.068 | 0.054 | 0.023 | 0.026 | 0.036 || 0.032 | 0.038 | 0.029 | 0.028 | 0.032 || 0.054 || 0.031|0.037|0.039 [ 0.042 | 0.037 | 0.038 | 0.041 | 0.043
Office || 0.064 | 0.023 | 0.086 | 0.089 | 0.098 |0.071 || 0.096 | 0.088 | 0.116 | 0.122 | 0.097 || 0.023 || 0.116 |0.116|0.114 |0.111 | 0.124 | 0.122 | 0.118 | 0.113
People-Marching || 0.055 | 0.015 | 0.071 | 0.028 | 0.023 | 0.028 || 0.105| 0.110 | 0.086 | 0.085 | 0.106 || 0.132 || 0.099 | 0.110 | 0.138 | 0.122 | 0.146 | 0.153 | 0.150 | 0.136
Police_Security || 0.062 | 0.029 | 0.051 | 0.028 | 0.029 |0.029 || 0.057 | 0.062 | 0.070 | 0.068 | 0.058 || 0.067 || 0.065 | 0.060 | 0.054 | 0.059 | 0.069 | 0.067 | 0.060 | 0.064
Sports || 0.035 | 0.016 | 0.045 | 0.034 | 0.037 |0.063 || 0.042 | 0.036 | 0.037 | 0.039 | 0.042 || 0.015 || 0.039 | 0.047 | 0.050 | 0.039 | 0.036 | 0.035 | 0.033 | 0.034
Truck || 0.075 | 0.031 | 0.095 | 0.060 | 0.079 | 0.060 || 0.089 | 0.092 | 0.091 | 0.087 [ 0.089 || 0.105 || 0.084 | 0.088 | 0.087 | 0.088 | 0.092 | 0.092 | 0.092 | 0.092
Waterscape_Waterfront || 0.113 | 0.110 | 0.171 | 0.103 | 0.110 | 0.076 || 0.153 | 0.152 | 0.161 | 0.156 | 0.154 || 0.166 || 0.156 | 0.157 | 0.150 | 0.168 | 0.164 | 0.158 | 0.156 | 0.153
Weather || 0.018 | 0.001 | 0.017 | 0.004 | 0.002 |0.002 || 0.050 | 0.060 | 0.029 | 0.037 | 0.008 || 0.002 || 0.003 | 0.004 | 0.005 | 0.006 | 0.012 | 0.016 | 0.012 | 0.008
MAP || 0.069 | 0.070 | 0.084 | 0.058 | 0.061 |0.057 || 0.091 | 0.090 | 0.090 | 0.088 | 0.088 || 0.099 || 0.083 | 0.084|0.085 | 0.085| 0.089 | 0.090 | 0.091 | 0.092

MAP Rank 17 16 13 19 18 20 3 5 7 9 10 1 15 14 12 11 8 6 4 2
Number of Best Scores 0 1 4 0 1 2 0 1 3 1 0 3 0 1 0 0 1 1 0 1
Mean Rank || 12.8 | 14.5 8.0 16.6 | 14.8 | 16.0 8.1 75 | 74 | 88 | 85 9.2 119 | 106 | 11.6 | 105 | 8.2 8.0 8.5 8.7
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Table 5.6: Semantic Query Results (averaging prototype aggregation)

Single Features Exhaustive Search Relief-F CSF
51 _ =3 Z = —

> O|> ©n|> =< B|< O| & 23 B < N < < I < & = | » | = | 0|0 20 2|0 2|0 2
Airplane || 0.112 | 0.037 | 0.093 | 0.068 | 0.040 | 0.023 [[ 0.185|0.157 | 0.101 | 0.169 | 0.114 || 0.377 || 0.072|0.081 | 0.098 | 0.080 | 0.119 | 0.129 | 0.138 | 0.135
Animal || 0.066 | 0.078 | 0.106 | 0.071 | 0.078 | 0.059 || 0.069 | 0.070 | 0.064 | 0.088 | 0.062 || 0.068 || 0.067 | 0.086 | 0.071 | 0.086 | 0.071 | 0.067 | 0.067 | 0.066
Boat_Ship || 0.112 | 0.071 | 0.098 | 0.049 | 0.058 |0.043 || 0.087 | 0.111 [ 0.082 | 0.113 | 0.079 || 0.109 || 0.083 | 0.088 | 0.092|0.092 | 0.091 | 0.094 | 0.100 | 0.104
Car || 0.189 | 0.181 | 0.196 | 0.138 | 0.182 | 0.115 |/ 0.210| 0.224 | 0.232 | 0.215 | 0.224 || 0.182 || 0.222 | 0.227 [ 0.230 | 0.224 | 0.227 | 0.226 | 0.228 | 0.230
Charts || 0.008 | 0.025 | 0.024 | 0.027 | 0.019 | 0.029 ([ 0.009 | 0.011 | 0.011 | 0.015|0.009 || 0.024 || 0.010|0.013 |0.015|0.014 | 0.016 | 0.018 | 0.022 | 0.023
Computer_TV-screen || 0.059 | 0.073 | 0.096 | 0.049 | 0.072 | 0.080 || 0.086 | 0.094 | 0.090 | 0.086 | 0.086 || 0.096 || 0.089 | 0.077 | 0.086 | 0.081 | 0.091 | 0.093 | 0.087 | 0.089
Desert || 0.013 | 0.010 | 0.013 | 0.005 | 0.007 |0.007 || 0.013 | 0.019 | 0.012 [ 0.019 | 0.009 || 0.005 || 0.009 |0.011|0.011|0.011 | 0.006 | 0.006 | 0.006 | 0.006
Explosion_Fire || 0.011 | 0.026 | 0.030 | 0.013 | 0.015 | 0.010 || 0.014 | 0.020 | 0.014 | 0.029 | 0.011 || 0.031 || 0.017 | 0.017 | 0.026 | 0.028 | 0.023 | 0.027 | 0.028 | 0.028
Flag-US || 0.005 | 0.002 | 0.002 | 0.001 | 0.003 |0.013 || 0.002 | 0.006 | 0.006 | 0.001 | 0.003 || 0.001 || 0.002 |0.003|0.001 |0.002| 0.003 | 0.002 | 0.001 | 0.001
Maps || 0.020 | 0.021 | 0.034 | 0.030 | 0.051 | 0.032 || 0.016 | 0.020 | 0.024 | 0.025| 0.020 || 0.030 || 0.027 | 0.031 | 0.031 | 0.036 | 0.026 | 0.026 | 0.028 | 0.029
Meeting || 0.376 | 0.264 | 0.395 | 0.352 | 0.300 |0.328 || 0.464 | 0.389 | 0.431 | 0.271 | 0.450 || 0.357 || 0.393|0.325|0.366 | 0.281 | 0.422 | 0.428 | 0.430 | 0.422

Military || 0.034 | 0.024 | 0.031 | 0.023 | 0.010 | 0.015 ]| 0.038 | 0.049 | 0.027 | 0.062 | 0.025 || 0.025 || 0.031 | 0.041|0.048 | 0.043 | 0.034 | 0.036 | 0.039 | 0.041
Mountain || 0.044 | 0.030 | 0.057 | 0.025 | 0.030 | 0.023 || 0.046 | 0.054 | 0.043 [ 0.047 | 0.041 || 0.057 || 0.037 | 0.037 | 0.041 | 0.040 | 0.049 | 0.052 | 0.055 | 0.057
Office || 0.130 | 0.083 | 0.135 | 0.083 | 0.117 | 0.140 || 0.184 | 0.156 | 0.209 | 0.108 | 0.218 || 0.023 || 0.200 | 0.133 | 0.145 | 0.091 | 0.210 | 0.222 | 0.221 | 0.213
People-Marching || 0.054 | 0.046 | 0.067 | 0.027 | 0.048 | 0.020 || 0.094 | 0.094 | 0.065 | 0.114 | 0.067 || 0.077 || 0.074 | 0.080 | 0.095 | 0.080 | 0.086 | 0.087 | 0.095 | 0.089
Police_Security || 0.050 | 0.030 | 0.032 | 0.039 | 0.026 |0.036 || 0.065 | 0.053 | 0.050 | 0.037 | 0.053 || 0.049 || 0.046 | 0.033 | 0.043 | 0.033 | 0.050 | 0.050 | 0.050 | 0.049
Sports || 0.048 | 0.039 | 0.036 | 0.026 | 0.037 | 0.036 || 0.035| 0.040 | 0.041 | 0.041 | 0.042 || 0.015 || 0.039 | 0.042 | 0.040 | 0.041 | 0.041 | 0.040 | 0.040 | 0.040

Truck || 0.078 | 0.101 | 0.118 | 0.070 | 0.085 |0.052 | 0.092 | 0.102|0.097 | 0.102 | 0.090 || 0.118 || 0.095 | 0.103|0.103 | 0.103 | 0.095 | 0.097 | 0.100 | 0.101
Waterscape_Waterfront || 0.161 | 0.076 | 0.139 | 0.066 | 0.083 | 0.071 || 0.155|0.179 | 0.154 | 0.181 | 0.137 || 0.161 || 0.120 | 0.151 | 0.148 | 0.154 | 0.155 | 0.159 | 0.164 | 0.173
Weather || 0.036 | 0.002 | 0.003 | 0.003 | 0.003 |0.001 || 0.004 | 0.019 | 0.006 | 0.034 | 0.004 || 0.002 || 0.004 | 0.005 | 0.008 | 0.007 | 0.009 | 0.014 | 0.046 | 0.070
MAP || 0.080 | 0.061 | 0.085 | 0.058 | 0.063 |0.057 || 0.093 | 0.093 | 0.088 | 0.088 | 0.087 || 0.090 || 0.082|0.079|0.085|0.076 | 0.091 | 0.094 | 0.097 | 0.098

MAP Rank 14 18 11 19 17 20 4 5 8 9 10 7 13 15 12 16 6 3 2 1

Number of Best Scores 1 0 2 0 1 2 2 1 1 4 0 4 0 0 0 0 0 1 0 1
Mean Rank || 11.00 | 14.75 | 8.75 | 16.30 | 14.40 | 15.50|| 10.35| 6.75 | 9.75 | 7.65 | 11.65|| 10.05 || 12.50|10.05| 8.85 | 9.95 | 8.65 | 8.00 | 7.20 | 7.75
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Table 5.7: Semantic Query Results, General Comparison of Different Classifiers

=) =)
e = g g
| [ | >
— -~ & %]

Visual-Color 0.069 0.074 0.080 0.081
Visual-Shape 0.070 0.055 0.061 0.061
Visual-Texture 0.084 0.103 0.085 0.092
Audio-Simple 0.058 0.062 0.058 0.060
Audio-Complex 0.061 0.067 0.063 0.065
Textual 0.057 0.057 0.057 0.047

ES-1 0.091 0.103 0.093 0.102

ES-2 0.090 0.099 0.093 0.102

ES-3 0.090 0.097 0.088 0.102

ES-4 0.088 0.097 0.088 0.102

ES-5 0.088 0.096 0.087 0.101

Relief-F  0.099 0.103 0.090 0.102

Mean 0.083 0.093 0.093 0.102

StdDev  0.084 0.093 0.093 0.103
MeanDist 0.085 0.096 0.096 0.103
CorrRat  0.085 0.095 0.095 0.101

CSF (v=0.5) 0.089 0.104 0.091 0.101
CSF (v=1) 0.090 0.106 0.094 0.099
CSF (v=2) 0.091 0.111 0.097 0.097
CSF (v=3) 0.092 0.114 0.098 0.096
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However, selection of modalities is a critical issue. A wrong selection can lead

to worse results than the best of the single modalities.

Considering the results of single features, it can be observed that the perfor-
mances of modalities vary in different classes. For instance ‘“Visual-Texture”
modality gives the best results for “Animal” class, whereas “Textual” modality
is better for “Flag-US” class. Such results validate the base idea of CSF, which

is different classes can be represented better with different modalities.

A similar evaluation with the above can be done by considering the exhaustive
search results. The results of exhaustive search supports the claim of exploiting
class-specific features. Different feature combinations in exhaustive search
selections perform better in different classes, which results different classes

requires the use of different features.

Although the exhaustive search should guarantee to find the optimal feature
selection by evaluating all possible combinations, it lacks the use of class-
specificity. As mentioned in the test setup, exhaustive search generate modality
selection sets that are common for all classes. However, RELIEF-F and CSF
can find the informative modalities for each class separately. Thus, RELIEF-F

and CSF obtains better results than exhaustive search.
CSF gives successful accuracy results against RELIEF-F.

As declared in Section 5.4, the superiority of Standard Mean Distance (4)
parameter of CSF among other parameters is still valid. Also, updating the CSF
formulation by getting vth power of Standard Mean Distance has a positive effect
on the accuracy results. As the v value increases, the accuracy increases. So,
the discriminativeness characteristics of features is the most effective parameter.
In essence, the calculation of RELIEF-F is very similar to the Standard Mean

Distance and the accuracy results of RELIEF-F is reasonably high.

As mentioned in Section 5.4, an important discussion for combining multiple
features is the independency of features. Using complementary features with
the methods requiring independent inputs can cause a decrease in the accuracies.

In this study, the modalities utilized are not fully independent. RELIEF-F
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approach is known to be good at handling features with high dependencies.
Also, exhaustive search can handle the dependency issue since it tries to find the
optimal solution. The test results show that CSF approach is as successful as
these two approaches at eliminating complementary features and selecting the

most informative ones.

Prototype aggregation method have a direct effect on the accuracy.. As evaluated
in Section 5.4, the averaging approach is superior to the minimum. In this test
setup, k-minimum approach is included. According to the results, k-minimum
performs superior than both of averaging and minimum, whereas averaging is
still better than minimum. The reason why k-minimum is better is quite clear;
selecting the £ prototypes with minimum distances to the query instance prevents
the negative effect of noisy prototypes. Thus, a successful prototype selection

mechanism is crucial for such a setup and classifier.

The AP values of different classes can dramatically change. This is not because
of the success of classifiers or fusion mechanism; but the unbalanced dataset.
As presented in Table 5.3, the number of training and test instances fluctuate
among classes excessively. When the AP values of classes and instance counts
analyzed in detail, it can be observed that change in the number of training
instances does not affect the performance so much. However, the number of
test instance counts directly affects the success in each of the classes. This is
probably because of the noisy instances in the test set. When the number of
test instances of a class increases, the ratio of noisy instances decreases, so the
performance of the class increases. However, the evaluation in [91] is different.
They argue that the successful classes are the ones which are the extensively
studied ones. But, such an evaluation is not applicable for our tests, since we

have not performed any special research on any of the classes.

Considering the accuracy results of TRECVID 2007 participants, the results of
proposed approach obtains are very successful and close to the accuracies of the

most successful participants.
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5.6 A Utilization of CSF in Wireless Video Sensor Networks

In this section a utilization of CSF approach for efficient feature selection and combi-
nation in an Wireless Video Sensor Networks application, is presented. Considering
that the study is not directly towards the Ph.D. topic, a brief summary is presented as

well the test results.

5.6.1 Overview

Wireless Visual Sensor Networks (WVSNs) have started to receive a lot of attention
very recently due to their potential to be deployed flexibly in various outdoor appli-
cations with lower costs [1]. Such networks deploy a large number of image/video
sensors [41, 102] with different capabilities and can collect/process multimedia data.
Typical applications of WVSNs include multimedia surveillance, target tracking,

habitat monitoring, intrusion detection and health care delivery [1].

In such applications, battery operated image/video camera sensors are deployed to
acquire different viewpoints of the occurring events. One of the major problems in
these surveillance and target tracking applications is to classify the detected objects
accurately. If the detected objects are classified appropriately on site, then the central
decision unit, i.e. the sink, may be alarmed effectively. This is very crucial given that
these applications are geared for security and safety. For instance, given a power plant
surveillance application, built with wireless camera sensors and used to detect the
intruders, only human intruders or more specifically only non-worker human intruders
may be alarmed to the guards. In other situations, such as in case of an animal or

employed worker in power plant, no alarm may be necessary.

In order to perform an accurate object classification, an effective set of features
should be selected for classification and and a robust classifier should be constructed.
Although there exist lots of features and classifiers in the literature for visual object
classification [27,48, 119]; the important point for WV SN applications is to employ
those features and classifiers which are lightweight in terms of processing, energy,
time and storage as well as their accuracy in classification. Also real-time applicability

is crucial considering that the classification process is performed on the sensor, at the

82



time object is detected. Another important requirement is the flexibility of the system
for adding new features and object classes in order to be able to extend the classifier

for recognizing new classes and make it applicable for other domains.

In this study, we choose two simple —but effective— features; shape and velocity
of the detected objects. As the classifier, we employ the Genetic Algorithms (GA)
based classifier proposed in [152]. Actually, the classifier is designed as a Minimum
Distance classifier empowered with a GA-based approach by employing a GA-based
prototype selection mechanism. Minimum Distance classification approach provides
lightweight solution with its low-complexity in processing and time. Besides, GA
provides increase in accuracy and lowering the storage requirement by enhancing the
prototypes in the classifier model and including a probabilistic knowledge. In addition,
the classifier utilizes the Class-Specific Features (CSF) [151] in order to relate the
prototype classes with the most representative and discriminative features for them.
The experiments show that the classifier can classify the most usual object types such
as human or vehicle effectively in our typical surveillance application with lower costs

in terms of energy, time and storage.

5.6.2 Experimental Evaluation

This section includes the experiment setup, metrics and the results.

5.6.2.1 Experiment Setup and Performance Metrics

For the experiments, we assume a power plant surveillance application scenario. In
this scenario, when an intrusion occurs at the area under surveillance, the detected
objects are classified at the camera sensors. The classification is performed as a
multi-class choice with 3 classes: Human, Vehicle and Animal. For the camera
sensor experiment data, the Caltech 101 image dataset [34] (for Vehicle and Animal
classes) and search results from Google Image Search (for Human class) are used by
formatting them into the CmuCam3 [107] output format. The CalTech101 dataset does
not contain Vehicle and Animal classes. So, images from several different classes in

Caltech 101 dataset are regrouped according to these classes. The dataset is divided
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Figure 5.8: Sample images from test dataset

into three sets: First-Training, Second-Training and Test. The number of images is
determined as 10 for each class in each of the training sets and 20 for each class in the

test set. Sample images from our constructed dataset are given in Figure 5.8.

As mentioned above, the CSF mechanism [151] is applied in order to find representative
and discriminative features for each object class. CSF mechanism gives weights of
each feature for each class. Acquired weights are given in Table 5.8. According to
these weights, it has been observed that V elocity is the dominant feature for all classes.
However the effect of it is more for Animal than the other two classes.

Table 5.8: CSF Weights

Shape_Ratio | Velocity
Human 0.371051 0.628949
Vehicle 0.342217 0.657783
Animal 0.130904 0.869096

We have considered two metrics:

e (lassification Performance: This metric shows the performance in estimating
the class of the intruder. The bigger is the performance, the better is the quality
of the approach.

e Energy Overhead: This constitutes total energy in processing and transmitting
the frames (if needed). Our goal is to minimize this overhead in order to

maximize the lifetime of the cameras.
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5.6.2.2 Performance Results

Classification Performance

Under given test setup, the results given in Table 5.11 and Table 5.12 are obtained. We
compare the results with a previous study in [95] which uses a user advanced fuzzy
membership sets, Table 5.9 and Table 5.10. The classifier performs multiple labeling
by providing fuzzy membership values in the range [0,1] for each class. So, in order
to measure the precision values, the class with the highest membership value is taken

as the classification result.

Table 5.9: Confusion Matrix for [95]

Prediction
Human | Vehicle | Animal
= | Human 20 0 0
2 [Vehicle | 0 19 1
< Animal | 1 3 16

Table 5.10: Class Precisions for [95]

Class Precision
Human || 1.00
Vehicle || 0.95
Animal | 0.8

Total 0.85

Table 5.11: Confusion Matrix for Proposed Approach

Prediction
Human | Vehicle | Animal
= | Human 20 0 0
2 [Vehicle | 0 18 2
<[ Animal | 0 0 20
Energy Overhead

In order to prove the efficiency of this algorithm, we have also performed experiments
to assess the energy consumption on the camera sensor. We have used the AVR

Simulation and Analysis Framework (AVRORA) to calculate energy costs [131].
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Table 5.12: Class Precisions for Proposed Approach

Class Precision
Human || 1.00
Vehicle || 0.90
Animal || 1.00
Total 0.97

AVRORA is an emulator which can provide realistic results as if the approach is run
on a typical CMOS sensor. It has built in functions that can compute the processing

and communication costs.

We have used a baseline approach which processes the frames at a base-station and de-
termines the location of the objects. In that case, the frames are sent to the base-station
traveling through multiple hops (i.e., k). This is referred to as ’TraditionalMethod’
in the graphs. Our approach performs the localization and classification on site and
does not send any data to the base-station. However, it may need to send an alarm (i.e.,
one simple message) to the base-station when an intruder is detected and located. The

results are given in Table 5.13 and Table 5.14.

Table 5.13: Energy Costs for Different Tasks

Task Cost in Joule
C": One-time CPU cost to process the frame
to extract and classify the moving object 0.0220
M Transmission cost of the
whole frame for 1 hop 0.0700
T': Transmission cost of the
alarm for 1 hop 0.0007
Taking the video data Same for both
cases

Table 5.14: Total Energy Costs in Joules

Process Traditional Proposed
Method Method
For 1 Hop M =0.0700 C+ T =0.0227
Fork Hops | M xk =0.0700xk | C + T x k = 0.022 4+ 0.0007 * k
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The results for varying k& (Hop Count) values are depicted in Figure 5.9. As can be
seen from this figure, energy overhead for our approach is constant and significantly
smaller than the traditional method. We would like to note that in this experiment
every moving object detection event is sent as an alarm to the sink. However, if we
define some alarm criteria for the proposed method, the energy consumption would be

further reduced (i.e., alarms are only sent when needed).
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Figure 5.9: Energy Costs of Two Different Methods

5.6.2.3 Evaluation

In order to reduce the false alarms on detected objects in WV SNs applications, the
detected objects can be classified at camera nodes to improve the quality of surveillance
applications and also extend the lifetime of the network. In this study, we have
presented a lightweight object classification approach which can work on-site at a
camera sensor. The approach utilizes a minimum distance classifier enhanced by a
genetic algorithm based prototype selection approach on top of two simple but effective
features, which are the shape and velocity of the detected objects. The approach also

benefits from the idea of exploiting class specific features.
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The experimental evaluation has revealed that our approach can effectively classify
typical objects, i.e. human, animal and vehicles, on a typical surveillance application
with an error rate of 3% overall. We also assessed the energy overhead of our approach
on the individual camera sensors. The energy consumption is significantly reduced
compared to the cases where the classification is performed at the base station due to
communication overhead. In the future, we plan to increase the number of features

used in classification to further improve the classified object types.

5.7 Evaluation of Fusion System Design

Considering the general fusion framework proposed in Section 3.1, an evaluation of
the fusion architecture described in this chapter is given below. The approach is based
on a ‘multi-modal, multi-classifier’ fusion scenario and focuses on the ‘What to Fuse’
problem. Below, how each affecting factor is handled through the proposed solution is

described.

e Fusion Setting: The proposed approach is utilized in two different fusion settings;
(1) multi-feature and (i1) multi-modal. For both settings, the dissimilarity values
between samples are combines. Thus the setting is can be accepted as ‘multiple
features / modalities, with multiple classifiers’, considering that dissimilarity

calculation is a very simple classification approach.

e Selection of Sources: The approach uses a static feature weighting scheme based
on the proposed weight calculation formula. Yet, the weights have a context

relation, since the approach is a class-specific feature selection approach.

e Fusion Strategy: The approach focuses on the use of complementary information

for fusion.
e Content Representation: A dissimilarity-based representation is preferred.

e Normalization of Sources: Min-max normalization is applies to normalize the

dissimilarity values between images / videos.

e Fusion Level: The approach is a late fusion approach, since the combination

inputs are the dissimilarity values.
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e Fusion Methodology: Considering that the focus of the study is the feature /
modality selection, linear weighted averaging approach is utilized as the fusion

methodology.
e Operation Modes: The mode for operation is a parallel scheme.
e Synchronization: A simple shot-based synchronization is applied.

e Adaptation: In the scope of the approach, adaptation capability is not considered.

5.8 Remarks

In this chapter, a class-specific feature selection approach for the fusion of multiple
features is presented. In order to eliminate the high-dimensionality of multiple features
and provide efficient querying over the images, a dissimilarity based approach is
utilized. The class-specific features are determined by using the representativeness
and discriminativeness of features for each image class. The calculations of represen-
tativeness and discriminativeness are based on the statistics on the dissimilarity values

of training images.

The approach is firstly tested in a multi-feature setting by using the CalTech101
dataset with 8 MPEG-7 visual features. The approach is compared with the retrieval
performance of single features, simple combination approaches and exhaustive search
approach. Then it is also applied to a multimodal setting by using TRECVID 2007
dataset with 3 visual, 2 audio and 1 textual modalities. Lastly, the proposed approach
is utilized for efficient feature selection and combination in a Wireless Video Sensor
Networks application. The results obtained from these tests show that the proposed
class-specific feature selection approach is an effective and efficient feature selection

method.

Further study on this issue would be as follows: Employing prototype selection and
aggregation methods within the proposed approach, utilizing proposed approach with
a dissimilarity based classification mechanism and performing multi-modal feature

selection obtained from video data.
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CHAPTER 6

RELIEF-MM: AN EFFECTIVE MODALITY WEIGHTING
APPROACH!

Fusing multimodal information in multimedia data usually improves the retrieval
performance. One of the major issues in multimodal fusion is how to determine the
best modalities. In order to combine the modalities more effectively, we propose a
RELIEF based modality weighting approach, named as RELIEF-MM. The original
RELIEF algorithm is extended for weaknesses in several major issues: class-specific
feature selection, complexities with multi-labeled data and noise, handling unbalanced
datasets, and using the algorithm with classifier predictions. RELIEF-MM employs an
improved weight estimation function, which exploits the representation and reliability
capabilities of modalities, as well as the discrimination capability, without any increase
in the computational complexity. The comprehensive experiments conducted on
TRECVID 2007, TRECVID 2008 and CCV datasets validate RELIEF-MM as an

efficient, accurate and robust way of modality weighting for multimedia data.

6.1 Overview

Increase in the use of digital multimedia data in recent years has shown the need for

multimedia retrieval systems. Retrieval of multimedia data is based on its semantic

1 This chapter was published as [150]. In addition, a preliminary version of this chapter was published as [148].
[150] © 2011 Springer. Reprinted, with permission from Springer, license number 3434750658985. Springer and
the original publisher /journal title, volume, year of publication, page, chapter/article title, name(s) of author(s),
figure number(s), original copyright notice) is given to the publication in which the material was originally

published, by adding; with kind permission from Springer Science and Business Media.
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content. In order to handle the semantic content effectively, the nature of the multime-
dia data should be examined and information contained in multimedia data should be
used completely. The multimedia data usually has a complex structure containing mul-
timodal information (i.e. audio, visual and textual modalities). Regarding the noise in
sensed data, non-universality of any single modality and the performance upper bound
of each modality, relying on a single modality may not be applicable [98]. Furthermore,
it has been observed that the sets of patterns misclassified by different modalities do not
necessarily overlap, and complementary information provided by different modalities
improves recognition capability [61]. Since each modality abstracts videos from a
different aspect, different modalities in multimedia data complement each other [51].
Thus, combining multimodal information usually improves the retrieval performance.
However, there exist two major issues that have not been adequately addressed yet and
are still attractive research areas [4,98, 143]: (i) How to determine the best modalities?
(i1)) How best to fuse them? This study focuses on the first problem and presents a

modality weighting approach in order to use the multiple modalities effectively.

The modality selection is a combinatorial search problem that aims to find the best sub-
set of available modalities giving the highest accuracy. Such a computational problem
can be solved to some extent by using a weighting strategy. Modality weighting is a
generalization of the selection problem, where the modalities are ranked by assigning
some weights in between [0, 1] to each modality, instead of a binary selection. The
use of weights enables some well-established optimization techniques and efficient
algorithmic implementations to be employed [126]. Furthermore, a weighting strategy
is a practical solution since the most frequently utilized fusion approach is the Linear
Weighted Fusion [37, 133, 145], in which the combined decision is calculated as a

weighted sum of the available modalities.

The previous studies on using multiple modalities can be categorized into three groups:
(i) using all features/modalities by averaging them (ii) performing an empirical selec-
tion and (ii1) determining the effectiveness of each feature with a weighting algorithm.
Despite their wide usage among fusion studies, the first two are simplistic approaches;
the first one treats all features as equally-likely although any of the features can be
non-informative or redundant, whereas the second approach requires an empirical ob-

servation and manual selection based on the observation. On the other hand, the third
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direction requires design of an efficient feature weighting algorithm, which proposes a
polynomial time heuristic for the combinatorial explosion problem while dealing with

multiple features.

Regarding the third direction, we focus on some adaptable solutions from feature
weighting studies in the machine learning literature. However, the feature weighting
solutions are not easily applicable to the modality weighting problem, considering the
issues of (i) the intrinsic multi-dimensionality of modalities and (ii) the multivariate
inputs of fusion systems. The former issue states that feature weighting methods give
weights for each dimension of an input feature vector, whereas modality weighting
methods assign weights to each modality, each of which is a multi-dimensional feature,
by accepting each modality as a black-box. Besides, the latter is a more general issue
in fusion systems. The inputs of a fusion system are not necessarily feature values.
The prediction scores for different features / modalities are frequently combined in
state-of-the-art fusion studies. An intuitive idea to discard these problems is to utilize
a weighting approach that works in distance based metric space, instead of using a
feature space. Utilizing a distance space solves the intrinsic dimensionality problem
of multiple modalities by converting multi-dimensional feature values of a modality to
a uni-dimensional distance value. Furthermore, it enables handling of the prediction
scores after converting them into applicable dissimilarity values with appropriate

conversion functions.

Among the existing feature weighting algorithms, we focus on the RELIEF algo-
rithm [59], which is considered one of the most successful weighting algorithms
and in which the calculations are based on the distances between training samples.
Furthermore, according to the best of our knowledge, there exists no usage of the
RELIEF algorithm for multimodal feature selection? in multimedia retrieval. The key
idea of RELIEF is to iteratively estimate feature weights according to their ability to
discriminate between neighboring samples. Employing the RELIEF algorithm for
multimodal feature selection on multimedia data enables to identify some weaknesses
of the algorithm, which have not been addressed before. Our solution is based on RE-

LIEF-F, which is the multi-class extension of the basic RELIEF algorithm. We extend

2 The final goal of this study is to select the effective modalities by weighting the available modalities and each
modality is a multi-dimensional feature. Thus, from now on, the phrases ‘modality selection’, ‘modality weighting’
and ‘multimodal feature selection’ are used interchangeably.
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RELIEF-F in the following aspects, considering the characteristics of multimedia data

and multimedia retrieval systems:

@)

(ii)

(iii)

(iv)

v)

Class-specific selection: Multimedia retrieval is a multi-class problem with a
high number of concepts / classes. One major drawback of RELIEF-F is that
it generates weights in a class-common way, where the same feature weights
are assigned for all concepts. However, each concept can be represented better
with different features that are specific to that concept [137, 151]. Thus, it is
important to use a class-specific modality weighting approach in the multimedia

retrieval systems, in order to handle the high number of classes.

Multi-labeled data: Multimedia data is usually multi-labeled. However, the
RELIEF-F algorithm cannot perform well when the training samples are multi-
labeled. RELIEF-F estimates the weights of the features according to their
ability to discriminate between different classes. Having multi-labeled samples
causes the algorithm not to discriminate between classes effectively, due to the

ambiguity produced by the samples associated with multiple concept types.

Noisy data: Multimedia data contains a vast amount of noise. However, the way
RELIEF-F deals with noisy data is inadequate. Similar to the multi-label issue,

noise in the samples hinders a correct discrimination between classes.

Unbalanced data: The training samples provided in multimedia datasets are
usually unbalanced between classes. Although RELIEF-F applies k& nearest
neighbor approach to deal with the outlier data, an unbalanced dataset prevents
RELIEF-F from eliminating outlier data effectively. Assuming that each class
has approximately the same amount of noisy samples (as a ratio), using the
same k for all classes makes the algorithm include more noisy samples for
the classes with smaller numbers of training samples. Thus, having different
numbers of samples for each class affects the performance of the RELIEF-F

algorithm negatively.

Late fusion inputs: In regular use of RELIEF based algorithms, the distances
between instances are calculated by using the feature values. However, the late

fusion approaches usually rely on prediction scores and the feature values may
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not be available at the time of fusion. Thus, a procedure that enables using the

prediction scores is necessary.

In this chapter, we propose a new RELIEF extension for multimedia data (RELIEF
for Multimedia data: RELIEF-MM) to handle the above given research issues. First,
we restate the RELIEF-F algorithm in a class-specific way and show that the weights
produced by the original RELIEF-F are equal to the average of all class-specific
weights. Thus, generating class-specific weights does not have a negative effect on
the computational complexity of the algorithm. Secondly, we deal with the multi-
label and noise issues, and extend the weight estimation function by including the
representation and reliability characteristics of the features in addition to the currently
used discrimination capabilities. These characteristics of features are calculated based
on the statistics of distances between the training instances, by complying with the
distance-space criteria discussed before. The mean distances between the samples
of each class are employed as the representative characteristics, and the correctness
ratios of features for each class are used as the reliability characteristics. For the
discriminative property, we calculate the distance between the means of classes, as
in the original RELIEF-F. Thirdly, we deal with the unbalanced data problem, and
propose the use of dynamic k nearest neighbor selection. In dynamic k selection, a
different k£ value is calculated for each class, instead of the same £ value for all classes.
The dynamic £ value is used as a predefined ratio of the number of samples in each
class. This modification makes the algorithm deal with approximately the same ratio
of noisy instances for all classes and give more regularized weight assessments. Lastly,
we enable RELIEF-F algorithm for use with classifier predictions by converting the

prediction scores into distances between instances.

We evaluate the RELIEF-MM algorithm with the TRECVID 2007 [91], TRECVID
2008 [92] and Columbia Consumer Video (CCV) Database [55] datasets. For each
of the issues discussed above, we perform comparative tests against the RELIEF-F
algorithm. In addition, we compare the multimedia retrieval accuracies of the RELIEF-
MM based linear weighted fusion approach with single modalities, simple averaging
and exhaustive search. As a general overview, we can state that the proposed RELIEF-
MM algorithm generates better feature weights than the RELIEF-F algorithm and the

computational complexity is still asymptotically the same as the original algorithm.
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It has been observed that the fusion methods empowered by RELIEF-MM guarantee
higher accuracies than any single modality. RELIEF-MM also demonstrates much
better performance than simple averaging and RELIEF-F based methods. Moreover,
RELIEF-MM gives nearly the same performance as the exhaustive-search based

approach, yet it is computationally much more efficient than the exhaustive one.

The remainder of this chapter is organized as follows: In 6.2, an overview of modality
selection in information fusion, feature selection methods and a detailed description
of the RELIEF algorithms are given. In Section 6.3, the RELIEF-MM algorithm is
presented in detail. In this section, first of all, the RELIEF algorithm is restated in
a class-specific way, then the extensions for multi-label, noisy and unbalanced data
problems are described. After introducing the extensions in detail, the combined
algorithm is presented, along with a computational complexity analysis. Lastly, the
strategy for using the RELIEF-MM with late fusion inputs (i.e. prediction scores) is
described. In Section 6.4, the empirical results and the evaluations of our proposed
solutions are given. In Section 6.5, an evaluation of the proposed fusion architecture
is done based on the general fusion framework for fusion (Section 3.1). In the last

section, some conclusions are drawn and some possible future studies are discussed.

6.2 Related Work

In multimedia retrieval, the most popular strategies for combining multimodal informa-
tion are early fusion and late fusion. Early fusion is the concatenation of all available
modalities into a single feature vector, whereas late fusion is the linear combination
of classifier outputs after processing each modality by a separate classifier [51]. The
studies in the literature do not present a clear winner between these two approaches,
in terms of accuracy. Yet, early fusion usually leads to the “curse of dimensionality
problem” because of concatenation of the modalities. On the other hand, late fusion is
simple in calculation and has a reasonable performance despite its simplicity. Thus,
late fusion has attracted much more attention than early fusion in recent studies [4,51].
However, the selection of modalities (i.e. assigning weighs for each modality) is an
important issue in late fusion, and affects the retrieval accuracy in fusion results. In

this study, we focus on efficiently determining the effectiveness of modalities. Be-
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low, we first present recent studies on modality selection for multimedia data. Then,
with a machine learning point of view, the modality selection problem is compared
with the feature selection problem in machine learning literature, and the well-known
approaches for feature selection are presented. Lastly, we discuss the family of the

RELIEF algorithms.

6.2.1 Modality Selection / Weighting

In the multimedia domain, the majority of the fusion studies prefer simplistic solutions
for combining all available modalities by performing an empirical weighting scheme
or a simple averaging [4,46,121]. An empirical weighting method is based on empir-
ical observations and manual selection of the features. Besides, a simple averaging
approach assumes that all of the modalities are equally effective although any of the
features can be non-informative or redundant. Some successful utilizations of simple
averaging can be found in [55, 56], where they obtain higher retrieval accuracies than
any single modality. Yet there are several studies that perform the selection / weighting
by evaluating the effectiveness of each modality, and some of the recent ones are

summarized below.

One popular approach for modality selection is the use of the accuracy values as
the weight estimations. In [37], Fumera et al. provide a theoretical analysis of
this idea. Some recent utilizations of this idea can be found in [44, 85, 103]. Another
approach applied in the literature is to find the independent feature subsets, considering
that the result of the fusion process is improved if complementary (independent)
inputs are combined [64]. Towards this direction, Wu et al. [143] redefine ‘modality’
as an ‘independent component’ among the available features and find statistically
independent modalities from raw features by employing principle component analysis
(PCA), independent component analysis (ICA) and independent modality grouping
(IMG) techniques. Kludas et al. [63] apply the independency idea and use correlation
coefficients to measure the dependency between features. Besides these, Atrey et
al. [5], Kankanhalli et al. [58] and Snidaro et al. [120] study the problem in another
perspective, and try to combine multiple data streams (e.g. data obtained from several

different sensors like video camera, microphone, etc.), where each data stream can be
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accepted as a different modality. Atrey et al. [5] use a dynamic programming approach
to find the optimal subset of media streams based on several criteria which maximizes
the information gain obtained. Kankanhalli et al. [S8] propose an experiential sampling
based solution for selecting the most informative subset of data streams. Snidaro et
al. [120] define a quality metric for the data streams and dynamically regulate the
fusion process. Further recent studies on the topic is as follows: Kalamaras et al. [57]
takes the advantage of user feedback and learns the modality weights via an interactive
user feedback scheme. Huang et al. [42] tailors the genetic algorithm to learn modality
weights and applies it to alleviate the local minima problem during the process of
finding an optimal solution. Moulin et al. [82] reformulate the modality weighting
problem as a dimensionality reduction problem in a binary classification context and
find the linear combination that best separate relevant and non-relevant documents
for all queries by using a Fisher Linear Discriminant Analysis based approach. Chen
et al. [22] calculate the modality weights by measuring the discriminative capability
of each visual feature by a voting scheme, where the voting scheme is applied by
processing all triples of the training samples (candidate, positive and negative) and
assigning a vote for the candidate according to whether the candidate is closer to
the positive or the negative. Wu et al. [142] consider the interactions among the
multimodal classifier outputs and employ a fuzzy integral based approach in order to
find modality weights. The fuzzy integral approach provides an importance measure

for each subset of available information sources [129].

However, each of these methods has their own limitations and drawbacks. First of all,
they are either computationally complex or their weight estimation capabilities are
limited. Furthermore, the selection process is usually class-common, which means,
the same set of features are used for all classes. In addition, they usually evaluate
the features individually, which may cause loss of the information that is obtained
from the correlation between features. In this study, we propose a timely efficient and
effective way for modality weighting, which exploits the class-specific information for

modalities and enables the use of correlation between modalities.
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6.2.2 Feature Selection / Weighting Approaches

In addition to the above given methodologies, the feature selection / weighting studies
in machine learning literature provide many different approaches for feature selection.
Existing methods in the literature are categorized as filter or wrapper methods. Filter
methods assess the relevance of features by looking only at the intrinsic properties of
the data, whereas in wrapper methods the performance of a learning algorithm is used
to evaluate the fitness of the feature subsets in the feature space. Filter methods are
usually computationally much more efficient than wrapper methods; however, wrapper
methods usually provide solutions closer to the optimal solution. Another weakness
of the filter methods is that they usually evaluate the features individually. Thus, the
quality of combined feature subsets is not analyzed and the correlation information
between features cannot be exploited. Some well-known filter methods are Information
Gain [43], Gain Ratio [101], Correlation based feature selection (CFS) [40], Chi-
squared selection and RELIEF [59]. Some well-known wrapper methods are as
follows: Exhaustive Search [47], Sequential Forward selection (SFS) [60], Sequential
Backward elimination (SBE) [60], Plus q take-away r [36], Simulated Annealing
and Genetic Algorithms. For more detailed discussions, interested readers can refer

to [39,47,110] and the references therein.

With a machine learning point of view, the modality weighting problem is similar
in nature to the feature weighting problem and, thus, efficient and effective feature
weighting solutions can be applied for the modality weighting problem. However, it is
not trivial to apply the available methods to the modality weighting problem due to
several differences between the problems. The most crucial difference is the intrinsic
dimensionality of modalities. In feature weighting, the input is a feature vector, which
is a multi-dimensional vector of numerical/nominal values representing some pattern.
Besides, in modality weighting, the input is multiple feature vectors. Feature weighting
methods rank the dimensions of the input feature vector by assigning a weight for
each dimension, whereas in modality weighting, the intrinsic dimensions of each
modality are not the main concern. Modality weighting methods rank the modalities
by assigning weights to each modality as a black-box. Still, an early combination

(i.e. concatenation) of available modalities corresponds to a single multi-dimensional
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feature, which makes any feature weighting method applicable. However, a big
majority of the multimodal fusion studies employ late fusion approaches, in which
each modality is processed separately. Thus, ranking the available modalities, instead
of the intrinsic high-dimensional features, is still a crucial need for the multimodal
information fusion. In addition, another concern may be performing some feature
selection operations for each of the modalities. However, it can be assumed as a
preprocessing step before modality selection / weighting. The second difference
between feature and modality weighting is the values of the inputs. The inputs of
a multimodal fusion system are not necessarily feature values; the most frequently
utilized inputs in state-of-the-art fusion studies are the prediction scores. Thus, the
modality selection approach should work under any of these inputs. One more issue
related with the input values is that most of the frequently applied methods (e.g.
Information Gain, Chi-squared) require the feature values to be binary or discretized.
However, discretization of the modalities makes the process computationally complex,

since each modality is represented by a multi-dimensional feature.

An applicable idea to deal with these problems is to work in a distance based metric
space, instead of in a feature space. Utilizing a distance space solves the intrinsic
dimensionality problem of multiple modalities by converting the multi-dimensional
feature values of a modality to a uni-dimensional distance value. Furthermore, it
enables handling the scores, ranks and decisions after converting them into applicable
dissimilarity values with appropriate conversion functions. Thus, we focus on a
RELIEF based algorithm, which generates the weights based on the distances between
training samples. Being a filter approach, RELIEF avoids an exhaustive search and
provides computationally a more efficient solution than the wrapper methods. Besides,
it takes the context into account, exploits correlation information between features
and thus usually performs better than the filter approaches. Details of the family of
RELIEF algorithms are given below.

6.2.3 RELIEF Algorithms

Among the available feature selection and weighting methods, the RELIEF algo-

rithm [59] is among the most successful. It is a simple and effective way for feature
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Algorithm 1: Basic RELIEF

Input: list of features 7 = (f;)7_;, number of iterations m, set of training instances D = {d; }}_,

Output: the weight vector W of estimations for the qualities of features

1 begin

2 for i < 1ton do //for each feature in F
3 W(i] + 0;

4 end

5 for j < 1tomdo

6 r < randomlInstance(D);

7 (H,M) < findNearestHitMiss(r,D);

8 for i < 1ton do //for each feature in F
0 W] « Wi — dz‘ff(fr:,r,H) n diff(fril,r,lw);

10 end

11 end

12 end

selection [28]. In addition, RELIEF does not make a conditional independence as-
sumption for features, as many other feature selection methods do, and can correctly
estimate the quality of features with dependencies [105]. The key idea of RELIEF is
to estimate weights for each feature according to their ability to discriminate between
neighboring training samples by iterating through randomly selected instances in the
training space. In [126], Sun presents the discrimination based approximation of
RELIEF with a novel mathematical interpretation from the optimization perspective,
and shows that RELIEF utilizes a margin based nonlinear classifier for searching

useful features.

The basic RELIEF algorithm is given in Algorithm 1. The weight estimation function
in Line 9 exploits the discrimination capability. The algorithm selects a random
sample 7, one Near-Hit H (nearest neighbor with the same class with the random
sample) and one Near-Miss M (nearest neighbor with a different class with the random
sample) and distances between them are calculated. In this calculation, the distance
between instances in different classes indicates a discrimination between classes, so
dif f(fi,r, M) increases the weight. Inversely, distance between instances with the

same class inhibits discrimination, so dif f(f;,r, H) decreases the weight.

Considering several deficiencies of the basic RELIEF algorithm, Kononenko [66]
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proposes several extensions for RELIEF: RELIEF-A uses k nearest neighbors instead
of one and averages the contribution of k nearest instances in order to eliminate the
effect of noisy instances; RELIEF-B, RELIEF-C and RELIEF-D extend the use of
dif f function in order to handle incomplete datasets; RELIEF-E and RELIEF-F
improve the weight update function for multi-class problems. Other well-known
extensions for RELIEF are as follows: Sikonja et al. [104] propose RRELIEF-F for
handling regression problems. In [116], Sikonja proposes using k-d trees for the
selection of nearest neighbors in order to decrease the computation complexity of the
RELIEF algorithm. In [126], Sun introduces Iterative RELIEF (I-RELIEF), which
uses an Expectation Maximization algorithm in order to eliminate outlier data. Also,
Liu et al. [76] try to eliminate outlier data and propose using selective sampling by

means of a modified kd-tree instead of random sampling (at Line 6 in Algorithm 1).

Among the available extensions of the RELIEF algorithm, RELIEF-F is the most
widely utilized. RELIEF-F enables working with multi-class problems, by selecting
k nearest misses for each class. Thus, the RELIEF-F algorithm updates Line 7 of
Algorithm 1 with the following;

(H, M) + findNearestHitsMisses(r, D, k,C);

where k is the number of nearest neighbors, and C = (¢, )5_, is the list of classes.
‘H is the k-sized list of hit instances, where H, denotes the vth nearest hit instance.
Besides, M is the s x k sized matrix, where M represents the vth miss instance for

class ¢, € C. In addition, the weight estimation function in Line 9 is also updated as;

Wli] < W[i] — Z dif f(fi,r, Ho)

m -k
: Ple.)  ~=dif f(fi,r, MY)
* Zl (1-13(0(@)2 m-k ) D
cuF#C(r)

where P(c,) represents the prior probability of class ¢,, and C(r) indicates the class

of sample 7.

In this study, we utilize RELIEF-F for multimodal feature selection in multimedia
retrieval, which has not been done before, to the best to our knowledge. Using the

RELIEF-F algorithm for multimodal feature selection on multimedia data enables
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us to identify some weaknesses of the RELIEF-F algorithm. Thus, we extend the
RELIEF-F algorithm due to the aspects discussed in Section 6.1.

6.2.4 Complexity Analysis

The feature selection / weighting problem is known as NP-hard, in terms of the
number of features n = |F|. An exhaustive search for generating all possible subsets
requires O(p") actions, where p is the number of assignable weights (p = 2 for binary
selection). Considering that an exhaustive search is a wrapper method, it requires
an evaluation for each of these subsets. Assuming a simple evaluation similar to
RELIEEF, based on the similarities / distances between m randomly selected instances
to all ¢ training instances, the total complexity of the exhaustive search becomes
O(m-t-n-p"). Moreover, if a class-specific approach is applied, the total complexity

becomes O(m -t - s-n-p"), where s is the number of classes (s = |C|).

On the other hand, the RELIEF algorithms provide solutions in polynomial time.
The complexity of the basic RELIEF algorithm is O(m - ¢ - n), considering that the
most complex operation is the selection of the nearest hit and miss instances since
the distances between r and the other training instances should be calculated for
each feature, which requires O(¢ - n) comparisons. Different from the basic RELIEF
algorithm, the complexity of RELIEF-F depends on the number of nearest neighbors
(k). If we use a priority queue, which is implemented with a heap structure, for the
selection of & nearest neighbors, where the construction of the heap is O(¢) and the
retrieval of k neighbors from each class is O(k - s - logt); the total complexity of
selecting k nearest hits/misses becomes O(m -t-n+m-k-s-logt+m-k-s-n). In
this equation, the first term is for the distance calculation, the second is for selecting
nearest instances from the heap and the last is for the weight calculation (Eq. (6.1)). If
the dataset is a balanced one and the value of % is considerably small with respect to ¢,
then the computational complexity of the RELIEF-F algorithm becomes the same as
the basic RELIEF algorithm (O(m - ¢ - n)). A computationally better solution can be
obtained by utilizing k-d trees for improving the nearest hit and miss selection process

(O(n - t-logt)).
If the space complexity is considered, both the basic RELIEF and RELIEF-F is in
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linear time in terms of the number of features. The biggest space required for these
algorithms is for the feature values for training dataset. The required space for the
dataset is bounded by O(t - n - A), where A is assumed as the average size for a single
feature. The basic RELIEF has additional space requirements for features (O(n)),
weights (O(n)), nearest neighbor selection (O(n - A)). For RELIEF-F calculation,
additional space requirements are; features (O(n)), weights (O(n)), classes (O(s))
and nearest neighbor selection (O(k - s +n - A)). Considering that ¢t > k - s, both basic
RELIEF and RELIEF-F is bounded by O(¢ - n - A), for space complexity.

6.3 RELIEF-MM: Modality Weighting Approach for Multimedia Data

In order to benefit from the simplicity and effectiveness of RELIEF algorithms, we
propose a RELIEF based multimodal feature selection solution, by extending the RE-

LIEF-F algorithm. Below, each of our extensions is presented in a separate subsection.

6.3.1 Class Specific Feature Weighting

Multimedia retrieval requires dealing with a high number of different queries, where
each query usually denotes a different concept occurring in videos. Thus, multimedia
retrieval is accepted as a multi-class classification problem with a high number of
classes, where each class is a concept occurring in videos. In addition, the variety of
such concepts is so wide that they can be associated with different sets of features
/ modalities. In other words, each concept can be represented better with different
features specific to the concept [137,151]. For instance, an explosion concept can be
represented relatively more accurately by the audio modality, whereas it is better to
utilize visual modality for detecting a mountain concept. Similarly, it can be easier
to recognize a meeting concept by using both the visual and the audio modalities.
Hence, a class-specific modality weighting approach is inevitable to be used in the
multimedia retrieval systems, in order to handle the high number of classes / concepts.
However, the traditional feature selection methods, including the RELIEF-F algorithm,
propose class-common solutions in which the selection is performed independently

from the classes.
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Based on the motivation above, we propose a substantial extension on RELIEF-F,
which is converting it to a class-specific solution. Since the RELIEF-F algorithm
iterates over available training samples to obtain the final value of the modality weights,
grouping the training samples according to their classes and processing samples of

each class separately can achieve a class-specific solution.

Assuming that we iterate over m training samples R = {r;},, which are randomly
selected from the set of all training samples D = {d;}!_,, the final weight of f; can be

formalized as;

. Ple.) s~ dif f(fisry, M2
> (1-13(0@))2 m-k )] ©2)

v=1

Here, we can rewrite Eq. (6.2) as in Eq. (6.4), by assigning the effect of one training
sample 7; on the final weight calculation of modality f; into AVV; (Eq. (6.3)).

k .
AW (fi,rj) = — Z dlff(fzrj7 H,)

v=1

: Ple) = dif f(fi i, M)
6.3
"X (1—P<c<m>>; ; ) 63
cu#C(r5)
W (f;) :% > AW (firy) . (6.4)
j=1

If the samples in R are grouped according to the class they belong to, we can represent
the final weight of f; as in Eq. (6.5). Here, each group is represented by R, = {r | r €
R AC(r) =c,}, where R = | J{R.};_, and C(r) represents the class of r.

W)= (p@)ﬁ > AW (fm)) . (6.5)

u=1 reR,

Here, we can define a class-specific weight w(c,, f;) as in Eq. (6.6).

1

w<cuafi) - |R |

> AW (fi,r). (6.6)

r€Ry
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Algorithm 2: Class-Specific Adapt. of RELIEF-F

Input: list of features F = {f;);~;, number of iterations m, set training instances D = {d; }’_,, list of

classes C = (cu)j—1, number of nearest neighbors k

Output: the weight matrix w of estimations for the qualities of features

1 begin

2 for u < 1to sdo //for each class in C
3 for i < 1 ton do //for each feature in F
4 wlu][i] « 0;

5 end

6 end

7 for u < 1to sdo //for each class in C
8 D, + getClassInstances(D, cy);

9 m' < m- P(cy); // P(cy)=size (Dy)/size (D)
10 for j < 1 tom’ do

11 r < randomlInstance(Dy);

12 (H, M) + findNearestHitsMisses(r,D,k,C);

13 for i < 1ton do //for each feature in F, apply Equation 6.6
g wlulli]  wlulli] = Zhy SR 42 (i b, S )

15 end

16 end

17 end

18 end

The original class-common weight estimation function of RELIEF-F can also be

rewritten as in Eq. (6.7), in terms of class-specific weights.
W(fi)=>_ Plew(cu fi) - (6.7)
u=1

As seen in Eq. (6.7), RELIEF-F estimates the weights of the features by taking a
weighted average of all class-specific weights and, thus, cannot reflect the characteris-
tics of each class separately. Instead, we here propose to use weight estimations of
each class separately. Consequently, this class-specific adaptation of RELIEF-F is
presented with Algorithm 2.

We should also note that converting the original RELIEF-F algorithm into a class-
specific version does not change computational complexity, since & hit / miss selection
procedures and the number of processed samples do not change. As a result of having

the same computational complexity, the approach can be accepted as scalable in terms
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of the number of class, since the computational complexity of the algorithm is linearly

proportional to the number of classes (as given in Section 6.2.4).

6.3.2 Multi-labeled / Noisy Datasets

In a typical multimedia retrieval task, each multimedia document (i.e. shot or video) is
usually associated with a number of different semantic concepts. This situation reveals
the problem of the multi-label feature selection, in which each sample is associated
with multiple labels. In multimedia data, the multi-labeled characteristic of the data
can be originated from either having more than one concept for each multimedia
document in any single modality contained (e.g. having both an airplane and a
mountain in a visual scene, as given in Figure 6.1), or containing different concepts
in different modalities of the same document (e.g. having an explosion sound in
the audio modality and military related vehicles in the visual modality at the same

moment of the video).

In multi-label datasets, the samples are not mutually exclusive in terms of assigned la-
bels, thus the discrimination of the samples between class labels becomes complicated.
The discrimination of the samples between the retrieval classes is crucial to an effective
feature selection. However, state-of-the-art studies accept the problem as a structural
one, deal with converting the multi-labeled dataset into a single-labeled one for use
with traditional feature selection methods [29, 65], and leave aside the cognitive aspect
of the problem, which is also an important part of the problem. Here, the ‘structural’
side of the problem refers to the impossibility of using traditional learning / selection
methods with the multi-labeled dataset due to the structure of the dataset, whereas the
‘cognitive’ side denotes the loss of the discrimination capability for learning. In this

study, we regard both issues depicted and propose a two-step solution.

As the first step, we consider that it is not possible to use the RELIEF-F algorithm
directly for a multi-label dataset, since having multi-labeled samples makes the nearest
hit / miss selection procedure ambiguous. For instance, we need a solution to select the
nearest hits/misses of a random instance with two different class labels, or a nearest
item is labeled with two different classes. Thus, we first look into the state-of-the-art

transformation methods. The most popular transformation methods in the literature
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Figure 6.1: Examples for multi-labeled shots. (a) airplane and mountain (b) car,
accident, people and street

are random assignment (RA), binary relevance (BR), label power set (LP) and pruned
problem transformation (PPT) [132]. In the RA approach, a multi-labeled sample
is randomly assigned to one of its classes. In BR, the dataset is transformed into
|C| single-label datasets, where C = (c,)5_, is the list of available classes. In any
D, ={d|d e DAC() = ¢,} of these datasets, the samples are labeled in a
binary form, depending on whether a sample d is associated with class ¢, or not.
In LP, the basic idea is to convert the set of classes C into C’ such that C’ is the
power set of C (C' = P(C)). PPT is an improvement on LP, where unused subsets
are removed from C’. However, using any of these approaches causes loss of either
the effectiveness or the efficiency of the algorithm. Using RA makes the process
nondeterministic and also loses a large amount of valuable information due to the
random class selection; thus results in an ineffective solution. On the other hand,
although BR, LP and PPT are potentially good solutions to prevent information loss,
the process becomes computationally complex. Hence we focus on an alternative

solution that enables use of the RELIEF-F algorithm for multimedia data and does not

increase the computational complexity.

Assuming that ¢;, ¢; and ¢y, are three classes different from each other, we decompose

the multi-label problem for RELIEF-F into three cases:

e Case-1: A random sample z is associated with both classes ¢; and c¢;. In this

case, it is not clear which class will be accepted for hits and misses.
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e (Case-2: Random sample x is labeled with ¢;, and y is one of the nearest neighbors
of x. If y is labeled with both ¢; and c¢;, it is unclear whether such a neighbor

instance is a hit or a miss.

e Case-3: Random sample x is labeled with ¢;, and y is one of the nearest neighbors
of z. The neighbor instance y is labeled with both ¢; and ¢;. In this case, it is

clear that y is a miss. However, it is not clear which class of miss it is.

We first start with a BR-like method, which is very compatible with the class-specific
extension of RELIEF-F discussed in Section 6.3.1. Different from BR, we do not
generate |C| number of binary valued datasets. In accordance with the class-specific
extension, an intuitive way to deal with these cases is to transform each multi-labeled
sample into multiple single-labeled samples with the same feature values but different
classes (as illustrated in Figure 6.2), and group the samples according to the class that
they belong to. Thus we divide the training dataset into |C| number of subsets, each
having the samples of a different class. During the execution of the algorithm, the
random samples are selected among each subset iteratively, and finding the associated
class of a sample is not problematic anymore, even if it is a multi-labeled sample
originally. Thus, Case-1 is discarded. Actually, the use of a class-specific extension
helps to prevent Case-1. For handling Case-2 and Case-3, the same transformation
as with Case-1 is applicable. For Case-2, any multi-labeled neighbor instance y is
replicated and transformed into y., and y... Then, y., is used as a hit instance and y.,
is used as a miss instance, which actually means vy is used both as a hit and a miss
instance. Similarly, for Case-3, y is transformed into y., and y.,, then y., is used as a

miss instance for class j, whereas y,, is used for class k.

Although this solution is an efficient approach to deal with the multi-labeled structure
of training data and does not cause information loss as in BR transformation, it is still
possible to lose some information due to the use of the same neighboring instances
as both hits and misses (i.e. Case-2). Considering the weight estimation function of
RELIEF-F given in Eq. (6.2), while calculating the weight of modality f by using

random sample z, the effect of a neighbor hit instance vy is as follows;

dif f(f,x,y) ‘

— (6.8)

Onit = —
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Figure 6.2: Transforming multi-labeled samples into multiple single-labeled samples.
Small green, yellow and red circles denote c;,c, and c3 instances, respectively. Orange
circles in (a) are multi-labeled instances, each of which is transformed into multiple
single-labeled instances in (b).

However, if the neighbor instance y is a multi-labeled one as in Case-2, the same
instance is used both as a hit and a miss instance. Thus, the net effect of the neighboring

hit instance becomes:

hit 7\ 1 - P(¢;) m -k

In other words, the effect of the hit instance is decreased because of being a multi-
labeled instance. The worst case of this situation, although practically impossible,
occurs when the instance is labeled with all available classes. In such a situation,
the effect of the instance equals to zero. In [65], Kong et al. propose to ignore the
instances of Case-2, which is practically the same as assuming the situation is always
the worst case. In our approach, we do not ignore such instances, since they may still
provide some valuable information as long as the situation is not the worst case. We
accept the decrease in the effect of the hit instances as a sort of noise and loss in the

discrimination capability of the features.

In this aspect, we also consider the effect of noise in multimedia data. In addition to
the fact that the multimedia data have an expected internal noise, the way we model
the multimedia data can create an artificial noise. Since the multimedia data is usually

large —even huge—, some sub-sampling (i.e. using shots and keyframes instead of
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each particular frame) is done before processing it. The extracted features represent
only subsamples from the video, whereas the ground truth labels are based on the full
content of the video. Such a situation makes the evaluation of features complicated
and eventually some of the ground truth instances appear as noisy instances. Similar
to the multi-label issue, having noise in the samples prevents a correct discrimination
between classes. In addition, depending directly on the distances between training
instances affects the performance of the algorithm negatively, considering the noisy

instances.

Consequently, the second step of our approach is based on strengthening the feature
weighting mechanism of RELIEF-F. Thus, we introduce two new factors for the calcu-
lation of the weights, in addition to the discrimination capability: the representation
and reliability characteristics. Having additional components in the weight calculation
makes the algorithm less dependent on the discrimination capability, and provides
better estimations. Hence, the class-specific weight of a feature, which was previously

defined in Eq. (6.6), is updated as the following;

?D(Cu, fz) _ (W(Cmfi>) ’ ’y(cu»fi) ’ 77(Cu>fz‘)> lwaC‘ >0 ’ (610)

0, otherwise

where w, v and 7 functions provide the discrimination, representation and reliability
based weights, respectively. In addition, « is an experimental constant for tuning.
Considering that RELIEF-F based weights are in [—1, 1], and weights smaller than
zero denote irrelevant features, we discard these by assigning zero. The proposed

functions are discussed in detail below.

6.3.2.1 Discrimination Based Weight

The discrimination based weight (w(c,, f;)) refers to the weight calculated by using
the data from all available classes with an aim to discriminate between those classes.
The calculation of w(c,, f;) is basically accepted as the way to calculate class-specific

RELIEF-F (Eq. (6.6)).
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6.3.2.2 Representation Based Weight

The representation based weight (7(c,, f;)) refers to the weight calculated by using
the data only from any single class, with an aim to represent that class independent of
other classes. In order to measure its effectiveness by using only its characteristics and
calculate such a weight, we assume that we can isolate the samples of a particular class
from other classes. Here, isolation means that any sample labeled with other classes is
always at a farthest location. Applying this idea to the class-specific RELIEF-F weight
calculation gives the following: The distance of a random sample to any of its nearest
misses always equals to 1 (note that dif f(f, z,y) € [0, 1]). Hence, the representation
based weight becomes the following:

k .
Aew f) = Z[l—zdsz(f”’%)]. (6.11)

m-k

Eq. (6.11) can also be interpreted as the complement of the mean distance of a class to
itself, so the weight of a feature is inversely proportional to the mean distance of the
class to itself. Here, the mean distance of a class to itself is the average of all distances
from each sample of a class to its £ neighbor hits. It is expected for a particular class
that the features with lower mean distance values represent the class better. Thus,

v(cu, fi) is a sound metric to estimate the representation capability of a feature.

6.3.2.3 Reliability Based Weight

Reliability based weight (1(c,, f;)) refers to the weight calculated by using accuracy
with respect to a feature for a particular class, with an aim to see whether it is reliable
for that class or not. The idea of using the accuracies of features is based on the
theoretical analysis of Fumera et al. [37]. Fumera et al. work on a late fusion scheme
and show that the weight of a classifier for feature f; should be inversely proportional

to the error of the classifier.

Considering that RELIEF-MM is a filter method, and classification results are not
available during the feature weighting, we propose to estimate the accuracy of each
feature by comparing the intra-class distance of each class with the inter-class distances

to other classes. The intra-class distance is defined as the mean distance of the samples
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in ¢, to their nearest £ hits, whereas the inter-class distance is the mean distance of
the samples in ¢, to their nearest k£ misses from each different class ¢, # ¢,. Itis
important for a feature to give the lowest distance values for the instances in a class
which is the same as the class of the query instances. Thus, 7(c,, f;) provides an
estimation for reliability by finding the number of inter-class distances (by means
of different classes) that has a larger value than the intra-class distance. The formal

representation of 7(c,, f;) is given in Eq. (6.12);

’ C U
‘{/’L Cu7 C’u, ) fl)‘ (;\ uecu’ic,7}f1)>/“"(cu’cu’fz)}‘

s—1 ’

n(cus fi) = (6.12)

pcus Cur, fi) = m | > [Z (dif £, N ))] (6.13)

reRy

where A is the vth c,-labeled nearest instance of sample 7. Thus, p(cy, cy, f;)
refers to the mean distance to k£ hits (intra-class distance), whereas pi(cy, ¢, f;) with
cw € C —{c,} is the mean distance to the k& misses of any other class (inter-class

distance).

6.3.3 Unbalanced Datasets

In multimedia datasets, some of the concepts occur less frequently than others, which
causes the annotated training data to be unbalanced among different classes. We can
consider the occurrences of flag vs. car objects through a random video as an example;
a flag object usually occurs less often than a car object. Thus, the number of car
samples is usually larger than the number of flag samples. One important consequence
of frequent occurrence is having more representative and descriptive data than the
infrequent concepts, e.g. it is possible to find several different models and colors of
car samples, but it is hard to find the variations of flag samples. Hence, having an

unbalanced dataset may prevent an adequate learning process.

Although the unbalanced dataset problem is usually discussed in the scope of classifica-
tion and learning [19], the RELIEF-F algorithm, as a feature selection method, is also
negatively affected by unbalanced data. The reason why RELIEF-F is affected by the

imbalance in the data is the use of k£ nearest neighbors during the weight calculation.
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As discussed in Section 6.2.3, RELIEF-F uses average distance to k nearest neighbors
while calculating the weights, in order to eliminate the effect of outlier data. However,
the placement of training samples in the multi-dimensional space and the amount of
outliers are highly data-dependent, and can be very different for different domains and
classes. Thus, we point out that selecting £ number of nearest neighbors for every
class is not a fair preference, when each class has a different number of samples. Using
the same k£ number of neighbors hinders the use of an equal amount of information
from all classes. For instance, a certain value of £ may provide for the acquiring of all
available patterns of a particular class. However, for another class, the same & value
may provide for the acquisition of only a small ratio of the available patterns. The
situation is not different if we consider the outlier data. Selecting the same number
of neighbor instances from different classes (each of which has a different number of

samples) may result in different ratios of outlier data for each class.

Considering the above given issues, we propose to select the value of k£ dynamically,
i.e. a class-specific k value. However, enabling a class-specific £ selection makes
the process more complicated, despite the potential improvement in the estimation
of feature weights. Thus, we propose another promising idea; using the k value as a
certain ratio of sample count in a class. By employing such an idea, the k£ value of
class ¢, can be calculated by;

where D, = {d | d € DA C(d) = ¢,} is the set of training instances with class c,,
and kg € [0, 1] is the nearest neighbor selection ratio, which is defined independently

of the classes.

A weak point of this idea is that it requires us to assume approximately the same ratio of
noise for all classes. Yet, this assumption can be practically applicable, considering that
the datasets mostly do not suffer from the outliers because of mislabeling, but because
of complexities related with the internal characteristics of video data, such as lighting
variations, camera motion, occlusion, and noise in the sensed data. Mislabeling is a
human-oriented noise, in which we cannot assume that the ratio of outliers are equal
for different classes (e.g. it may be harder to annotate the samples with less frequently
occurring classes). However, we can assume that the complexities in the video occur

approximately in the same ratio for any class, especially when we have a broad range
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of videos.

6.3.4 The Final Algorithm

The finalized RELIEF-MM algorithm including all of the extensions that we describe
above is given in Algorithm 3. In order not to make the presentation of the algorithm
more complex, some of the calculation including loops are represented by some math-
ematical functions (e.g. sum operations). The w(c,, f;) in Eq. (6.10) is represented
with W matrix in the algorithm. The other parameters for calculating w(c,, f;) are

given as they are given in Eq. (6.10).

The RELIEF-MM algorithm consists of three parts. Firstly, the parameters of the
weight estimation function (w, v and 1) are initialized. Secondly, these parameters are
updated iteratively by encountering random training samples in the total of m. This
process is performed separately for each class, thus some percentage of m (proportional
to the prior probability of each class) is used for each class. Lastly, the calculated
parameters are used to find the final values of weight estimations for each feature and

class.

Here, it should be noted that the original RELIEF-F algorithm is an online algorithm,
which means that the algorithm processes training instances one-by-one in a serial
fashion, and can give an output after processing each instance. However, the RELIEF-
MM algorithm presented in Algorithm 3 is offline, since the final weights are calculated
as a batch instruction. Our choice eliminates further complexity in the algorithm. Yet,
it is fairly straightforward to convert Algorithm 3 into an online version by moving
the block between lines 23-31 into the for loop between lines 13-22, as the last

instruction.

6.3.4.1 Complexity Analysis

We assume that n denotes number of features (n = |F|), m denotes number of
iterations, ki denotes nearest neighbor selection ratio, s denotes number of classes

(s = |C|) and t denotes number of training instances (¢ = |D|). Considering the
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Algorithm 3: RELIEF-MM

Input: list of features 7 =
C = (cu)? 1, nearest neighbor selection ratio kg, tuning constant o

Output: the weight matrix W

(fiyn »_,, number of iterations m, set of training instances D = {d; }

G=1> list of classes

//for each class in C

//for each feature in F

//for each class in C

//for each class in C

// Plcy)=size (Dy)/size (D)

//for each feature in F

1 begin
// Initialization
2 for v < 1to s do
3 for i <~ 1ton do
4 wlu][z] « 0;
s Afulfi] - 1:
6 n{u][i] « 0;
7 for v’ < 1to sdo
s | (] o
// Calculations
9 for v < 1to s do
10 Dy + getClassInstances(D, cy);
11 ky < kg - size(Dy);
12 m' < m- P(cy)
13 for j < 1tom’ do
14 r < randomInstance(Dy);
15 (H, M) < findNearestHitsMisses(r, D, ky,C);
16 for i <— 1ton do
- wlulfi] - wlulli] - Yok, LI srt) +Zu,_1 (=2
u!
18 Vlulli]  ulli] - She, YT,
1 plulfulli] < plulfu]li] + e, LG,
20 for v’ < 1to sdo
21 if / = u then continue;
2 plul[w][i] 4 plullw)fi] + ke, PHIUL ML),
// Finalization
23 for u <— 1 to s do
24 for i <+ 1ton do
25 for v’ < 1to s do
26 ifu' # u A plu][u'][i] > plu]u]i] then
z | nfulfi] + nfulfi
28 if wlu][¢] > 0 then
2 ‘ Wulfi] = (w[ul[d)* - ~v[ulli] - nlu][d];
30 else
31 | Wl + o

Z dlff(fw'r M,,))

"k

//for each class in C

//for each class in C
//for each feature in F

//for each class in C
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Algorithm 3, RELIEF-MM includes three main loops for initialization, calculation and

finalization.

The first main loop (lines 2—-8) initializes the parameter matrices and takes;

Linit = O(s* - n) . (6.15)

The second main loop (lines 9-22) is basically used for iterating over m instances
from any class in C. Inside the loop, there are three operations, which are not O(1);
(1) filtering c,-labeled instanced in D, in line 10, (2) selection of hits and misses, in
line 15, (2) weight parameter calculations, between lines 16—22. The first operation
is performed once for each class in C. The operation checks whether each instance
in D is labeled with ¢, or not, and takes O(t) time. The second operation includes
the distance calculation from random instance to all instances in D, heap construction
using the distances and neighbor selection from the heap. This process is similar to
the case for RELIEF-F in Section 6.2.4, and takes O(t - n +t + k, - s - logt) steps.
The third operation contains four instructions and is repeated for each feature. It takes
O(2-ky-s-n+2-k,-n) steps in total. The bounds for the second and third operations
include a k, term which is dependent on a class c,. In other words, for each class
¢, € C, the k, value gets a different value based on Eq. (6.14). Considering that these
operations are repeated for m’ instances of s number of classes, the total complexity

of these three operations becomes;

—O(mtn—i—mkRsloth (cu)|Dul)

(mP cu)(tn + kg|Dy|slogt + kg| D, \sn))] :

+mk‘Ran (cu)| Dy ) (6.16)

Considering that P(c,) is the prior probability of the classes and can be calculated
by using the instance counts in each class, the summation term » .. _, (P(c,)|D,]) in
Eq. (6.16) can be rewritten as Y . _ (|D,|?/t). The minimum value of this term is
obtained when the dataset is balanced. For such a case, the term equals to ¢/s. The
maximum value of the term is obtained with an unbalanced dataset, where one of the

classes contains all ¢ instances and the other classes contain no instances, although
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this is practically impossible. In this case, the term equals to ¢. Thus the complexity
bounds for the term is §2(¢/s) and O(t). By applying this result in Eq. (6.16), the total

complexity of the second main loop becomes

Lee=0(m-t-n+m-(kp-t)-s-logt+m- (kg-t)-s-n). 6.17)

The third main loop (lines 23-31) calculates the final weights by looping over all
features and classes. It also includes a s-sized loop for finding the final value of 7. The

total complexity of the third main loop is;

Lyin = O(s* - n) . (6.18)

The total complexity of the RELIEF-MM algorithm can be obtained by adding the
values in Eqgs. (6.15),(6.17) and (6.18). Here, we consider that ¢ > s and m > s should
be true, since the algorithm implicitly makes an assumption that there should be at least
one instance of each class, and also at least one instance should be selected from each
class, in order to calculate the feature weights of each class. Hence, m -t - n > s? - n.
Consequently, the terms coming from the Egs. (6.15) and (6.18) can be omitted for the
calculation of the asymptotic upper bound. Then, the complexity of the RELIEF-MM

algorithm equals

OMM)=0(m-t-n+m-(kg-t)-s-logt+m-(kg-t)-s-n). (6.19)

If the complexity of RELIEF-MM is compared with the complexity of RELIEF-F
given in Section 6.2.4, it can be seen that the only difference lies in the terms related
with the nearest neighbor selection. RELIEF-MM includes (kg - t), whereas RELIEF-F
has k. Essentially, these two terms are asymptotically equal in terms of complexity
since both reside in the same range. Furthermore, if we consider using RELIEF-
MM with balanced datasets, the (kp - t) term turns into (kg - £), as described above.
Thus, for small values of kg, the complexity of RELIEF-MM for balanced datasets
is O(m -t - n), as it is for RELIEF-F. Here, the m - ¢ - n term is an asymptotic upper
bound on m - (kg - t) -logt and m - (kg - t) - n, for small values of k. In conclusion,
it can be said that the complexity of the RELIEF-MM algorithm is asymptotically the
same as the original RELIEF-F algorithm.
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The space complexity of RELIEF-MM also does not differ dramatically since all the
work is on the same resources (inputs), and the biggest size requirement comes from
the inputs. As discussed before, the space complexity of the RELIEF-F is bounded by
O(t-n - A), where A is assumed as the average size for a single feature. The space
requirements for RELIEF-MM are; features (O(n)), weights (O(n)), classes (O(s)),
nearest neighbor selection (O(k - s + n - A)) and parameters of estimation function
(O(3-s-n)). Considering that ¢t > s, the space complexity of RELIEF-MM is bounded
by O(t - n - A).

6.3.5 Using RELIEF-MM with Prediction Scores

As mentioned before, in late fusion, the fusion is performed after a classification step.
Thus, the inputs for the fusion process are the prediction scores obtained from the
classifiers. In other words, the feature values of the samples may not available during
the fusion process, in many cases. However, the original RELIEF algorithm uses the
feature values of the samples in order to calculate the distances between them. Thus,
in late fusion scenarios, where the feature values are not available, it is not possible to
utilize the RELIEF algorithm. It is necessary to extend the weight calculation process

of the RELIEF algorithm so that it can be used with the prediction score inputs.

Given that the classes are C = (c,,)?

5 _, the modalities are 7 = (f;)! ; and the training

samples are D = (dj)§~:1; the list of prediction probabilities for class ¢, and modality
fiis Se, 5, = {sj“’fi 3-:1, where 0 < s;“’f * < 1. Note that the order of the samples in
D and the score values in S, ¢, are given correspondingly.

While using RELIEF-MM with prediction score inputs, the algorithm remains the

same, but the di f f function calculation should be rewritten, since we do not have

feature values anymore. Considering that an sju’f * value of a sample d; corresponds to
the similarity of the sample to a predefined class (¢, ), we utilize the following idea:
The difference between similarities of two samples to the same pattern corresponds to
a reasonable distance metric of these samples. Thus the di f f function in the RELIEF-
MM algorithm can be updated as the differences of the score values of the samples.
However, for each sample, there exist s number of scores of each modality, where

each score is the similarity value for a different class. Thus, we consider that the
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RELIEF-MM algorithm iterates over the training samples, and we use the score list
which corresponds to the class of the randomly selected sample, on each turn. Thus,

the di f f function becomes;

dsz(fla dZ7 dy) == |Sg(dm)’fi — Sg(dm)’fi

: (6.20)

where d, is the randomly selected sample, d,, is one of the hit/miss instances for d,
and C(d,) function corresponds to the ground truth class value of the sample d, given

as parameter.

6.4 Empirical Study

In this section, we evaluate the proposed modality weighting approach for semantic
retrieval of multimedia data. For the retrieval task, the multimedia data is queried
based on the semantic concepts. First, retrieval for each single modality is performed,
then a multimodal retrieval is done. During the multimodal retrieval, the modalities
are combined with a linear (weighted averaging) combiner based late-fusion approach,

where the weights of the modalities are generated via different approaches.

In order to perform a detailed comparison, we carry out our empirical study in two

major steps:

e Comparison with Other Approaches: We compare the retrieval accuracies of the
RELIEF-MM based linear weighted fusion approach with a RELIEF-F based
one, as well as the single modalities, basic approaches (simple averaging and
maximum) and exhaustive search. Also, we compare the modality selection
performance of RELIEF-MM with RELIEF-F in terms of the accuracies for

each different number of feature selections.

e Tests for Each Extension Idea: After a comparison with alternative approaches,
we focus on the issues that motivated us to develop RELIEF-MM, and perform
tests comparing (i) class-common and class-specific selection, (ii) performances
with multi-label, uni-label data and noisy cases (iv) using a dynamic vs. static

nearest neighbor selection (kg vs. k).
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Table 6.1: Datasets

TRECVID TRECVID

2007 2008 ccv
Dataset length | Train ~50 ~100 ~105
(hours) Test ~50 ~100 ~105
Number of Train 110 219 4659
videos Test 109 215 4658
Number of Train 21,532 39,674 N/A
shots Test 18,142 33,726 N/A

Considering that one of the important contributions of this study is the use of prediction
scores with the RELIEF algorithm, the experiments are conducted with both of the

following scenarios:

e We assume that the feature values are available, and use them to calculate the

feature weights.

e We apply a pure late-fusion scenario by assuming that the feature values are not

available. Thus, the prediction scores are used for weight calculation.

6.4.1 Experimental Setup

6.4.1.1 Datasets

Experiments are carried out on three frequently utilized benchmark datasets: TRECVID
2007 [91], TRECVID 2008 [92] and the Columbia Consumer Video (CCV) Database
[55]. The dataset characteristics are summarized in Table 6.1. Further details and a
performance comparison of TRECVID participants can be found in the corresponding

references.

While using the TRECVID 2007 and 2008 dataset, we prefer using the outputs of
common shot reference, for shot segmentation. For these datasets, the shots are used
as the retrieval documents. Besides, for the CCV dataset, each video is accepted as a
retrieval document. During the tests, the shots (for TRECVID 2007 / 2008) and the

videos (for CCV) are considered as individual and independent documents, which
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(c) CCV dataset
Figure 6.3: Query concepts for each dataset and sample shot images from query

concepts.

means no contextual information or interaction is taken into account between shots /

videos.

Each of the utilized datasets provides different sets of concept annotations. The
annotations on all three datasets are provided in a multi-label manner, which means
each shot can contain more than one label. A complete list of these concepts is given
in Figure 6.3 with sample images. The semantic queries performed during the tests are

based on these semantic concepts.

6.4.1.2 Modalities

For all datasets, we consider a multimodal setting, and use features from different
modalities. However, we prefer a relaxed definition for ‘modality’ [143]. The modali-
ties of multimedia data are usually accepted as audio, visual and text modalities, but
each of these modalities can be expanded. For instance, visual data can be defined

with several modalities like color, shape, texture and face. Here, each of these modal-
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Table 6.2: Modalities Utilized for each Dataset

Dataset Modalities

MPEG-7 Color Layout (CL)

MPEG-7 Region Shape (RS)

TRECVID | MPEG-7 Edge Histogram (EH)

2007 Zero Crossing Rate and Energy (ZCRE)
Mel-freq. Cepstrum Coefficients (MFCC)
Term Freq.—Inverse Doc. Freq. (TF-IDF)
Gabor Texture (GT)

Edge Direction Histogram (EDH)

Scale Inv. Feature Transform (SIFT)
Grid-based Color Moment (GCM)
Grid-based Wavelet Texture (GWT)
Scale Inv. Feature Transform (SIFT)
CCV Spatial-Temporal Interest Points (STIP)
Mel-freq. Cepstrum Coefficients (MFCC)

TRECVID
2008

ities is a different type of information source, and contains a significant amount of
complementary information. Thus, we accept each different type of information (i.e.
each complementary feature) as a different modality. The multimodal features utilized

during the test are listed in Table 6.2.

As presented on the table, visual, audio and textual features are extracted from the
videos of the TRECVID 2007 dataset. For visual features, one key frame per shot
is adopted and the middle frame for each shot is selected as the key frame. The
feature extraction and distance calculation tasks of the visual features are performed by
using the MPEG-7 reference software (eXperimentation Model, XM) [83]. For audio
features, the entire audio of each shot is processed and Yaafe toolbox [12] is utilized
for feature extraction. For the textual features, the Automatic Speech Recognition and
Machine Translation texts, which are provided by TRECVID, are employed. During

the calculations, no stop-word filtering or preprocessing is done.

For TRECVID 2008, the features are not extracted; instead, the prediction score values
of each shot for the concept queries are obtained from the CU-VIREO374 [53] dataset.
In the CCV dataset some well-known features are already provided, as well as the

videos and annotations. For more detailed explanations, interested readers can refer
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to [53] and [55].

Considering that we combine the modalities with a late fusion process, features from
each modality should be processed with a classifier and the prediction scores should
be obtained before the combination (for TRECVID 2007 and CCV datasets). For the
classification task, a Support Vector Machine (SVM) classifier with appropriate Radial
Basis Function (RBF) based kernels is preferred, and LibSVM [18] is utilized.

6.4.1.3 Metrics

To measure the retrieval accuracy, Precision, Recall, Average Precision (AP) and Mean
Average Precision (MAP) are used. Precision is the fraction of retrieved documents that
are relevant to the query concept, while Recall is the fraction of relevant documents
that are retrieved. The AP is the sum of the precision at each relevant hit in the retrieved
list, divided by the minimum of the number of relevant documents in the collection and
the length of the list. Regarding the evaluation rules of TRECVID, AP is measured at
2000. MAP is the AP averaged over several query concepts. In other words, the AP of
each concept is calculated separately and then the MAP is found by averaging them.
Beyond the measurements of accuracy, we also present the statistical significance
of the obtained results. To do so, we perform a student’s t-test with paired samples,
where the pairs are the accuracy results for different concept queries. A paired t-test
gives a p-value which denotes the significance of the improvement between two tests.
The smaller the p-value, the more significant the difference of the two average values.
We assume a confidence level at 0.95 and accept the results with p-value<0.05 as

significant.

We define another metric, named Fusion Gain (F'G), to perceive the effect of the fusion
process. Fusion gain gives the relative performance increase between to two different

configurations:
_ MAP(x) — MAP(y)

where = and y denote different configurations (i.e. different feature selections). In our

(6.21)

experiments we calculate two FGs:

e F'Gpg: The fusion gain is calculated by comparison with the best single modal-
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ity.
e F'G ay¢: The fusion gain is calculated by comparison with the simple averaging

approach.

6.4.2 Comparison with Other Approaches

In order to see the effectiveness of RELIEF-MM, we first compare its retrieval accuracy

with the following alternative methods,

e Each single modality,
e Basic approaches like maximum (MAX) and averaging (AVG),

e Class-common exhaustive search (Exh-CC), Class-specific exhaustive search

(Exh-CS)

e Original RELIEF-F algorithm,

Using each single modality and basic approaches represents the lower accuracy bounds
for the fusion system. A fusion system is accepted as successful if it provides better
accuracy than any of the single modalities. We also consider the MAX and AVG
approaches as lower bounds, since these are the most frequently utilized fusion ap-
proaches due to their simplicity in calculation. In the MAX approach, the decision in
the fusion process is calculated by taking the maximum score value of the available
modalities. In the AVG approach, the mean of the score values of all available modali-
ties is accepted as the final decision. On the other hand, we also present the accuracies
of the exhaustive search for finding optimal modality weights, which provides an upper
bound for the retrieval accuracies. For the exhaustive search approach, we perform
both class-common and class-specific weighting processes. Exh-CC evaluates every
different weight set in order to find the optimal weight of each modality. In Exh-
CS, the same process is repeated for each class, separately. Lastly, we compare our
proposed approach with the original RELIEF-F algorithm, which exhibits the major
contribution of this study. During these comparisons, for RELIEF-F and RELIEF-MM,
the performances at the optimal kg values are presented. The v value for RELIEF-MM

is used as 2.
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The use of an exhaustive search usually causes infeasible test situations. In our tests,
the feasibility of the weight selection process via an exhaustive search depends on
the precision of the weights, as well as the number of modalities. For instance, if
we want to have a precision of 0.01 between weights with 6 modalities, we should
check 100° cases. Assuming that we already have the prediction scores of each
modality beforehand, such a process for TRECVID 2007 dataset would take so
long that even parallelization of the process would not be a solution. Thus, we
follow a computationally simpler search process without damaging the fairness of the
comparisons. We perform the following two different near-exhaustive search process?,
and then select the best one: (1) We first perform an exhaustive binary selection
among available modalities, and select the best 4 modalities. Then, we perform
a weight search on the selected 4 modalities with 0.01 precision (w € {0,0.01,
0.02,...,0.99, 1}). After finding the optimal weights and fixing them, we perform a
weight search on the remaining 2 modalities. (ii) We first perform an exhaustive weight
search on all available modalities with 0.1 precision and find the optimal weights for
each feature. Then, as a second step, we tune up the weights by performing a selection

between [w — 0.05, w + 0.05] with 0.01 precision.

In order to evaluate the proposed approach, one may argue that there should be
comparisons with other available feature selection / weighting methods. However,
as described in Section 6.1 and Section 6.2.2, currently available filter based feature
selection / weighting methods in the literature are not easily applicable to the modality
weighting problem, due to the issues of the intrinsic multi-dimensionality of modalities
and the multivariate inputs of fusion systems. Thus, adapting other approaches to
modality weighting problem is beyond the focus of this study. Besides, we do not
consider comparing our method with several different wrapper approaches since
we perform a comparison with the exhaustive search, which gives the best possible
accuracy. It is also known that any wrapper approach is much more computationally
complex than our approach. Consequently, we think that the comparisons included
in this study are enough to evaluate the effectiveness and efficiency of our proposed

approach.

3 This two step process is applied for the TRECVID 2007 and 2008 datasets, where the number of modalities
lead to inefficient situations. For the CCV dataset, an exhaustive weight search process is performed with 0.01
precision.
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In Table 6.3, the MAP values of the above listed approaches are presented for the
TRECVID 2007, TRECVID 2008 and CCV datasets. For a better understanding of
which weighting approach provides more effective fusion, the Fusion Gains of these
approaches are calculated and presented in Table 6.4. In addition to the accuracy
results included here, a statistical significance analysis of the results is presented in
Table 6.5. In the tables, (F) denotes the use of feature values as inputs to the RELIEF
based algorithms, whereas (P) represents the cases where the predictions scores are

used as the inputs.

From these experimental results, we arrive at the following observations:

e Combinations of different modalities give more accurate results than the single
modalities. However, selection of modalities is a critical issue. A wrong
selection can lead to worse results than the best of the single modalities. For
instance, AVG cannot provide a positive gain in the TRECVID 2007 and 2008
datasets, compared to the best single modality. Similarly, a MAX approach is
not successful in any of the three datasets. This is because of the fact that these
simple methods do not perform an effective evaluation on the modalities, and
thus they cannot discard the unfavorable modalities. Although these approaches
provide the most efficient solutions, they cannot always provide an effective
solution and they are not robust against different datasets. Consequently, a more
robust and effective approach is highly recommended despite the risk of some

decrease in efficiency.

o RELIEF-F is significantly better than the best single modality in one of two
datasets where feature values are used as input, and one of three datasets where
predictions scores are used. If compared with the AVG approach, RELIEF-F
has a significant improvement in only one case out of all five. Hence, RELIEF-F
is not a robust solution against different datasets. Still, it can be accepted as
an applicable modality selection approach, since it does not provide retrieval
accuracies worse than the best single modality, and usually performs slightly

better.

o RELIEF-MM provides a significant improvement over the best single modality

for all datasets when the feature values are used as input, and two of three datasets
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Table 6.3: Comparison of Retrieval Accuracies. The first column denotes the configuration: (S) Single modalities, (B) Basic approaches, (E)

Exhaustive Search, (F) RELIEF methods using feature values, (P) RELIEF methods using prediction scores

TRECVID 2007 TRECVID 2008 CCV
MAP (%) MAP (%) MAP (%)
CL 8.711 || EDH 10.479 || SIFT 49.676
EH 9.032 || GT 10.802 || STIP 39.959
RS 6.762 || SIFT 19.032 || MFCC 27.585
®) ZCRE 6.385 || GCM 13.027
MFCC 6.884 || GWT 9.094
TFIDF 6.286
MAX 6.639 || MAX 17.126 || MAX 52.071
®) AVG 8.270 || AVG 18.969 | AVG 57.340
Exh-CC 10.322 || Exh-CC 20.034 || Exh-CC 57.403
® Exh-CS 12.988 || Exh-CS 22.183 || Exh-CS 57.783
RELIEF-F 9.847 RELIEF-F 56.027
® RELIEF-MM 10.563 RELIEF-MM 57.511
RELIEF-F 9.076 || RELIEF-F 19.760 || RELIEF-F 55.380
® RELIEF-MM 9.454 || RELIEF-MM 20.559 || RELIEF-MM 57.562
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Table 6.5: Statistical Significance Analysis using Paired T-Test. Pairs are based on query concepts. Statistically significant results according
to the confidence level 0.95 (p-value<0.05) are given with an asterisk. p-value (BEST), (AVG) and (RELIEF-F) denote the p-values with
respect to the best single modality, simple averaging and RELIEF-F approaches, respectively.

p-value p-value
(BEST) p-value (AVG) (RELIEF-F)
@ RELIEF-F 7.39E-02 *4.67E-02
TRECVID RELIEF-MM *1.96E-02 *2.90E-02 *1.95E-02
2007 ® RELIEF-F 4.75E-01 2.45E-01
RELIEF-MM 2.65E-01 1.51E-01 *1.89E-02
TRECVID ® RELIEF-F 4.04E-01 5.60E-02
2008 RELIEF-MM “1.87E-02 *2.30E-03 *4.02E-04
® RELIEF-F *6.74E-06 *2.38E-03
cov RELIEF-MM *2.02E-06 1.24E-01 *4.43E-05
®) RELIEF-F *2.08E-04 *4.72E-13
RELIEF-MM *1.92E-06 *4.29E-02 *6.99E-10
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when the prediction scores are used. If compared with AVG results, RELIEF-
MM is significantly better in one of the two datasets with the feature value inputs,
and in two out of three datasets with the prediction scores. When RELIEF-MM
is compared with RELIEF-F, it is observed that RELIEF-MM obtains higher
retrieval accuracies than RELIEF-F in all cases, each having a p-value<0.05. In
addition, it should be noted that RELIEF-MM achieves higher accuracy results
than the best single modality, AVG and MAX approaches, and even slightly
better results than the Exh-CC approach. Thus, there is strong evidence that
the RELIEF-MM approach introduces a significant improvement and can be
accepted as a robust and effective solution as a modality weighting approach
for multimedia data. Therefore, RELIEF-MM can be regarded as a practical
enhancement for the multimedia retrieval studies using simple averaging for

fusion.

e An exhaustive search finds the optimal feature selection since it evaluates all
possible combinations. The accuracy results show that the use of a class-specific
approach in the exhaustive search (Exh-CS) helps to improve retrieval accuracy
in all three datasets. Besides, being a class-specific approach, RELIEF-MM
is not upper-bounded with Exh-CC, whereas the accuracies of RELIEF-F are
always less than Exh-CC.

e The performance of using prediction scores instead of feature values for calcu-
lating the modality weights depends on the characteristics of the dataset. In our
experiments, results with the TRECVID 2008 and CCV datasets are reasonably
good. However, for TRECVID 2007 dataset, there exists a considerable decrease
in accuracy according to the results of using feature values. Thus, it may be hard
to give a conclusive decision about the effectiveness of using prediction scores,
with the current evidence. Nevertheless, the accuracies with the prediction scores
outperform best single modality, MAX and AVG approaches. Consequently,
we observe that the results of using prediction scores is promising and they are

applicable when the feature values are not available during the fusion process.

The efficiency of the proposed approach is another important concern. A running

time comparison of RELIEF-F, RELIEF-MM, Exh-CC and Exh-CS is presented in
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Table 6.6: Approximate Execution Times of Exhaustive and RELIEF based methods,
on three different datasets. The column with an asterisk denotes estimated values for a
real exhaustive search scenario.

RELIEF-F RELIEF-MM Exh-CC Exh-CS *Exh-CC  *Exh-CS
TRECVID 2007 3 sec 6 sec 17 hours 340 hours 19 years 380 years
TRECVID 2008 10 sec 11 sec 22 hours 440 hours 100 days 5.5 years
CCV 2 sec 2sec | 0.14hours 2.7 hours | 0.14 hours 2.7 hours

Table 6.6. The measurements are taken on a machine with “Intel(R) Xeon(R) CPU
E5530 @2.40GHz”. The values on the graph and table are obtained without a parallel
programming approach. The values given in the table correspond to the cases presented
in Table 6.3. The table includes both the near-exhaustive search running times and the
estimated real exhaustive search times. The basic approaches (AVG and MAX) are not
given in the table since they are done at no cost. Furthermore, a detailed comparison of
RELIEF-MM and RELIEF-F, for different k£ nearest neighbor selections, is presented
in Figure 6.4. According to the given experimental results, execution of RELIEF-
MM results in a small increase in time, which is in parallel with the complexity
analysis given in Section 6.3.4.1. Besides, the exhaustive search methods, even the
near-exhaustive search, require a high time cost, as expected. Hence, RELIEF-MM

can be accepted as an efficient modality weighting approach, considering that the

MM

(sec)

Running Time
[1s

kg (%)

Figure 6.4: Running Time Comparison of RELIEF-F and RELIEF-MM on TRECVID
2007 dataset for different kr values.
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2007 (F) 2007 (P) 2008 (P) CCV (F) CCV (P)

MM>F s MM>AVG e MM>B

Figure 6.5: Concept-based Accuracy Comparison of RELIEF-MM with other ap-
proaches. Columns indicate the number concepts that RELIEF-MM provides higher
accuracy than the compared approach. Each group of columns denote a different
dataset with a specific input type. MM >F: RELIEF-MM vs. RELIEF-F, MM >AVG:
RELIEF-MM vs. Simple Averaging, MM >B: RELIEF-MM vs. Best Single Modality.

time cost is a polynomial function of the number of modalities, and thus much more
efficient than the exhaustive search. When compared with basic approaches, the cost of

RELIEF-MM is still acceptable, considering the improvement in the retrieval accuracy.

Up until now, the average query performances have been compared. In order to make
a more detailed comparison, we also perform a concept-based analysis. Figure 6.5
illustrates a concept-based comparison and presents the number of concepts for which
RELIEF-MM provides higher accuracy when compared with a particular approach. In
addition, precision-recall graphs for some of the query concepts are given in Figure 6.6
and Figure 6.7. According to the given experimental results, RELIEF-MM achieves
higher accuracies in a larger number of concepts than RELIEF-F, the best single
modality and AVG approaches, regardless of the used dataset and the input type
(feature values vs. prediction scores). Nonetheless, the success rate of RELIEF-MM
compared to RELIEF-F is more pronounced than the best single modality and AVG
approaches. Under this observation, we can infer that the improvement provided
by RELIEF-MM is reasonably good, due to the extensions introduced in this study.

However the RELIEF idea in general may lead to difficulties in some particular data

133



Office

Airplane
0.5 m ‘ 0.6 T T T T T T yva—
I MM \ i —
| F | sl S
0.4 ‘ AVG ] . | BEST —
o 0.4
o) o
5 0.3 o
P 7
d 5 0.3
2 0.2 &
o 0.2
0.1
0.1
O ' ' ' ' ' ' ' 0 L L ) L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall Recall
Hand Cityscape
1 1
0.8 1 0.8
<] <]
S 0.6 19 0.6
0 12}
o -
(6] [0}
> 0.4 13 0.4
[ A
0.2 1 0.2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall Recall
IceSkating Beach
1 1
0.8 1 0.8 1
<] <]
S 0.6 19 0.6 4
0 0
- -
(0] [0}
> 0.4 13 0.4 1
A A
MM ——— \ MM ——— N \!
0.2 | ™ Too2r Tk
AVG ——— Ul AVG A
SIFT —— SIFT
0 0.10.20.30.40.50.60.70.80.9 0 0.10.20.30.40.50.60.70.8¢0.9
Recall Recall

Figure 6.6: Precision-Recall graphs of some selected concepts, which are best-case
examples for RELIEF-MM (in terms of accuracy). The rows contain concepts from
TRECVID 2007, TRECVID 2008 and CCV datasets, respectively.
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Figure 6.7: Precision-Recall graphs of some selected concepts, which are worst-case
examples for RELIEF-MM (in terms of accuracy). The rows contain concepts from
TRECVID 2007, TRECVID 2008 and CCV datasets, respectively.
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distributions and is open to improvement. Even though the RELIEF algorithm utilizes
a margin based nonlinear classifier [126] to evaluate the features and a margin based
nonlinear classifier is known to be successful in general, the way RELIEF uses the input
data is based on a standard procedure of employing the distances from each training
sample to its neighbors, and does not benefit from any feature transformations in kernel
space. This approach may be inadequate for some particular concepts that have unique
data distributions. Just as employing various kernel types in SVM classifiers according
to the characteristics of data and features leads to more effective classification results,
so performing some appropriate kernel transformations on the RELIEF input data will
help to make the RELIEF approach superior in a larger number of query concepts.
However, such a problem is not included within the scope of this study, and has been

left for future work.

Beyond the discussion on kernel transformation, one may focus on the comparison
between RELIEF-MM and RELIEF-F, and expect that a class-specific approach, i.e.
RELIEF-MM, should have an ability to optimize the weights for every query concept
individually and thus achieve higher retrieval accuracies in any concept. Insofar as our
observations have shown, we think that there exist two important factors that prevent

RELIEF-MM from giving the best accuracies in some of the concepts.

The first reason for RELIEF-MM’s less-than-optimal accuracy with some concepts
is the small number of training samples for some particular concepts, which lead to
incomplete representation of the concept. As explained in Section 6.3.1, RELIEF-MM
takes the samples of each concept into account for the weight calculation, whereas
RELIEF-F uses all training samples without considering the concept that they belong
to. As a result, the weight calculation of the concepts with a small number of training
samples may lead to ineffective results. On the other hand, RELIEF-F gains a general
insight into the effectiveness of each modality, which usually provides better results
than the estimations of RELIEF-MM which are based on inadequate data. Explosion_-
Fire, Desert, Flag and Truck in the TRECVID 2007 dataset are some of the concepts
for which RELIEF-F gives better accuracies. These concepts include 46, 67, 12 and
126 samples, respectively, whereas the dataset contains more than 350 samples per
concept on average. A performance visualization for these kinds of concepts is given

in the first column of Figure 6.7. It is also worth noting that TRECVID 2008 and
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Figure 6.8: Modality Selection Performances

CCYV include less concepts with a small number of samples, and thus the performance
of RELIEF-MM is better in these two datasets than TRECVID 2007, as seen in
Figure 6.5.

Second reason for RELIEF-MM’s weakness for some concepts is the intra-concept
sample variety, which can be accepted as a side effect of including 7} and 7§ into
the weight estimation function. As mentioned above, the way in which the margin
based classifier is utilized in RELIEF may be inadequate for some particular concepts
that have unique data distributions. In RELIEF-MM we extend the weight estimation
function and include +§ and 7} into the formula. This preference increases the effect of
margin based calculations in the function since both +§ and 7} are calculated by using
the intra-concept and inter-concept distances. Even though such preference makes
the weight estimations better in most of the cases, increasing the effect of margin
based calculations without a feature transformation in the kernel space may lead to
worse weight estimations. As a solution, two alternatives can be considered, a kernel
transformation or including a non-margin based variable into the weight estimation

function, which can be considered for future work.

As a last comparison between RELIEF-MM and RELIEF-F, we try a different scenario

from the previous tests, and combine the modalities with a simple averaging approach
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after a hard selection of the modalities instead of weighting. In modality selection for
fusion, the ultimate goal is to find which subset of the modalities is more effective for
the retrieval task. It is therefore important to rank the modalities correctly, and this
scenario helps us to do so. In Figure 6.8, the retrieval accuracies of RELIEF-F and
RELIEF-MM are presented for those cases where a different number of modalities
are selected and combined. During the test, firstly the weights of the modalities
are obtained via the RELIEF-F and RELIEF-MM algorithms. Then for a particular
number of modalities are selected according the assigned weights. The results show
that RELIEF-MM is clearly superior to the original RELIEF-F algorithm in this task.
Hence, it can be said that the ranking capability of RELIEF-MM is more effective than
that of RELIEF-F.

6.4.3 Tests for Each Extension Idea

In order to further analyze the improvements that RELIEF-MM provides, we compare
our proposed algorithm with the baseline RELIEF-F algorithm with respect to each
idea presented in Section 6.3. Below, each idea is discussed in a separate sub-section.

Through this evaluation, the TRECVID 2007 dataset is utilized.

The first improvement issue in RELIEF-MM is the conversion of the original RELIEF-
F algorithm, which is a class-common approach, into a class-specific one. Thus,
we compare the retrieval accuracies of the class-specific adaptation of RELIEF-F
algorithm, which is introduced in Algorithm 2, with the original RELIEF-F. Moreover,
we include the retrieval performances of RELIEF-MM algorithm in order to provide
a more complete representation. In Figure 6.9, precision recall curves of these three
methods are compared for optimized £ selections. In addition, Figure 6.10 presents
the retrieval performances of the given approaches with respect to different values of &

nearest neighbors.

6.4.3.1 Class-Common vs. Class-Specific Feature Weighting

Figure 6.9 and Figure 6.10 show that RELIEF-MM provides higher retrieval accuracies
than both of the original RELIEF-F algorithm and the class-specific adaptation of
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Figure 6.9: Precision-Recall Curves of the original RELIEF-F (CC-F), class-specific
RELIEF-F (CS-F) and RELIEF-MM (MM) algorithms.
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Figure 6.10: Retrieval Performances of original RELIEF-F (CC-F), class-specific
RELIEF-F (CS-F) and RELIEF-MM (MM) algorithms.
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RELIEF-F, for different values of nearest neighbors. Furthermore, Figure 6.9 presents
the clear superiority of the class-specific approach over the original one, and Fig-
ure 6.10 shows that the accuracy of the original approach decreases, as the number
of neighbors is increased. However, in the class-specific RELIEF-F, the accuracy is
almost directly proportional to the number of neighbors. In addition, until some point
around 33% of nearest neighbors selection, the original RELIEF-F performs better
than the class-specific RELIEF-F, which means that the original algorithm is more
powerful than the class-specific approach for a small number of neighbors. The reason

for this situation is discussed below.

In discrimination based approaches, one of the most important factors that affects
the success of the approach is the variety of the encountered samples. The original
RELIEF-F algorithm estimates the weights by processing the randomly selected m
samples and £ neighbors of each sample from s — 1 classes. Equivalently, class-specific
RELIEF-F allocates the randomly selected m samples into s classes according to the
prior probabilities of each class, and processes the samples of each class separately.
Hence, the weights of each class are estimated by using a smaller number of samples
according to m. If the number of nearest neighbors £ is also small, the information
obtained from the distances between samples becomes limited, which directly affects
the success of class-specific RELIEF-F. If the number of nearest neighbors is increased,
it is certain that the algorithm encounters some neighboring samples which have not
been seen before, so that the algorithm obtains some adequate number of sample
distances to estimate more effective weights. On the contrary, the original RELIEF-F
usually does not encounter new samples when the number of nearest neighbors is
increased, since many of the samples are seen through the m sample selection. If
m is chosen as all training samples, there is no new instance that can provide new
information while £ is increased. Therefore, the only factor affecting the success
of the original RELIEF-F algorithm becomes the noisy information obtained due to
the increase in k. Consequently, it is more beneficial in this test to see which of the
approaches can achieve higher accuracy in any configuration, since those upper bounds
present how effectively they can use the available information. In Figure 6.9, it is

apparent that class-specific RELIEF-F uses the available information more effectively.
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6.4.3.2 Performances with Uni-label, Multi-label and Noisy Data

Another improvement of RELIEF-MM is its ability to handle multi-label data. Thus,
we compare the retrieval accuracies of the fusion systems using RELIEF-F and RE-
LIEF-MM for weight generation in uni-label and multi-label data. This comparison

helps us to understand whether RELIEF-MM is more effective in multi-label data.

In order to obtain a uni-label data, we first process the training dataset and remove
the multi-labeled instances from the dataset. We use the newly constructed uni-label
dataset only for the weight generation step of the fusion process. The classifiers,
which give the inputs to the fusion process, are always trained with the multi-label
dataset. Thus, we manage to compare only the effect of different weight generation
methods. Furthermore, it should be noted that constructing the uni-label dataset by
removing the multi-labeled instances may cause the loss of some information (e.g.
approximately 40% of the training instances is removed) and affect the performance
of weight generation. Still, using a completely different uni-label dataset prevents us
from comparing the accuracies of a weighting approach across datasets. Consequently,
we find this setting fair enough to compare the effectiveness of RELIEF-MM and
RELIEF-F.

The tests are conducted for several £ nearest neighbor selections. Figure 6.11 presents
the retrieval accuracies of RELIEF-MM and RELIEF-F by using uni-label and multi-
label data for weight generation. In order to understand the effect of using multi-label
data, the differences between the accuracies of RELIEF-F and RELIEF-MM can
be compared for uni-label and multi-label datasets. Such differences can be best
understood by the area between the curves of RELIEF-F and RELIEF-MM in the
given graph. As seen on the graph, the area between RELIEF-F and RELIEF-MM
curves is larger for multi-label data, which can be evaluated as RELIEF-MM working

better in multi-label data.

In addition to the uni-label vs. multi-label data comparison, we also consider the
performances of the algorithms for noisy data. In Section 6.3 it is proposed that
RELIEF-MM should perform better than RELIEF-F even in noisy data cases. Thus,
we compare the performances of RELIEF and RELIEF-MM with noisy data-sets.
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Figure 6.11: Retrieval Accuracies of RELIEF-F and RELIEF-MM for different kg
values, with Uni-label and Multi-label Training Data for Weight generation. MM and
F denote RELIEF-MM and RELIEF-F. (Uni) and (Multi) denote the use of Uni-label
and Multi-label datasets for weight generation.

For this purpose, we manually add mislabeled instances into the multi-label dataset,
and construct 10%, 30% and 50% noisy datasets. Similar to the tests for uni-label
data, these noisy datasets are used only for the weight generation step. The retrieval
accuracies at given noise levels are presented in Figure 6.12, as well as the zero noise

level.

Figure 6.12 demonstrates that the decrease in accuracy is usually larger for RELIEF-F,
as the noise increases. Furthermore it is observed that RELIEF-MM is superior to
RELIEF-F at any noise level. It can be stated that RELIEF-MM is more robust against

noise.

6.4.3.3 Using k vs. kg

One more improvement on the original RELIEF-F is the dynamic selection of £ nearest
neighbor as a ratio value of the class sample counts. The changes in retrieval accuracy
change according to different k nearest neighbors are shown in Fig 6.13(a). The change

according to different £ nearest neighbors is shown in Fig. 6.13(b).
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Figure 6.12: Retrieval Performances with Different Levels of Noisy Training Data for
Weight generation.

For each of the methods, it is expected that accuracy values will converge into the
same value when k£ reaches the number of all training instances and kg reaches 100%.
The improvement that kg provides is more apparent in lower numbers of training
samples. Figure 6.13 shows that both approaches exhibit a decrease in performance
when 100-500 nearest neighbors are used. The main reason for the decrease is the
use of imbalanced hit and miss instances for concepts that have a smaller number of
samples, e.g. using k = 400 for a concept with only 200 samples causes the algorithm
to use 200 hit instances, but 400 miss instances. Considering that RELIEF-MM works
with class specific preference, the decrease in accuracy becomes more dramatic for
RELIEF-MM. On the other hand, the use of a dynamic selection with ratios (kg)
prevents such a decrease for both methods and enables more robust accuracy results
against a different number of nearest neighbor selections. kg is bounded by the number
of samples in the class, thus the decrease caused by imbalanced hits/misses does not

OCCur any more.
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6.5 Evaluation of Fusion System Design

Considering the general fusion framework proposed in Section 3.1, an evaluation of
the fusion architecture described in this chapter is given below. The approach is based
on a ‘multi-modal, multi-classifier’ fusion scenario and focuses on the ‘“What to Fuse’
problem. Below, how each affecting factor is handled through the proposed solution is

described.

e Fusion Setting: The approach combines multiple modalities, each of the modality
being a different feature. Before combination, the data of each modality is

classified with a separate classifier, and the results of the classifiers are combined.

e Selection of Sources: RELIEF-MM is a modality weighting approach, which
has a capability to be used as an online algorithm. Thus, the approach can be
accepted as a dynamic solution for feature weighting. In addition, the weights
have a context relation, since the approach is based on the class-specific feature

selection idea.

e Fusion Strategy: The approach focuses on the use of complementary information

for fusion.

e Content Representation: For content representation, both feature-based and
score-based representation is applicable. In score-based representation, the

classification scores of the samples are stored and processed.

e Normalization of Sources: The fusion inputs are classifier outputs, where each
of them lays in between [0, 1]. Thus, a normalization process is not applied on

the fusion inputs.
e Fusion Level: The approach is a late fusion approach.

e Fusion Methodology: Considering that the focus of the study is the feature /
modality weighting, linear weighted averaging approach is utilized as the fusion

methodology.
e Operation Modes: The mode for operation is a parallel scheme.
e Synchronization: A simple shot or video based synchronization is applied.
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e Adaptation: Considering that proposed algorithm can be used as an online

algorithm, the approach can be accepted as an adaptive solution.

6.6 Remarks

In this chapter, the problem of modality weighting for multimodal information fusion
is studied. As an effective and efficient modality weighting solution, a RELIEF
based approach is proposed. Considering the problems with RELIEF-F when using
it with multimedia data for multimodal fusion, we focus on five crucial issues and
extend the original RELIEF-F algorithm in these aspects. We first convert the original
algorithm into a class-specific representation. Then we extend the algorithm and
weight estimation function so that they estimate the modality weights better with
multi-label and noisy data. For better estimations, we include the representation and
reliability characteristics of modalities into the weight estimation function, in addition
to the currently available discrimination capability. We also make an extension in
order to make the algorithm more effectively with unbalanced datasets. Lastly, we
introduce a conversion procedure that enables the use of classifier predictions in

RELIEEF, considering that feature values may not be available during a fusion process.

Our approach is extensively tested on TRECVID 2007, TRECVID 2008 and CCV
datasets with several modalities in a multimodal information fusion scenario. The
results show that using RELIEF-MM guarantees higher accuracies than any single
modality, and shows much better performance than simple averaging and RELIEF-F
based methods. In addition, RELIEF-MM provides slightly better performance than
the class-common exhaustive-search based approach, although it is computationally
much more efficient. We also perform several comparative tests against the RELIEF-F
approach, aiming to examine each extension idea, and confirm that the proposed
extensions lead to improvements on RELIEF-F. Consequently, we argue that our

proposed approach is a timely efficient, accurate and robust way of modality selection.

The experiments carried out also exhibit some situations for future work. In order to

further improve RELIEF-MM, we put forward the following ideas for future study:

e The RELIEF-MM algorithm utilizes a margin based discrimination approach,
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like the original RELIEF, while evaluating features. Performing some appro-
priate feature transformations on the kernel space may improve the quality of
the weight estimations, especially for those particular concepts that have unique
data distributions. Performing such transformations separately for each concept

type, like a one-vs.-all approach, may yield better results.

Another improvement idea for RELIEF-MM is to include a non-margin based
evaluation metric into the weight estimation function (e.g. mutual information,
information gain, correlation, etc). Any considerable metric may have its own
complications when being used with modalities instead of features, deficiencies
for multimedia data and extra computational complexity, however. All these

factors should be analyzed in detail.

It is possible to further increase the efficiency of the RELIEF-MM algorithm by

employing some caching mechanisms (e.g. k-d trees, hashing).
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CHAPTER 7

COMBINING BAGS-OF-WORDS: A NOVEL MINING AND
GRAPH BASED APPROACH

In this chapter, the problem of finding a way to fuse the modalities effectively is
taken into consideration. The approach focuses on the combination of the components
used in the state-of-the-art studies. Thus, the proposed approach provides a novel
mining and graph based combination method for combining the Bags of Words (BoW)
obtained from different modalities. Considering the fact that most of the studies do
not use intramodal and intermodal relations of the available words effectively, our
approach combines the classification outputs of each single modality, intramodal

relations and intermodal relations with a late fusion approach.

7.1 Overview

The key to perform a successful multimedia retrieval operation is to analyze the
semantic content of the multimedia data adequately. For an adequate analysis, the
multimodal nature of the data should be analyzed carefully and the information
contained in the data should be used completely. In this respect, combining the
information gathered from multiple modalities is an empirically validated approach
to increase the retrieval accuracy [4]. Yet, two major issues are pointed out by many
researchers as attractive research areas [4, 98, 143]: (i) How to determine the best
modalities? (ii)) How to fuse them the best way? This study focuses on the second
problem and presents a modality combination approach in order to use the multiple

modalities effectively.
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The previous chapters of this thesis has already presented solutions on the above given
problems. However, proposed solutions are mostly focused on the first problem and
there is the need for an effective solution on the "How-to-fuse’ problem. Through this

direction, we focus on the following needs;

e Use of correlated information: A big majority of the available approaches accept
the fusion as a complementary process, and assume that the fusion inputs are
independent. Thus, the dependency / correlation between different modalities is
usually ignored and each modality is processed separately. Considering that any
object or event occurring in multimedia data is also multimodal (e.g. A ‘car’ has
a visual appearance, a characteristic sound and has some parts including text on
it), it can be argued that there exist a strong dependency between the different
modalities of multimedia data. Hence, the fusion solution should benefit from
such information and support working with both complementary and dependent

(correlated) inputs.

e Working with contemporary approaches: The fusion literature contains a huge
amount of studies that are usually grouped under two broad levels, according
to when the fusion process is applied: early and late fusion. As described in
Chapter 3 in detail, early fusion approaches combine the information on sensory-
level or feature-level, whereas late fusion approaches deal with the outputs of
the classifiers (scores, ranks and decisions). However, contemporary learning
approaches introduce a ‘new’ level into the learning process (i.e. the use of
bag-of-words). Considering that such bag-of-words based learning approaches
are highly popular on the multimedia retrieval domain, we can advocate the need

for combining the information at this level.

e Combining multi-level inputs: Almost all of the fusion approaches assume
the homogeneity of the fusion inputs. However, the fusion inputs may be
in different levels (e.g. combining two systems, one providing features and
another providing scores of classification), or may be in different class-spaces
(e.g. combining the results of two classifiers, one performing a classification
into classes (1, (s, ..., C},, but the other one into Sy, Sy, ..., S,,). Although it

may be possible to convert all inputs into the the same level performing a
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classification on the low-level inputs (features), such an operation may lead to
loss of information. Thus, we need a general fusion framework that enables

combining multi-level inputs.

Regarding the above given need, we focus on a solution that combines bags of words
that are generated from different modalities. Through this direction, we propose a
general fusion framework based on BoWs by converting any type of information
into BoW format. After converting all types of inputs into BoW representation, we
incorporate both the complementary and the correlated information into fusion process.
For exploiting the correlated information, we analyze the intramodal relations within
each modality, and the intermodal relations between modalities. Such correlation
information and the provided BoW based features of different modalities exhibit a
complementary behavior, thus they are combined with late fusion approach. Hence,
our proposed approach is composed of four steps: (i) classification of information in
each modality, (i) intramodal correlation analysis for each modality and classification
of the obtained information, (iii) intermodal correlation analysis between modalities
and classification of the obtained information, (iv) late fusion of all classification
results. For the late fusion, a linear weighted averaging approach is utilized with the

weights generated by using the RELIEF-MM algorithm.

For the intramodal and intermodal correlation analysis problem, we propose a novel
mining and graph based solution. Throughout the intramodal process, the words of
each modality and the correlation between these words are converted into a graph
representation, and then the meaningful phrases are extracted by using these words.
For calculating the correlations between the words, a frequent itemset mining (FIM)
procedure is executed. In order to extract the phrases, the most together occurring
words are extracted from the constructed word graph. For the intermodal process, first,
the correlation between the extracted phrases of different modalities are calculated
based on the Pearson’s correlation coefficients, and then obtained information is
converted into a graph representation. After that, the multimodal phrases are extracted
from the graph. Both of these processes end up with using the extracted phrases for
classification. For the evaluation of the proposed approach, an experimental study
is conducted on TRECVID 2011 dataset with visual, audio, text modalities. The

test results show that the proposed approach is an effective way for fusing BoW-
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Figure 7.1: A Typical Multimedia Analysis Process

based feature vectors of different modalities. In addition, the use of intramodal and
intermodal correlation information helps to improve retrieval performance and the

fusion gain.

The remainder of this chapter is organized as follows: In Section 7.2, an overview
of the contemporary learning approaches and the some descriptions on the use of
bags-of-words are given. In Section 7.3, some related work on combining BoWs and
an analysis of the state-of-the-art approaches are presented. Then, in Section 7.4,
the proposed approach for combining BoWs is given in detail. In Section 7.5, the
empirical results and the evaluations of our proposed solution are given. In Section 7.6,
an evaluation of the proposed fusion architecture is done based on the general fusion
framework for fusion (Section 3.1). In the last section, some conclusions are drawn

and some possible future studies are discussed.

7.2 Background Knowledge

Pattern recognition and computer vision literatures contain a huge amount of multi-
media analysis (especially image analysis) studies [26, 118]. In a traditional analysis
system (as given in Figure 7.1), the process starts with the perception of some input
from the real world via some hardware called sensors. After converting physical inputs
(i.e. sounds or images) into signal data via some sensors and preprocessing such
signals (i.e. enhancement and segmentation operations), a feature extraction step is

employed and several important properties of the real world input that are useful for
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classification are extracted by using sensor data. Afterwards, features are used for
classification and class label, score or a ranked list is obtained as the classification
result. Lastly it is possible to have an enhancing post-processing mechanism on the
results (i.e. fusion of several classifiers, features, etc.). In such systems, extracted
features from the input signals are usually global features, which represent the overall

characteristics of given multimedia frame, segment, shot or video.

Different from the traditional approaches, contemporary approaches enhance the

feature extraction process. The contemporary approaches bases on two solid ideas:

e Use of local parts and features

e Employing “Bag of Words (BoW)” approach

Brief descriptions on these ideas are given in the following subsections. As a summary,
Figure 7.2 illustrates such feature extraction process. First, salient local keypoints are
selected from the given multimedia frame or segment and representative local parts
of the given frame/segment are found. Then feature descriptions of these points are
generated. Lastly, the bag-of-words approach is applied on these keypoint feature
descriptions and keypoint features of each multimedia frame/segment are converted
into vector space format by clustering them. A complete example of how BoWs are
generated is presented in Figure 7.3. A detailed description of these ideas can be found

in [117].
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7.2.1 Using Local Parts and Features

The idea of using local parts (keypoints) and features is based on the need for iden-
tifying objects in images . Although the pattern recognition literature present many
mature solutions for object detection, the problems due to viewpoint changes, lighting
conditions or partial occlusion make the problem still challenging [117]. Considering
these problems, trying to find objects by some segmentation approaches is not adequate.
A popular solution on this problem is the use of representative local parts (keypoints).
By using an effective local feature, the objects are represented by a set of local regions
(keypoints) each of which is modeled with a feature vector (descriptor) computed from
the region. The keypoints and their descriptors are generated with a controlled degree
of invariance to viewpoint and illumination conditions so that similar descriptors are
computed for all images in the database [117]. Consequently, the idea of using local
parts and features contains two major steps: Salient Keypoint Detection and Keypoint

Description Extraction. These steps are given in detail below.

7.2.1.1 Salient Keypoint Detection

Given an image (or a multimedia frame / segment), salient keypoints are extracted
by employing a saliency detection algorithm. The methods for keypoint detection
can be grouped in two: Dense-sampling and sparse-sampling. In dense-sampling, the
given frame is partitioned into m x n grid and each cell is used as a keypoint. In
sparse-sampling, a keypoint detection algorithm is used and salient points are decided
by sampling a sparse set of locally stable points [52]. The sampled keypoints are
expected to be invariant to geometric and photometric changes. Some sparse-sampling
algorithms are as follows: Laplacian of Gaussian (LoG) [75], Difference of Gaussian
(DoG) [77], Harris Laplace [80], Hessian Laplace [79], Harris Affine [80], Hessian
Affine [79].

7.2.1.2 Keypoint Description Extraction

Keypoint descriptors are used to describe the regions around the keypoints. The de-

scriptors usually provide a description for each keypoint which is invariant to location,
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scale and rotation, and robust to affine transformations (changes in scale, rotation,
shear, and position) as well as changes in illumination. The most famous keypoint
descriptor is SIFT (Scale Invariant Feature Transform) [77]. SIFT is a 128 dimensional
feature vector that captures the spatial structure and the local orientation distribution
of a region surrounding a keypoint. Recent studies have shown that SIFT is one of
the best descriptors for keypoints [52]. Some other well-known keypoint descriptors
are as follows: SURF (Speeded-Up Robust Features) [8], OpponentSIFT [135], RGB-
SIFT [122], HSV-SIFT [14], Hue-SIFT [136], W-SIFT [38], Color Moment [135],
Self Similarities (SSIM) [115], GIST [88], HOG [25].

Here, it should be noted that any global feature can be used as a local feature after
performing keypoint detection by extracting global features for each local patch.

However, SIFT-like invariant approaches perform superior.

7.2.2 Bag of Words (BoW)

Respecting the huge amount of work done in text retrieval, Bag-of-Words approach
is adapted into multimedia domain from the text retrieval literature. Text retrieval
systems employ a number of steps for text retrieval purposes. Firstly, the words in the
document are extracted and their stems are found. Then, a stop word list is used to
prune very common words (e.g. ‘a’, ‘an’, ‘the’, etc.), which are not discriminative for
any document. After that, the remaining words are processed and the frequency of
each unique word is calculated. The documents are represented with a BoW format,
where each document is a feature vector containing the frequencies of the words the
document contains. The word frequency calculation can be done in various ways
(Term Frequency (TF), Term Frequency - Inverse Document Frequency (TF-IDF),

etc.) [117]. The retrieval is based on the constructed vectors for each document.

With a multimedia aspect, it is possible to make an analogy for each modality with
the textual bag of words. For instance, images including some number of salient
keypoints resemble the documents having some number of words parsed. In other
words, visual bags of words can be constructed by using the visual keypoints in
images / videos. In this respect, the BoW idea is to represent each image / video as an

orderless collection of local keypoint features. In order make the representation more
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compact, the keypoints are first clustered into a visual vocabulary with a predefined
size (Figure 7.3), and each keypoint cluster is accepted as a “visual word” in the
visual vocabulary. Then each image / video is represented with a vector containing the
presence of each word in the vocabulary [52]. Not only the presence of the words, any
other weighting scheme can be adapted (i.e. counts, TF, TF-IDF, etc.). This process

can be applied for any other modality of the multimedia data.

7.3 Related Work and Analysis of the State-of-the-Art Approaches

As discussed in detail in previous chapters, combining the information gathered from
multiple modalities is an empirically validated approach to increase the retrieval
accuracy. Considering that the most popular and effective methods in multimedia
analysis studies in the last decade are based on the use of local parts / features in
multimedia documents and employing Bag-of-Words (BoW) approaches, we would
like fuse all available information obtained via BoWs of different modalities. In this
section, we first analyze BoW approach with regard to the aspects given in Section 3.1.
Then the approaches for combining bags of words are presented with a brief literature

analysis and prototype implementation of these approaches.

An important aspect for information fusion is the content representation method
(Section 3.1.4). Bag-of-words representation is a new type of content representation
considering the feature-based, similarity-based and preference-based representations,
which are discussed in Section 3.1.4. Although its usage is very similar with feature
based representation, the information contained in BoWs has a crucial difference. The
low level features in feature-based representation do not have direct semantic meaning,
and cause the well-known semantic gap problem when used. However, BoWs contain
information on the representative parts of object/concepts occurring in the multimedia
data, without assigning a label to the represented parts. Thus, a BoW-level processing

is a new semantic level between the low level features and the high level concepts.

Another important characteristic of BoWs, which provide simplicity during fusion is
that it is self-normalized or very easy to normalize, which is related to the normalization

issue given in Section 3.1.5. Considering that BoWs are generated according to some
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pre-decided vocabulary sizes, it is possible to set the size of the BoW vector. In
addition, the values in the vector are usually frequencies which are in a predefined
range. Since we generate the BoWs of each modality, we use the same metric and
scales for the values in the vector. Therefore, the issues related to the normalization
of sources, that are discussed in Section 3.1.5, are no a longer problem, when the

combination inputs are in BoW format.

In addition to the representation and normalization issues, the fusion strategy to be
used is also a crucial issue (Section 3.1.3). As mentioned in Chapter 3, the correlation
between the inputs is an important source of information for fusion. Such a fusion
strategy can be applied for the fusion of BoWs. Essentially, although employing a
BoW approach and combining multiple BoWs have a big potential to provide a high
accuracy for multimedia analysis, there is still a crucial source of information that is
not used effectively, which is the relations between words. Standard use of BoWs do
not include any relation information between the keypoints (neither a spatial relation,
nor temporal). Thus, we propose to exploit the spatial relationships between keypoints
in each multimedia frame and temporal relationships between the keypoints occurring
in the successive multimedia frames. The relations between keypoints can be either
intramodal or intermodal. An intramodal relation refers to the correlation between
keypoints with respect to a single modality, whereas an intramodal relation is the
correlation between different modalities. Exploiting such relationships can also be
named as extracting the co-occurrences of interesting patterns or mining multimedia

data for frequent patterns.

Another important affecting factor for fusion is the fusion level (Section 3.1.6). Con-
sidering the common fusion approaches and the time to apply the fusion process,
which are discussed in Section 3.1.6, the combination of BoWs can be done basi-
cally by assuming BoW vectors are usual feature vectors. Thus, basic approaches
for combining several BoWs is to combine the feature vectors (early fusion) or the
classification results (late fusion). However, it is possible to reformulate the fusion
levels for combining BoWs as follows, due to the the additional step of clustering in

BoW generation:

e Pre-Early Fusion: First the keypoints of the multimedia document and the
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corresponding descriptions for each keypoint are extracted. Such extraction is
done for each different feature, and the descriptions of different features for each
keypoint are concatenated. After concatenation, vector quantization (clustering)
is performed and the words are generated. These words can be used in any
type of learning architecture. Here, it should be noted that pre-early fusion is
not applicable for multimodal fusion, but it can be used with a single-modality

multi-feature scheme.

e Early Fusion: First, the keypoints and the corresponding keypoint descriptions
are extracted for each modality. Then, keypoints of each modality are clustered
separately, and the BoWs of each modality is obtained. Lastly, the vector

representations of bags are concatenated.

e Late Fusion: For each modality, keypoint selection, keypoint description ex-
traction, BoW generation and classification using the BoWs are performed

separately. Then, the classification results are combined.

Originality of the proposed approach is that it performs mining operation on the Bow
vectors, which means it uses the representative parts of objects/concepts to mine. Thus,
it prevents one from dealing with the unnecessary details in low level features and
performs the mining in an effective way. In addition, it enables more information than
working with high level semantic concepts for mining. Using high level semantic
concepts for mining depends on the success of the high level semantic extraction,
which includes an important problem, namely the semantic gap between low level and
high level features. Also it is highly affected from the viewpoint, lighting, occlusion

problems. Using parts of objects/concepts eliminates such inefficiencies.

Regarding the above given analysis, the solution framework consists of two parts.
First part combines the available BoWs in Early and Late Fusion schemes. These
approaches are widely applied in the literature [50, 52,81, 122]. Second part performs
a mining operation in the multimedia data. Actually, video data mining is an attractive
topic in recent years and the literature contains a considerable amount of studies.
However, most of these studies perform the mining operation directly on the high level
semantic concepts, by ignoring the semantic gap problem [11,33,154]. The rest of

them, work with low level features for mining and do not use spatial and temporal
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relationships between patterns [111]. In addition, most of the studies do not use
intramodal and intermodal relations effectively and designed in a domain-dependent
way [10]. Below, some applicable approaches for multimodal mining are discussed in

detail.

7.3.1 N-grams

Considering that we would like to exploit the interaction between words, the use of
the spatial and temporal proximity between the words can provide us some valuable
information. In [54], Jiang et al. make an analogy between the spatial co-occurrence
of visual words and the bi-grams or N-grams in text categorization and try to obtain
the geometrical structure of an image by using the spatial proximity of words. The use
of N-gram offers a perspective of modeling the spatial and temporal co-occurrence of
multimodal words. Some of the recent similar ideas include the studies of [54,71, 147].
In [54], Jiang et al. construct a two-dimensional co-occurrence histogram to represent
the images based on the visual bi-grams. After eliminating the word couples having
an euclidean distance smaller than a predefined threshold, the resting couples used for
a learning process. With a similar idea, Lazebnik et al. [71] group the neighboring
keypoints for object recognition, and Ye et al. propose a joint audio-visual bi-modal

representation by using the temporal co-occurrence of the audio and visual words.

We can analyze some examples in order to understand the given ideas more clearly.
Let’s consider two BoWs, one of which is visual words, the other one is audio words.
It is mentioned that the spatial proximity of different visual words is important for
classification because it captures the geometrical structure of the image. For example,
visual words depicting ‘tire’ may frequently co-occur with visual words characterizing
‘headlight’. In addition, we can consider the temporal proximity of visual words
depicting ‘tire’ with audio words ‘car voice’, considering that ‘tire’ may frequently

co-occur with the sound of the car which the tire belongs to.

Although N-gram is originally used for predicting a word from a number of consecu-
tive previous words (in text retrieval domain), the approach provides the probabilities
of occurrence for a set of words, as used in [54]. In order to be used with a multi-

modal mining, the definition of N-gram should be extended. Originally, N-gram is
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one-dimensional and neighborhood based. So we should modify N-gram selection al-
gorithm from one-dimensional neighborhood based selection to a spatial and temporal

proximity based algorithm.

7.3.1.1 Prototype Implementation

We implement a preliminary test to analyze the usability of N-grams approach. For the
test, we use the TRECVID 2011 dataset with visual SIFT feature. We construct bag-
of-words representations with a vocabulary size of 1000, for both. For the weighting,
we prefer a binary approach (1 if word exists, 0 otherwise), for simplicity. We select
the ‘Car’ concept for learning and construct bi-grams for visual BoWs and audio
BoWs. As a choice for the spatial proximity between words, we assume that the words
occurring in the same frame are close enough. However, considering that the size of

all 2-grams for such configuration is

1000 1000 . 6
(1) () - o o

it is necessary to reduce number of bi-gram outputs. Thus, a similar approach with
[147] is preferred for pruning the set of word couples and top 1000 results having the

largest Support Dif ference value are selected;
SupportDif ference = support(‘Car’) — support(‘Non — Car') , (7.2)

where support(X) is the count of a bi-gram selection among the all training samples.
After finding the bi-grams, we perform an SVM-based classification with the SIFT and
bi-gram features separately and combine the results with a Linear Weighted Fusion

approach with the following formula
Drysion = (1 —w) - Dsipr +w - Da_gran (7.3)

where w is the weight of 2-gram decisions. Figure 7.4 presents the resulting Average

Precision values.

As seen on the graph, using 2-grams of SIFT increases the accuracy from 64.63%
to 65.24%, which is not statistically significant. The reason why the increase is not
statistically significant is the very simple configuration of the test. We have made two

crucial assumptions for simplicity, that possibly affected the fusion performance:
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Figure 7.4: Average Precision for the fusion of SIFT and bi-gram based retrieval

e The number of 2-gram components are fixed at 1000, which means we use 0.1%

(1,000/1,000,000) of all 2-gram components.

e We used N-grams for only n=2. It is possible to extend the test n=2 to m, where

m is tractable.

The above given preliminary test and the analysis show us that obtaining a reasonable
increase in the performance is possible, but the process may be computationally
complex. Consequently, N-gram approach has a potential to provide extra intramodal
and intermodal correlation information, however it suffers from the combinatorial

explosion problem.

7.3.2 Frequent Itemset Mining

Considering the efficiency problem with N-gram approach, a practical solution for the
extended N-gram idea can be obtained by finding the co-occurrences of interesting pat-

terns directly instead of an exhaustive search by N-gram approach. Finding interesting
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patterns is also called as mining multimedia data for frequent patterns.

In the literature, there are several studies using data mining, more specifically asso-
ciation rule mining (ARM) or frequent itemset mining (FIM), techniques in order to
perform semantic indexing (mostly on image data). In [10], Bhatt et al. perform a
recent survey on multimedia data mining. Pioneers of the multimedia mining studies
mostly deal with high-level features occurring in multimedia data and try to mine fre-
quent patterns on these high-level features. Actually, this approach is very suitable for
finding the correlations between modalities. However, a big majority of the currently
available studies perform the mining only in an intramodal way and do not deal with
multiple modalities. In addition, building the solution on top of the high-level features
causes ignoring the semantic gap problem. Although the BoW representation is a
mid-level representation and BoWs may be applicable instead of high-level features,
still the solutions should be revisited for such an extension. Another deficiency with
these approaches is that they use the same itemsets for learning any of the classes.

However, it is highly probable that each class has a different list of frequent itemsets.

Some of the recent studies [11,21,49, 154] discuss various solutions for multimedia
data mining. For instance, in [154], Zhu et al. work on the frequent high-level features.
Firstly, they employ several video processing techniques to find some audio/visual cues
such as court field, camera motion activity, applause in basketball videos; then perform
association mining among these cues and assign each association a high-level class
label. In [11], Bhatt et al. perform the probabilistic mining process, considering the
accuracies of the detected events may change over a time interval. In [21], the authors
focus on the temporal information in the video and propose a hierarchical temporal
association mining approach by extending the traditional association mining method.
Not only the study of Chen et al., but the former two studies are also based on traditional
association mining approaches. Yet, considering that the traditional association mining
approaches may lead to combinatorial explosion problem, in [49], Jiang et al. propose
a non-traditional association mining approach, and use a neural network to learn direct
mapping between the visual and textual features by automatically and incrementally

summarizing the associated features.

163



7.3.2.1 Prototype Implementation

Considering above ideas, we carry out a prototype implementation by using the
TRECVID 2011 dataset. We have used 71,502 training shots and 34,179 test shots
with 50 concepts, which is the configuration for the Lite Run of the Semantic Indexing
task of TRECVID 2011. We extract visual SIFT and audio MFCC features and
construct bag-of-words representations with a vocabulary size of 1000 for both. For

the weighting, we prefer the TF approaches (TF: number of word occurrences in shot).

During the evaluation, we first calculate the retrieval accuracies for SIFT and MFCC
features, with an SVM based approach. Then we calculate the intramodal correlations
for each multimodal feature. For correlation analysis, we employ frequent itemset
mining and utilize a FP-Growth implementation [13] to calculate the frequent itemsets.
We prefer selecting the maximal frequent itemsets during the FIM. After finding
frequent itemsets, we accept each itemset as an attribute of our new feature vector. We
perform an SVM based classification approach in order to find retrieval accuracy of

the correlation based features.

Before the classification step, considering that the number of itemsets obtained from
the FIM is really huge, we perform a filtering step on the attributes and try different
alternatives for how the attributes are selected. For the filtering of attributes, we prefer
support (Sup) based filtering, for which we select the itemsets with top-k support
values, where k is a predefined value. Here, the support value denotes the occurrence
percentage of the itemsets among the samples of each class. For the attribute selection

step, we compare three alternatives:

e Common: A single feature vector is constructed for using with any of the classes,
which also means the same itemset list is used for learning any of the classes.

This is the way how the current studies construct attributes from itemsets.

e Combined: Top-k attributes are selected for each class, separately. Then, all

attributes are combined into a single vector.

e Separate: Top-k attributes are selected for each class, separately. Then, only the

corresponding attributes of each class is used as the feature vector.
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For the above given configurations, we perform several tests. The tests are based on
the semantic retrieval of the video shots according to the semantic concepts. The
Mean Average Precision MAP) values are presented in Table 7.1. In addition, Average

Precision results of some example concepts are also presented.

According to the empirical results presented in Table 7.1, following evaluations can be

done:

e The retrieval performances seems to be very low and insufficient, in general.
However, we should note that we do not spend much time on optimizing the SIFT
and MFCC features (specifically, for salient keypoint detection), finding the
optimal number of vocabulary count and kernel optimization of SVM classifier,
since this is only a prototype testing. In addition, it is should be remarked
that best MAP accuracy obtained in TRECVID 2007 Semantic Indexing task is
around 15% and the median of all participants is about 5.6%. Thus, we do not

stick to the low performance and continue with the tests.

e Itis clear that ‘Combined’ attribute selection performs better than a ‘Common’
selection, however a ‘Separate’ selection is the worst. It is expected that selecting
top-k itemsets is better than using the same itemsets for all classes; however,
it is interesting to see that it is necessary to combine itemsets of all classes
into a single vector. This can be evaluated as a consequence of early fusion of

attributes.

e Considering the results of SF;, SFj3; we can state that the number of attributes
incorporated affects the performance, however, using more attributes increases
the training time for SVM classifiers. Thus, it is important to find an optimum

value of attributes by filtering the attributes.

e Considering that accuracy of S+ SF] is better than S and S'F}, and M + M F is
better than M and M F7; it can be resulted that using an intramodal FIM provide

useful information for the fusion process.

e Considering the accuracies of the SM F' and the configurations including SM F,
it seems that intermodal FIM provides more useful information than the in-

tramodal FIMs.
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Table 7.1: Prototype Analysis for Frequent Itemset Mining

M .m M £ = g .mo m o
Test Name MWMMMMM MM MM OdMnDnaM BDAIM AMn
S N/A 1000 | 15.980% 12.758% 11.036% 7.051% 5.418% 1.898% | 4.366%
SFy Common 1000 | 13.629% 11.821% 10.691% 4.513% 1.544% 1.127% | 3.810%
SFy Combined 1024* | 15.849% 11.454% 10.629% 5.033% 2.391% 1.529% | 4.202%
SFy Seperate 40 17.060% 11.359%  5.384% 4.967% 1.404% 0.963% | 3.730%
SFs Separate 1000 | 13.945% 11.119% 7.921% 4.574% 1.729% 0.918% | 3.834%
SMF Combined 2000* | 14.519% 11.093% 11.229% 5.776% 1912% 2.238% | 4.116%
M N/A 1000 | 10.134% 12.568% 11.572% 4.583% 1.550% 3.455% | 3.958%
MFy Combined 1361* | 9.675% 11.760% 10.676% 3.396% 0.956% 1.836% | 3.448%
S+ M N/A N/A | 16.170% 12.415% 11.435% 7.361% 5.246% 2.838% | 4.593%
S+ Sk N/A N/A | 15.823% 11.957% 11.691% 7.155% 5.372% 1.806% | 4.437%
M+ MF, N/A N/A | 10.199% 12.523% 11.494% 4.579% 1.504% 3.386% | 4.027%
SFy+ MF, N/A N/A | 14290% 11.004% 10.434% 5.145% 1.221% 1.876% | 4.197%
S+M+SMF N/A N/A | 15.852% 11.592% 11.044% 7.191% 2.719% 1.696% | 4.459%
S+SFi+ M+ MF, N/A N/A | 16.616% 12.291% 11.882% 6.685% 4.907% 3.151% | 4.695%
S+SFi+M+MF+SMF N/A N/A | 16.895% 12.312% 11.660% 6.844% 5.169% 3.336% | 4.773%

S: SIFT, M:MFCC, SF': SIFT_FIM, M F: MFCC_FIM, SM F: SIFT_MFCC_FIM

* (40x50): Top-40 attributes of 50 classes are combined into a single vector.

+ given in the test configurations denotes the late fusion of the features.
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e During the intermodal FIM, we combine the attributes of both modalities (SIFT
and MFCC). When multiple modalities are combined with a concatenation
approach, an important problem occurs since each modality have different
support intervals. Actually, this is the well-known problem of ‘rare itemsets’
in data mining domain. If we apply a unique support threshold for both of
the modalities, one of them (in our case, it is SIFT) becomes more dominant.
Thus, it is required to solve such problem in an intelligent way which is not
affected from the different support levels of each modality. In this test, we
simply selected the itemsets having items from both of the modalities. Here,
we should note that performing a combined frequent itemset mining as we do
here is not studied even in the data mining domain before (e.g. finding frequent

itemsets from two market-baskets collaboratively).

e The ‘rare itemset problem’ also occurs while working with different classes.

This leads us to use class-specific support thresholds for each class.

7.3.3 Improving Frequ