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ABSTRACT

FUSION OF MULTIMODAL INFORMATION FOR MULTIMEDIA
INFORMATION RETRIEVAL

Yılmaz, Turgay
Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

September 2014, 237 pages

An effective retrieval of multimedia data is based on its semantic content. In order
to extract the semantic content, the nature of multimedia data should be analyzed
carefully and the information contained should be used completely. Multimedia
data usually has a complex structure containing multimodal information. Noise in
the data, non-universality of any single modality, and performance upper bound of
each modality make it hard to rely on a single modality. Thus, multimodal fusion is
a practical approach for improving the retrieval performance. However, two major
challenges exist; ‘what-to-fuse’ and ‘how-to-fuse’. In the scope of these challenges, the
contribution of this thesis is four-fold. First, a general fusion framework is constructed
by analyzing the studies in the literature and identifying the design aspects of general
information fusion systems. Second, a class-specific feature selection (CSF) approach
and a RELIEF-based modality weighting algorithm (RELIEF-MM) are proposed to
handle the ‘what-to-fuse’ problem. Third, the ‘how-to-fuse’ problem is studied, and
a novel mining and graph based combination approach is proposed. The approach
enables an effective combination of the modalities represented with bag-of-words
models. Lastly, a non-linear extension on the linear weighted fusion approach is
proposed, by handling both of the ‘what-to-fuse’ and ‘how-to-fuse’ problems together.
We have conducted comprehensive experiments on CalTech101, TRECVID 2007,
2008, 2011 and CCV datasets with various multi-feature and multimodal settings; and
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validate that our proposed algorithms are efficient, accurate and robust ways of dealing
with the given challenges of multimodal information fusion.

Keywords: Multimodal fusion, multimedia information retrieval
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ÖZ

ÇOĞULORTAM BİLGİ ERİŞİMİ İÇİN ÇOK KİPLİ BİLGİNİN BİRLEŞTİRİLMESİ

Yılmaz, Turgay
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Eylül 2014, 237 sayfa

Çoğulortam verilerine etkili bir erişim, verideki mantıksal içerik üzerine bina edilir.
Mantıksal içeriğin çıkarılması için, çoğulortam verisi dikkatlice analiz edilmeli ve
bilgi verinin içerdiği tüm bilgi kullanılmalıdır. Çoğulortam veriler, içinde çok kipli
bilgi barındıran karmaşık bir yapıya sahiptir. Verideki gürültü, herhangi bir tekil kipin
genelgeçer bilgi içerememesi ve her kipin performans üst limiti sebebiyle, herhangi
bir kipten sağlanacak bilgiye güvenmek mümkün değildir. Bu yüzden, bilgi erişimi
işleminin performansını artırmak için çok kipli bilginin birleştirilmesi kullanışlı bir
yöntem olarak ortaya çıkmaktadır. Fakat, bu yöntemle ilgili olarak iki temel zorluk
bulunmaktadır; ‘ne’ ve ‘nasıl’ birleştirilmeli. Verilen bu zorluklar kapsamında, bu
tezin katkıları dört başlık altında incelenebilir. İlk olarak, literatürdeki çalışmaları
incelenerek ve genel bilgi birleştirme sistemlerinin tasarım kriterleri saptanarak genel
bir birleştirme çerçeveleri ortaya konmuştur. İkinci olarak, ‘ne’ birleştirilmeli proble-
mini çözmek amacıyla, sınıfa özgü öznitelik seçim (CSF) yöntemi ve RELIEF-tabanlı
bir kip ağırlıklandırma algoritması (RELIEF-MM) önerilmiştir. Üçüncü olarak, ‘na-
sıl’ birleştirilmeli problemi ele alınıp, madencilik ve çizge tabanlı yeni bir yöntem
önerilmiştir. Bu yöntem kelime torbaları modeliyle temsil edilen kiplerin etkili bir
şekilde birleştirilmesini sağlamaktadır. Son olarak, bahsedilen iki problem birlikte ele
alınarak, doğrusal ağırlıklandırmalı birleştirme üzerine, doğrusal olmayan bir ilave
yapılmıştır. CalTech101, TRECVID 2007, 2008, 2011 and CCV veri kümelerinde
çeşitli çok öznitelikli ve çok kipli ayarlar ile kapsamlı deneyler yapılmış, ve önerilen
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algoritmaların belirtilen problemlerin çözümünde verimli, etkin ve sağlam yöntemler
olduğu ortaya konmuştur.

Anahtar Kelimeler: Çok kipli birleştirme, çoğulortam bilgi erişimi
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CHAPTER 1

INTRODUCTION

“ The hand of one fell on the trunk: he said ‘This creature is like a water-pipe’.

The hand of another touched its ear: to him it appeared to be like a fan.

Since another handled its leg, he said, ‘I found the elephant’s shape to be like a pillar’.

Another laid his hand on its back: he said ‘Truly, this elephant was like a throne’ ”

The elephant in the dark

1

Increase in the use of digital images and videos in recent years has shown the need for

modeling and querying the multimedia data. Free-browsing and text-based retrieval of

previously annotated data are not enough due to the limitations for querying. Therefore,

developing techniques for the retrieval of multimedia data based on the semantic

content has attracted many researchers [73, 118]. However, the gap between the low

level features and the semantic content of the multimedia data makes the semantic

content extraction issue a challenging problem, and impedes achieving consistently

high retrieval accuracies in many potential “real-world” applications. In order to

handle such impediment, one or more of the routes below may be followed [24]:

• Developing superior content extraction methods than the currently available

ones

• Optimization of components (preprocessing, feature extraction, classification,

etc.) of currently available methods

• Fusion of multiple classifiers, features/modalities or information sources
1 A poem from Rumi (Masnavî 3:1267-1270). Similar stories are also famous in various religious traditions

like Sufi, Buddhist, Hindu and Jain lore.
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Development of new extraction methods and making optimization on the available

ones are traditional ways of dealing with the given problem. The usual solution

approach in such studies includes an experimental assessment of alternative designs

(by means of the utilized features, classifiers, etc.), and building the solution on the best

design alternative. However, different design alternatives can provide complementary

information about the patterns to be extracted [61]. Thus, fusing multiple information

sources, classifiers or features is a popular approach for semantic content extraction,

in the last few decades.

In addition to the route followed for semantic content extraction, the content of the

multimedia data is another crucial aspect. In order to extract the semantic content from

the multimedia data more effectively, the nature of the data must be examined carefully

and information contained in the data should be used as completely as possible. The

multimedia data usually has a complex structure containing multimodal information

(i.e. audio, visual and/or textual modalities). In the context of semantic content

extraction, using a single modality may not be enough to obtain a successful retrieval

solution, because of the potential noise in sensed data, non-universality of any single

modality and the performance upper bound of each modality [98]. In addition, each

modality abstracts multimedia data from a different aspect. Thus, different modalities

complement each other [51]. Eventually, fusing multimodal information in multimedia

data improves the retrieval performance.

1.1 The Problem

As stated above, information fusion is an effective way of improving the retrieval per-

formance. However, combining a set of modalities, features, classifiers or information

sources includes several difficulties. In order to understand such difficulties clearly,

we can make an analogy with a committee of experts [30]. Assume a committee of

experts trying to give decisions on the issues they asked. Considering that the experts

in the committee may have different backgrounds and expertise areas, each of them

could give different decisions. Then, how does such a committee arrive at a final

decision? What is the decision-making process of the committee? How can the final

decision of the committee be arrived? Is voting a good way or does it neglect the
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experts’ differences in skills? Should every expert give a vote on every subject or

should the authorities of experts be limited according to their expertise area and skills?

In addition, is there a way to decide whether any of the experts is faking or really

an expert? Should we believe every expert without any questioning? Assume we

found some ways to solve above problems. Should we always trust these solutions?

Or should we keep in mind that any of the experts can change his mindset, or some

experts can have progress on their expertise while some others lose their abilities and

expertises in time?

The analogy makes us distinguish the mostly known, thereof mostly studied, problems

of the fusion systems. The analogy represents two major problems; (i) selecting

appropriate committee members and determining their effect on the final decision,

based on the given problem, (ii) finding an appropriate mechanism to combine the

decisions of the selected committee members. Actually, these are the problems pointed

out by many researchers in the information fusion domain. The major two problems

of information fusion, which have not been adequately addressed yet and are still

attractive research areas [4, 98, 143] are:

• What to fuse: Determining the best components for fusion,

• How to fuse: Finding the best fusion methods.

In addition to the above given problems, another important issue is the lack of a well

defined general framework for information fusion [63, 64, 143]. The literature on

information fusion shows that several disparate research areas utilize information

fusion [63] and a big number of studies from these research areas try to find some

optimum solutions to the above given problems [70]. Nevertheless, almost all of the

solution are ad-hoc strategies [2] and does not present a general framework which

defines all factors affecting the fusion process [47]. Building a general framework for

information fusion helps us see the big picture of the whole fusion process and identify

which variables are effective during fusion.
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1.2 Scope & Contributions

The scope of this dissertation includes the construction of a general fusion framework

by performing a literature survey, and the above given two core issues of information

fusion in the context of multimedia information retrieval. For the What to fuse problem,

firstly, a class-specific feature/modality selection approach is proposed. Then, this

approach is extended into RELIEF-based feature/modality weighting algorithm. For

the How to Fuse problem, a novel mining and graph based combination approach

which enables an effective combination of the modalities represented with Bag-Of-

Words models is proposed. In addition, a non-linear weighted averaging approach,

which attacks the What to Fuse and How to Fuse problems together, is proposed.

Below, each of these work items are described in brief.

The thesis study is started with a literature survey, primarily analyzing the information

fusion literature and identifying the design aspects of a general information fusion

system. The analysis enabled us to propose a general framework which helps to

represent a big picture for information fusion systems. In the framework, each design

aspect is accepted as an affecting variable for the Fusion Process. In accordance with

the problem definition, the process is composed of two primary tasks; Defining What

to Fuse and Defining How to Fuse. In addition, another task named Defining Fusion

Scenario takes place before the Fusion Process. Defining Fusion Scenario task is

based on the inputs of fusion and helps to define overall architecture of the Fusion

Process. Besides, the task of Defining What to Fuse requires an effective and efficient

selection of the fusion elements and is configured with following parameters: Selection

of Sources and Fusion Strategy. After performing this task, Selected Fusion Elements

are obtained, which are related with the variables Content Representation and Normal-

ization of Sources. Finally, Defining How to Fuse task is performed, which defines

how we combine the selected elements. The task is configured with the following

variables: Fusion Level, Fusion Method, Operation Modes and Synchronization.

After identifying the design aspects of fusion systems, two core problems of fusion are

focused. As a first step, the What to Fuse and How to Fuse problems are considered

together, and an effective fusion architecture is investigated by regarding the most

frequently utilized approaches in the literature. The most frequently utilized approach
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is the Linear Weighted Fusion [37, 133, 145], due to its simplicity and reasonable

performance despite its simplicity. However, it suffers from the performance upper-

bound of linearity and dependency on the selection of weights. In this context, the

study is focused on two questions, considering two important deficiencies of Linear

Weighted Fusion: (i) Can we find a method which is as simple as the linear weighted

fusion and can exceed the performance upper bound of linear weighted fusion? (ii)

Can we find a method which is less-dependent on the selection of the weights? Aligned

to these aspects, a ‘simple’ alternative for linear combination is introduced, which

is a non-linear extension on it. The approach is based on the Analytical Network

Process [109], which is a popular approach in Operational Research, but never applied

to multimodal information fusion before. The approach benefits from two major

ideas; interdependency between classes and dependency of classes on the features.

The proposed method is evaluated with Columbia Consumer Video (CCV) Database

by using multimodal features of SIFT, MFCC and STIP. Experiments demonstrate

that proposed approach outperforms linear combination and other simple approaches,

moreover it is less-dependent on the selection of weights.

Secondly, the problem of What to fuse is studied in the context of multimodal infor-

mation fusion. As a contribution, a class-specific feature/modality selection (CSF)

approach for the fusion of multiple features/modalities is proposed. In order to elimi-

nate the high-dimensionality of multiple features and provide efficient querying over

the multimedia documents, a dissimilarity based approach is used. The class-specific

features are captured through a training phase, in which the class-specific features

are determined by using the representativeness and discriminativeness of features for

each class / concept. The calculations of representativeness and discriminativeness are

based on the statistics on the dissimilarity values of the training data. The proposed

approach is firstly evaluated in a multi-feature setting by using the CalTech 101 dataset

with 8 MPEG-7 visual features and compared with the retrieval performance of single

features, simple combination approaches and exhaustive search approach. Then several

experiments in a multimodal environment are conducted by using TRECVID 2007

dataset with 3 visual, 2 audio and 1 textual modalities. Lastly, the proposed approach

is utilized for efficient feature selection and combination in a Wireless Video Sensor

Networks application [94]. The results obtained from all three test configurations show
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that proposed class-specific feature selection approach is an effective and efficient

feature selection method.

Thirdly, the proposed CSF approach is extended and converted into a RELIEF al-

gorithm extension, due to the similarities between CSF and RELIEF. The RELIEF

algorithm is considered one of the most successful weighting algorithms [105] and

in which the calculations are based on the distances between training samples. Yet,

there exists no usage of the RELIEF algorithm for multimodal feature selection in

multimedia retrieval, to the best of our knowledge. Employing the RELIEF algorithm

for multimodal feature selection on multimedia data enables us to identify some weak-

nesses of the algorithm in the following major issues: class-specific feature selection,

complexities with multi-labeled data and noise, handling unbalanced datasets, and

using the algorithm with classifier predictions. Considering the characteristics of

multimedia data and multimedia retrieval systems, the original RELIEF algorithm is

extended for the given issues, and the RELIEF for multimedia data (RELIEF-MM)

algorithm is proposed. RELIEF-MM employs an improved weight estimation function,

which exploits the representation and reliability capabilities of modalities, as well as

the discrimination capability, without any increase in the computational complexity.

The comprehensive experiments conducted on TRECVID 2007, TRECVID 2008 and

CCV datasets validate RELIEF-MM as a timely-efficient, accurate and robust way of

modality weighting for multimedia data.

Lastly, but not least, the problem of How to fuse is studied, in order to propose an

effective combination approach. The most popular and effective methods in multimedia

analysis studies in the last decade are based on the use of local parts / features in

multimedia documents and employing Bag-of-Words (BoW) approaches. Thus, the

last part of the thesis is focused on combining the Bags of Words obtained from

different modalities. Most of the currently available studies focus on combining the

BoWs with early or late fusion schemes [50, 52, 81, 122]. However, most of the

studies do not use intramodal and intermodal relations effectively [10]. In order

to combine all available information provided by any single modality, correlations

within a modality and correlations between different modalities; we propose a novel

mining and graph based combination approach. In order to combine all available

information effectively, the classification outputs of each single modality, intramodal
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process and intermodal process are combined with a late fusion approach. For the late

fusion, a linear weighted averaging approach is utilized with the weights generated

by using RELIEF-MM algorithm. Throughout the intramodal process, the words of

each modality and the correlation between these words are converted into a graph

representation, and then the meaningful phrases are extracted by using these words.

In order to extract the phrases, the most together occurring k number of words are

extracted from the constructed word graph. The intermodal process is similar with

the intramodal process. Differently, in intermodal process, the correlation between

the extracted phrased of different modalities are calculated and converted into a graph

representation. Then, the multimodal phrases are extracted from the graph. Both of

these processes end up with using the extracted phrases for classification. Experiments

conducted on TRECVID 2011 dataset with visual, audio and text modalities provide

promising results.

1.3 Organization

In Chapter 2, an introduction to the basic concepts used in this dissertation is given.

The chapter first gives a brief definition of pattern recognition and classification. Then,

the concept of information fusion is described with a brief definition, history, reasons

for fusion and expectations from fusion. Lastly, the multimodality concept is defined.

Chapter 3 presents the literature survey on information fusion and proposes a general

framework representing the big picture for designing an information fusion system.

In Chapter 4, the Non-Linear Weighted Averaging based fusion approach, which is

based on Analytical Network Process, is introduced. The chapter includes a brief de-

scription on Analytical Network Process, related work, the description of the proposed

approach, experiments and the evaluation.

In Chapter 5, the class-specific feature selection approach is described. The chapter

first describes multi-feature modeling in dissimilarity space. Then the class-specific

feature selection approach is given in detail. After the description of the approach,

experiments with multi-feature and multimodal settings are presented. In addition, the

utilization of the approach in a Wireless Video Sensor Networks application is given.
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In Chapter 6, the RELIEF-MM algorithm for modality weighting is presented. The

chapter first given a detailed related work, as well as the description of the original

RELIEF family algorithms. Then, the proposed algorithm is given in detail. Lastly,

the experiments conducted on TRECVID 2007, TRECVID 2008 and CCV datasets

are presented with evaluations.

Chapter 7 presents the mining and graph based fusion approach for combining the

Bags of Words obtained from different modalities. The chapter includes gives a brief

definition on the approaches frequently utilized by the state-of-the-art studies. Then,

after a discussion on alternative approaches for combining the Bags of Words, the

proposed approach is described and the experiments conducted are presented.

In Chapter 8, a demo application for multimedia information retrieval is presented.

Throughout the chapter, first the need for such an application is discussed, and the

application is presented with several screenshots. Lastly, an evaluation on the demo

application is given.

Lastly, Chapter 9 provides a broad summary and conclusion on the dissertation, as

well as the future work.
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CHAPTER 2

BACKGROUND INFORMATION

In this chapter, the fundamental concepts about the study are presented. Consider-

ing the thesis title, the study includes issues on Pattern Recognition, Classification,

Data/Information Fusion (with a Pattern Recognition point of view) and multimodality.

Corresponding sections are presented in this chapter. The major goal of this chapter is

to give the readers some brief information about the building stones of the proposed

study.

2.1 Pattern Recognition and Classification

In machine learning, pattern recognition is defined as;

“The assignment of some sort of output value (or label) to a given input
value (or instance), according to some specific algorithm.” [140]

Classification (or categorization) is a subset of pattern recognition that attempts to

assign input values to some predefined pattern classes. A pattern class is a collection of

similar (not necessarily identical) objects. Classes are defined by using class samples,

which are any of training/learning samples, prototypes or paradigms.

More formally, classification can be defined as assigning an input si to a class cj

by approximating a function �
0
: S ⇥ C ! {T, F} by maximizing the coincidence

of �0 with the actual classification �, where S = s1, s2, .., sm is the set of inputs,

C = c1, c2, .., cn is the set of classes and {T, F} are boolean values that defines

whether the classification is true or false [114].
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A classifier (or learner) is defined as the algorithm performing the classification. More

concretely, the function implementing the classification algorithm can be called as

a classifier. Classifiers accept instances of classes as input and tries to determine

the correct class of it. During classification process, instances are represented with

features. Features can have different types of values; categorical/nominal (i.e. “male”

or “female”), ordinal (i.e. an ordered set: “large”, “medium” or “small”), integer-

valued, real-valued, etc. [138]. As the output, a simple classifier can give the label of

the corresponding class. More complicated classifiers can give score values for the

classification results. Furthermore, it is possible to return a ranked list of probable

classes according to calculated score values.

Classification is a supervised (learned) procedure, that means a classifier learns classi-

fying inputs by using a training set of class instances. Besides, there exists another

subset of pattern recognition which is an unsupervised procedure, called as Clustering.

Since clustering enables only grouping instances according to their similarities and

cannot give labels to these groups; it is out of our scope in this study.

Figure 2.1: A Typical Classification Process

A typical pattern recognition process is summarized in Figure 2.1. Considering the

figure, the process starts with the perception of some input from the real world via some

hardware called sensors. A sensor converts physical inputs (i.e. sounds or images) into

signal data. Then, this raw data of sensors are preprocessed. The preprocessing step

can include enhancement and segmentation operations that makes the raw data more

easily processable and removes unnecessary parts of it. After preprocessing, a feature

extraction step is employed and several important properties of the real world input

that are useful for classification are extracted by using the sensor data. Afterwards,
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features are used for classification. The classification results with a class label, a score

or a ranked list. Lastly it is possible to have an enhancing post-processing mechanism

on the results.

2.2 Data/Information Fusion

Data/information fusion is the process of combining data/information from multiple

sources in order to infer new results that may not be resulted by any of the single

sources or obtain more efficient and accurate results than any of the single sources. A

typical fusion system is illustrated in Figure 2.2.

Figure 2.2: A Typical Fusion System

In a fusion system like in Figure 2.2, the ‘source’ can be any of the followings: sensor,

feature, modality, classifier, information resource (dataset, library, different real world

situations etc).1 2 Explanations for combining each source type are given below, with

corresponding examples:

• Sensors: The fusion system combines outputs of multiple sensors. For instance,

combining outputs of a RGB and a NIR camera.

1 Meanwhile, it should be noted that the fusion scope of pattern recognition or multimedia retrieval systems
do not involve the fusion studies in sensor level, in principle. Studies in these areas deal with the features of the
objects as the lowest level, not with the signal inputs or raw sensor data. Thus, no details will be given for sensor
fusion although some introductory information is presented.

2 Since the scope of this study is “Fusion of Multimodal Information in Multimedia Information Retrieval”,
the thesis usually refers fusion process as combining modalities or features. Considering the fact that the source
for a fusion system can be any of sensor, feature, classifier or information resource; these phrases can also be
interchangeably used with the phrase “source”. Also, any of these source types is applicable for a generic fusion
structure.
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• Features: The fusion system combines instances of different features. For

instance, combining color and shape features to recognize an object.

• Modalities: The fusion system combines data of different modalities. This case

is not much different from multiple features case, considering that modalities

consist of several related features. An example for multimodality is combining

face and hand-shape modalities in a biometrics system.

• Classifiers: The fusion system combines multiple different classifiers. Creating

different classifiers can be don by several ways. In [30] Duin et al. presents

methods of generating different classifiers. Some of them include using dif-

ferent classification algorithms, having different algorithm-parameter choices,

performing different initializations. Examples for these cases, respectively, are

as follows:

– combining results of a Bayesian classifier and a decision tree for the same

inputs

– combining k-NN classifiers with different number of neighbors

– combining differently-initialized neural network classifiers

• Information resources: The fusion system can combine information of different

datasets/instances/situations. In other words, the system can combine multiple

outputs (in time-based manner) of a single sensor, different instances of a

single feature, classifiers trained with different datasets (classification algorithm,

parameters, initializations, etc. are the same) or different instances of single

modality. Corresponding examples are:

– combining satellite images of an area that are taken at different times

– combining shape features of a person such that the shapes are from different

perspectives to obtain a more robust shape recognition

– combining two decision-tree classifiers that are trained over different

datasets

– combining two face recognizers of a biometrics system where one of

them is trained in good light conditions, the other one is trained for dark

situations
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A more imposing definition is presented by JDL/DFG3 [63, 74]:

“Information fusion is an Information Process dealing with the associa-

tion, correlation, and combination of data and information from single

and multiple sensors or sources to achieve refined estimates of param-

eters, characteristics, events, and behaviors for observed entities in an
observed field of view”(Figure 2.3)

The JDL/DFG introduced a model of data fusion that identifies levels of fusion process-

ing, types of fusion functions, and candidate algorithms for performing fusion. This

model and related techniques have been applied to several non-military applications

such as environmental modeling, control of complex systems and medical applications,

as well as their primary scope of military domain [74]. Nevertheless, the detailed

studies of the JDL/DFG group is beyond our scope, considering that the group studies

on military-based domain and consequently their aspect of fusion is mostly on the

sensor fusion.

Figure 2.3: JDL/DFG Definition of Fusion

Information fusion is utilized in a vast number of research areas, some of which are

pattern recognition, information retrieval systems, geospatial information systems,

cheminformatics, bioinformatics, wireless sensor networks, biometrics systems. In

different research areas information fusion has different meanings [20]. In applied

sciences, engineering and military applications, information fusion is mostly identified

with sensor fusion. Studies aim to combine data of multiple sensors or multiple data

instances of a single sensor. In pattern recognition and machine learning, information
3 JDL/DFG is the Data Fusion Group in Joint Directors of Laboratories. JDL/DFG is established in 1984,

under U.S. Department of Defense.
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fusion is mostly explained with combining classifiers to increase classification accuracy

or handling classifier ensembles according to their outputs by resampling the input.

The distinction between the research areas originates from what they work on. The

areas working on input signals of systems prefer sensor fusion, whereas the working on

features and feature-based recognition or retrieval choose classifier fusion. However,

as mentioned in the Section 2.2.1, recent studies tend to relax such distinction and

extend their working area to more generic information fusion.

One more remarkable issue on the information fusion is the diversity of studies even

in classifier combination, the pattern recognition point of view on information fusion.

Due to the diversity of studies, there are many different names in the literature [69]:

combination of multiple classifiers, classifier fusion, mixture of experts, committees of

neural networks, consensus aggregation, voting pool of classifiers, dynamic classifier

selection, composite classifier system, classifier ensembles, divide-and-conquer classi-

fiers, pandemonium system of reflective agents, change-glasses approach to classifier

selection.

2.2.1 A Brief History

In the literature of pattern recognition, previously, main effort focused on designing

one good classifier. Then it is argued that building a number of classifiers with

low dimensionality and high performance, and combining them could achieve more

successful results. Thus, information fusion studies has begun [144]. The roots of the

fusion studies can be found in the neural network literature, as early as 1960’s [63, 64].

Early approaches, until the beginning of 2000’s, aimed to combine results of multiple

classifiers [61]. They did not consider multimodality [63], moreover many of them

studied combining multiple classifiers on only single feature [61]. Later on, several

studies found out that using a different classifiers for different feature gives better

results [31, 61, 67].

After 2000, the area of information fusion has become more attractive, even a confer-

ence series named “International Workshop on Multiple Classifier Systems” started in

2000.
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In the contemporary approaches, the sense of fusion began to extend from combin-

ing classifiers to combining information, where information can be any of features,

modalities, classifiers or data sources. Correspondingly, the importance of multimodal-

ity issue has increased [98, 123]. In addition, studies on dependency/correlation of

sources has begun to increase in this decade, whereas most of the studies had preferred

independent sources in the earlier years [62, 64].

2.2.2 Reasons for Fusion

Information fusion primarily aims at having more efficient and accurate result by

combining currently available (multiple) systems/components. Some of the reasons

for not relying on a single source are given below:

• Fusion of complementary sources provides a more complete representation of

the world. Fusion of redundant (cooperative or competitive) sources reduces the

uncertainty and increases the robustness [63].

• A practical benefit of fusion is that it lowers unreliable sources. It cannot be

known during design time how each feature, modality or data source performs in

real world environments and which of them are the most reliable. So, by fusion,

dependency on any of the sources can be decreased [63].

• Noise in the sensed data causes inefficiencies in recognition. Having multiple

sources can decrease the effect of noise. For instance; consider person recogni-

tion. The same face under changing lighting condition appear more differently,

then different faces can be captured. Designing multimodal system not based on

only face traits can resolve the problem [46, 98].

• None of the sources is universal for the recognition problem; each of them have

a usage area. While no single source is perfect, a combination of them should

ensure wider coverage of usage area, hence improving accessibility. For instance,

consider person recognition, again. An iris recognition system may be unable to

obtain the iris information of a person with long eyelashes, dropping eyelids or

certain pathological conditions of the eye. Thus, designing a multimodal system

not only based on iris recognition can increase the usability [46, 98].
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• Each single system or source has an upper bound on system performance. The

recognition performance of any single system cannot be continuously improved

by tuning the feature extraction, classifier, or some other steps. There is an

implicit upper bound on the number of distinguishable patterns by using a

determined methodology and features. Thus, no single source or methodology

is totally perfect. Integrating them can give better results [46, 98, 144].

2.2.3 Expectations

There are several expectations from a fusion system to be more efficient, effective and

practicable.

• Fusion should increases robustness and performance of classification [20, 63,

128].

• A correct fusion system should be at least as effective as any of its parts [63].

• A fusion system should be flexible (it should handle any new sources blindly) [15].

• A fusion system should be fast (online learning should be possible) [15].

2.3 Multimodality

The meaning of the word “modality” in our usages comes from the domain semiotics.

In semiotics, the definition of modality is as follows:

“A modality is a particular way in which the information is to be encoded
for presentation. It refers to a certain type of information and/or the
representation format in which information is stored.” [139]

According to the definition, modality is a vague concept that can be concretized

in different ways. Considering our domain of pattern recognition and information

retrieval, the building stone to represent the objects is the features. At one extreme,

each of the features can be treated as separate modalities. At the other extreme, all of

the features can be treated as one modality [143]. A mid-point can be grouping the
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features according to some criteria. For instance it can be regarded that the extracted

features of a video object can be grouped according to their media-source: formulating

visual, audio, and caption modalities with related features. However, each of these

modalities can be expanded. For instance; even visual data can be defined with several

modalities like color, shape, texture, face, etc.

The multimedia community employs one the above given approaches for the selection

of modalities. But there is no absolute evidence on which of these feature compositions

yield the optimal result [143].

In the literature of fusion, the multimodality issue mostly occurs in the multimedia

and biometrics domains. The multimedia domain needs multimodality to express

the complex structure of multimedia data including content from different media-

sources. The biometrics domain tries to recognize humans based upon their physical

and behavioral traits. Since recognition with only a single trait is not enough, the

studies regard each trait as a different modality for fusion.

In this study, in principle, each different media source (i.e. visual, audio and text) is

taken as a different modality. We also consider that different features from the same

media source, but containing a significant amount of complementary information,

should be regarded as different modalities. For instance ‘motion’ related features are

extracted from the visual part of the video, however, we accept motion as a different

modality. In addition, the ‘color’, ‘shape’, ‘texture’ features extracted from the visual

media source abstract the information from different aspect, thus we accept these

features as different modalities, wherever necessary. In brief, the criteria of being

a modality for this study is to have a different aspect of representing the data and a

significant amount of complementary information with other modalities.
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CHAPTER 3

THE BIG PICTURE & LITERATURE SURVEY

In this chapter, a literature survey on the information fusion systems is presented. The

survey identifies the design aspects of a general information fusion system. In addition,

a general framework which helps to represent a big picture for information fusion

systems, is proposed. The chapter gives detailed descriptions of the affecting variables

of fusion systems and references to the state-of-the-art studies.

3.1 General Framework for Fusion

There is a vast number of studies utilizing information fusion, but each individual

study describes the fusion method in its context of theory. A detailed literature survey

can provide insight to understand what factors have an effect on the success of the

fusion. However, a general framework that combines all variables having effect on

the fusion results into a unified view is still missing. In addition, traditional work on

multimodal fusion is mostly heuristic-based and ad-hoc solutions. Studies usually

solve the problem empirically and then justify the solution theoretically. Hence,

construction of a general framework is a crucial contribution for the information fusion

literature. In this section, a formal representation of the general framework for fusion

is introduced with the variables / factors affecting the success of the fusion system.

Our proposed framework is illustrated in Figure 3.1. The framework is presented

with an Input-Process-Output (IPO) model, where Fusion Input is converted to Fusion

Output through a Fusion Process. Fusion Input is multiple of any source like sensors,

features, classifiers or information resources. Fusion Output is the combined informa-
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tion. Fusion Process is the core of the architecture that handles the combination of

sources. The process is composed of two primary tasks; ‘Defining What to Fuse’ and

‘Defining How to Fuse’. In addition, another task named ‘Defining Fusion Scenario’

takes place before the Fusion Process.

‘Defining Fusion Scenario’ task bases on the Fusion Inputs and helps to define overall

architecture of the Fusion Process. The task includes evaluating the sources that are

provided as Fusion Input; and constituting a fusion architecture that defines multiples

of which source types are handled during the Fusion Process. For instance, considering

a multi-feature case, we want to combine 3 different types of features. Here, we can

consider both feature and classifier source types. Thus it is possible to create the

following scenarios:

• Scenario 1: (Multi-feature, single-common-classifier) Create the same type

of classifier for each feature separately, process each feature in the classifier,

combine results of the classifiers

• Scenario 2: (Multi-feature, single-unique-classifier) Create a separate (in differ-

ent type) classifier for each feature, process the feature in the classifier, combine

results of the classifiers

• Scenario 3: (Multi-feature, multi-classifier) Create some defined number of

classifiers for each feature, process the feature in each of the classifiers, combine

results of all classifiers

The number of possible scenarios depends on the source types provided as the Fusion

Input. The ‘Fusion Setting’ variable defines which scenario is applied for the Fusion

Process.

After defining a fusion scenario, two primary problems of information fusion should

be handled; selecting what to fuse and finding out how to fuse. ‘Defining What to Fuse’

task requires an effective and efficient selection of fusion elements. The ‘Selection of

Sources’ and ‘Fusion Strategy’ variables define how to select them. After performing

this task, ‘Selected Fusion Elements’ are obtained. There are two important variables

affecting the ‘Selected Fusion Elements’ for the flexibility and the processing time of

the overall system: ‘Content Representation’ and ‘Normalization of Sources’. The
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second task, ‘Defining How to Fuse’, requires constituting a fusion approach in order

to obtain maximum gain from the selected fusion elements. ‘Fusion Level’, ‘Fusion

Method’, ‘Operation Modes’ and ‘Synchronization’ variables define the required

approach with the several crucial aspects.

3.1.1 Fusion Setting

Fusion setting defines and determines which source types will be combined in the

designed system. As mentioned in Section 2.2, the source types are; sensors, features,

classifiers and information resources. The selection of each type can be either single

or multiple. Using a single source (i.e. single sensor, single feature, single classifier,

etc.) type means there will not be a fusion process for that source type. On the other

hand, having multiple source types (i.e. multiple sensors, multiple features, multiple

classifiers, etc.) means performing a fusion for that source type. It is clear that at least

one of these source types should be multiple, in order to have a fusion system. Also,

it is possible to have more than one configuration item as multiple but such a case

increases the complexity of the system. Therefore, the studies in the literature usually

set one of the configuration items as multiple and make others single for the fusion

experiments [46, 106].

Generating all possible combinations with appropriate single and multiple selections

gives all possible fusion scenarios. In addition, the number of scenarios can be

increased by incorporating relations between these source types (i.e. having a common

or unique classifier for each feature in multi-feature, single-classifier scenario).

One ‘Fusion Setting’ related issue in the literature is the discussion of “Selection

or Fusion1” [67] that is analyzed in the section for Fusion Strategy (Section 3.1.3).

Selection refers to a configuration that each classifier involved in the combination

process is experienced on some local area of feature space. Besides, Fusion is a

configuration which all the classifiers are equally experienced on the whole feature

space. In a fusion setting aspect, Selection refers to multi feature setting and Fusion is

a multi classifier setting. Many studies in the literature ( [9,31,67,69,96]) has attended

1 This definition of “Fusion” should not be compared, confused or supposed same with our general scope of
fusion.
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this discussion and experimental evidences showed that combining multiple features

is more beneficial than combining multiple classifiers.

Independently from above discussion, in [31], Duin et al. compare a multi-feature

setting (using a classifier for each feature) with a multi-classifier setting (different

classification algorithms for the same features) and experimentally show that multi-

feature setting gives better results than multi-classifier setting. Also, they conclude

that a multi-feature and multi-classifier setting (different classification algorithms for

different features) is much better.

3.1.2 Selection of Sources

‘Selection of Sources’ variable enables deciding which sources are the best and should

be selected for fusion. Selection is a critical issue that directly affects the performance

of the fusion system. The selection can be either a hard selection which picks some

of the features and leaves others out, or a soft selection that determines effect of

each source to the fusion (like weighting). There are several consideration points for

selecting sources.

The most important consideration on the selection of the sources is the contribution

of them to the fusion result. It is crucial to determine how much gain a source can

provide or find out whether including a source affects positively or negatively. Thus,

some evaluation methods are necessary to understand which sources are better. For

instance, during sensor fusion, available sensors should be evaluated according to their

noise level and cost of computation [63]. In [98], Poh et al. argue that quality and

reliability of sources can help selection of sources. In addition, they give mathematical

formulations of some example quality measures. However, they leave the reliability

measure of sources as an open issue. In [120], Snidaro et al. present a quality metric for

sensor selection, so that fusion process is dynamically regulated with the performance

of the sensors. In addition they give a review of effective image quality evaluation

methods. These methods can be beneficial for feature/modality selection. In [17],

Callan et al. introduce an efficient way of resource selection and present some quality

and reliability measures, which can also be useful for selection of sources.
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Another important consideration point is the compliance of the sources with the

designed fusion system, actually the selected fusion algorithm. The dependency/inde-

pendency of sources should be carefully analyzed and compliant ones with the fusion

method should be used. Not taking this issue into consideration can lead to dramatic

decreases and inconsistencies in the performance of the system. Thus ‘Fusion Strategy’

variable has an important effect on the ‘Selection of Sources’ variable. This issue is

analyzed in Section 3.1.3 in detail.

The ‘Selection of Sources’ variable contains three major attributes:

• Selection Type: Selection type can be either static or dynamic. In static selection,

the selection is performed once during the construction of the system or during

the training phase. In dynamic selection, sources are selected during the running

of the system. A dynamic selection mostly refers to an ‘Adaptation’ capability.

Thus, ‘Adaptation’ variable is an affecting variable on the ‘Selection of Sources’.

• Context Relation: A selection procedure can be either context sensitive or insen-

sitive. A context sensitive procedure perform selection depending on currently

available conditions and information. For example; performing different selec-

tion schemes for different categories of objects or different video categories.

Besides, a context insensitive procedure behaves equally for all conditions and

always results with the same selection scheme.

• Selection Method / Metric: The method / metric defines selection procedure.

3.1.3 Fusion Strategy

In a fusion system, the sources, which are input for the combiner, can either be

complementary or redundant sources. ‘Fusion Strategy’ of a fusion system determines

how the system behaves the input, as complementary or redundant sources. Either

case can be beneficial for the fusion process. Complementary sources reflect different

sides of the problem domain like different feature spaces or uncorrelated data sources.

Fusion of complementary sources provides a more complete representation of the

world and resolves ambiguity and incompleteness. Besides, redundant sources can be

cooperative or competitive, that provides data on the same side of the problem domain.
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Fusion of redundant sources provides reduced uncertainty and increased robustness.

Also it improves accuracy and reliability [63, 72]

A fusion system can prefer any of these two, or both of them at the same time. However

an important restriction exists. Complementarity and redundancy are two contradictory

cases for sources. More clearly, complementary sources refer to independent inputs,

whereas redundant sources mean dependent inputs. Usually, the mathematical models

do not function with both of these two models. Each method defines their input as

either independent or dependent. Still, it is possible to use both of these two types of

information in a complex system that employs more than one mathematical model.

In the literature, two main directions on strategy exist for fusion [64]:

• Fusion of independent(complementary) information: Two sub-types exist.

– By assuming independency: This is the approach of early years’ studies.

Using methodologies just assume that the inputs are independent. Its

success is based on the simplicity and some good luck. The approaches

using this assumption are usually late fusion approaches, since it is not

possible to find out dependencies of features/modalities. For this usage, it

is obvious that violation of independence hurts the success of fusion.

– By creating independency: Independency is obtained with the help of some

independence analysis methods. The approaches that can apply this step

are usually feature level fusion, considering that the dependencies can be

obtained by analyzing features/modalities. Applying such a step before

fusion, guarantees independence and enables more robust systems.

• Fusion of dependent(redundant) information: Using information of dependent

sources can be obtained by exploiting statistical dependencies between features/-

modalities. As mentioned, before feature level fusion is required for such a

process.

Although several studies insist on using dependent sources and exploiting relationships

between features / modalities [62–64, 98], with current evidences and experiments it is

not possible to say any of these approaches is superior.
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Complementarity and redundancy have more different names in the literature except

the ones given above (independent and dependent). In the literature of “Multiple Classi-

fiers”, using complementary and redundant sources is named differently: Selection for

complementary strategy and Fusion2 for redundant strategy [141]. Selection refers to

a configuration that each classifier involved in the combination process is experienced

on some local area of feature space. In Selection, when a feature vector is submitted

for classification, related classifier has the authority. Often, but not necessarily, more

than one classifier can have the authority. Besides, Fusion is a configuration which

all the classifiers are equally experienced on the whole feature space. For any feature

vector, all classifiers are taken into account for decision. [67]

Another important discussion topic on the use of dependent sources is the order of

dependency [64]. Most of the studies dealing with dependency issue assume the

dependency is bivariate and use linear transformation methods like Principle Compo-

nent Analysis (PCA), Independent Component Analysis (ICA), Factor Analysis, etc.

to create independency or exploit linear statistical dependencies. However, it is not

known whether higher order dependencies exist in between the features/modalities.

In [64], Kludas et al. claim that information interaction (an information-theoretic

dependence measure which is multivariate, high dimensional) is superior to the tra-

ditional (bivariate) dependence measures. But their experimental studies have not

verified this theoretical idea.

3.1.4 Content Representation

Diversity of combined features/modalities causes complexity and difficulty in fusion

and learning. Each feature can have its own feature space, dimensionality, feature value

types (i.e. continuous, symbolic, etc.), feature value boundaries, etc. This heterogeneity

of features/modalities causes the learning and fusion systems to have complex setups.

But still, it is possible to have a homogeneous representation of the features. For a fast

(providing online learning) and flexible (handling any new features/modalities blindly)

fusion system, we should have a homogeneous representation of the involved features,

that is regardless of the intrinsic dimensionality and scale of each feature/modality. [15]
2 This definition of “Fusion” should not be compared, confused or supposed same with our general scope of

fusion.
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When the heterogeneity of the representation is discussed, a normalization mechanism

is required on the features/modalities. Thus, ‘Normalization of Sources’ variable

in the general framework has an effect on the ‘Content Representation’. Details on

normalization of sources in order to use a heterogeneous representation in a fusion

system is described in Section 3.1.5

Another important issue for a fusion system, related to the content representation, is

when the preferred representation is constructed. To obtain an efficient system, the

representation construction of the classifier model should be offline, i.e. during training.

For instance, considering an information retrieval system which uses some number

of features for recognition, recognition information (related to the used features) of

training instances should be extracted and indexed in an appropriate representation

during the training phase. Then, during query phase, such information can be used

easily and fast. Not doing so causes extraction of this information during query phase,

which results in a very slow retrieval system.

In [15], Bruno et al. analyze the studies in the literature at three different representa-

tions:

• Feature-based Representation: Feature-based representation is a straightfor-

ward approach and mixes heterogeneous vectors of various dimensions and

scales. In order to use such representation, different dimensionalities should

be projected and different scales should be normalized. This causes a complex

setup for the fusion system. Thus, the fusion system becomes very dependent on

the parameter settings of the currently used features and less flexible for adding

new features to the system. A way of handling various dimensions and scales can

be the conversion of included modalities into a single modality and representing

the features in a unimodal approach. In [121], Snoek et al. give design of such

system for multimodal video processing: Visual and auditory modalities can be

converted into textual modality by using some Optical Character Recognition

(OCR) and speech recognition methods.

• Similarity-based Representation: Similarity-based representation uses simi-

larity or distance values of features for representing data. Using similarities

make the fusion system independent from the intrinsic dimensionality of the
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features. It should be noted that calculating the similarity and distance values

are performed via some similarity functions. In similarity-based representation,

the system still becomes dependent to the scales of the used similarity and

distance values. So the similarity values should be normalized before combining

them. Very often, different scales of expert outputs make them non-comparable.

Normalization is a way to make them comparable, which is discussed in Sec-

tion 3.1.5. In [16], Bruno et al. utilize similarity-based representation. Also,

in [15] and [16], they give a list of other studies utilizing this representation.

• Preference-based Representation: Preference-based representation is one step

ahead of the similarity-based one. The problem of different scales of feature

similarities can be solved by using preference-based approach. In this represen-

tation, ranks of the features according to their similarities are held. It provides

a dimensionality-independent and scale-independent system, which can be de-

fined as fully homogeneous. But it should be noted that it causes a problem of

combining several ranked lists. In [15], Bruno et al. utilize preference-based

representation. However, finding out different preferences is an open research

issue.

3.1.5 Normalization of Sources

During a fusion process, in order to utilize the fusion elements, all of them should

have values in the same value types (i.e. continuous, symbolic, etc.), boundaries, scale

etc. However, usually they are represented in different types, boundaries and scales.

‘Normalization of Sources’ variable is used to configure such requirement.

In the literature there are several normalization techniques. In [46], Jain et al. system-

atically study the effects of different normalization techniques. They give definitions

of several normalization techniques and perform experiments on them. They study on

the following normalization methods: Min-max, Decimal scaling, z-score, Median

and MAD, Double Sigmoid, tanh-estimators and bi-weight estimators.

Results of their experiment show that Min-max, z-score and tanh-estimators methods

followed by a simple sum fusion are superior to other techniques. Min-max and z-score
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are sensitive to outliers, whereas tanh-estimators is robust and efficient. If location

and scale parameters are known, Min-max and z-score methods can be preferred for

efficiency. Otherwise, tanh-estimators method should be preferred.

In addition, in [98], Poh et al. give some other useful way of transforming outputs into

a common domain for comparison. They suggest transforming outputs into probability

or log-likelihood ratio domain, and giving successful examples on transforming into

log-likelihood domain.

3.1.6 Fusion Level

Figure 3.2: Fusion Levels

In the literature, the fusion process is performed at 5 different levels [9, 46, 63, 98,

113, 124, 128, 144]. Figure 3.2 gives an illustration of the fusion levels. The selected

level for the fusion differentiates the information available for fusion and computation

complexity of the system. At the lower levels, more information is available but using

such detailed information causes a computationally complex system; whereas at the

higher levels, less information is provided for the fusion operation and it is easier to

combine them. Besides, lower levels provide more gain via fusion than the higher

levels, due to the usable information available. The levels of fusion will be discussed

in the following subsections.
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5 different levels of fusion are also grouped at two higher classes according to when

the classification of the features is performed: Early Fusion and Late Fusion.

Early Fusion is the fusion performed before the classification. The available informa-

tion before classification is still considerably much –less from signal-based fusion,

but still much more than late fusion– since the system can obtain the unprocessed

(unclassified) data. It is possible to exploit relations in between the data (i.e. features)

but also it is hard and computationally expensive to combine them. In addition, the

combination can result in a high-dimensional data, the curse of dimensionality problem.

Then, training of such a system requires a lot of training data. Having more training

examples may create a risk of over-fitting data. Thus, Early Fusion is an effective but

computationally complex and risky way of fusion. [63, 124]

A typical feature-based early fusion scheme is presented in Figure 3.3. Firstly features

of the sample are extracted. Then features are directly combined without any classifi-

cation or recognition process. Such combination (i.e. concatenating them) is a difficult

task. After combination, a learning process is performed. [123, 124]

Figure 3.3: General Early Fusion Scheme
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Besides, Late Fusion is the fusion performed after the classification. Contrary to early

fusion, this fusion type is simpler since it uses a processed and interpreted data by the

classification. However, the information available is very limited, which means there

is a potential loss of correlations between features/modalities. Thus, late fusion is a

less effective but computationally much better way of fusion. [63]

A typical late fusion scheme is given in Figure 3.4. Firstly features of samples are

extracted and learning (classification) process of each modality/feature is performed

separately. Then, results of these classifications are combined into an appropriate

representation. Final decision of fusion is obtained either by a second-level learner or

a simple aggregation method. [123]

Figure 3.4: General Late Fusion Scheme

It should be noted that, whole process of the late fusion process can be computationally-

expensive considering that it contains many classifiers, although the combination

process is much simpler than that of the early fusion.

Considering feature-based fusion (classifier combination) studies in the literature,

using correlations of features is not very popular and frequently studied, as discussed
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in Section 3.1.3. Using early fusion without obtaining correlation gain is not beneficial.

Also simplicity of late fusion makes it attractive. Therefore, most of the studies in the

literature prefer late fusion [123]. Furthermore, these studies usually reach at good

results with late fusion. In [123], Snoek et al. compare late fusion methods with early

fusion methods (without exploiting correlations) experimentally and concludes that

late fusion is superior to the early fusion.

3.1.6.1 Sensor Level

Sensor level fusion is the fusion level having the richest source of information, but the

fusion process is the most complex one. Dealing with sensor data requires much more

effort than other fusion levels because of the extensiveness of the data. Additionally

the data includes noise. [98]

Sensor level fusion includes;

• combining multiple sensors (i.e. Image fusion with RGB and NIR sensors)

• combining multiple snapshots with a single sensor (i.e. Image fusion by using

images taken at different times with single sensor)

3.1.6.2 Feature Level

In feature level fusion, the feature sets originating from multiple feature extraction

algorithms are combined into a single feature set. The combination method requires

appropriate feature transformation, reduction and normalization strategies due to the

differences in feature spaces and types. The primary benefit of feature level fusion is the

detection of correlated feature values, which improves the recognition accuracy. [98]

Besides, the feature level fusion may have several drawbacks [63, 124] due to;

• The ‘curse of dimensionality’ caused by dealing with several features,

• Different feature spaces and types of features,
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• Computational expensiveness caused by the transformation, dimensionality

reduction and normalization procedures to solve the problem of differences in

feature spaces and types,

• Needing a lot of training data in order to perform dimensionality reduction and

normalization procedures,

• Risk of over-fitting data caused by using a lot of training data.

3.1.6.3 Score Level

In score level fusion, the classification process results with match scores and match

scores of multiple classifiers are fused during the combination process. The score

level fusion is the mid-point among fusion levels. Although it is not possible to extract

correlation information, some valuable information still exists. Also ease of accessing

and processing match scores (compared to lower levels) makes score level fusion more

interesting. Thus, fusion at this level is the most commonly discussed approach in

literature [98].

Despite the ease of accessing such valuable information, using it still requires some

challenge. Different sources can have different intervals of matching score, so fusion

process should handle the variance in the intervals of scores (i.e. normalization on the

match scores).

3.1.6.4 Rank Level

In rank level fusion, the usable information for fusion becomes less and only ranks for

the classification results are available. The fusion process combines rank outputs of

multiple classifiers. Using rank lists as inputs to the fusion makes the fusion process

much simpler since using rank lists do not require a normalization process and the

rank lists of different sources are directly comparable. So, in this level of fusion it is

simpler to implement a fusion system than the score level.

Still, rank level fusion has a problem to deal with: Combining multiple rank lists (from

multiple sources) without any score information requires a rank aggregation technique.
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3.1.6.5 Abstract Level

Abstract level fusion is the highest level fusion. In this level of fusion, the least

information is available for fusion: the final recognition decisions of classifications.

This level is the simplest to implement a fusion system. However, the gain obtained

via fusion is the minimum, compared to the other levels of fusion.

This level of fusion is only suitable for combining COTS systems since most of the

COTS recognition systems provide access only to the final recognition decision [98].

3.1.7 Fusion Methodology

Fusion Methodology defines which algorithm is used for combining sources. The

literature includes a lot of methods proposed and experimented for fusion. However, a

superior fusion algorithm has not been accepted by the researchers [143]. It is difficult

to predict whether a combination is superior, so no clear preference of one combination

method is compromised [67].

The algorithms utilized in the literature can be analyzed in two groups according to

whether they have a learning step: Non-trained and Trained methods [9, 30, 46, 47,

61, 130, 143, 145]. Non-trainable (Combination/Linear/Fixed Rule) methods bases on

linear aggregation and voting methods. Mostly used ones are product aggregation,

sum aggregation, minimum selection, maximum selection, median selection, majority

voting, concatenation, weighted average aggregation, linear combination. Success of

these methods is based on their simplicity and they are usually preferred due their

simplicity. Besides, Trainable (Classification/Learning-based) methods contains more

complicated classification algorithms and requires a training step in order to obtain

a model for the classification. Mostly utilized methods include Bayesian networks,

neural networks, Gaussian mixture models, factor graphs, decision templates, genetic

algorithms, adaptive weighting, borda count, logistic regression, belief functions,

Dempster-Shafer techniques, fuzzy integrals, bagging, boosting, random subspaces,

k-nearest neighbor, decision trees, support vector machines and label ranking.

It is possible to group the algorithms in several different manners. For instance,
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in [121] Snoek et al. group the studies as knowledge-based and statistical approaches.

Knowledge-based approaches use (predetermined or trained) knowledge base rules,

whereas statistical approaches prefer statistical correlations between sources and

classes.

An important issue in fusion methodology is the relation between fusion level and

methodology. Fusion level directly affects the choice of fusion algorithm. Some of

the methods can be used in all levels, whereas most of them can be used for only one

level. The relations between the methods and the levels are given in Table 3.1 [15, 46,

47, 61, 62]. Note that this table is an exhaustive one, not a complete table.

As seen on the table, the Trainable - Score Level section contains the most of the

methodologies. In fact, this is not because of the usability of the methods, but most

of the studies deal with score level fusion, therefore the number of algorithms in that

section is more than others.

The table also shows that there are so many methods available to be used for fusion.

Although there is not clear superiority of one fusion method [67], several studies

argue and experimentally show that learning-based (trainable) methods are better

than the non-trainable ones [30, 31, 46, 124, 130, 143]. However, there exist some

counter-examples. In [46] Jain et al. show that combination approach is better than

some classification approaches (decision trees and linear discriminant analysis).

3.1.8 Operation Modes

A fusion system can operate in one of three different modes: serial mode, parallel

mode, or hierarchical mode. Operation modes in fusion defines whether the sources

will be used incrementally (serial), at once (parallel) or combination of these two

(hierarchical).

In a serial architecture (Figure 3.5(a)), fusion is performed at more than one step. At

each step, one new source is fused with the result of the previous fusion step. The

output of one source is typically used to narrow down the number of possible results

before the next source is used. Therefore, multiple sources of information do not have

to be acquired simultaneously. Further, a decision could be made before acquiring all
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Table 3.1: Relation of Fusion Algorithms with Fusion Levels

Trainable Non-trainable

Abstract Level

Knowledge-base Rules Majority Voting
Boosting Product (AND) Aggregation

Neural Networks Sum (OR) Aggregation
Gaussian Mixture Models

Label Ranking

Rank Level

Borda Count Highest Rank
Logistic Regression

Dempster-Shafer
Rank Boost

Score Level

Adaptive Weighting Product Aggregation
Logistic Regression Sum Aggregation

Bagging Minimum Selection
Fuzzy Integrals Maximum Selection

Dempster-Shafer Median Selection
Belief Functions Weighted Average

Random Subspaces Linear Combination
Decision Templates
Genetic Algorithms

Neural Networks
Gaussian Mixture Models

Factor Graphs
K-Nearest Neighbor

Decision Trees
Support Vector Machines

Feature Level
Latent Semantic Analysis Concatenation

Probabilistic LSA Weighted Average
Canonical Correlation Analysis
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the sources. This can reduce the overall recognition time and make the system less

dependent on each of the sources. [106]

In a parallel scheme (Figure 3.5(b)), all of the sources are ready at the fusion time and

fused at once. The information from multiple sources is used simultaneously in order

to perform recognition.

In a hierarchical scheme (Figure 3.5(c)), both of serial and parallel types are employed.

At each step, some of the sources are fused in a parallel way and the result is forwarded

to the next fusion step.

A special sub-type of serial mode can be an Iterated architecture, where the same

source used for a number of times (serially). Such architecture can provide the system

from unnecessary operations and make the system runnable on low-performance

hardwares by performing the fusion process in some defined number of steps.

While the parallel fusion strategy is the most commonly used for information fusion

in the literature [98, 121], there are several advantages of serial fusion. It offers the

possibility of making reliable decisions with only a few sources, leaving only difficult

samples to be handled by the remaining sources [98]. Also using a serial architecture

can be beneficial in the systems that obtain their data sequentially. A video data

is a good example for such a situation. In [121], Snoek et al. give some of the

studies performing iterated fusion are; [6, 84, 125], which are processing video data

incrementally.

An important issue in operation modes is the processing of different modalities for a

multimodal resource with a parallel operation mode. To perform the fusion operation

all of the modalities should be ready at the time of fusion. Such requirement exposes

the need of synchronization (or alignment) of the modalities according to each other.

For instance, assume a video data having text, audio and visual modalities. Extracted

information from each of these modalities should be aligned in order to perform fusion

in a correct way. The alignment is configured by the ‘Synchronization’ variable, which

is introduced in Section 3.1.9
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(a) A Typical Serial Fusion Scheme

(b) A Typical Parallel Fusion Scheme

(c) A Typical Hierarchical Fusion Scheme

Figure 3.5: Fusion Schemes for Types of Operation Modes
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3.1.9 Synchronization

An important aspect for multimodal fusion is the synchronization and alignment of

the different modalities according to each other so that all modalities have a common

time-line. For instance, assume a video data having text, audio and visual modalities.

Extracted information from each of these modalities should be aligned in order to

perform fusion in a correct way. In the literature, usually timestamps on the modalities

are utilized and timestamps of the secondary modalities are converted to the timestamp

of primary modality [121]. However, timestamps are not always available on the

modalities. In such cases, domain and application specific, ad-hoc solutions are

applied.

3.1.10 Adaptation

Choosing the best sources to combine and best combination method are crucial and

difficult tasks that directly affect the performance of the fusion system. Since most

of the solutions are ad-hoc strategies; it is crucial to have a careful analysis on the

sources and methodologies [2]. However, careful analysis means careful setup on

inputs which makes the system dependent on specific conditions. Also, it cannot be

known during design time how each feature, modality or data source performs in

real world environments and which of them are the most reliable. Solution to this

dependency is to make the fusion system adaptive.

Having an adaptive system requires making the system adaptable to changing data

environment for choosing the best sources to combine and best combination method.

Such capability can be achieved by re-configuring the ‘Selection of Sources’, ‘Fusion

Strategy’, ‘Fusion Level’ and ‘Fusion Methodology’ variables in the fusion architec-

ture.

[47], Jain et al. summarize the adaptive and non-adaptive fusion methodologies used

in the literature. Some of the adaptive fusion techniques are; Adaptive weighting,

Mixture of local experts (MLE), Hierarchical MLE, Associative switch. Some of the

non-adaptive fusion techniques are; Voting, Sum Aggregation, Product Aggregation,

Minimum Selection, Maximum Selection, Mean Selection, Borda Count, Logistic

39



Regression, Dempster-Shafer, Fuzzy Integrals, etc. However, these lists are constructed

using the currently available studies in the literature. It is always possible to convert

non-adaptive methods to some adaptive version, with some extra effort and new

methodology.

3.2 Open Issues In Fusion

The best way to define the problems in the information fusion research area is to

investigate the currently available studies. The problems worked on and the future

directions pointed out are exactly the problems of the area. Below, the open research

issues depicted from the literature are presented.

The problems of information fusion is based on selecting the best sources to combine

and finding the best way to combine them. In [143], Wu et al. state such problems as

arguing two core issues have not been adequately addressed yet: (i) How to determine

best modalities? (ii) How to best fuse them? In [68], Kuncheva addresses the problems

similarly: (i) Choosing a suitable combination method is a difficult problem, (ii)It is

not known how to use a data set and which classifier to select with it. In addition,

Kuncheva comments on the research area that combining classifiers is an promising

area and still, there are many experimental and heuristic studies to be offered. Likewise,

in [98] Poh et al. claim that there is a huge space of different fusion architectures that

has not been explored yet. In [2] Arevalilli et al. highlight a crucial point; ad-hoc

(experimental or heuristic) strategies requires careful analysis for choosing the best

method to combine features. Such judgment leads us to the adaptability issue that

eases and relaxes the process of careful analysis. However, in [98] Poh et al. state

that adaptability is an open research issue and requires some well-defined quality and

reliability measures of sources and fusion methods.

In [62], Kludas gives some different important points as fusing dependent sources and

predicting the performance improvement by fusing different modalities/sources/sam-

ples. Kludas mentions that most of the studies in the literature deals with independent

sources. In [145], Yan et al. study on the second consideration of Kludas (in a limited

domain of rank aggregation) and state the open problems as; (i) What are the limits for
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combination having the scores of each different source? (ii) Is linear(non-trainable)

combination sufficient? (iii) How the scores of sources should be normalized?

Interestingly, in 1992, in [144] Xu et al. list most of these problems as new problems to

be studied in the literature: (i) Is it possible to determine recognition rate theoretically

instead of experimentally? (ii) Current assumption on fusion is that individual classi-

fiers are independent. It is necessary to develop approaches for dependent classifiers.

(iii) How many classifiers/features are appropriate for fusion?

Beyond these problems, another crucial open research issue on consensus is the lack

of a general theoretical framework for information fusion. In [143], Wu et al. state

that traditional work on multimodal fusion is mostly heuristic-based and lacks theories

to answer questions on selecting modalities and fusion methods. In [64], Kludas et al.

complain about the fact that a general theoretic framework is still missing, although

information fusion is an independent research area over last decades. In [63], they

summarize the current state of the literature as follows: A vast number of disparate

research areas utilize information fusion, but they describe the fusion methods in their

context of theory. Also, in multimedia, relation between basic features and content

description is limited, namely the semantic gap, so the fusion problem is solved

empirically then justified theoretically. Thus, a general formal theoretical framework

is missing for information fusion. In [63], they highlight an important point: Due to

the lack of a formal theoretical framework and ambivalent fusion results in several

studies in the literature; there exists a vibrant discussion on the theoretical achievable

performance improvement boundaries of fusion system compared to single source

systems.

Besides, in [67], Kuncheva appreciates currently available studies on a theoretical

framework but finds them immature since they are only for special cases, usually

assuming independent classifier outputs. Yet, she founds currently available heuristic

and ad-hoc solutions useful as a pre-phase towards a more general theory of classifier

combination. Similarly, in [47], Jain et al. state that there exists only a few theoretical

explanations on classifier combination and most of them apply to simplest schemes

under rather restrictive assumptions. Actually, current studies are still lacking to

state a general theoretical framework. For instance; in [61], Kittler et al. introduce a
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theoretical framework but only for some special combination methods like product,

sum, min, max and majority voting. In [145], Yan et al. present a theoretical framework

for average precision boundaries.

In brief, the following list identifies the problems in information fusion research area.

Actually, this list is in accordance with the variables given in Section 3.1:

• Lack of a general theoretical framework.

• Determining limiting theoretical upper bounds of performance.

• How to determine best sources?

• How to best fuse them?

• Dealing with dependent sources.

• Normalization problems of different sources.

• Well-defined quality and reliability measures for selection and adaptability of

sources.
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CHAPTER 4

NON-LINEAR WEIGHTED AVERAGING1

Linear combination is a popular approach in information fusion due to its simplicity.

However, it suffers from the performance upper-bound of linearity and dependency

on the selection of weights. In this chapter, we introduce a ‘simple’ alternative for

linear combination, which is a non-linear extension on it. The approach is based

on the Analytical Network Process, which is a popular approach in Operational

Research, but never applied for fusion before. The approach benefits from two major

ideas; interdependency between classes and dependency of classes on the features.

Experiments conducted on CCV dataset demonstrate that our proposed approach

outperforms linear combination and other simple approaches, moreover it is less-

dependent on the selection of weights.

4.1 Overview

Combining the information gathered from multiple modalities is an empirically vali-

dated approach to increase the retrieval accuracy [4]. Among the various combination

methods that have been proposed, most frequently utilized approach is the Linear

Weighted Fusion (or Linear Combination) [37, 133, 145], due to its simplicity and

reasonable performance despite its simplicity. Some other well-known methods are as

follows: Majority Voting, Support Vector Machines, Bayesian Inference, Dempster-

1This chapter was published as [149].

c� 2012 IEEE. Reprinted, with permission, from T. Yilmaz, A. Yazici and M. Kitsuregawa, Non-linear weighted av-

eraging for multimodal information fusion by employing Analytical Network Process, 21st International Conference

on Pattern Recognition (ICPR), 2012.
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Shafer, Neural Networks, Decision Templates and Borda Count [4].

When compared with the linear combination, these approaches are; (a) either has a

simple design as the linear combination but worse/equal in performance, (b) or better

in performance but require complex training setups in order to obtain an adequate

performance. Moreover, the approaches in the latter group are usually not limited

to linear approximations. So, it can be argued that the use of linearity in combiner

design causes a performance upper bound on retrieval accuracy. A detailed analysis

on the performance limits of linear combiners can be found in [145]. Besides, another

important drawback with the linear combiners is the high dependency of the combiner

performance on the selection of the weights. However, the selection of the optimal

weights is one of the important issues that have not been adequately addressed yet in

the fusion domain [4, 98].

Aligned to above given issues, we would like to investigate for a combination approach

which (i) is as simple as the linear weighted fusion, (ii) can achieve the performance

upper bound of linear weighted fusion, and (iii) is less-dependent on the selection of the

weights. Through this study, we resemble the multimodal fusion problem to the real-

life multi-criteria decision making problem in Operations Research domain and would

like to introduce two popular approaches, Analytical Hierarchy Process (AHP) [108]

and Analytical Network Process (ANP) [109]. AHP is a linear solution approach

having the same principles with the linear weighted averaging method. However, ANP

is a quite different solution that extends the linear weighted averaging method into a

non-linear one, and has never been applied in the information fusion domain before.

Thus, in this study, we adapt and extend the calculation approach and parameters of

ANP for multimodal fusion. We show that it can be utilized as a ‘simple’, ‘non-linear’

and ‘less-weight-dependent’ way of fusion, which overcomes the problems listed

above. We evaluate the approach by using the Columbia Consumer Video (CCV)

dataset against several different approaches and obtain convincing results. Moreover,

we empirically show that non-linear weighted averaging makes the accuracies less

dependent on the selection of weights.

44



4.2 Linear Weighted Averaging and AHP

We focus on a score-based late fusion scheme, with a setting that each classifier is

dedicated for a single feature (as given in Figure 4.1). Each of the classifiers performs

multi-class classification and outputs of classifiers are homogeneous, giving score

values for the same set of retrieval classes. Also, assume that we have m number of

retrieval classes and n number of features.

Figure 4.1: A Score-based Late Fusion Scheme

In a such a fusion architecture, the outputs of several classifiers are aggregated in order

to make a final decision. In linear weighted fusion methods, the information obtained

from multimodal features is combined by assigning some particular weight for each

modality and performing a summation or product operation to combine. Considering

a summation preference, the final decision is calculated by;

SL = DWD , (4.1)

where D is a m⇥ n matrix, containing the output scores of classifier in each column;

WD is a n-sized vector, containing the weights of each feature; and SL is a m-sized

vector, containing the combined decision scores for each retrieval class.

45



Figure 4.2: AHP Decision Hierarchy

AHP presents Equation 4.1 with a more concrete representation. First the multi-criteria

decision making problem is modeled with a simple hierarchical model consisting

of a goal, criteria and alternatives nodes. Figure 4.2 presents a hierarchy for the

multimodal information fusion problem with m number of classes and n number of

features. Here, it should be noted that the edges between nodes are unidirectional, as

a result of being a ‘hierarchy’. In order to find the combined decisions, the total of

alternative path lengths from each alternative to goal is calculated, where a path length

is the product of the values on the edges along the path. A detailed description of AHP

can be found in [108].

A crucial step in this approach is the determination of weights, which directly affects

the fusion performance. An optimal solution is not guaranteed without an exhaustive

search in the feature space. However, several heuristic solutions can be applied. As

the most simplistic case, the weights of features can be selected equally (wi = 1/N )

which is also called Simple Averaging. Furthermore, some well-known heuristics are

RELIEF [59], Information Gain [43] and Gain Ratio [101]. In this study, we utilize

RELIEF and exhaustive search for experimental purposes. We use also a random
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weight selection approach to show the effect of weight selection.

4.3 Non-linear Weighted Averaging and ANP

ANP is a generalization of AHP and created with a consideration that many decision

problems cannot be modeled with a simple hierarchy because they can involve in-

teractions/dependencies of the included nodes [109]. Thus, ANP proposes to model

the decision problem with a network which allows to define bidirectional transitions

between the nodes. A network model, which is designed for the multimodal fusion

problem with m number of classes and n number of features, is given in Figure 4.3.

Combined decision calculation is similar with AHP. However in ANP, the number of

alternative paths is more than AHP, even indefinitely many, considering the possible

bidirectional transitions between the nodes.

Figure 4.3: ANP Decision Network

Considering the ANP approach, we can extend the linear weighted averaging approach
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into a non-linear approach by employing an additional weight factor.

SN = WISL ,

= WI(DWD) , (4.2)

where WD represents the direct weights, which are the traditional feature weights

as used in linear weighted averaging. Besides, WI is used for the indirect weights,

which can be described by incorporating two crucial ideas, in a multimodal fusion

problem: (i) interdependency between the retrieval classes, and (ii) class-specific

feature selection. The former idea provides exploiting the interdependencies between

classes and benefit from the correlation as a weighting factor. In order to obtain the

correlation between the classes, outputs of the classifiers are utilized. The correlation

between the classifier outputs are usually ignored by many of the late fusion approaches,

and only the corresponding output score of each classifier with the retrieval class is

used during combination. For instance, in linear weighted averaging, the fusion result

for C1 is calculated by using only the scores for C1 of each classifier. To exploit the

interdependency, we incorporate all score outputs of all classifiers while performing

fusion. Furthermore, the latter idea is based on the dependency of classes on the

features. Although feature weighting methods usually propose solutions such that the

resulting feature set is selected independent of the classes, defining feature weights that

are specific to each class is an intuitive and promising approach [151]. For instance,

in a multimodal scenario of multimedia data, the audio features are more useful for a

MusicPerformance class, whereas it is better to utilize visual modality for detecting

a Beach occurrence. In order to obtain class-specific feature weights, the feature

weight calculation methods can be used separately for each feature, in a one-against-all

fashion.

Considering these two ideas, the indirect weights WI are calculated as;

WI = (DV)

i , (4.3)

where D is a m⇥ n matrix, containing the output scores of classifier in each column;

and V is a n⇥m matrix, containing the class-specific weights. In V, each column holds

the feature weights for a retrieval class. Considering that the product DV provides a

square matrix, any power of this term is applicable. It should be noted that having D
in the calculation of WI and using powers provide ‘non-linearity’ into the solution. In
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addition they provide an implicit feature weighting estimation capability and make

the solution ‘less-dependent’ on the weights WI and V. The resulting WI contains

linear combination results by using own class-specific features on the diagonal and

linear combination results by using the class-specific weights of other classes as the

rest. Thus, the final non-linear weighted averaging formulation is as follows;

Si
N = (DV)

i
(DWD) . (4.4)

In order to obtain the most appropriate value of i, we focus on three solutions: First

one is based on the converging characteristic of Equation 4.4. Solution is converting

Equation 4.4 into a general eigenvalue problem at the convergence point. However, it

is not guaranteed to obtain the best fusion performance for the converged SN value.

Second solution is searching for the i value between 1 and convergence-based i value,

which gives the best accuracy, via a training set. For the third one, the class-specific

approach is mentioned again and it is argued that it is most likely to see the i value

being different for each class. Thus, the i value is optimized for each class separately,

similarly with the second approach.

4.4 Experiments

The experiments are carried out on the Columbia Consumer Video (CCV) Database

[55], based on the semantic retrieval of classes. The dataset contains multimodal

features –visual (SIFT), audio (MFCC), motion (STIP)– of 9,317 videos for 20 se-

mantic classes listed on Table 4.1. The dataset is equally divided into training and test

sets. Feature details can be found in [55]. To measure the retrieval accuracy, Average

Precision (AP) and Mean Average Precision (MAP) metrics are used.

As the first test, non-linear weighted averaging method (NWA) is compared against;

(i) Single features, (ii) Simple combination; Simple Averaging (AVG), Minimum

Selection (MIN), Maximum Selection (MAX), (iii) Learning based combination;

Naive Bayes (NB), Support Vector Machines (SVM), (iv) Linear weighted averaging

(LWA) methods. For the feature weight selection of LWA and NWA, a RELIEF based

feature weighting is used. For the NWA calculation, the ‘best class accuracy’ based

approach is preferred. During all tests, first a classification process is performed with
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SVM classifiers, then the results of these classifications are combined. The multi-class

classification with SVM is performed with a one-against-all approach. When needed,

Naive Bayes implementation of MatLab Statistics Toolbox and LibSVM [18] are used.

In Table 4.1, the APs of each class and the MAPs are presented for each combination

approach. In Figure 4.4, the MAPs of all approaches are visually compared.

Figure 4.4: MAP comparisons

As a secondary test, LWA and three NWA calculation approaches, which are convergence-

based (NWA-CB), best common accuracy (NWA-BCo) and best class accuracy (NWA-

BCl), are compared against three different feature weighting methods: Random,

RELIEF and Exhaustive Search. The comparison is presented in Table 4.2 and Fig-

ure 4.5 For the ‘Random’ weighting approach, a random feature weighting process is

repeated 1000 times, and the minimum (Rand-Min) and the mean (Rand-Avg) values

obtained is presented in the table.

Table 4.2: LWA, NWA vs. Weighting Methods

Rand-Min Rand-Avg RELIEF Exh.Search
LWA 30.135% 47.618% 49,829% 57.783%
NWA-CB 55.139% 56.944% 57.734% 57.734%
NWA-BCo 56.031% 57.082% 57.740% 57.783%
NWA-BCl 56.242% 57.287% 57.741% 57.966%
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Figure 4.5: LWA, NWA vs. Weighting Methods

Considering the results given in Table 4.1 and Table 4.2, NWA easily achieves the

performance upper-bound of linearity and outperforms all other approaches. Simple

methods like MIN and MAX seems not adequate for fusion, since they lack the

advantage of combining multiple features; though they perform better than the best of

the single features. Besides, the AVG method, which is also a linear approach with

equal weights, is more accurate than LWA. This is the result of a probable deficiency

of RELIEF method to assign weights. However, NWA eliminates such deficiency and

obtains the best accuracy values despite the use of RELIEF weights. Thus, the most

crucial evaluation is the superiority of NWA solutions on LWA, independent from

the feature weights. In addition, particularly focusing on Table 4.2, NWA seems to

be less dependent on the selection of weights than the LWA method and can provide

reasonably good results even with a worse selection of feature weights. A last comment

on this table can be the slight but robust increase in the accuracy by the extensions

made on the NWA-CB.

4.5 Evaluation of Fusion System Design

Considering the general fusion framework proposed in Section 3.1, an evaluation of

the fusion architecture described in this chapter is given below. Having a ‘multi-modal,

multi-classifier’ fusion scenario and focusing on a non-linear weighting solution, the
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proposed approach contributes to both ‘What to Fuse’ and ‘How to Fuse‘ problems.

Below, how each affecting factor is handled through the proposed solution is described.

• Fusion Setting: The approach combines multiple modalities, each of the modality

being a different feature. Before combination, the data of each modality is

classified with a separate classifier, and the results of the classifiers are combined.

• Selection of Sources: The approach uses a static feature weighting scheme based

on the non-linear weighting. Since the approach enables being less-dependent

on the selection of weights, the weights can be calculated with any weighting

mechanism. The approach requires the assignment of two types of weights; (i)

direct weights, which are the traditional weights for each feature (ii) indirect

weights, which are based on the product of class-specific feature weights and

output scores from classifiers.

• Fusion Strategy: The approach focuses on the use of complementary information

for fusion.

• Content Representation: A feature-based representation is preferred. During the

tests, bag-of-words (BoW) based features are utilized, thus the representation

can be also be accepted as BoW based.

• Normalization of Sources: The fusion inputs are classifier outputs, where each

of them lays in between [0, 1]. Thus, a normalization process is not applied on

the fusion inputs.

• Fusion Level: The approach is a late fusion approach.

• Fusion Methodology: In this study, a new fusion methodology is proposed. The

approach is non-linear weighted averaging, which is an extension on the linear

averaging approach.

• Operation Modes: The mode for operation is a parallel scheme.

• Synchronization: The utilized dataset provides synchronized features from

different modalities, based on the video start / end intervals. Thus, an additional

synchronization is not required.
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• Adaptation: The approach is not fully adaptive since a small dependency still

exists on the static feature weights. However dependency on these weights is

limited, and the indirect weights which are calculated during fusion has more

effect. Thus, the approach is accepted as ‘almost-adaptive’.

4.6 Remarks

In this chapter, an ANP-based non-linear weighted averaging method is introduced

for the multimodal fusion problem. The method extends linear weighted fusion with

two crucial ideas; interdependency between classes and dependency of classes on

the features. The approach is tested on CCV dataset in a multimodal fusion scenario.

The results demonstrate that introduced non-linear weighting approach is superior to

linear combination as well as the other basic approaches and is less-dependent on the

selection of weights.
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CHAPTER 5

CLASS-SPECIFIC FEATURE SELECTION1

In this chapter, a class-specific feature/modality selection mechanism is introduced.

Throughout the chapter, firstly the approach is presented in detail. Then the evaluations

of the approach are given. The approach is firstly designed for combining multi-

features of images, and evaluated in a multi-feature setting by using the CalTech101

dataset with 8 MPEG-7 visual features. The approach is compared with the retrieval

performance of single features, simple combination approaches and exhaustive search

approach. Then it is also applied to a multimodal setting by using TRECVID 2007

dataset with 3 visual, 2 audio and 1 textual modalities. Lastly, the proposed approach

is utilized for efficient feature selection and combination in a Wireless Video Sensor

Networks application.

5.1 Overview

CBIR systems aim to retrieve pictures from large image repositories according to the

needs of the users [26]. In CBIR systems, images are usually modeled with a set of

low level features, such as color, texture or shape, from which underlying similarity
1Section 5.1 through 5.4 of this chapter was published as [151]. Section 5.6 was published as [94].

[151] c� 2011 Springer. Reprinted, with permission from Springer, license number 3434750028424. Springer and

the original publisher /journal title, volume, year of publication, page, chapter/article title, name(s) of author(s),

figure number(s), original copyright notice) is given to the publication in which the material was originally

published, by adding; with kind permission from Springer Science and Business Media.

[94] c� 2012 IEEE. Reprinted, with permission, from H. Oztarak, T. Yilmaz, K. Akkaya, and A. Yazici, Efficient and

accurate object classification in wireless multimedia sensor networks, 21st International Conference on Computer

Communications and Networks (ICCCN), 2012.
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functions are used to perform queries [2].

The ultimate goal of designing CBIR systems is to achieve the best possible retrieval

accuracy. To achieve high accuracy on a retrieval task, traditional approaches prefer

creating superior low level features than the currently available ones, or optimization

of them [24, 61]. However, the noise in sensed data, non-universality of any single low

level feature and performance upper bounds prevent relying on a single feature [98].

Furthermore it has been observed that the sets of patterns misclassified by the different

methodologies would not necessarily overlap and complementary information pro-

vided by different features improves the performance [61]. In the information fusion

literature, fusing multiple features is an empirically validated approach for increasing

the retrieval performance [31, 61, 67, 144].

Dealing with multiple features entails processing intrinsic high dimensionality of each

feature and handling heterogeneous dimensions / scales of different features. Modeling

the CBIR system to operate in feature space (storing image features in the database)

makes the system struggle with the heterogeneity of different features and prevents

it from being fast and flexible [15], which refer to a fast retrieval operation and the

system can handle any new features blindly, respectively. A CBIR operating in feature

space is not fast since similarity calculation is done at query-time. Also, it cannot be

flexible either, considering that handling a new feature requires renewing the system for

processing the dimensionality and scale of the new feature. Therefore, an alternative

approach, that regards the fastness and the flexibility issues, is modeling the system in

dissimilarity space. In accordance with the ideas of [86, 97] for representing images

with dissimilarities, Bruno et al. [16] present fusing multiple features in dissimilarity

space. In dissimilarity space, the images in the database are represented with the

dissimilarity values to prototype objects of the particular image categories. Thus, the

retrieval operation is faster and adding new features to the system is easier as long as

the distance function is available at once for processing the images in the database.

Beyond the representation problem of images, another crucial issue is to find out

the features that are more beneficial for fusion. This problem, namely the feature

selection problem, tries to determine which subset of features yield to an optimal

result. In [47], Jain et al. group widely-used techniques with a general aspect of
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view: exhaustive search, branch-and-bound search, best individual features, sequen-

tial forward/backward selection, sequential forward/backward floating search. The

methods except the exhaustive search provide computationally more efficient ways

of finding an optimal set, however, exhaustive search guarantees to find the optimal

solution. For each of these methods, selection criteria during forward/backward selec-

tion operations can differ; information gain, previously-defined quality metrics or the

complexity can be a consideration. With a more specific view on the problem, some

of the recent approaches in the information fusion literature can be listed as: Finding

principal/independent components [64, 143], selecting the most coherent and less

complex features according to the heterogeneity issue [63], calculating the information

gain obtained [5, 58] and defining quality and reliability metrics on features [98, 120].

Although there are many different approaches for the selection of features, all of

them have a common preference: The selection process is independent of the category

(semantic meaning) of the images. However, considering the idea that different features

can be more effective, representative and discriminative for different image categories,

using a category dependent feature selection approach can be more beneficial.

Here, a class-specific feature selection approach for the fusion of multiple features

is proposed. In order to eliminate the high-dimensionality of multiple features and

provide efficient querying over the images, we prefer a dissimilarity based approach.

To learn the class-specific features, we carry out a training phase. During the training,

the class-specific features are determined by using the representativeness and discrimi-

nativeness of features for each image class. The calculations of representativeness and

discriminativeness are based on the statistics on the dissimilarity values of training

images.

5.2 Multi-Feature Modeling in Dissimilarity Space

The literature of information fusion agrees on the idea that combining multiple features

enhances the efficiency. However, how to combine such information is still a research

topic. One of the discussed issues is the representation of images. In feature based

representation, an image is usually represented with a multi-dimensional feature vector
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and having multiple features causes dealing with multiple of such multi-dimensional

feature vectors, each having different dimensions and scales. Handling the complexity

of different dimensions and scales of different features makes the CBIR system more

dependent on the currently available features and less flexible to new features. In [15],

Bruno et al. discuss these issues in detail. Still, a more crucial flaw for feature-based

representation is the inefficiency of the fast querying capabilities. Having features in

the database requires calculating the similarities of related images for every query task.

A more convenient way is the dissimilarity based representation [15, 32, 86, 97]. In

dissimilarity based representation, feature values are not stored in the database; instead

the dissimilarity values of images are stored. Thus, the CBIR system does not need

to deal with the intrinsic dimensionality of features to combine them. In addition, a

query task is simpler; it does not require similarity calculations for each query. The

dissimilarity values of images are calculated once, before including the image into the

CBIR system. To calculate the dissimilarity values, the dissimilarity functions of each

feature are utilized. Hence dissimilarity-based representation is a more flexible and

fast way of representing the images in a CBIR system employing multiple features.

In dissimilarity based representation, the dissimilarities between each image couple

is not necessary. Instead, the dissimilarities of the images in the image database with

prototype images of the system are enough (Figure 5.1). The number of prototype

images is quite smaller than the size of the image database. Usually, the prototype

images are grouped according to their image classes (semantic meanings of images)

in order to meet semantic query requirements. In a multi-feature CBIR system, such

distance values between the images in the image database and the prototype images

should be stored separately for each feature.

More formally, assuming that F = {f1, f2, ..fk} is the set of features available for

the CBIR system having k number of features, C = {c1, c2, .., cm} is the image

database having m number of images, P = {P1, P2, ..Pn} is the set of prototype

image classes containing n number of image classes, each prototype image class is

Pi = {pi1, pi2, ..pit} where number of prototype images is t and t is not necessarily the

same in all prototype image classes; the multi-feature CBIR system has following
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Figure 5.1: Dissimilarity based representation

distance-based representation for each image class i and feature f :

Di
f =

0

BBBBB@

df (c1, pi1) df (c1, pi2) · · · df (c1, pit)

df (c2, pi1) df (c2, pi2) · · · df (c2, pit)
...

...
...

...

df (cm, pi1) df (cm, pi2) · · · df (cm, pit)

1

CCCCCA
, (5.1)

where df (x, y) is the dissimilarity between the database image x and the prototype

image y for feature f .

A semantic query (for instance “Find pictures of cars”) executed in this kind of CBIR

system is handled as follows: The distance matrices of Di
fs are evaluated, where i is

the class of ‘car’ images and f 2 F . First, for each matrix, prototype aggregation with

a predefined algorithm is performed and an aggregated distance vector that represents

the distances of all images in the image database to the ‘car’ semantic image class is

obtained. Then k number of distance vectors, each representing a different feature,

are combined with a feature selection algorithm. The combination of k number of

distance vectors results with a single distance vector which shows the distances of all

database images to the ‘car’ class.

In this study, we propose a class-specific feature selection approach for the feature

selection problem stated above. The prototype aggregation problem is beyond the

scope of this study. However, two different basic aggregation methods (minimum

and average) are utilized during the empirical study in order to see the effect of using
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different aggregation techniques.

5.3 Exploiting Class-specific Features

In CBIR systems, as mentioned in Section 1, a particular feature or a common set

of features is usually used to compare the query image with the database images. In

these systems, the features are selected to represent the problem domain. However,

if the size of the database and/or the diversity of image collection is increased, these

methods fail to give satisfactory results. Specifically, using the same features for

different domains and types of objects yields unsatisfactory results. Finding a solution

to the problem is quite simple: using different features for different object types. For

example, shape features are more important than color features for a ‘car’ object

whereas a ‘sea’ object can be defined with color and texture features. Another example

is presented in Figure 5.2 visually. A ‘ball’ object can be in any color but the shape is

the ‘ball’ is always circle. However, a ‘sky’ object can be in any shape, but is always

‘blue’. Besides, both shape and color are important for a ‘banana’ object.

Figure 5.2: Examples for Class-specific Features

To describe the approach more formally, assume an image database having images

from 2 semantic classes. It is assumed that class C1 contains n1 number of images and

C2 contains n2 number of images in the database. Also, it is assumed that the images of
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class C1 can be defined better with color features and the images of C2 can be defined

better with shape features. If this database is used in a CBIR system that compares

images according to only color features or shape features, the performance of the

system is nearly 50% in terms of accuracy. If color features are used, the performance

of the system is satisfactory for C1, but not for C2. To obtain a satisfactory performance

for the whole system, different features should be used for different classes.

By considering this idea, in [134], Uysal et al. utilized an approach identifying the

Best Representative Feature (BRF) for each object class, which maximizes the correct

match in a training set. Similarly, in [127] Swets et al. propose to use Most Expressive

Features and Most Discriminating Features. However, these approaches lack the

advantages of fusing multiple features since they select only one feature for each class.

Besides, Jain et al. [45] apply the idea in biometrics domain. They propose combining

multiple traits by selecting person-specific traits for recognition. However, they do not

propose a feature selection methodology. They obtain the person-specific traits after

an exhaustive search process on the training data.

In this study, we propose a class-specific feature selection mechanism by finding out

the representative and discriminative features for each image class. Representative

characteristics of features are calculated according to the dissimilarities of images

within the same class, and discriminative characteristics are calculated according to

the ability of features to distinguish between different image classes. Using these

characteristics, the importance values of features for each image class are calculated

as detailed below. The importance values of features for each category are also

called the Class-Specific Features (CSF) index. The mechanism is based on statistical

calculations over the dissimilarity values of all prototype images. Providing such

prototype images can be considered as the training phase of the CBIR system. The

CSF indices are used as the weights of the features during feature combination process.

5.3.1 Calculation of CSF Indices

To calculate the CSF indices, firstly the dissimilarity values of prototype images to

each other is calculated and a dissimilarity matrix is obtained as Di
f (P ) for each f ,
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similar to the one given in Section 2. Differently, Di
f (P ) includes dissimilarities of

prototype images in image class i to all prototype images of all image classes. Di
f (P )

contains n · t rows and t columns.

Di
f (P ) =

0

BBBBBBBBBBBBBBBBBBBB@
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. (5.2)

After obtaining the dissimilarity matrices Di
f (P ) for each feature and image class,

dissimilarity values of each image category in each matrix are aggregated both column-

wise and row-wise. Thus, the mean and standard deviation vectors are obtained as

follows;

µ(Di
f (P )) =

h
µi,1
f µi,2

f · · · µi,n
f

iT
, (5.3)

�(Di
f (P )) =

h
�i,1
f �i,2

f · · · �i,n
f

iT
. (5.4)

Here, µi,j
f denotes the mean of dissimilarities from all images in class i to all images

in class j for feature f . Also, �i,j
f denotes the corresponding standard deviation.

To obtain the CSF indices, four important parameters are extracted from the above

given vectors of µ(Di
f (P )) and �(Di

f (P )):

• Mean of Class (µi,i
f ): µi,i

f is the average dissimilarity value of a class to itself, for

a particular feature f . Mean of Class is a representative characteristic for features.

For a selected class, the features with lower dissimilarity values represent the

image class better. Thus, the CSF index is inversely proportional to the mean of

the category.

• Standard Deviation of Class (�i,i
f ): �i,i

f is another important representative

property. For any class, a feature with small standard deviation entails close

image-to-image dissimilarity values within the class. Such a feature can be
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considered as a better feature. Thus, the CSF index is inversely proportional to

the standard deviation of an image class.

• Standard Mean Distance to Other Classes (�if ): Standard mean distance to other

classes is a discriminative feature which is calculated by using the dissimilarities

of a class to other classes. It is calculated as follows:

�if =

sPn
j=1 (µ

i,i
f � µi,j

f )

2

n
, (5.5)

where n is the number of image classes. This calculation gives us the average

dissimilarity of an image class i to all other classes. Thus, having a greater

dissimilarity means better discrimination among all categories, which means

that the CSF index is directly proportional to �if .

• Correctness Ratio (!i
f ): Although the three parameters given above are important

and provide good representation and discrimination, the issue of correctness

of the feature is not considered. It is important for a feature to give the lowest

dissimilarity values for the images in a class which is the same with the class

of the query images. Correctness ratio of a particular feature f can be defined

as what percentage of the means in a µ(Di
f (P )) vector are larger than the mean

value of the class i (µi,i
f ). As the correctness ratio decreases, the representation

ability decreases, which means that the CSF index is directly proportional with

the correctness ratio.

Considering the effects of the above parameters, the CSF index of a particular feature

f on a particular image class i is calculated using the formula below;

CSF i
f =

(1� µi,i
f ) · �if · !i

f

�i,i
f

. (5.6)

5.3.2 Normalization on Dissimilarities

As mentioned before, CBIR system having dissimilarity-based representation does not

need to deal with the intrinsic dimensionality of features to combine them. However,

different scales of different features are still a problem to be solved. Different scales of

the values contained in the features causes dissimilarity values to be in different scales.
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In the literature, there are several normalization methods to handle the different scales

of multiple features [46]: Min-max, decimal scaling, z-score, median, double sigmoid,

tanh estimators, bi-weight estimators. In [46], Jain et al. empirically show that

min-max, z-score and tanh estimators methods are superior. Also they note that

the simplest method (min-max) would suffice when the minimum and maximum

values are known. Min-max normalization transforms values from a known (or

estimated) range [min,max] into [0, 1] range with the following basic formulation:

x0 = (x�min)/(max�min). Considering that we have the prototype images and

dissimilarity values of prototype images to themselves, it is easy to find the minimum

and maximum dissimilarity values for each feature. Thus the min-max normalization

approach is preferred in this study.

5.4 Evaluation of CSF in Multi-Feature Setting

To demonstrate the validity of the proposed approach, a number of experiments are

carried out. For the experiments, the CalTech 101 image dataset [34] is used. It

contains pictures of objects belonging to 101 categories. During the tests, all of the

101 classes in the dataset are used. Randomly selected 10 images for each class,

hence a total of 1010 images, are treated as the prototype images. For the query

purposes, randomly selected 20 images for each class and a total of 2020 images

are employed the image database. In addition, as the features to be combined, 8

visual features of MPEG-7 [78] in three types are utilized: Color descriptors of Color

Layout(CL), Color Structure(CS), Dominant Color(DC), Scalable Color(SC); Shape

descriptors of Contour Shape(CSh), Region Shape(RS); Texture descriptors of Edge

Histogram(EH), Homogeneous Texture(HT). The dissimilarities of the images for these

features are calculated by using the MPEG-7 reference software (eXperimentation

Model, XM) [83].

The tests are mainly performed on semantic retrieval of images; the semantic classes

are queried over the image database. The images are fetched and sorted according to

the dissimilarity values. To measure the retrieval accuracy, Precision, Recall, Average

Precision(AP) and Mean Average Precision(MAP) metrics are used. Precision is the

fraction of retrieved images that are relevant to the search, whereas Recall is the ratio

64



Figure 5.3: Precision-Recall Graph for Semantic Retrieval

of the number of relevant images retrieved to the total number of relevant images in the

collection. The AP is the sum of the precision at each relevant hit in the retrieved list,

divided by the minimum between the number of relevant documents in the collection

and the length of the list. Considering that image collection in our test contains 2020

images, AP is measured at 2020. MAP is the AP averaged over several image classes.

In other words, the AP of each image class is calculated separately, then the MAP is

found by averaging them.

As the primary test, the accuracy of the proposed method on semantic retrieval is mea-

sured. In order to perform a detailed comparison, this test is executed in four steps. As

the first step, the retrieval accuracies of each single feature is calculated. For the second

step, following simple combination approaches are tested: Minimum Distance(MD),

Average Distance(AD), Euclidean Distance(ED). The combined dissimilarity is ob-

tained by selecting the minimum dissimilarity (distance) in MD, averaging all available

dissimilarities in AD and calculating an Euclidean distance on the available dissimilar-

ities in ED. For the third step, feature selection by an exhaustive search approach is
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applied and the combined dissimilarity is calculated by averaging the dissimilarities of

resultant features from the feature selection. An exhaustive search for feature selection

requires calculating all combinations of available features, 28 cases in total for our test.

Considering that performing an exhaustive search during each query is not applicable

due to the time cost, the selection process is executed once on the prototype images.

Then, 10 best selections (ES[1-10]) are found and semantic retrieval test is performed

for each of these 10 feature selections. As the last step, the approach proposed in this

study is performed for feature selection. Calculated CSF indices are used to combine

the dissimilarity values with a weighted-sum approach. Not only the CSF index, but

also the four parameters of the CSF are tested separately in order to see which one is

more influential. In Figure 5.3, the Precision-Recall graphs of these methods are given.

In addition, the AP of some sample categories, MAP of Best 10, 20, 50 and all 101

categories are presented in Table 5.1. Also, how many times each method has the best

score and mean ranks of each method are included in the table. The results given in

the table are visualized in Figure 5.4.

Considering the test results, it is observed that obtaining an increase in the accuracy

requires a good selection on the features. Simple methods like MD, AD and ED are not

enough for selection. MD lacks the advantages of combining multiple features whereas

AD and ED always combine all of the features and are affected by the unfavorable

features. Besides, the exhaustive search guarantees to find the optimal feature selection

by evaluating all possible combinations. Therefore ES1 outperforms the other methods.

However the ES[1-10] ranking obtained at the training phase is not the same during the

querying. For instance, ES5 performs better than ES2, ES3 and ES4. Such situation is

caused by difference between training and query images. Although it is not observed

in this test conditions, it could be possible that the best combination obtained during

the training phase do not give best results during querying. It is possible to handle

such incompliance by executing the exhaustive search during each query, but it causes

time inefficiency.

On the other hand, our proposed method of CSF gives successful accuracy results that

are very close to the best selection in total and even better for one fourth of the image

classes. Regarding that the results of the best selection in ES can be considered as

the upper-bound for the retrieval task, the CSF method can be qualified as a robust
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Table 5.1: Semantic Query Results
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CL 0.013 0.035 0.127 0.376 0.023 0.406 0.259 0.129 0.073 0 22.6
CS 0.028 0.135 0.037 0.388 0.021 0.361 0.241 0.119 0.066 0 23.0
CSh 0.865 0.766 0.725 0.253 0.361 0.841 0.743 0.542 0.339 3 13.9
DC 0.020 0.033 0.055 0.427 0.019 0.258 0.171 0.088 0.050 0 23.6
EH 0.895 0.874 0.633 0.827 0.928 0.924 0.855 0.667 0.424 6 10.1
HT 0.006 0.063 0.159 0.235 0.029 0.304 0.210 0.112 0.063 0 23.0
RS 0.097 0.120 0.153 0.624 0.114 0.354 0.233 0.121 0.070 0 22.4
SC 0.016 0.065 0.057 0.654 0.064 0.352 0.229 0.116 0.066 1 22.8
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e MD 0.401 0.253 0.190 0.253 0.733 0.703 0.550 0.318 0.176 0 19.1
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ES1 0.958 0.964 0.870 0.856 0.970 0.963 0.927 0.806 0.563 36 5.0
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and successful approach. In addition, our claim of exploiting class-specific features

can be supported by the results of ES method. Different feature combinations in ES

selections perform better in different image classes, which results different classes

requires the use of different features.

Another observation on the results is the superiority of � parameter of CSF approach

among other parameters. Therefore, it can be stated that the discriminativeness

characteristics of features are more effective than the representativeness.

An important discussion for combining multiple features is the independency of

features. Using complementary features with the methods requiring independent

inputs can cause a decrease in the accuracies. Therefore, many studies exist in the

information fusion literature that performs an independence analysis [64]. In this

empirical study, the features utilized are not fully independent. It is previously stated

that simple methods like MD, AD and ED are not successful enough for the selection

task. One important reason in their inefficiency is the fact that they cannot eliminate

complementary information and the violation of independence assumption decreases

their performance. However, the ES and CSF approaches enable selecting different

combinations and eliminates complementary features.

As mentioned in Section 2, a prototype aggregation is necessary to combine the

dissimilarities of multiple prototypes. Although prototype aggregation is beyond our

scope, a secondary test is performed to show the effect of prototype aggregation.

During the first test, averaging is used for aggregation. In this test, the previous test

is repeated with a minimum aggregation method. The comparison of two methods

is given in Figure 5.5. It is clearly shown that averaging is superior than minimum.

However, these two are very simplistic methods and there are better ways of exploiting

the information included in the prototypes.

As the last test, the time complexities of our proposed method and exhaustive search

are compared. The query execution times of these two approaches are quite the same

since querying includes only a weighted/unweighted summation of several features.

However, the execution times for the training phases, which are carried out in order

to find out the optimal set of features, differ much. Time complexity of exhaustive

search is O(m2 · 2n) where m is the total number of prototype images and n is the
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Figure 5.5: Comparison of Average and Minimum Aggregation Methods

number of features. Whereas, time complexity of our proposed method is O(m2 · n).
Time-measurements obtained in this test validated these theoretical definitions. Results

are given in Table 5.2. The results show us that CSF approach is 50 times better than

the ES approach, in our case. If the number of features increases, execution time for

ES could be worse.

Table 5.2: Execution Times for Training Phases

Total Execution Time
Exhaustive Search 1,049,652 msec
CSF Calculation 19,802 msec

5.5 Evaluation of CSF in Multimodal Setting

After evaluating the CSF mechanism in multi-feature setting and resulting that it is a

timely-efficient, accurate and robust way of feature selection, it is decided to evaluate

the validity of the CSF mechanism with a multi-modal setting. So, some additional

experiments are performed with a multi-modal setting on multimedia data. In this
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section, the tests with a multimodal setting are presented in detail.

5.5.1 Test Setup

Evaluations on multimodal setting are based on the international benchmark for video

information retrieval TRECVID. TRECVID is a popular workshop in video infor-

mation retrieval, proposing a large corpora of videos which are manually annotated.

Considering that the shot segmentations and labeling are available, video datasets

provided by TRECVID are attractive widely-used. In our tests, TRECVID 2007 is

considered [91]. TRECVID 2007 corpus is composed of 100 hours of multilingual

video, roughly equally divided into training and test sets. The development data

comprises 110 videos and 30.6 GB, whereas the test data is 109 files and 29.2 GB.

The annotations on the TRECVID 2007 dataset is provided in a multi-label manner,

which means each shot can contain more than one label. The distribution of shots

according to labeled concepts is presented in Table 5.3. A performance comparison of

TRECVID 2007 participants and further details can be found in [91].

In our setup, for shot segmentation, the outputs of common shot reference is used

as the video shots. The dataset contains 21,532 reference shots for training and

18,142 reference shots for test. In the experiments, we used the 20 semantic concepts

which were selected in TRECVID 2007 evaluation. During the tests, the shots are

considered as individual and independent documents, which no contextual information

or interaction is taken into account between shots.

Considering a multi-modal setting; visual, audio and textual features are extracted

from the videos. For visual features, one key frame per shot is adopt and the middle

frame for each shot is selected as the key frame. For audio features, entire audio of

each shot is processed. For the textual features, the automatic speech recognition

(ASR) and Machine Translation (MT) texts, which are provided by TRECVID, are

employed.

For visual modalities, 8 visual features of MPEG-7 [78] in three types are utilized:

Color descriptors of Color Layout(CL), Color Structure(CS), Dominant Color(DC),

Scalable Color(SC); Shape descriptors of Contour Shape(CSh), Region Shape(RS);
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Texture descriptors of Edge Histogram(EH), Homogeneous Texture(HT). These fea-

tures are grouped in three modalities according to the type they belong. The feature

extraction and distance calculation tasks are performed by using the MPEG-7 reference

software (eXperimentation Model, XM) [83].

As the audio features, Linear Predictor Coefficients(LPC), Zero Crossing Rate (ZCR),

Energy and Mel-frequencies cepstrum coefficients (MFCC) are used. The features are

included into the test as two modalities according to their dimensionalities; LPC, ZCR

and Energy in one modality and MFCC in another modality. The feature extraction is

performed by using the Yaafe toolbox [12]. The distance measure used is the Euclidean

distance.

For the textual modality, the term frequency inverse document frequency (TF-IDF)

weights [112] are calculated as features. During calculation, no stop-word filtering or

preprocessing is done. For the distance calculation, Cosine similarity metric is used.

Therefore, the final list of modalities as follows: Visual-color, Visual-shape, Visual-

texture, Audio-Simple, Audio-Complex, Textual.

Similar to the evaluation in Section 5.4, the tests are performed on semantic retrieval of

images; the semantic classes are queried over the video (shot) database. The shots are

fetched and sorted according to the similarity values. The similarities are calculated in

three different ways of prototype aggregation:

• minimum prototype aggregation, by using 1 prototype instance for each class

• k-minimum prototype aggregation, by using 20 prototype instances for each

class

• averaging prototype aggregation, by using all prototype instances of each class

It should be noted that the 1-prototype and all-prototype configurations correspond

to the minimum and averaging prototype selection/aggregation approaches evaluated

in Section 5.4, respectively. So, here a new prototype selection approach is also

evaluated: k-minimum (or prototype selection with k=20. In our tests, a separate

classifier is created for each modality, so a total of 6 classifiers are used.
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To measure the retrieval accuracy, Average Precision(AP) and Mean Average Preci-

sion(MAP) metrics are used. The AP is the sum of the precision at each relevant hit in

the retrieved list, divided by the minimum between the number of relevant documents

in the collection and the length of the list. Regarding the evaluation rules of TRECVID,

AP is measured at 2000. MAP is the AP averaged over several image classes. In other

words, the AP of each image class is calculated separately, then the MAP is found by

averaging them.

In order to perform a detailed comparison, the tests of each classifier configuration are

executed in four steps. As the first step, the retrieval accuracies of each single feature

is calculated. For the second step, modality selection by an exhaustive search approach

is applied and the combined dissimilarity is calculated by averaging the dissimilarities

of resultant features from the modality selection. An exhaustive search for modality

selection requires calculating all combinations of available modalities, 26 cases in total

for our test. The tests are performed for each combination. It should be noted that,

exhaustive search is performed in a way that the modality selection is done independent

of the classes and selected modalities are applied on all of the classes. For the third

step, a well-known and widely used feature selection algorithm, RELIEF-F [66], is

tested. As the last step, the CSF approach is performed for modality selection. Not

only the CSF index, but also the four parameters of the CSF are tested separately

in order to see which one is more influential. Different from the CSF evaluations

in Section 5.4, the CSF formulation is updated as follows;

CSF i
f =

(1� µi,i
f ) · (�if )v · !i

f

�i,i
f

, (5.7)

and the effect of different v values is observed.

As the fusion approach, a late fusion with a simple linear weighting approach is

preferred for simplicity. Thus, during the exhaustive search, RELIEF-F and CSF

steps, calculated weights are used to combine the similarity/dissimilarity values with a

weighted-sum approach.

5.5.2 Test Results

Table 5.4, Table 5.5 and Table 5.6 present the AP of all concept types and the MAP
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values, for each classifier configuration listed above. Also, in Table 5.7, a general

comparison of all tests are given in terms of MAPs. In Figure 5.6, a visual comparison

of MAP values for each classifier configuration is presented. In Figure 5.7, the effect

of v parameter in CSF formula is illustrated.

Figure 5.6: Comparison of MAPs for each classifier configuration

Figure 5.7: Effect of v on retrieval

5.5.3 Evaluation and Discussion

Considering presented test result, following evaluations can be done:

• Combination of different modalities give better results than the single modalities.
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Table
5.6:Sem

antic
Q

uery
R

esults
(averaging

prototype
aggregation)

Single
Features

Exhaustive
Search
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elief-F

C
SF

Visual

Color
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Shape

Visual

Texture
Audio
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Audio

Complex

Textual
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irplane
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10.05

12.50
10.05

8.85
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7.75

78



Table 5.7: Semantic Query Results, General Comparison of Different Classifiers

1-
nn

k-
nn

c-
nn

sv
m

Visual-Color 0.069 0.074 0.080 0.081
Visual-Shape 0.070 0.055 0.061 0.061

Visual-Texture 0.084 0.103 0.085 0.092
Audio-Simple 0.058 0.062 0.058 0.060

Audio-Complex 0.061 0.067 0.063 0.065
Textual 0.057 0.057 0.057 0.047

ES-1 0.091 0.103 0.093 0.102
ES-2 0.090 0.099 0.093 0.102
ES-3 0.090 0.097 0.088 0.102
ES-4 0.088 0.097 0.088 0.102
ES-5 0.088 0.096 0.087 0.101

Relief-F 0.099 0.103 0.090 0.102
Mean 0.083 0.093 0.093 0.102

StdDev 0.084 0.093 0.093 0.103
MeanDist 0.085 0.096 0.096 0.103

CorrRat 0.085 0.095 0.095 0.101
CSF (v=0.5) 0.089 0.104 0.091 0.101

CSF (v=1) 0.090 0.106 0.094 0.099
CSF (v=2) 0.091 0.111 0.097 0.097
CSF (v=3) 0.092 0.114 0.098 0.096
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However, selection of modalities is a critical issue. A wrong selection can lead

to worse results than the best of the single modalities.

• Considering the results of single features, it can be observed that the perfor-

mances of modalities vary in different classes. For instance “Visual-Texture”

modality gives the best results for “Animal” class, whereas “Textual” modality

is better for “Flag-US” class. Such results validate the base idea of CSF, which

is different classes can be represented better with different modalities.

• A similar evaluation with the above can be done by considering the exhaustive

search results. The results of exhaustive search supports the claim of exploiting

class-specific features. Different feature combinations in exhaustive search

selections perform better in different classes, which results different classes

requires the use of different features.

• Although the exhaustive search should guarantee to find the optimal feature

selection by evaluating all possible combinations, it lacks the use of class-

specificity. As mentioned in the test setup, exhaustive search generate modality

selection sets that are common for all classes. However, RELIEF-F and CSF

can find the informative modalities for each class separately. Thus, RELIEF-F

and CSF obtains better results than exhaustive search.

• CSF gives successful accuracy results against RELIEF-F.

• As declared in Section 5.4, the superiority of Standard Mean Distance (�)

parameter of CSF among other parameters is still valid. Also, updating the CSF

formulation by getting vth power of Standard Mean Distance has a positive effect

on the accuracy results. As the v value increases, the accuracy increases. So,

the discriminativeness characteristics of features is the most effective parameter.

In essence, the calculation of RELIEF-F is very similar to the Standard Mean

Distance and the accuracy results of RELIEF-F is reasonably high.

• As mentioned in Section 5.4, an important discussion for combining multiple

features is the independency of features. Using complementary features with

the methods requiring independent inputs can cause a decrease in the accuracies.

In this study, the modalities utilized are not fully independent. RELIEF-F
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approach is known to be good at handling features with high dependencies.

Also, exhaustive search can handle the dependency issue since it tries to find the

optimal solution. The test results show that CSF approach is as successful as

these two approaches at eliminating complementary features and selecting the

most informative ones.

• Prototype aggregation method have a direct effect on the accuracy.. As evaluated

in Section 5.4, the averaging approach is superior to the minimum. In this test

setup, k-minimum approach is included. According to the results, k-minimum

performs superior than both of averaging and minimum, whereas averaging is

still better than minimum. The reason why k-minimum is better is quite clear;

selecting the k prototypes with minimum distances to the query instance prevents

the negative effect of noisy prototypes. Thus, a successful prototype selection

mechanism is crucial for such a setup and classifier.

• The AP values of different classes can dramatically change. This is not because

of the success of classifiers or fusion mechanism; but the unbalanced dataset.

As presented in Table 5.3, the number of training and test instances fluctuate

among classes excessively. When the AP values of classes and instance counts

analyzed in detail, it can be observed that change in the number of training

instances does not affect the performance so much. However, the number of

test instance counts directly affects the success in each of the classes. This is

probably because of the noisy instances in the test set. When the number of

test instances of a class increases, the ratio of noisy instances decreases, so the

performance of the class increases. However, the evaluation in [91] is different.

They argue that the successful classes are the ones which are the extensively

studied ones. But, such an evaluation is not applicable for our tests, since we

have not performed any special research on any of the classes.

• Considering the accuracy results of TRECVID 2007 participants, the results of

proposed approach obtains are very successful and close to the accuracies of the

most successful participants.
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5.6 A Utilization of CSF in Wireless Video Sensor Networks

In this section a utilization of CSF approach for efficient feature selection and combi-

nation in an Wireless Video Sensor Networks application, is presented. Considering

that the study is not directly towards the Ph.D. topic, a brief summary is presented as

well the test results.

5.6.1 Overview

Wireless Visual Sensor Networks (WVSNs) have started to receive a lot of attention

very recently due to their potential to be deployed flexibly in various outdoor appli-

cations with lower costs [1]. Such networks deploy a large number of image/video

sensors [41, 102] with different capabilities and can collect/process multimedia data.

Typical applications of WVSNs include multimedia surveillance, target tracking,

habitat monitoring, intrusion detection and health care delivery [1].

In such applications, battery operated image/video camera sensors are deployed to

acquire different viewpoints of the occurring events. One of the major problems in

these surveillance and target tracking applications is to classify the detected objects

accurately. If the detected objects are classified appropriately on site, then the central

decision unit, i.e. the sink, may be alarmed effectively. This is very crucial given that

these applications are geared for security and safety. For instance, given a power plant

surveillance application, built with wireless camera sensors and used to detect the

intruders, only human intruders or more specifically only non-worker human intruders

may be alarmed to the guards. In other situations, such as in case of an animal or

employed worker in power plant, no alarm may be necessary.

In order to perform an accurate object classification, an effective set of features

should be selected for classification and and a robust classifier should be constructed.

Although there exist lots of features and classifiers in the literature for visual object

classification [27, 48, 119]; the important point for WVSN applications is to employ

those features and classifiers which are lightweight in terms of processing, energy,

time and storage as well as their accuracy in classification. Also real-time applicability

is crucial considering that the classification process is performed on the sensor, at the
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time object is detected. Another important requirement is the flexibility of the system

for adding new features and object classes in order to be able to extend the classifier

for recognizing new classes and make it applicable for other domains.

In this study, we choose two simple –but effective– features; shape and velocity

of the detected objects. As the classifier, we employ the Genetic Algorithms (GA)

based classifier proposed in [152]. Actually, the classifier is designed as a Minimum

Distance classifier empowered with a GA-based approach by employing a GA-based

prototype selection mechanism. Minimum Distance classification approach provides

lightweight solution with its low-complexity in processing and time. Besides, GA

provides increase in accuracy and lowering the storage requirement by enhancing the

prototypes in the classifier model and including a probabilistic knowledge. In addition,

the classifier utilizes the Class-Specific Features (CSF) [151] in order to relate the

prototype classes with the most representative and discriminative features for them.

The experiments show that the classifier can classify the most usual object types such

as human or vehicle effectively in our typical surveillance application with lower costs

in terms of energy, time and storage.

5.6.2 Experimental Evaluation

This section includes the experiment setup, metrics and the results.

5.6.2.1 Experiment Setup and Performance Metrics

For the experiments, we assume a power plant surveillance application scenario. In

this scenario, when an intrusion occurs at the area under surveillance, the detected

objects are classified at the camera sensors. The classification is performed as a

multi-class choice with 3 classes: Human, V ehicle and Animal. For the camera

sensor experiment data, the Caltech 101 image dataset [34] (for V ehicle and Animal

classes) and search results from Google Image Search (for Human class) are used by

formatting them into the CmuCam3 [107] output format. The CalTech101 dataset does

not contain V ehicle and Animal classes. So, images from several different classes in

Caltech 101 dataset are regrouped according to these classes. The dataset is divided
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Figure 5.8: Sample images from test dataset

into three sets: First-Training, Second-Training and Test. The number of images is

determined as 10 for each class in each of the training sets and 20 for each class in the

test set. Sample images from our constructed dataset are given in Figure 5.8.

As mentioned above, the CSF mechanism [151] is applied in order to find representative

and discriminative features for each object class. CSF mechanism gives weights of

each feature for each class. Acquired weights are given in Table 5.8. According to

these weights, it has been observed that V elocity is the dominant feature for all classes.

However the effect of it is more for Animal than the other two classes.

Table 5.8: CSF Weights

Shape_Ratio V elocity

Human 0.371051 0.628949
V ehicle 0.342217 0.657783
Animal 0.130904 0.869096

We have considered two metrics:

• Classification Performance: This metric shows the performance in estimating

the class of the intruder. The bigger is the performance, the better is the quality

of the approach.

• Energy Overhead: This constitutes total energy in processing and transmitting

the frames (if needed). Our goal is to minimize this overhead in order to

maximize the lifetime of the cameras.
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5.6.2.2 Performance Results

Classification Performance
Under given test setup, the results given in Table 5.11 and Table 5.12 are obtained. We

compare the results with a previous study in [95] which uses a user advanced fuzzy

membership sets, Table 5.9 and Table 5.10. The classifier performs multiple labeling

by providing fuzzy membership values in the range [0,1] for each class. So, in order

to measure the precision values, the class with the highest membership value is taken

as the classification result.

Table 5.9: Confusion Matrix for [95]

Prediction
Human V ehicle Animal

A
ct

ua
l Human 20 0 0

V ehicle 0 19 1
Animal 1 3 16

Table 5.10: Class Precisions for [95]

Class Precision
Human 1.00

V ehicle 0.95

Animal 0.8

Total 0.85

Table 5.11: Confusion Matrix for Proposed Approach

Prediction
Human V ehicle Animal

A
ct

ua
l Human 20 0 0

V ehicle 0 18 2
Animal 0 0 20

Energy Overhead
In order to prove the efficiency of this algorithm, we have also performed experiments

to assess the energy consumption on the camera sensor. We have used the AVR

Simulation and Analysis Framework (AVRORA) to calculate energy costs [131].
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Table 5.12: Class Precisions for Proposed Approach

Class Precision
Human 1.00

V ehicle 0.90

Animal 1.00

Total 0.97

AVRORA is an emulator which can provide realistic results as if the approach is run

on a typical CMOS sensor. It has built in functions that can compute the processing

and communication costs.

We have used a baseline approach which processes the frames at a base-station and de-

termines the location of the objects. In that case, the frames are sent to the base-station

traveling through multiple hops (i.e., k). This is referred to as ’TraditionalMethod’

in the graphs. Our approach performs the localization and classification on site and

does not send any data to the base-station. However, it may need to send an alarm (i.e.,

one simple message) to the base-station when an intruder is detected and located. The

results are given in Table 5.13 and Table 5.14.

Table 5.13: Energy Costs for Different Tasks

Task Cost in Joule
C: One-time CPU cost to process the frame

to extract and classify the moving object 0.0220

M : Transmission cost of the
whole frame for 1 hop 0.0700

T : Transmission cost of the
alarm for 1 hop 0.0007

Taking the video data Same for both
cases

Table 5.14: Total Energy Costs in Joules

Process Traditional Proposed
Method Method

For 1 Hop M = 0.0700 C + T = 0.0227

For k Hops M ⇤ k = 0.0700 ⇤ k C + T ⇤ k = 0.022 + 0.0007 ⇤ k
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The results for varying k (Hop Count) values are depicted in Figure 5.9. As can be

seen from this figure, energy overhead for our approach is constant and significantly

smaller than the traditional method. We would like to note that in this experiment

every moving object detection event is sent as an alarm to the sink. However, if we

define some alarm criteria for the proposed method, the energy consumption would be

further reduced (i.e., alarms are only sent when needed).

Figure 5.9: Energy Costs of Two Different Methods

5.6.2.3 Evaluation

In order to reduce the false alarms on detected objects in WVSNs applications, the

detected objects can be classified at camera nodes to improve the quality of surveillance

applications and also extend the lifetime of the network. In this study, we have

presented a lightweight object classification approach which can work on-site at a

camera sensor. The approach utilizes a minimum distance classifier enhanced by a

genetic algorithm based prototype selection approach on top of two simple but effective

features, which are the shape and velocity of the detected objects. The approach also

benefits from the idea of exploiting class specific features.
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The experimental evaluation has revealed that our approach can effectively classify

typical objects, i.e. human, animal and vehicles, on a typical surveillance application

with an error rate of 3% overall. We also assessed the energy overhead of our approach

on the individual camera sensors. The energy consumption is significantly reduced

compared to the cases where the classification is performed at the base station due to

communication overhead. In the future, we plan to increase the number of features

used in classification to further improve the classified object types.

5.7 Evaluation of Fusion System Design

Considering the general fusion framework proposed in Section 3.1, an evaluation of

the fusion architecture described in this chapter is given below. The approach is based

on a ‘multi-modal, multi-classifier’ fusion scenario and focuses on the ‘What to Fuse’

problem. Below, how each affecting factor is handled through the proposed solution is

described.

• Fusion Setting: The proposed approach is utilized in two different fusion settings;

(i) multi-feature and (ii) multi-modal. For both settings, the dissimilarity values

between samples are combines. Thus the setting is can be accepted as ‘multiple

features / modalities, with multiple classifiers’, considering that dissimilarity

calculation is a very simple classification approach.

• Selection of Sources: The approach uses a static feature weighting scheme based

on the proposed weight calculation formula. Yet, the weights have a context

relation, since the approach is a class-specific feature selection approach.

• Fusion Strategy: The approach focuses on the use of complementary information

for fusion.

• Content Representation: A dissimilarity-based representation is preferred.

• Normalization of Sources: Min-max normalization is applies to normalize the

dissimilarity values between images / videos.

• Fusion Level: The approach is a late fusion approach, since the combination

inputs are the dissimilarity values.
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• Fusion Methodology: Considering that the focus of the study is the feature /

modality selection, linear weighted averaging approach is utilized as the fusion

methodology.

• Operation Modes: The mode for operation is a parallel scheme.

• Synchronization: A simple shot-based synchronization is applied.

• Adaptation: In the scope of the approach, adaptation capability is not considered.

5.8 Remarks

In this chapter, a class-specific feature selection approach for the fusion of multiple

features is presented. In order to eliminate the high-dimensionality of multiple features

and provide efficient querying over the images, a dissimilarity based approach is

utilized. The class-specific features are determined by using the representativeness

and discriminativeness of features for each image class. The calculations of represen-

tativeness and discriminativeness are based on the statistics on the dissimilarity values

of training images.

The approach is firstly tested in a multi-feature setting by using the CalTech101

dataset with 8 MPEG-7 visual features. The approach is compared with the retrieval

performance of single features, simple combination approaches and exhaustive search

approach. Then it is also applied to a multimodal setting by using TRECVID 2007

dataset with 3 visual, 2 audio and 1 textual modalities. Lastly, the proposed approach

is utilized for efficient feature selection and combination in a Wireless Video Sensor

Networks application. The results obtained from these tests show that the proposed

class-specific feature selection approach is an effective and efficient feature selection

method.

Further study on this issue would be as follows: Employing prototype selection and

aggregation methods within the proposed approach, utilizing proposed approach with

a dissimilarity based classification mechanism and performing multi-modal feature

selection obtained from video data.
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CHAPTER 6

RELIEF-MM: AN EFFECTIVE MODALITY WEIGHTING

APPROACH1

Fusing multimodal information in multimedia data usually improves the retrieval

performance. One of the major issues in multimodal fusion is how to determine the

best modalities. In order to combine the modalities more effectively, we propose a

RELIEF based modality weighting approach, named as RELIEF-MM. The original

RELIEF algorithm is extended for weaknesses in several major issues: class-specific

feature selection, complexities with multi-labeled data and noise, handling unbalanced

datasets, and using the algorithm with classifier predictions. RELIEF-MM employs an

improved weight estimation function, which exploits the representation and reliability

capabilities of modalities, as well as the discrimination capability, without any increase

in the computational complexity. The comprehensive experiments conducted on

TRECVID 2007, TRECVID 2008 and CCV datasets validate RELIEF-MM as an

efficient, accurate and robust way of modality weighting for multimedia data.

6.1 Overview

Increase in the use of digital multimedia data in recent years has shown the need for

multimedia retrieval systems. Retrieval of multimedia data is based on its semantic
1This chapter was published as [150]. In addition, a preliminary version of this chapter was published as [148].

[150] c� 2011 Springer. Reprinted, with permission from Springer, license number 3434750658985. Springer and

the original publisher /journal title, volume, year of publication, page, chapter/article title, name(s) of author(s),

figure number(s), original copyright notice) is given to the publication in which the material was originally

published, by adding; with kind permission from Springer Science and Business Media.
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content. In order to handle the semantic content effectively, the nature of the multime-

dia data should be examined and information contained in multimedia data should be

used completely. The multimedia data usually has a complex structure containing mul-

timodal information (i.e. audio, visual and textual modalities). Regarding the noise in

sensed data, non-universality of any single modality and the performance upper bound

of each modality, relying on a single modality may not be applicable [98]. Furthermore,

it has been observed that the sets of patterns misclassified by different modalities do not

necessarily overlap, and complementary information provided by different modalities

improves recognition capability [61]. Since each modality abstracts videos from a

different aspect, different modalities in multimedia data complement each other [51].

Thus, combining multimodal information usually improves the retrieval performance.

However, there exist two major issues that have not been adequately addressed yet and

are still attractive research areas [4, 98, 143]: (i) How to determine the best modalities?

(ii) How best to fuse them? This study focuses on the first problem and presents a

modality weighting approach in order to use the multiple modalities effectively.

The modality selection is a combinatorial search problem that aims to find the best sub-

set of available modalities giving the highest accuracy. Such a computational problem

can be solved to some extent by using a weighting strategy. Modality weighting is a

generalization of the selection problem, where the modalities are ranked by assigning

some weights in between [0, 1] to each modality, instead of a binary selection. The

use of weights enables some well-established optimization techniques and efficient

algorithmic implementations to be employed [126]. Furthermore, a weighting strategy

is a practical solution since the most frequently utilized fusion approach is the Linear

Weighted Fusion [37, 133, 145], in which the combined decision is calculated as a

weighted sum of the available modalities.

The previous studies on using multiple modalities can be categorized into three groups:

(i) using all features/modalities by averaging them (ii) performing an empirical selec-

tion and (iii) determining the effectiveness of each feature with a weighting algorithm.

Despite their wide usage among fusion studies, the first two are simplistic approaches;

the first one treats all features as equally-likely although any of the features can be

non-informative or redundant, whereas the second approach requires an empirical ob-

servation and manual selection based on the observation. On the other hand, the third
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direction requires design of an efficient feature weighting algorithm, which proposes a

polynomial time heuristic for the combinatorial explosion problem while dealing with

multiple features.

Regarding the third direction, we focus on some adaptable solutions from feature

weighting studies in the machine learning literature. However, the feature weighting

solutions are not easily applicable to the modality weighting problem, considering the

issues of (i) the intrinsic multi-dimensionality of modalities and (ii) the multivariate

inputs of fusion systems. The former issue states that feature weighting methods give

weights for each dimension of an input feature vector, whereas modality weighting

methods assign weights to each modality, each of which is a multi-dimensional feature,

by accepting each modality as a black-box. Besides, the latter is a more general issue

in fusion systems. The inputs of a fusion system are not necessarily feature values.

The prediction scores for different features / modalities are frequently combined in

state-of-the-art fusion studies. An intuitive idea to discard these problems is to utilize

a weighting approach that works in distance based metric space, instead of using a

feature space. Utilizing a distance space solves the intrinsic dimensionality problem

of multiple modalities by converting multi-dimensional feature values of a modality to

a uni-dimensional distance value. Furthermore, it enables handling of the prediction

scores after converting them into applicable dissimilarity values with appropriate

conversion functions.

Among the existing feature weighting algorithms, we focus on the RELIEF algo-

rithm [59], which is considered one of the most successful weighting algorithms

and in which the calculations are based on the distances between training samples.

Furthermore, according to the best of our knowledge, there exists no usage of the

RELIEF algorithm for multimodal feature selection2 in multimedia retrieval. The key

idea of RELIEF is to iteratively estimate feature weights according to their ability to

discriminate between neighboring samples. Employing the RELIEF algorithm for

multimodal feature selection on multimedia data enables to identify some weaknesses

of the algorithm, which have not been addressed before. Our solution is based on RE-

LIEF-F, which is the multi-class extension of the basic RELIEF algorithm. We extend

2 The final goal of this study is to select the effective modalities by weighting the available modalities and each
modality is a multi-dimensional feature. Thus, from now on, the phrases ‘modality selection’, ‘modality weighting’
and ‘multimodal feature selection’ are used interchangeably.
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RELIEF-F in the following aspects, considering the characteristics of multimedia data

and multimedia retrieval systems:

(i) Class-specific selection: Multimedia retrieval is a multi-class problem with a

high number of concepts / classes. One major drawback of RELIEF-F is that

it generates weights in a class-common way, where the same feature weights

are assigned for all concepts. However, each concept can be represented better

with different features that are specific to that concept [137, 151]. Thus, it is

important to use a class-specific modality weighting approach in the multimedia

retrieval systems, in order to handle the high number of classes.

(ii) Multi-labeled data: Multimedia data is usually multi-labeled. However, the

RELIEF-F algorithm cannot perform well when the training samples are multi-

labeled. RELIEF-F estimates the weights of the features according to their

ability to discriminate between different classes. Having multi-labeled samples

causes the algorithm not to discriminate between classes effectively, due to the

ambiguity produced by the samples associated with multiple concept types.

(iii) Noisy data: Multimedia data contains a vast amount of noise. However, the way

RELIEF-F deals with noisy data is inadequate. Similar to the multi-label issue,

noise in the samples hinders a correct discrimination between classes.

(iv) Unbalanced data: The training samples provided in multimedia datasets are

usually unbalanced between classes. Although RELIEF-F applies k nearest

neighbor approach to deal with the outlier data, an unbalanced dataset prevents

RELIEF-F from eliminating outlier data effectively. Assuming that each class

has approximately the same amount of noisy samples (as a ratio), using the

same k for all classes makes the algorithm include more noisy samples for

the classes with smaller numbers of training samples. Thus, having different

numbers of samples for each class affects the performance of the RELIEF-F

algorithm negatively.

(v) Late fusion inputs: In regular use of RELIEF based algorithms, the distances

between instances are calculated by using the feature values. However, the late

fusion approaches usually rely on prediction scores and the feature values may
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not be available at the time of fusion. Thus, a procedure that enables using the

prediction scores is necessary.

In this chapter, we propose a new RELIEF extension for multimedia data (RELIEF

for Multimedia data: RELIEF-MM) to handle the above given research issues. First,

we restate the RELIEF-F algorithm in a class-specific way and show that the weights

produced by the original RELIEF-F are equal to the average of all class-specific

weights. Thus, generating class-specific weights does not have a negative effect on

the computational complexity of the algorithm. Secondly, we deal with the multi-

label and noise issues, and extend the weight estimation function by including the

representation and reliability characteristics of the features in addition to the currently

used discrimination capabilities. These characteristics of features are calculated based

on the statistics of distances between the training instances, by complying with the

distance-space criteria discussed before. The mean distances between the samples

of each class are employed as the representative characteristics, and the correctness

ratios of features for each class are used as the reliability characteristics. For the

discriminative property, we calculate the distance between the means of classes, as

in the original RELIEF-F. Thirdly, we deal with the unbalanced data problem, and

propose the use of dynamic k nearest neighbor selection. In dynamic k selection, a

different k value is calculated for each class, instead of the same k value for all classes.

The dynamic k value is used as a predefined ratio of the number of samples in each

class. This modification makes the algorithm deal with approximately the same ratio

of noisy instances for all classes and give more regularized weight assessments. Lastly,

we enable RELIEF-F algorithm for use with classifier predictions by converting the

prediction scores into distances between instances.

We evaluate the RELIEF-MM algorithm with the TRECVID 2007 [91], TRECVID

2008 [92] and Columbia Consumer Video (CCV) Database [55] datasets. For each

of the issues discussed above, we perform comparative tests against the RELIEF-F

algorithm. In addition, we compare the multimedia retrieval accuracies of the RELIEF-

MM based linear weighted fusion approach with single modalities, simple averaging

and exhaustive search. As a general overview, we can state that the proposed RELIEF-

MM algorithm generates better feature weights than the RELIEF-F algorithm and the

computational complexity is still asymptotically the same as the original algorithm.
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It has been observed that the fusion methods empowered by RELIEF-MM guarantee

higher accuracies than any single modality. RELIEF-MM also demonstrates much

better performance than simple averaging and RELIEF-F based methods. Moreover,

RELIEF-MM gives nearly the same performance as the exhaustive-search based

approach, yet it is computationally much more efficient than the exhaustive one.

The remainder of this chapter is organized as follows: In 6.2, an overview of modality

selection in information fusion, feature selection methods and a detailed description

of the RELIEF algorithms are given. In Section 6.3, the RELIEF-MM algorithm is

presented in detail. In this section, first of all, the RELIEF algorithm is restated in

a class-specific way, then the extensions for multi-label, noisy and unbalanced data

problems are described. After introducing the extensions in detail, the combined

algorithm is presented, along with a computational complexity analysis. Lastly, the

strategy for using the RELIEF-MM with late fusion inputs (i.e. prediction scores) is

described. In Section 6.4, the empirical results and the evaluations of our proposed

solutions are given. In Section 6.5, an evaluation of the proposed fusion architecture

is done based on the general fusion framework for fusion (Section 3.1). In the last

section, some conclusions are drawn and some possible future studies are discussed.

6.2 Related Work

In multimedia retrieval, the most popular strategies for combining multimodal informa-

tion are early fusion and late fusion. Early fusion is the concatenation of all available

modalities into a single feature vector, whereas late fusion is the linear combination

of classifier outputs after processing each modality by a separate classifier [51]. The

studies in the literature do not present a clear winner between these two approaches,

in terms of accuracy. Yet, early fusion usually leads to the “curse of dimensionality

problem” because of concatenation of the modalities. On the other hand, late fusion is

simple in calculation and has a reasonable performance despite its simplicity. Thus,

late fusion has attracted much more attention than early fusion in recent studies [4, 51].

However, the selection of modalities (i.e. assigning weighs for each modality) is an

important issue in late fusion, and affects the retrieval accuracy in fusion results. In

this study, we focus on efficiently determining the effectiveness of modalities. Be-
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low, we first present recent studies on modality selection for multimedia data. Then,

with a machine learning point of view, the modality selection problem is compared

with the feature selection problem in machine learning literature, and the well-known

approaches for feature selection are presented. Lastly, we discuss the family of the

RELIEF algorithms.

6.2.1 Modality Selection / Weighting

In the multimedia domain, the majority of the fusion studies prefer simplistic solutions

for combining all available modalities by performing an empirical weighting scheme

or a simple averaging [4, 46, 121]. An empirical weighting method is based on empir-

ical observations and manual selection of the features. Besides, a simple averaging

approach assumes that all of the modalities are equally effective although any of the

features can be non-informative or redundant. Some successful utilizations of simple

averaging can be found in [55, 56], where they obtain higher retrieval accuracies than

any single modality. Yet there are several studies that perform the selection / weighting

by evaluating the effectiveness of each modality, and some of the recent ones are

summarized below.

One popular approach for modality selection is the use of the accuracy values as

the weight estimations. In [37], Fumera et al. provide a theoretical analysis of

this idea. Some recent utilizations of this idea can be found in [44, 85, 103]. Another

approach applied in the literature is to find the independent feature subsets, considering

that the result of the fusion process is improved if complementary (independent)

inputs are combined [64]. Towards this direction, Wu et al. [143] redefine ‘modality’

as an ‘independent component’ among the available features and find statistically

independent modalities from raw features by employing principle component analysis

(PCA), independent component analysis (ICA) and independent modality grouping

(IMG) techniques. Kludas et al. [63] apply the independency idea and use correlation

coefficients to measure the dependency between features. Besides these, Atrey et

al. [5], Kankanhalli et al. [58] and Snidaro et al. [120] study the problem in another

perspective, and try to combine multiple data streams (e.g. data obtained from several

different sensors like video camera, microphone, etc.), where each data stream can be
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accepted as a different modality. Atrey et al. [5] use a dynamic programming approach

to find the optimal subset of media streams based on several criteria which maximizes

the information gain obtained. Kankanhalli et al. [58] propose an experiential sampling

based solution for selecting the most informative subset of data streams. Snidaro et

al. [120] define a quality metric for the data streams and dynamically regulate the

fusion process. Further recent studies on the topic is as follows: Kalamaras et al. [57]

takes the advantage of user feedback and learns the modality weights via an interactive

user feedback scheme. Huang et al. [42] tailors the genetic algorithm to learn modality

weights and applies it to alleviate the local minima problem during the process of

finding an optimal solution. Moulin et al. [82] reformulate the modality weighting

problem as a dimensionality reduction problem in a binary classification context and

find the linear combination that best separate relevant and non-relevant documents

for all queries by using a Fisher Linear Discriminant Analysis based approach. Chen

et al. [22] calculate the modality weights by measuring the discriminative capability

of each visual feature by a voting scheme, where the voting scheme is applied by

processing all triples of the training samples (candidate, positive and negative) and

assigning a vote for the candidate according to whether the candidate is closer to

the positive or the negative. Wu et al. [142] consider the interactions among the

multimodal classifier outputs and employ a fuzzy integral based approach in order to

find modality weights. The fuzzy integral approach provides an importance measure

for each subset of available information sources [129].

However, each of these methods has their own limitations and drawbacks. First of all,

they are either computationally complex or their weight estimation capabilities are

limited. Furthermore, the selection process is usually class-common, which means,

the same set of features are used for all classes. In addition, they usually evaluate

the features individually, which may cause loss of the information that is obtained

from the correlation between features. In this study, we propose a timely efficient and

effective way for modality weighting, which exploits the class-specific information for

modalities and enables the use of correlation between modalities.
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6.2.2 Feature Selection / Weighting Approaches

In addition to the above given methodologies, the feature selection / weighting studies

in machine learning literature provide many different approaches for feature selection.

Existing methods in the literature are categorized as filter or wrapper methods. Filter

methods assess the relevance of features by looking only at the intrinsic properties of

the data, whereas in wrapper methods the performance of a learning algorithm is used

to evaluate the fitness of the feature subsets in the feature space. Filter methods are

usually computationally much more efficient than wrapper methods; however, wrapper

methods usually provide solutions closer to the optimal solution. Another weakness

of the filter methods is that they usually evaluate the features individually. Thus, the

quality of combined feature subsets is not analyzed and the correlation information

between features cannot be exploited. Some well-known filter methods are Information

Gain [43], Gain Ratio [101], Correlation based feature selection (CFS) [40], Chi-

squared selection and RELIEF [59]. Some well-known wrapper methods are as

follows: Exhaustive Search [47], Sequential Forward selection (SFS) [60], Sequential

Backward elimination (SBE) [60], Plus q take-away r [36], Simulated Annealing

and Genetic Algorithms. For more detailed discussions, interested readers can refer

to [39, 47, 110] and the references therein.

With a machine learning point of view, the modality weighting problem is similar

in nature to the feature weighting problem and, thus, efficient and effective feature

weighting solutions can be applied for the modality weighting problem. However, it is

not trivial to apply the available methods to the modality weighting problem due to

several differences between the problems. The most crucial difference is the intrinsic

dimensionality of modalities. In feature weighting, the input is a feature vector, which

is a multi-dimensional vector of numerical/nominal values representing some pattern.

Besides, in modality weighting, the input is multiple feature vectors. Feature weighting

methods rank the dimensions of the input feature vector by assigning a weight for

each dimension, whereas in modality weighting, the intrinsic dimensions of each

modality are not the main concern. Modality weighting methods rank the modalities

by assigning weights to each modality as a black-box. Still, an early combination

(i.e. concatenation) of available modalities corresponds to a single multi-dimensional
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feature, which makes any feature weighting method applicable. However, a big

majority of the multimodal fusion studies employ late fusion approaches, in which

each modality is processed separately. Thus, ranking the available modalities, instead

of the intrinsic high-dimensional features, is still a crucial need for the multimodal

information fusion. In addition, another concern may be performing some feature

selection operations for each of the modalities. However, it can be assumed as a

preprocessing step before modality selection / weighting. The second difference

between feature and modality weighting is the values of the inputs. The inputs of

a multimodal fusion system are not necessarily feature values; the most frequently

utilized inputs in state-of-the-art fusion studies are the prediction scores. Thus, the

modality selection approach should work under any of these inputs. One more issue

related with the input values is that most of the frequently applied methods (e.g.

Information Gain, Chi-squared) require the feature values to be binary or discretized.

However, discretization of the modalities makes the process computationally complex,

since each modality is represented by a multi-dimensional feature.

An applicable idea to deal with these problems is to work in a distance based metric

space, instead of in a feature space. Utilizing a distance space solves the intrinsic

dimensionality problem of multiple modalities by converting the multi-dimensional

feature values of a modality to a uni-dimensional distance value. Furthermore, it

enables handling the scores, ranks and decisions after converting them into applicable

dissimilarity values with appropriate conversion functions. Thus, we focus on a

RELIEF based algorithm, which generates the weights based on the distances between

training samples. Being a filter approach, RELIEF avoids an exhaustive search and

provides computationally a more efficient solution than the wrapper methods. Besides,

it takes the context into account, exploits correlation information between features

and thus usually performs better than the filter approaches. Details of the family of

RELIEF algorithms are given below.

6.2.3 RELIEF Algorithms

Among the available feature selection and weighting methods, the RELIEF algo-

rithm [59] is among the most successful. It is a simple and effective way for feature
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Algorithm 1: Basic RELIEF
Input: list of features F = hfiini=1, number of iterations m, set of training instances D = {dj}tj=1

Output: the weight vector W of estimations for the qualities of features

1 begin

2 for i 1 to n do //for each feature in F
3 W [i] 0;

4 end

5 for j  1 to m do

6 r  randomInstance(D);

7 hH,Mi  findNearestHitMiss(r,D);

8 for i 1 to n do //for each feature in F
9 W [i] W [i]� diff(fi,r,H)

m
+ diff(fi,r,M)

m
;

10 end

11 end

12 end

selection [28]. In addition, RELIEF does not make a conditional independence as-

sumption for features, as many other feature selection methods do, and can correctly

estimate the quality of features with dependencies [105]. The key idea of RELIEF is

to estimate weights for each feature according to their ability to discriminate between

neighboring training samples by iterating through randomly selected instances in the

training space. In [126], Sun presents the discrimination based approximation of

RELIEF with a novel mathematical interpretation from the optimization perspective,

and shows that RELIEF utilizes a margin based nonlinear classifier for searching

useful features.

The basic RELIEF algorithm is given in Algorithm 1. The weight estimation function

in Line 9 exploits the discrimination capability. The algorithm selects a random

sample r, one Near-Hit H (nearest neighbor with the same class with the random

sample) and one Near-Miss M (nearest neighbor with a different class with the random

sample) and distances between them are calculated. In this calculation, the distance

between instances in different classes indicates a discrimination between classes, so

diff(fi, r,M) increases the weight. Inversely, distance between instances with the

same class inhibits discrimination, so diff(fi, r,H) decreases the weight.

Considering several deficiencies of the basic RELIEF algorithm, Kononenko [66]
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proposes several extensions for RELIEF: RELIEF-A uses k nearest neighbors instead

of one and averages the contribution of k nearest instances in order to eliminate the

effect of noisy instances; RELIEF-B, RELIEF-C and RELIEF-D extend the use of

diff function in order to handle incomplete datasets; RELIEF-E and RELIEF-F

improve the weight update function for multi-class problems. Other well-known

extensions for RELIEF are as follows: Sikonja et al. [104] propose RRELIEF-F for

handling regression problems. In [116], Sikonja proposes using k-d trees for the

selection of nearest neighbors in order to decrease the computation complexity of the

RELIEF algorithm. In [126], Sun introduces Iterative RELIEF (I-RELIEF), which

uses an Expectation Maximization algorithm in order to eliminate outlier data. Also,

Liu et al. [76] try to eliminate outlier data and propose using selective sampling by

means of a modified kd-tree instead of random sampling (at Line 6 in Algorithm 1).

Among the available extensions of the RELIEF algorithm, RELIEF-F is the most

widely utilized. RELIEF-F enables working with multi-class problems, by selecting

k nearest misses for each class. Thus, the RELIEF-F algorithm updates Line 7 of

Algorithm 1 with the following;

hH,Mi  findNearestHitsMisses(r,D, k, C);

where k is the number of nearest neighbors, and C = hcuisu=1 is the list of classes.

H is the k-sized list of hit instances, where Hv denotes the vth nearest hit instance.

Besides, M is the s⇥ k sized matrix, where Mu
v represents the vth miss instance for

class cu 2 C. In addition, the weight estimation function in Line 9 is also updated as;

W [i] W [i]�
kX

v=1

diff(fi, r,Hv)

m · k

+

sX

u=1
cu 6=C(r)

 
P (cu)

1� P (C(r))

kX

v=1

diff(fi, r,Mu
v)

m · k

!
, (6.1)

where P (cu) represents the prior probability of class cu, and C(r) indicates the class

of sample r.

In this study, we utilize RELIEF-F for multimodal feature selection in multimedia

retrieval, which has not been done before, to the best to our knowledge. Using the

RELIEF-F algorithm for multimodal feature selection on multimedia data enables
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us to identify some weaknesses of the RELIEF-F algorithm. Thus, we extend the

RELIEF-F algorithm due to the aspects discussed in Section 6.1.

6.2.4 Complexity Analysis

The feature selection / weighting problem is known as NP-hard, in terms of the

number of features n = |F|. An exhaustive search for generating all possible subsets

requires O(pn) actions, where p is the number of assignable weights (p = 2 for binary

selection). Considering that an exhaustive search is a wrapper method, it requires

an evaluation for each of these subsets. Assuming a simple evaluation similar to

RELIEF, based on the similarities / distances between m randomly selected instances

to all t training instances, the total complexity of the exhaustive search becomes

O(m · t · n · pn). Moreover, if a class-specific approach is applied, the total complexity

becomes O(m · t · s · n · pn), where s is the number of classes (s = |C|).

On the other hand, the RELIEF algorithms provide solutions in polynomial time.

The complexity of the basic RELIEF algorithm is O(m · t · n), considering that the

most complex operation is the selection of the nearest hit and miss instances since

the distances between r and the other training instances should be calculated for

each feature, which requires O(t · n) comparisons. Different from the basic RELIEF

algorithm, the complexity of RELIEF-F depends on the number of nearest neighbors

(k). If we use a priority queue, which is implemented with a heap structure, for the

selection of k nearest neighbors, where the construction of the heap is O(t) and the

retrieval of k neighbors from each class is O(k · s · log t); the total complexity of

selecting k nearest hits/misses becomes O(m · t · n+m · k · s · log t+m · k · s · n). In

this equation, the first term is for the distance calculation, the second is for selecting

nearest instances from the heap and the last is for the weight calculation (Eq. (6.1)). If

the dataset is a balanced one and the value of k is considerably small with respect to t,

then the computational complexity of the RELIEF-F algorithm becomes the same as

the basic RELIEF algorithm (O(m · t · n)). A computationally better solution can be

obtained by utilizing k-d trees for improving the nearest hit and miss selection process

(O(n · t · log t)).

If the space complexity is considered, both the basic RELIEF and RELIEF-F is in
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linear time in terms of the number of features. The biggest space required for these

algorithms is for the feature values for training dataset. The required space for the

dataset is bounded by O(t · n ·A), where A is assumed as the average size for a single

feature. The basic RELIEF has additional space requirements for features (O(n)),

weights (O(n)), nearest neighbor selection (O(n · A)). For RELIEF-F calculation,

additional space requirements are; features (O(n)), weights (O(n)), classes (O(s))

and nearest neighbor selection (O(k · s+n ·A)). Considering that t � k · s, both basic

RELIEF and RELIEF-F is bounded by O(t · n · A), for space complexity.

6.3 RELIEF-MM: Modality Weighting Approach for Multimedia Data

In order to benefit from the simplicity and effectiveness of RELIEF algorithms, we

propose a RELIEF based multimodal feature selection solution, by extending the RE-

LIEF-F algorithm. Below, each of our extensions is presented in a separate subsection.

6.3.1 Class Specific Feature Weighting

Multimedia retrieval requires dealing with a high number of different queries, where

each query usually denotes a different concept occurring in videos. Thus, multimedia

retrieval is accepted as a multi-class classification problem with a high number of

classes, where each class is a concept occurring in videos. In addition, the variety of

such concepts is so wide that they can be associated with different sets of features

/ modalities. In other words, each concept can be represented better with different

features specific to the concept [137, 151]. For instance, an explosion concept can be

represented relatively more accurately by the audio modality, whereas it is better to

utilize visual modality for detecting a mountain concept. Similarly, it can be easier

to recognize a meeting concept by using both the visual and the audio modalities.

Hence, a class-specific modality weighting approach is inevitable to be used in the

multimedia retrieval systems, in order to handle the high number of classes / concepts.

However, the traditional feature selection methods, including the RELIEF-F algorithm,

propose class-common solutions in which the selection is performed independently

from the classes.

104



Based on the motivation above, we propose a substantial extension on RELIEF-F,

which is converting it to a class-specific solution. Since the RELIEF-F algorithm

iterates over available training samples to obtain the final value of the modality weights,

grouping the training samples according to their classes and processing samples of

each class separately can achieve a class-specific solution.

Assuming that we iterate over m training samples R = {ri}mi=1, which are randomly

selected from the set of all training samples D = {di}ti=1, the final weight of fi can be

formalized as;

W (fi) =
mX

j=1

"
�

kX

v=1

diff(fi, ri,Hv)

m · k

+

sX

u=1
cu 6=C(rj)

 
P (cu)

1� P (C(rj))

kX

v=1

diff(fi, rj,Mu
v)

m · k

!#
. (6.2)

Here, we can rewrite Eq. (6.2) as in Eq. (6.4), by assigning the effect of one training

sample rj on the final weight calculation of modality fi into �W i
j (Eq. (6.3)).

�W (fi, rj) =�
kX

v=1

diff(fi, rj,Hv)

k

+

sX

u=1
cu 6=C(rj)

 
P (cu)

1� P (C(rj))

kX

v=1

diff(fi, rj,Mu
v)

k

!
, (6.3)

W (fi) =
1

m

mX

j=1

�W (fi, rj) . (6.4)

If the samples in R are grouped according to the class they belong to, we can represent

the final weight of fi as in Eq. (6.5). Here, each group is represented by Ru = {r | r 2
R ^ C(r) = cu}, where R =

S{Ru}su=1 and C(r) represents the class of r.

W (fi) =
sX

u=1

 
P (cu)

1

|Ru|
X

r2Ru

�W (fi, r)

!
. (6.5)

Here, we can define a class-specific weight !(cu, fi) as in Eq. (6.6).

!(cu, fi) =
1

|Ru|
X

r2Ru

�W (fi, r) . (6.6)
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Algorithm 2: Class-Specific Adapt. of RELIEF-F
Input: list of features F = hfiini=1, number of iterations m, set training instances D = {dj}tj=1, list of

classes C = hcuisu=1, number of nearest neighbors k

Output: the weight matrix ! of estimations for the qualities of features

1 begin

2 for u 1 to s do //for each class in C
3 for i 1 to n do //for each feature in F
4 ![u][i] 0;

5 end

6 end

7 for u 1 to s do //for each class in C
8 Du  getClassInstances(D, cu);

9 m0  m · P (cu) ; // P(cu)=size(Du)/size(D)
10 for j  1 to m0 do

11 r  randomInstance(Du);

12 hH,Mi  findNearestHitsMisses(r,D, k, C);
13 for i 1 to n do //for each feature in F, apply Equation 6.6

14 ![u][i] ![u][i]�Pk
v=1

diff(fi,r,Hv)
m0·k +

Ps
u0=1
u0 6=u

✓
P (cu0 )

1�P (cu))

Pk
v=1

diff(fi,r,Mu0
v )

m0·k

◆

15 end

16 end

17 end

18 end

The original class-common weight estimation function of RELIEF-F can also be

rewritten as in Eq. (6.7), in terms of class-specific weights.

W (fi) =
sX

u=1

P (cu)!(cu, fi) . (6.7)

As seen in Eq. (6.7), RELIEF-F estimates the weights of the features by taking a

weighted average of all class-specific weights and, thus, cannot reflect the characteris-

tics of each class separately. Instead, we here propose to use weight estimations of

each class separately. Consequently, this class-specific adaptation of RELIEF-F is

presented with Algorithm 2.

We should also note that converting the original RELIEF-F algorithm into a class-

specific version does not change computational complexity, since k hit / miss selection

procedures and the number of processed samples do not change. As a result of having

the same computational complexity, the approach can be accepted as scalable in terms
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of the number of class, since the computational complexity of the algorithm is linearly

proportional to the number of classes (as given in Section 6.2.4).

6.3.2 Multi-labeled / Noisy Datasets

In a typical multimedia retrieval task, each multimedia document (i.e. shot or video) is

usually associated with a number of different semantic concepts. This situation reveals

the problem of the multi-label feature selection, in which each sample is associated

with multiple labels. In multimedia data, the multi-labeled characteristic of the data

can be originated from either having more than one concept for each multimedia

document in any single modality contained (e.g. having both an airplane and a

mountain in a visual scene, as given in Figure 6.1), or containing different concepts

in different modalities of the same document (e.g. having an explosion sound in

the audio modality and military related vehicles in the visual modality at the same

moment of the video).

In multi-label datasets, the samples are not mutually exclusive in terms of assigned la-

bels, thus the discrimination of the samples between class labels becomes complicated.

The discrimination of the samples between the retrieval classes is crucial to an effective

feature selection. However, state-of-the-art studies accept the problem as a structural

one, deal with converting the multi-labeled dataset into a single-labeled one for use

with traditional feature selection methods [29,65], and leave aside the cognitive aspect

of the problem, which is also an important part of the problem. Here, the ‘structural’

side of the problem refers to the impossibility of using traditional learning / selection

methods with the multi-labeled dataset due to the structure of the dataset, whereas the

‘cognitive’ side denotes the loss of the discrimination capability for learning. In this

study, we regard both issues depicted and propose a two-step solution.

As the first step, we consider that it is not possible to use the RELIEF-F algorithm

directly for a multi-label dataset, since having multi-labeled samples makes the nearest

hit / miss selection procedure ambiguous. For instance, we need a solution to select the

nearest hits/misses of a random instance with two different class labels, or a nearest

item is labeled with two different classes. Thus, we first look into the state-of-the-art

transformation methods. The most popular transformation methods in the literature

107



(a) (b)

Figure 6.1: Examples for multi-labeled shots. (a) airplane and mountain (b) car,
accident, people and street

are random assignment (RA), binary relevance (BR), label power set (LP) and pruned

problem transformation (PPT) [132]. In the RA approach, a multi-labeled sample

is randomly assigned to one of its classes. In BR, the dataset is transformed into

|C| single-label datasets, where C = hcuisu=1 is the list of available classes. In any

Du = {d | d 2 D ^ C(d) = cu} of these datasets, the samples are labeled in a

binary form, depending on whether a sample d is associated with class cu or not.

In LP, the basic idea is to convert the set of classes C into C 0 such that C 0 is the

power set of C (C 0 = P(C)). PPT is an improvement on LP, where unused subsets

are removed from C 0. However, using any of these approaches causes loss of either

the effectiveness or the efficiency of the algorithm. Using RA makes the process

nondeterministic and also loses a large amount of valuable information due to the

random class selection; thus results in an ineffective solution. On the other hand,

although BR, LP and PPT are potentially good solutions to prevent information loss,

the process becomes computationally complex. Hence we focus on an alternative

solution that enables use of the RELIEF-F algorithm for multimedia data and does not

increase the computational complexity.

Assuming that ci, cj and ck are three classes different from each other, we decompose

the multi-label problem for RELIEF-F into three cases:

• Case-1: A random sample x is associated with both classes ci and cj . In this

case, it is not clear which class will be accepted for hits and misses.
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• Case-2: Random sample x is labeled with ci, and y is one of the nearest neighbors

of x. If y is labeled with both ci and cj , it is unclear whether such a neighbor

instance is a hit or a miss.

• Case-3: Random sample x is labeled with ci, and y is one of the nearest neighbors

of x. The neighbor instance y is labeled with both cj and ck. In this case, it is

clear that y is a miss. However, it is not clear which class of miss it is.

We first start with a BR-like method, which is very compatible with the class-specific

extension of RELIEF-F discussed in Section 6.3.1. Different from BR, we do not

generate |C| number of binary valued datasets. In accordance with the class-specific

extension, an intuitive way to deal with these cases is to transform each multi-labeled

sample into multiple single-labeled samples with the same feature values but different

classes (as illustrated in Figure 6.2), and group the samples according to the class that

they belong to. Thus we divide the training dataset into |C| number of subsets, each

having the samples of a different class. During the execution of the algorithm, the

random samples are selected among each subset iteratively, and finding the associated

class of a sample is not problematic anymore, even if it is a multi-labeled sample

originally. Thus, Case-1 is discarded. Actually, the use of a class-specific extension

helps to prevent Case-1. For handling Case-2 and Case-3, the same transformation

as with Case-1 is applicable. For Case-2, any multi-labeled neighbor instance y is

replicated and transformed into yci and ycj . Then, yci is used as a hit instance and ycj

is used as a miss instance, which actually means y is used both as a hit and a miss

instance. Similarly, for Case-3, y is transformed into ycj and yck , then ycj is used as a

miss instance for class j, whereas yck is used for class k.

Although this solution is an efficient approach to deal with the multi-labeled structure

of training data and does not cause information loss as in BR transformation, it is still

possible to lose some information due to the use of the same neighboring instances

as both hits and misses (i.e. Case-2). Considering the weight estimation function of

RELIEF-F given in Eq. (6.2), while calculating the weight of modality f by using

random sample x, the effect of a neighbor hit instance y is as follows;

�hit = �diff(f, x, y)

m · k . (6.8)
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Figure 6.2: Transforming multi-labeled samples into multiple single-labeled samples.
Small green, yellow and red circles denote c1,c2 and c3 instances, respectively. Orange
circles in (a) are multi-labeled instances, each of which is transformed into multiple
single-labeled instances in (b).

However, if the neighbor instance y is a multi-labeled one as in Case-2, the same

instance is used both as a hit and a miss instance. Thus, the net effect of the neighboring

hit instance becomes:

�0hit =
✓

P (cj)

1� P (ci)
� 1

◆
diff(f, x, y)

m · k . (6.9)

In other words, the effect of the hit instance is decreased because of being a multi-

labeled instance. The worst case of this situation, although practically impossible,

occurs when the instance is labeled with all available classes. In such a situation,

the effect of the instance equals to zero. In [65], Kong et al. propose to ignore the

instances of Case-2, which is practically the same as assuming the situation is always

the worst case. In our approach, we do not ignore such instances, since they may still

provide some valuable information as long as the situation is not the worst case. We

accept the decrease in the effect of the hit instances as a sort of noise and loss in the

discrimination capability of the features.

In this aspect, we also consider the effect of noise in multimedia data. In addition to

the fact that the multimedia data have an expected internal noise, the way we model

the multimedia data can create an artificial noise. Since the multimedia data is usually

large –even huge–, some sub-sampling (i.e. using shots and keyframes instead of
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each particular frame) is done before processing it. The extracted features represent

only subsamples from the video, whereas the ground truth labels are based on the full

content of the video. Such a situation makes the evaluation of features complicated

and eventually some of the ground truth instances appear as noisy instances. Similar

to the multi-label issue, having noise in the samples prevents a correct discrimination

between classes. In addition, depending directly on the distances between training

instances affects the performance of the algorithm negatively, considering the noisy

instances.

Consequently, the second step of our approach is based on strengthening the feature

weighting mechanism of RELIEF-F. Thus, we introduce two new factors for the calcu-

lation of the weights, in addition to the discrimination capability: the representation

and reliability characteristics. Having additional components in the weight calculation

makes the algorithm less dependent on the discrimination capability, and provides

better estimations. Hence, the class-specific weight of a feature, which was previously

defined in Eq. (6.6), is updated as the following;

$(cu, fi) =

8
><

>:

�
!(cu, fi)

�↵ · �(cu, fi) · ⌘(cu, fi), if !c
f > 0

0, otherwise
, (6.10)

where !, � and ⌘ functions provide the discrimination, representation and reliability

based weights, respectively. In addition, ↵ is an experimental constant for tuning.

Considering that RELIEF-F based weights are in [�1, 1], and weights smaller than

zero denote irrelevant features, we discard these by assigning zero. The proposed

functions are discussed in detail below.

6.3.2.1 Discrimination Based Weight

The discrimination based weight (!(cu, fi)) refers to the weight calculated by using

the data from all available classes with an aim to discriminate between those classes.

The calculation of !(cu, fi) is basically accepted as the way to calculate class-specific

RELIEF-F (Eq. (6.6)).
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6.3.2.2 Representation Based Weight

The representation based weight (�(cu, fi)) refers to the weight calculated by using

the data only from any single class, with an aim to represent that class independent of

other classes. In order to measure its effectiveness by using only its characteristics and

calculate such a weight, we assume that we can isolate the samples of a particular class

from other classes. Here, isolation means that any sample labeled with other classes is

always at a farthest location. Applying this idea to the class-specific RELIEF-F weight

calculation gives the following: The distance of a random sample to any of its nearest

misses always equals to 1 (note that diff(f, x, y) 2 [0, 1]). Hence, the representation

based weight becomes the following:

�(cu, fi) =
1

|Ru|
X

r2Ru

h
1�

kX

v=1

diff(fi, r,Hv)

m · k
i
. (6.11)

Eq. (6.11) can also be interpreted as the complement of the mean distance of a class to

itself, so the weight of a feature is inversely proportional to the mean distance of the

class to itself. Here, the mean distance of a class to itself is the average of all distances

from each sample of a class to its k neighbor hits. It is expected for a particular class

that the features with lower mean distance values represent the class better. Thus,

�(cu, fi) is a sound metric to estimate the representation capability of a feature.

6.3.2.3 Reliability Based Weight

Reliability based weight (⌘(cu, fi)) refers to the weight calculated by using accuracy

with respect to a feature for a particular class, with an aim to see whether it is reliable

for that class or not. The idea of using the accuracies of features is based on the

theoretical analysis of Fumera et al. [37]. Fumera et al. work on a late fusion scheme

and show that the weight of a classifier for feature fi should be inversely proportional

to the error of the classifier.

Considering that RELIEF-MM is a filter method, and classification results are not

available during the feature weighting, we propose to estimate the accuracy of each

feature by comparing the intra-class distance of each class with the inter-class distances

to other classes. The intra-class distance is defined as the mean distance of the samples
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in cu to their nearest k hits, whereas the inter-class distance is the mean distance of

the samples in cu to their nearest k misses from each different class cu0 6= cu. It is

important for a feature to give the lowest distance values for the instances in a class

which is the same as the class of the query instances. Thus, ⌘(cu, fi) provides an

estimation for reliability by finding the number of inter-class distances (by means

of different classes) that has a larger value than the intra-class distance. The formal

representation of ⌘(cu, fi) is given in Eq. (6.12);

⌘(cu, fi) =

���{µ(cu, cu0 , fi)| cu02C�{cu}^ µ(cu,cu0 ,fi)>µ(cu,cu,fi)
}
���

s� 1

, (6.12)

µ(cu, cu0 , fi) =
1

|Ru|
X

r2Ru

"
kX

v=1

⇣
diff(fi, r,N cu0

v )

⌘#
. (6.13)

where N cu0
v is the vth cu0-labeled nearest instance of sample r. Thus, µ(cu, cu, fi)

refers to the mean distance to k hits (intra-class distance), whereas µ(cu, cu0 , fi) with

cu0 2 C � {cu} is the mean distance to the k misses of any other class (inter-class

distance).

6.3.3 Unbalanced Datasets

In multimedia datasets, some of the concepts occur less frequently than others, which

causes the annotated training data to be unbalanced among different classes. We can

consider the occurrences of flag vs. car objects through a random video as an example;

a flag object usually occurs less often than a car object. Thus, the number of car

samples is usually larger than the number of flag samples. One important consequence

of frequent occurrence is having more representative and descriptive data than the

infrequent concepts, e.g. it is possible to find several different models and colors of

car samples, but it is hard to find the variations of flag samples. Hence, having an

unbalanced dataset may prevent an adequate learning process.

Although the unbalanced dataset problem is usually discussed in the scope of classifica-

tion and learning [19], the RELIEF-F algorithm, as a feature selection method, is also

negatively affected by unbalanced data. The reason why RELIEF-F is affected by the

imbalance in the data is the use of k nearest neighbors during the weight calculation.
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As discussed in Section 6.2.3, RELIEF-F uses average distance to k nearest neighbors

while calculating the weights, in order to eliminate the effect of outlier data. However,

the placement of training samples in the multi-dimensional space and the amount of

outliers are highly data-dependent, and can be very different for different domains and

classes. Thus, we point out that selecting k number of nearest neighbors for every

class is not a fair preference, when each class has a different number of samples. Using

the same k number of neighbors hinders the use of an equal amount of information

from all classes. For instance, a certain value of k may provide for the acquiring of all

available patterns of a particular class. However, for another class, the same k value

may provide for the acquisition of only a small ratio of the available patterns. The

situation is not different if we consider the outlier data. Selecting the same number

of neighbor instances from different classes (each of which has a different number of

samples) may result in different ratios of outlier data for each class.

Considering the above given issues, we propose to select the value of k dynamically,

i.e. a class-specific k value. However, enabling a class-specific k selection makes

the process more complicated, despite the potential improvement in the estimation

of feature weights. Thus, we propose another promising idea; using the k value as a

certain ratio of sample count in a class. By employing such an idea, the k value of

class cu can be calculated by;

ku = kR · |Du| , (6.14)

where Du = {d | d 2 D ^ C(d) = cu} is the set of training instances with class cu,

and kR 2 [0, 1] is the nearest neighbor selection ratio, which is defined independently

of the classes.

A weak point of this idea is that it requires us to assume approximately the same ratio of

noise for all classes. Yet, this assumption can be practically applicable, considering that

the datasets mostly do not suffer from the outliers because of mislabeling, but because

of complexities related with the internal characteristics of video data, such as lighting

variations, camera motion, occlusion, and noise in the sensed data. Mislabeling is a

human-oriented noise, in which we cannot assume that the ratio of outliers are equal

for different classes (e.g. it may be harder to annotate the samples with less frequently

occurring classes). However, we can assume that the complexities in the video occur

approximately in the same ratio for any class, especially when we have a broad range
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of videos.

6.3.4 The Final Algorithm

The finalized RELIEF-MM algorithm including all of the extensions that we describe

above is given in Algorithm 3. In order not to make the presentation of the algorithm

more complex, some of the calculation including loops are represented by some math-

ematical functions (e.g. sum operations). The $(cu, fi) in Eq. (6.10) is represented

with W matrix in the algorithm. The other parameters for calculating $(cu, fi) are

given as they are given in Eq. (6.10).

The RELIEF-MM algorithm consists of three parts. Firstly, the parameters of the

weight estimation function (!, � and ⌘) are initialized. Secondly, these parameters are

updated iteratively by encountering random training samples in the total of m. This

process is performed separately for each class, thus some percentage of m (proportional

to the prior probability of each class) is used for each class. Lastly, the calculated

parameters are used to find the final values of weight estimations for each feature and

class.

Here, it should be noted that the original RELIEF-F algorithm is an online algorithm,

which means that the algorithm processes training instances one-by-one in a serial

fashion, and can give an output after processing each instance. However, the RELIEF-

MM algorithm presented in Algorithm 3 is offline, since the final weights are calculated

as a batch instruction. Our choice eliminates further complexity in the algorithm. Yet,

it is fairly straightforward to convert Algorithm 3 into an online version by moving

the block between lines 23–31 into the for loop between lines 13–22, as the last

instruction.

6.3.4.1 Complexity Analysis

We assume that n denotes number of features (n = |F|), m denotes number of

iterations, kR denotes nearest neighbor selection ratio, s denotes number of classes

(s = |C|) and t denotes number of training instances (t = |D|). Considering the
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Algorithm 3: RELIEF-MM
Input: list of features F = hfiini=1, number of iterations m, set of training instances D = {dj}tj=1, list of classes

C = hcuisu=1, nearest neighbor selection ratio kR, tuning constant ↵

Output: the weight matrix W

1 begin

// Initialization

2 for u 1 to s do //for each class in C
3 for i 1 to n do //for each feature in F
4 ![u][i] 0;

5 �[u][i] 1;

6 ⌘[u][i] 0;

7 for u0  1 to s do //for each class in C
8 µ[u][u0][f ] 0;

// Calculations

9 for u 1 to s do //for each class in C
10 Du  getClassInstances(D, cu);

11 ku  kR · size(Du);

12 m0  m · P (cu) ; // P(cu)=size(Du)/size(D)
13 for j  1 to m0 do

14 r  randomInstance(Du);

15 hH,Mi  findNearestHitsMisses(r,D, ku, C);
16 for i 1 to n do //for each feature in F
17 ![u][i] ![u][i]�Pku

v=1
diff(fi,r,Hv)

m0·ku
+

Ps
u0=1
u0 6=u

⇣
P (cu0 )

1�P (cu))

Pku
v=1

diff(fi,r,Mu
v )

m0·ku

⌘
;

18 �[u][i] �[u][i]�Pku
v=1

diff(fi,r,Hv)
m0·ku

;

19 µ[u][u][i] µ[u][u][i] +
Pku

v=1
diff(fi,r,Hv)

m0·ku
;

20 for u0  1 to s do //for each class in C
21 if u0 = u then continue;

22 µ[u][u0][i] µ[u][u0][i] +
Pku

v=1
diff(fi,r,Mu

v )
m0·ku

;

// Finalization

23 for u 1 to s do //for each class in C
24 for i 1 to n do //for each feature in F
25 for u0  1 to s do //for each class in C
26 if u0 6= u ^ µ[u][u0][i] > µ[u][u][i] then

27 ⌘[u][i] ⌘[u][i] + 1
s�1

28 if ![u][i] > 0 then

29 W [u][i] (![u][i])↵ · �[u][i] · ⌘[u][i];
30 else

31 W [u][i] 0;
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Algorithm 3, RELIEF-MM includes three main loops for initialization, calculation and

finalization.

The first main loop (lines 2–8) initializes the parameter matrices and takes;

Linit = O(s2 · n) . (6.15)

The second main loop (lines 9–22) is basically used for iterating over m instances

from any class in C. Inside the loop, there are three operations, which are not O(1);

(1) filtering cu-labeled instanced in D, in line 10, (2) selection of hits and misses, in

line 15, (2) weight parameter calculations, between lines 16–22. The first operation

is performed once for each class in C. The operation checks whether each instance

in D is labeled with cu or not, and takes O(t) time. The second operation includes

the distance calculation from random instance to all instances in D, heap construction

using the distances and neighbor selection from the heap. This process is similar to

the case for RELIEF-F in Section 6.2.4, and takes O(t · n + t + ku · s · log t) steps.

The third operation contains four instructions and is repeated for each feature. It takes

O(2 ·ku ·s ·n+2 ·ku ·n) steps in total. The bounds for the second and third operations

include a ku term which is dependent on a class cu. In other words, for each class

cu 2 C, the ku value gets a different value based on Eq. (6.14). Considering that these

operations are repeated for m0 instances of s number of classes, the total complexity

of these three operations becomes;

=

sX

u=1

"
O
⇣
mP (cu)(tn+ kR|Du|s log t+ kR|Du|sn)

⌘#
,

= O
⇣
m t n + m kR s log t

sX

u=1

�
P (cu)|Du|

�

+ m kR s n
sX

u=1

�
P (cu)|Du|

�⌘
. (6.16)

Considering that P (cu) is the prior probability of the classes and can be calculated

by using the instance counts in each class, the summation term
Ps

u=1(P (cu)|Du|) in

Eq. (6.16) can be rewritten as
Ps

u=1(|Du|2/t). The minimum value of this term is

obtained when the dataset is balanced. For such a case, the term equals to t/s. The

maximum value of the term is obtained with an unbalanced dataset, where one of the

classes contains all t instances and the other classes contain no instances, although
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this is practically impossible. In this case, the term equals to t. Thus the complexity

bounds for the term is ⌦(t/s) and O(t). By applying this result in Eq. (6.16), the total

complexity of the second main loop becomes

Lcalc = O
�
m · t · n+m · (kR · t) · s · log t+m · (kR · t) · s · n� . (6.17)

The third main loop (lines 23–31) calculates the final weights by looping over all

features and classes. It also includes a s-sized loop for finding the final value of ⌘. The

total complexity of the third main loop is;

Lfin = O(s2 · n) . (6.18)

The total complexity of the RELIEF-MM algorithm can be obtained by adding the

values in Eqs. (6.15),(6.17) and (6.18). Here, we consider that t � s and m � s should

be true, since the algorithm implicitly makes an assumption that there should be at least

one instance of each class, and also at least one instance should be selected from each

class, in order to calculate the feature weights of each class. Hence, m · t · n � s2 · n.

Consequently, the terms coming from the Eqs. (6.15) and (6.18) can be omitted for the

calculation of the asymptotic upper bound. Then, the complexity of the RELIEF-MM

algorithm equals

O(MM) = O
�
m · t · n+m · (kR · t) · s · log t+m · (kR · t) · s · n� . (6.19)

If the complexity of RELIEF-MM is compared with the complexity of RELIEF-F

given in Section 6.2.4, it can be seen that the only difference lies in the terms related

with the nearest neighbor selection. RELIEF-MM includes (kR ·t), whereas RELIEF-F

has k. Essentially, these two terms are asymptotically equal in terms of complexity

since both reside in the same range. Furthermore, if we consider using RELIEF-

MM with balanced datasets, the (kR · t) term turns into (kR · t
s), as described above.

Thus, for small values of kR, the complexity of RELIEF-MM for balanced datasets

is O(m · t · n), as it is for RELIEF-F. Here, the m · t · n term is an asymptotic upper

bound on m · (kR · t) · log t and m · (kR · t) · n, for small values of kR. In conclusion,

it can be said that the complexity of the RELIEF-MM algorithm is asymptotically the

same as the original RELIEF-F algorithm.
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The space complexity of RELIEF-MM also does not differ dramatically since all the

work is on the same resources (inputs), and the biggest size requirement comes from

the inputs. As discussed before, the space complexity of the RELIEF-F is bounded by

O(t · n · A), where A is assumed as the average size for a single feature. The space

requirements for RELIEF-MM are; features (O(n)), weights (O(n)), classes (O(s)),

nearest neighbor selection (O(k · s + n · A)) and parameters of estimation function

(O(3 ·s ·n)). Considering that t � s, the space complexity of RELIEF-MM is bounded

by O(t · n · A).

6.3.5 Using RELIEF-MM with Prediction Scores

As mentioned before, in late fusion, the fusion is performed after a classification step.

Thus, the inputs for the fusion process are the prediction scores obtained from the

classifiers. In other words, the feature values of the samples may not available during

the fusion process, in many cases. However, the original RELIEF algorithm uses the

feature values of the samples in order to calculate the distances between them. Thus,

in late fusion scenarios, where the feature values are not available, it is not possible to

utilize the RELIEF algorithm. It is necessary to extend the weight calculation process

of the RELIEF algorithm so that it can be used with the prediction score inputs.

Given that the classes are C = hcuisu=1, the modalities are F = hfiini=1 and the training

samples are D = hdjitj=1; the list of prediction probabilities for class cu and modality

fi is Scu,fi = {scu,fij }tj=1, where 0  scu,fij  1. Note that the order of the samples in

D and the score values in Scu,fi are given correspondingly.

While using RELIEF-MM with prediction score inputs, the algorithm remains the

same, but the diff function calculation should be rewritten, since we do not have

feature values anymore. Considering that an scu,fij value of a sample dj corresponds to

the similarity of the sample to a predefined class (cu), we utilize the following idea:

The difference between similarities of two samples to the same pattern corresponds to

a reasonable distance metric of these samples. Thus the diff function in the RELIEF-

MM algorithm can be updated as the differences of the score values of the samples.

However, for each sample, there exist s number of scores of each modality, where

each score is the similarity value for a different class. Thus, we consider that the
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RELIEF-MM algorithm iterates over the training samples, and we use the score list

which corresponds to the class of the randomly selected sample, on each turn. Thus,

the diff function becomes;

diff(fi, dx, dy) = |sC(dx),fi
x � sC(dx),fi

y | , (6.20)

where dx is the randomly selected sample, dy is one of the hit/miss instances for dx,

and C(dx) function corresponds to the ground truth class value of the sample dx given

as parameter.

6.4 Empirical Study

In this section, we evaluate the proposed modality weighting approach for semantic

retrieval of multimedia data. For the retrieval task, the multimedia data is queried

based on the semantic concepts. First, retrieval for each single modality is performed,

then a multimodal retrieval is done. During the multimodal retrieval, the modalities

are combined with a linear (weighted averaging) combiner based late-fusion approach,

where the weights of the modalities are generated via different approaches.

In order to perform a detailed comparison, we carry out our empirical study in two

major steps:

• Comparison with Other Approaches: We compare the retrieval accuracies of the

RELIEF-MM based linear weighted fusion approach with a RELIEF-F based

one, as well as the single modalities, basic approaches (simple averaging and

maximum) and exhaustive search. Also, we compare the modality selection

performance of RELIEF-MM with RELIEF-F in terms of the accuracies for

each different number of feature selections.

• Tests for Each Extension Idea: After a comparison with alternative approaches,

we focus on the issues that motivated us to develop RELIEF-MM, and perform

tests comparing (i) class-common and class-specific selection, (ii) performances

with multi-label, uni-label data and noisy cases (iv) using a dynamic vs. static

nearest neighbor selection (kR vs. k).
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Table 6.1: Datasets

TRECVID TRECVID
CCV

2007 2008
Dataset length Train ⇠50 ⇠100 ⇠105
(hours) Test ⇠50 ⇠100 ⇠105
Number of Train 110 219 4659
videos Test 109 215 4658
Number of Train 21,532 39,674 N/A
shots Test 18,142 33,726 N/A

Considering that one of the important contributions of this study is the use of prediction

scores with the RELIEF algorithm, the experiments are conducted with both of the

following scenarios:

• We assume that the feature values are available, and use them to calculate the

feature weights.

• We apply a pure late-fusion scenario by assuming that the feature values are not

available. Thus, the prediction scores are used for weight calculation.

6.4.1 Experimental Setup

6.4.1.1 Datasets

Experiments are carried out on three frequently utilized benchmark datasets: TRECVID

2007 [91], TRECVID 2008 [92] and the Columbia Consumer Video (CCV) Database

[55]. The dataset characteristics are summarized in Table 6.1. Further details and a

performance comparison of TRECVID participants can be found in the corresponding

references.

While using the TRECVID 2007 and 2008 dataset, we prefer using the outputs of

common shot reference, for shot segmentation. For these datasets, the shots are used

as the retrieval documents. Besides, for the CCV dataset, each video is accepted as a

retrieval document. During the tests, the shots (for TRECVID 2007 / 2008) and the

videos (for CCV) are considered as individual and independent documents, which
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(a) TRECVID 2007 dataset

(b) TRECVID 2008 dataset

(c) CCV dataset

Figure 6.3: Query concepts for each dataset and sample shot images from query

concepts.

means no contextual information or interaction is taken into account between shots /

videos.

Each of the utilized datasets provides different sets of concept annotations. The

annotations on all three datasets are provided in a multi-label manner, which means

each shot can contain more than one label. A complete list of these concepts is given

in Figure 6.3 with sample images. The semantic queries performed during the tests are

based on these semantic concepts.

6.4.1.2 Modalities

For all datasets, we consider a multimodal setting, and use features from different

modalities. However, we prefer a relaxed definition for ‘modality’ [143]. The modali-

ties of multimedia data are usually accepted as audio, visual and text modalities, but

each of these modalities can be expanded. For instance, visual data can be defined

with several modalities like color, shape, texture and face. Here, each of these modal-
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Table 6.2: Modalities Utilized for each Dataset

Dataset Modalities

TRECVID
2007

MPEG-7 Color Layout (CL)
MPEG-7 Region Shape (RS)
MPEG-7 Edge Histogram (EH)
Zero Crossing Rate and Energy (ZCRE)
Mel-freq. Cepstrum Coefficients (MFCC)
Term Freq.–Inverse Doc. Freq. (TF-IDF)

TRECVID
2008

Gabor Texture (GT)
Edge Direction Histogram (EDH)
Scale Inv. Feature Transform (SIFT)
Grid-based Color Moment (GCM)
Grid-based Wavelet Texture (GWT)

CCV
Scale Inv. Feature Transform (SIFT)
Spatial-Temporal Interest Points (STIP)
Mel-freq. Cepstrum Coefficients (MFCC)

ities is a different type of information source, and contains a significant amount of

complementary information. Thus, we accept each different type of information (i.e.

each complementary feature) as a different modality. The multimodal features utilized

during the test are listed in Table 6.2.

As presented on the table, visual, audio and textual features are extracted from the

videos of the TRECVID 2007 dataset. For visual features, one key frame per shot

is adopted and the middle frame for each shot is selected as the key frame. The

feature extraction and distance calculation tasks of the visual features are performed by

using the MPEG-7 reference software (eXperimentation Model, XM) [83]. For audio

features, the entire audio of each shot is processed and Yaafe toolbox [12] is utilized

for feature extraction. For the textual features, the Automatic Speech Recognition and

Machine Translation texts, which are provided by TRECVID, are employed. During

the calculations, no stop-word filtering or preprocessing is done.

For TRECVID 2008, the features are not extracted; instead, the prediction score values

of each shot for the concept queries are obtained from the CU-VIREO374 [53] dataset.

In the CCV dataset some well-known features are already provided, as well as the

videos and annotations. For more detailed explanations, interested readers can refer
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to [53] and [55].

Considering that we combine the modalities with a late fusion process, features from

each modality should be processed with a classifier and the prediction scores should

be obtained before the combination (for TRECVID 2007 and CCV datasets). For the

classification task, a Support Vector Machine (SVM) classifier with appropriate Radial

Basis Function (RBF) based kernels is preferred, and LibSVM [18] is utilized.

6.4.1.3 Metrics

To measure the retrieval accuracy, Precision, Recall, Average Precision (AP) and Mean

Average Precision (MAP) are used. Precision is the fraction of retrieved documents that

are relevant to the query concept, while Recall is the fraction of relevant documents

that are retrieved. The AP is the sum of the precision at each relevant hit in the retrieved

list, divided by the minimum of the number of relevant documents in the collection and

the length of the list. Regarding the evaluation rules of TRECVID, AP is measured at

2000. MAP is the AP averaged over several query concepts. In other words, the AP of

each concept is calculated separately and then the MAP is found by averaging them.

Beyond the measurements of accuracy, we also present the statistical significance

of the obtained results. To do so, we perform a student’s t-test with paired samples,

where the pairs are the accuracy results for different concept queries. A paired t-test

gives a p-value which denotes the significance of the improvement between two tests.

The smaller the p-value, the more significant the difference of the two average values.

We assume a confidence level at 0.95 and accept the results with p-value<0.05 as

significant.

We define another metric, named Fusion Gain (FG), to perceive the effect of the fusion

process. Fusion gain gives the relative performance increase between to two different

configurations:

FG(x, y) =
MAP (x)�MAP (y)

MAP (y)
, (6.21)

where x and y denote different configurations (i.e. different feature selections). In our

experiments we calculate two FGs:

• FGBS: The fusion gain is calculated by comparison with the best single modal-
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ity.

• FGAV G: The fusion gain is calculated by comparison with the simple averaging

approach.

6.4.2 Comparison with Other Approaches

In order to see the effectiveness of RELIEF-MM, we first compare its retrieval accuracy

with the following alternative methods,

• Each single modality,

• Basic approaches like maximum (MAX) and averaging (AVG),

• Class-common exhaustive search (Exh-CC), Class-specific exhaustive search

(Exh-CS)

• Original RELIEF-F algorithm,

Using each single modality and basic approaches represents the lower accuracy bounds

for the fusion system. A fusion system is accepted as successful if it provides better

accuracy than any of the single modalities. We also consider the MAX and AVG

approaches as lower bounds, since these are the most frequently utilized fusion ap-

proaches due to their simplicity in calculation. In the MAX approach, the decision in

the fusion process is calculated by taking the maximum score value of the available

modalities. In the AVG approach, the mean of the score values of all available modali-

ties is accepted as the final decision. On the other hand, we also present the accuracies

of the exhaustive search for finding optimal modality weights, which provides an upper

bound for the retrieval accuracies. For the exhaustive search approach, we perform

both class-common and class-specific weighting processes. Exh-CC evaluates every

different weight set in order to find the optimal weight of each modality. In Exh-

CS, the same process is repeated for each class, separately. Lastly, we compare our

proposed approach with the original RELIEF-F algorithm, which exhibits the major

contribution of this study. During these comparisons, for RELIEF-F and RELIEF-MM,

the performances at the optimal kR values are presented. The v value for RELIEF-MM

is used as 2.
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The use of an exhaustive search usually causes infeasible test situations. In our tests,

the feasibility of the weight selection process via an exhaustive search depends on

the precision of the weights, as well as the number of modalities. For instance, if

we want to have a precision of 0.01 between weights with 6 modalities, we should

check 100

6 cases. Assuming that we already have the prediction scores of each

modality beforehand, such a process for TRECVID 2007 dataset would take so

long that even parallelization of the process would not be a solution. Thus, we

follow a computationally simpler search process without damaging the fairness of the

comparisons. We perform the following two different near-exhaustive search process3,

and then select the best one: (i) We first perform an exhaustive binary selection

among available modalities, and select the best 4 modalities. Then, we perform

a weight search on the selected 4 modalities with 0.01 precision (w 2 {0, 0.01,
0.02, ..., 0.99, 1}). After finding the optimal weights and fixing them, we perform a

weight search on the remaining 2 modalities. (ii) We first perform an exhaustive weight

search on all available modalities with 0.1 precision and find the optimal weights for

each feature. Then, as a second step, we tune up the weights by performing a selection

between [w � 0.05, w + 0.05] with 0.01 precision.

In order to evaluate the proposed approach, one may argue that there should be

comparisons with other available feature selection / weighting methods. However,

as described in Section 6.1 and Section 6.2.2, currently available filter based feature

selection / weighting methods in the literature are not easily applicable to the modality

weighting problem, due to the issues of the intrinsic multi-dimensionality of modalities

and the multivariate inputs of fusion systems. Thus, adapting other approaches to

modality weighting problem is beyond the focus of this study. Besides, we do not

consider comparing our method with several different wrapper approaches since

we perform a comparison with the exhaustive search, which gives the best possible

accuracy. It is also known that any wrapper approach is much more computationally

complex than our approach. Consequently, we think that the comparisons included

in this study are enough to evaluate the effectiveness and efficiency of our proposed

approach.

3 This two step process is applied for the TRECVID 2007 and 2008 datasets, where the number of modalities
lead to inefficient situations. For the CCV dataset, an exhaustive weight search process is performed with 0.01
precision.
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In Table 6.3, the MAP values of the above listed approaches are presented for the

TRECVID 2007, TRECVID 2008 and CCV datasets. For a better understanding of

which weighting approach provides more effective fusion, the Fusion Gains of these

approaches are calculated and presented in Table 6.4. In addition to the accuracy

results included here, a statistical significance analysis of the results is presented in

Table 6.5. In the tables, (F) denotes the use of feature values as inputs to the RELIEF

based algorithms, whereas (P) represents the cases where the predictions scores are

used as the inputs.

From these experimental results, we arrive at the following observations:

• Combinations of different modalities give more accurate results than the single

modalities. However, selection of modalities is a critical issue. A wrong

selection can lead to worse results than the best of the single modalities. For

instance, AVG cannot provide a positive gain in the TRECVID 2007 and 2008

datasets, compared to the best single modality. Similarly, a MAX approach is

not successful in any of the three datasets. This is because of the fact that these

simple methods do not perform an effective evaluation on the modalities, and

thus they cannot discard the unfavorable modalities. Although these approaches

provide the most efficient solutions, they cannot always provide an effective

solution and they are not robust against different datasets. Consequently, a more

robust and effective approach is highly recommended despite the risk of some

decrease in efficiency.

• RELIEF-F is significantly better than the best single modality in one of two

datasets where feature values are used as input, and one of three datasets where

predictions scores are used. If compared with the AVG approach, RELIEF-F

has a significant improvement in only one case out of all five. Hence, RELIEF-F

is not a robust solution against different datasets. Still, it can be accepted as

an applicable modality selection approach, since it does not provide retrieval

accuracies worse than the best single modality, and usually performs slightly

better.

• RELIEF-MM provides a significant improvement over the best single modality

for all datasets when the feature values are used as input, and two of three datasets
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when the prediction scores are used. If compared with AVG results, RELIEF-

MM is significantly better in one of the two datasets with the feature value inputs,

and in two out of three datasets with the prediction scores. When RELIEF-MM

is compared with RELIEF-F, it is observed that RELIEF-MM obtains higher

retrieval accuracies than RELIEF-F in all cases, each having a p-value<0.05. In

addition, it should be noted that RELIEF-MM achieves higher accuracy results

than the best single modality, AVG and MAX approaches, and even slightly

better results than the Exh-CC approach. Thus, there is strong evidence that

the RELIEF-MM approach introduces a significant improvement and can be

accepted as a robust and effective solution as a modality weighting approach

for multimedia data. Therefore, RELIEF-MM can be regarded as a practical

enhancement for the multimedia retrieval studies using simple averaging for

fusion.

• An exhaustive search finds the optimal feature selection since it evaluates all

possible combinations. The accuracy results show that the use of a class-specific

approach in the exhaustive search (Exh-CS) helps to improve retrieval accuracy

in all three datasets. Besides, being a class-specific approach, RELIEF-MM

is not upper-bounded with Exh-CC, whereas the accuracies of RELIEF-F are

always less than Exh-CC.

• The performance of using prediction scores instead of feature values for calcu-

lating the modality weights depends on the characteristics of the dataset. In our

experiments, results with the TRECVID 2008 and CCV datasets are reasonably

good. However, for TRECVID 2007 dataset, there exists a considerable decrease

in accuracy according to the results of using feature values. Thus, it may be hard

to give a conclusive decision about the effectiveness of using prediction scores,

with the current evidence. Nevertheless, the accuracies with the prediction scores

outperform best single modality, MAX and AVG approaches. Consequently,

we observe that the results of using prediction scores is promising and they are

applicable when the feature values are not available during the fusion process.

The efficiency of the proposed approach is another important concern. A running

time comparison of RELIEF-F, RELIEF-MM, Exh-CC and Exh-CS is presented in
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Table 6.6: Approximate Execution Times of Exhaustive and RELIEF based methods,
on three different datasets. The column with an asterisk denotes estimated values for a
real exhaustive search scenario.

RELIEF-F RELIEF-MM Exh-CC Exh-CS *Exh-CC *Exh-CS
TRECVID 2007 3 sec 6 sec 17 hours 340 hours 19 years 380 years
TRECVID 2008 10 sec 11 sec 22 hours 440 hours 100 days 5.5 years
CCV 2 sec 2 sec 0.14 hours 2.7 hours 0.14 hours 2.7 hours

Table 6.6. The measurements are taken on a machine with “Intel(R) Xeon(R) CPU

E5530 @2.40GHz”. The values on the graph and table are obtained without a parallel

programming approach. The values given in the table correspond to the cases presented

in Table 6.3. The table includes both the near-exhaustive search running times and the

estimated real exhaustive search times. The basic approaches (AVG and MAX) are not

given in the table since they are done at no cost. Furthermore, a detailed comparison of

RELIEF-MM and RELIEF-F, for different kR nearest neighbor selections, is presented

in Figure 6.4. According to the given experimental results, execution of RELIEF-

MM results in a small increase in time, which is in parallel with the complexity

analysis given in Section 6.3.4.1. Besides, the exhaustive search methods, even the

near-exhaustive search, require a high time cost, as expected. Hence, RELIEF-MM

can be accepted as an efficient modality weighting approach, considering that the
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Figure 6.4: Running Time Comparison of RELIEF-F and RELIEF-MM on TRECVID
2007 dataset for different kR values.
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time cost is a polynomial function of the number of modalities, and thus much more

efficient than the exhaustive search. When compared with basic approaches, the cost of

RELIEF-MM is still acceptable, considering the improvement in the retrieval accuracy.

Up until now, the average query performances have been compared. In order to make

a more detailed comparison, we also perform a concept-based analysis. Figure 6.5

illustrates a concept-based comparison and presents the number of concepts for which

RELIEF-MM provides higher accuracy when compared with a particular approach. In

addition, precision-recall graphs for some of the query concepts are given in Figure 6.6

and Figure 6.7. According to the given experimental results, RELIEF-MM achieves

higher accuracies in a larger number of concepts than RELIEF-F, the best single

modality and AVG approaches, regardless of the used dataset and the input type

(feature values vs. prediction scores). Nonetheless, the success rate of RELIEF-MM

compared to RELIEF-F is more pronounced than the best single modality and AVG

approaches. Under this observation, we can infer that the improvement provided

by RELIEF-MM is reasonably good, due to the extensions introduced in this study.

However the RELIEF idea in general may lead to difficulties in some particular data

133



0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
r
e
c
i
s
i
o
n

Recall

Airplane

MM
F

AVG
EH

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P
r
e
c
i
s
i
o
n

Recall

Office

MM

F

AVG

BEST

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
r
e
c
i
s
i
o
n

Recall

Hand

MM

F

AVG

SIFT

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
r
e
c
i
s
i
o
n

Recall

Cityscape

MM
F

AVG
SIFT

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
r
e
c
i
s
i
o
n

Recall

IceSkating

MM
F

AVG
SIFT

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
r
e
c
i
s
i
o
n

Recall

Beach

MM

F

AVG

SIFT

Figure 6.6: Precision-Recall graphs of some selected concepts, which are best-case
examples for RELIEF-MM (in terms of accuracy). The rows contain concepts from
TRECVID 2007, TRECVID 2008 and CCV datasets, respectively.
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Figure 6.7: Precision-Recall graphs of some selected concepts, which are worst-case
examples for RELIEF-MM (in terms of accuracy). The rows contain concepts from
TRECVID 2007, TRECVID 2008 and CCV datasets, respectively.
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distributions and is open to improvement. Even though the RELIEF algorithm utilizes

a margin based nonlinear classifier [126] to evaluate the features and a margin based

nonlinear classifier is known to be successful in general, the way RELIEF uses the input

data is based on a standard procedure of employing the distances from each training

sample to its neighbors, and does not benefit from any feature transformations in kernel

space. This approach may be inadequate for some particular concepts that have unique

data distributions. Just as employing various kernel types in SVM classifiers according

to the characteristics of data and features leads to more effective classification results,

so performing some appropriate kernel transformations on the RELIEF input data will

help to make the RELIEF approach superior in a larger number of query concepts.

However, such a problem is not included within the scope of this study, and has been

left for future work.

Beyond the discussion on kernel transformation, one may focus on the comparison

between RELIEF-MM and RELIEF-F, and expect that a class-specific approach, i.e.

RELIEF-MM, should have an ability to optimize the weights for every query concept

individually and thus achieve higher retrieval accuracies in any concept. Insofar as our

observations have shown, we think that there exist two important factors that prevent

RELIEF-MM from giving the best accuracies in some of the concepts.

The first reason for RELIEF-MM’s less-than-optimal accuracy with some concepts

is the small number of training samples for some particular concepts, which lead to

incomplete representation of the concept. As explained in Section 6.3.1, RELIEF-MM

takes the samples of each concept into account for the weight calculation, whereas

RELIEF-F uses all training samples without considering the concept that they belong

to. As a result, the weight calculation of the concepts with a small number of training

samples may lead to ineffective results. On the other hand, RELIEF-F gains a general

insight into the effectiveness of each modality, which usually provides better results

than the estimations of RELIEF-MM which are based on inadequate data. Explosion_-

Fire, Desert, Flag and Truck in the TRECVID 2007 dataset are some of the concepts

for which RELIEF-F gives better accuracies. These concepts include 46, 67, 12 and

126 samples, respectively, whereas the dataset contains more than 350 samples per

concept on average. A performance visualization for these kinds of concepts is given

in the first column of Figure 6.7. It is also worth noting that TRECVID 2008 and
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CCV include less concepts with a small number of samples, and thus the performance

of RELIEF-MM is better in these two datasets than TRECVID 2007, as seen in

Figure 6.5.

Second reason for RELIEF-MM’s weakness for some concepts is the intra-concept

sample variety, which can be accepted as a side effect of including �c
f and ⌘cf into

the weight estimation function. As mentioned above, the way in which the margin

based classifier is utilized in RELIEF may be inadequate for some particular concepts

that have unique data distributions. In RELIEF-MM we extend the weight estimation

function and include �c
f and ⌘cf into the formula. This preference increases the effect of

margin based calculations in the function since both �c
f and ⌘cf are calculated by using

the intra-concept and inter-concept distances. Even though such preference makes

the weight estimations better in most of the cases, increasing the effect of margin

based calculations without a feature transformation in the kernel space may lead to

worse weight estimations. As a solution, two alternatives can be considered, a kernel

transformation or including a non-margin based variable into the weight estimation

function, which can be considered for future work.

As a last comparison between RELIEF-MM and RELIEF-F, we try a different scenario

from the previous tests, and combine the modalities with a simple averaging approach

137



after a hard selection of the modalities instead of weighting. In modality selection for

fusion, the ultimate goal is to find which subset of the modalities is more effective for

the retrieval task. It is therefore important to rank the modalities correctly, and this

scenario helps us to do so. In Figure 6.8, the retrieval accuracies of RELIEF-F and

RELIEF-MM are presented for those cases where a different number of modalities

are selected and combined. During the test, firstly the weights of the modalities

are obtained via the RELIEF-F and RELIEF-MM algorithms. Then for a particular

number of modalities are selected according the assigned weights. The results show

that RELIEF-MM is clearly superior to the original RELIEF-F algorithm in this task.

Hence, it can be said that the ranking capability of RELIEF-MM is more effective than

that of RELIEF-F.

6.4.3 Tests for Each Extension Idea

In order to further analyze the improvements that RELIEF-MM provides, we compare

our proposed algorithm with the baseline RELIEF-F algorithm with respect to each

idea presented in Section 6.3. Below, each idea is discussed in a separate sub-section.

Through this evaluation, the TRECVID 2007 dataset is utilized.

The first improvement issue in RELIEF-MM is the conversion of the original RELIEF-

F algorithm, which is a class-common approach, into a class-specific one. Thus,

we compare the retrieval accuracies of the class-specific adaptation of RELIEF-F

algorithm, which is introduced in Algorithm 2, with the original RELIEF-F. Moreover,

we include the retrieval performances of RELIEF-MM algorithm in order to provide

a more complete representation. In Figure 6.9, precision recall curves of these three

methods are compared for optimized k selections. In addition, Figure 6.10 presents

the retrieval performances of the given approaches with respect to different values of k

nearest neighbors.

6.4.3.1 Class-Common vs. Class-Specific Feature Weighting

Figure 6.9 and Figure 6.10 show that RELIEF-MM provides higher retrieval accuracies

than both of the original RELIEF-F algorithm and the class-specific adaptation of

138



0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
r
e
c
i
s
i
o
n

Recall

MM

CS-F

CC-F

Figure 6.9: Precision-Recall Curves of the original RELIEF-F (CC-F), class-specific
RELIEF-F (CS-F) and RELIEF-MM (MM) algorithms.

0.094

0.096

0.098

0.1

0.102

0.104

0.106

0 20 40 60 80 100

M
A
P

kR (%)

MM
CS-F
CC-F

Figure 6.10: Retrieval Performances of original RELIEF-F (CC-F), class-specific
RELIEF-F (CS-F) and RELIEF-MM (MM) algorithms.

139



RELIEF-F, for different values of nearest neighbors. Furthermore, Figure 6.9 presents

the clear superiority of the class-specific approach over the original one, and Fig-

ure 6.10 shows that the accuracy of the original approach decreases, as the number

of neighbors is increased. However, in the class-specific RELIEF-F, the accuracy is

almost directly proportional to the number of neighbors. In addition, until some point

around 33% of nearest neighbors selection, the original RELIEF-F performs better

than the class-specific RELIEF-F, which means that the original algorithm is more

powerful than the class-specific approach for a small number of neighbors. The reason

for this situation is discussed below.

In discrimination based approaches, one of the most important factors that affects

the success of the approach is the variety of the encountered samples. The original

RELIEF-F algorithm estimates the weights by processing the randomly selected m

samples and k neighbors of each sample from s�1 classes. Equivalently, class-specific

RELIEF-F allocates the randomly selected m samples into s classes according to the

prior probabilities of each class, and processes the samples of each class separately.

Hence, the weights of each class are estimated by using a smaller number of samples

according to m. If the number of nearest neighbors k is also small, the information

obtained from the distances between samples becomes limited, which directly affects

the success of class-specific RELIEF-F. If the number of nearest neighbors is increased,

it is certain that the algorithm encounters some neighboring samples which have not

been seen before, so that the algorithm obtains some adequate number of sample

distances to estimate more effective weights. On the contrary, the original RELIEF-F

usually does not encounter new samples when the number of nearest neighbors is

increased, since many of the samples are seen through the m sample selection. If

m is chosen as all training samples, there is no new instance that can provide new

information while k is increased. Therefore, the only factor affecting the success

of the original RELIEF-F algorithm becomes the noisy information obtained due to

the increase in k. Consequently, it is more beneficial in this test to see which of the

approaches can achieve higher accuracy in any configuration, since those upper bounds

present how effectively they can use the available information. In Figure 6.9, it is

apparent that class-specific RELIEF-F uses the available information more effectively.
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6.4.3.2 Performances with Uni-label, Multi-label and Noisy Data

Another improvement of RELIEF-MM is its ability to handle multi-label data. Thus,

we compare the retrieval accuracies of the fusion systems using RELIEF-F and RE-

LIEF-MM for weight generation in uni-label and multi-label data. This comparison

helps us to understand whether RELIEF-MM is more effective in multi-label data.

In order to obtain a uni-label data, we first process the training dataset and remove

the multi-labeled instances from the dataset. We use the newly constructed uni-label

dataset only for the weight generation step of the fusion process. The classifiers,

which give the inputs to the fusion process, are always trained with the multi-label

dataset. Thus, we manage to compare only the effect of different weight generation

methods. Furthermore, it should be noted that constructing the uni-label dataset by

removing the multi-labeled instances may cause the loss of some information (e.g.

approximately 40% of the training instances is removed) and affect the performance

of weight generation. Still, using a completely different uni-label dataset prevents us

from comparing the accuracies of a weighting approach across datasets. Consequently,

we find this setting fair enough to compare the effectiveness of RELIEF-MM and

RELIEF-F.

The tests are conducted for several kR nearest neighbor selections. Figure 6.11 presents

the retrieval accuracies of RELIEF-MM and RELIEF-F by using uni-label and multi-

label data for weight generation. In order to understand the effect of using multi-label

data, the differences between the accuracies of RELIEF-F and RELIEF-MM can

be compared for uni-label and multi-label datasets. Such differences can be best

understood by the area between the curves of RELIEF-F and RELIEF-MM in the

given graph. As seen on the graph, the area between RELIEF-F and RELIEF-MM

curves is larger for multi-label data, which can be evaluated as RELIEF-MM working

better in multi-label data.

In addition to the uni-label vs. multi-label data comparison, we also consider the

performances of the algorithms for noisy data. In Section 6.3 it is proposed that

RELIEF-MM should perform better than RELIEF-F even in noisy data cases. Thus,

we compare the performances of RELIEF and RELIEF-MM with noisy data-sets.
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For this purpose, we manually add mislabeled instances into the multi-label dataset,

and construct 10%, 30% and 50% noisy datasets. Similar to the tests for uni-label

data, these noisy datasets are used only for the weight generation step. The retrieval

accuracies at given noise levels are presented in Figure 6.12, as well as the zero noise

level.

Figure 6.12 demonstrates that the decrease in accuracy is usually larger for RELIEF-F,

as the noise increases. Furthermore it is observed that RELIEF-MM is superior to

RELIEF-F at any noise level. It can be stated that RELIEF-MM is more robust against

noise.

6.4.3.3 Using k vs. kR

One more improvement on the original RELIEF-F is the dynamic selection of k nearest

neighbor as a ratio value of the class sample counts. The changes in retrieval accuracy

change according to different k nearest neighbors are shown in Fig 6.13(a). The change

according to different kR nearest neighbors is shown in Fig. 6.13(b).
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Figure 6.12: Retrieval Performances with Different Levels of Noisy Training Data for
Weight generation.

For each of the methods, it is expected that accuracy values will converge into the

same value when k reaches the number of all training instances and kR reaches 100%.

The improvement that kR provides is more apparent in lower numbers of training

samples. Figure 6.13 shows that both approaches exhibit a decrease in performance

when 100-500 nearest neighbors are used. The main reason for the decrease is the

use of imbalanced hit and miss instances for concepts that have a smaller number of

samples, e.g. using k = 400 for a concept with only 200 samples causes the algorithm

to use 200 hit instances, but 400 miss instances. Considering that RELIEF-MM works

with class specific preference, the decrease in accuracy becomes more dramatic for

RELIEF-MM. On the other hand, the use of a dynamic selection with ratios (kR)

prevents such a decrease for both methods and enables more robust accuracy results

against a different number of nearest neighbor selections. kR is bounded by the number

of samples in the class, thus the decrease caused by imbalanced hits/misses does not

occur any more.
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Figure 6.13: Retrieval Performances According to k vs. kR Nearest Neighbors
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6.5 Evaluation of Fusion System Design

Considering the general fusion framework proposed in Section 3.1, an evaluation of

the fusion architecture described in this chapter is given below. The approach is based

on a ‘multi-modal, multi-classifier’ fusion scenario and focuses on the ‘What to Fuse’

problem. Below, how each affecting factor is handled through the proposed solution is

described.

• Fusion Setting: The approach combines multiple modalities, each of the modality

being a different feature. Before combination, the data of each modality is

classified with a separate classifier, and the results of the classifiers are combined.

• Selection of Sources: RELIEF-MM is a modality weighting approach, which

has a capability to be used as an online algorithm. Thus, the approach can be

accepted as a dynamic solution for feature weighting. In addition, the weights

have a context relation, since the approach is based on the class-specific feature

selection idea.

• Fusion Strategy: The approach focuses on the use of complementary information

for fusion.

• Content Representation: For content representation, both feature-based and

score-based representation is applicable. In score-based representation, the

classification scores of the samples are stored and processed.

• Normalization of Sources: The fusion inputs are classifier outputs, where each

of them lays in between [0, 1]. Thus, a normalization process is not applied on

the fusion inputs.

• Fusion Level: The approach is a late fusion approach.

• Fusion Methodology: Considering that the focus of the study is the feature /

modality weighting, linear weighted averaging approach is utilized as the fusion

methodology.

• Operation Modes: The mode for operation is a parallel scheme.

• Synchronization: A simple shot or video based synchronization is applied.
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• Adaptation: Considering that proposed algorithm can be used as an online

algorithm, the approach can be accepted as an adaptive solution.

6.6 Remarks

In this chapter, the problem of modality weighting for multimodal information fusion

is studied. As an effective and efficient modality weighting solution, a RELIEF

based approach is proposed. Considering the problems with RELIEF-F when using

it with multimedia data for multimodal fusion, we focus on five crucial issues and

extend the original RELIEF-F algorithm in these aspects. We first convert the original

algorithm into a class-specific representation. Then we extend the algorithm and

weight estimation function so that they estimate the modality weights better with

multi-label and noisy data. For better estimations, we include the representation and

reliability characteristics of modalities into the weight estimation function, in addition

to the currently available discrimination capability. We also make an extension in

order to make the algorithm more effectively with unbalanced datasets. Lastly, we

introduce a conversion procedure that enables the use of classifier predictions in

RELIEF, considering that feature values may not be available during a fusion process.

Our approach is extensively tested on TRECVID 2007, TRECVID 2008 and CCV

datasets with several modalities in a multimodal information fusion scenario. The

results show that using RELIEF-MM guarantees higher accuracies than any single

modality, and shows much better performance than simple averaging and RELIEF-F

based methods. In addition, RELIEF-MM provides slightly better performance than

the class-common exhaustive-search based approach, although it is computationally

much more efficient. We also perform several comparative tests against the RELIEF-F

approach, aiming to examine each extension idea, and confirm that the proposed

extensions lead to improvements on RELIEF-F. Consequently, we argue that our

proposed approach is a timely efficient, accurate and robust way of modality selection.

The experiments carried out also exhibit some situations for future work. In order to

further improve RELIEF-MM, we put forward the following ideas for future study:

• The RELIEF-MM algorithm utilizes a margin based discrimination approach,
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like the original RELIEF, while evaluating features. Performing some appro-

priate feature transformations on the kernel space may improve the quality of

the weight estimations, especially for those particular concepts that have unique

data distributions. Performing such transformations separately for each concept

type, like a one-vs.-all approach, may yield better results.

• Another improvement idea for RELIEF-MM is to include a non-margin based

evaluation metric into the weight estimation function (e.g. mutual information,

information gain, correlation, etc). Any considerable metric may have its own

complications when being used with modalities instead of features, deficiencies

for multimedia data and extra computational complexity, however. All these

factors should be analyzed in detail.

• It is possible to further increase the efficiency of the RELIEF-MM algorithm by

employing some caching mechanisms (e.g. k-d trees, hashing).
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CHAPTER 7

COMBINING BAGS-OF-WORDS: A NOVEL MINING AND

GRAPH BASED APPROACH

In this chapter, the problem of finding a way to fuse the modalities effectively is

taken into consideration. The approach focuses on the combination of the components

used in the state-of-the-art studies. Thus, the proposed approach provides a novel

mining and graph based combination method for combining the Bags of Words (BoW)

obtained from different modalities. Considering the fact that most of the studies do

not use intramodal and intermodal relations of the available words effectively, our

approach combines the classification outputs of each single modality, intramodal

relations and intermodal relations with a late fusion approach.

7.1 Overview

The key to perform a successful multimedia retrieval operation is to analyze the

semantic content of the multimedia data adequately. For an adequate analysis, the

multimodal nature of the data should be analyzed carefully and the information

contained in the data should be used completely. In this respect, combining the

information gathered from multiple modalities is an empirically validated approach

to increase the retrieval accuracy [4]. Yet, two major issues are pointed out by many

researchers as attractive research areas [4, 98, 143]: (i) How to determine the best

modalities? (ii) How to fuse them the best way? This study focuses on the second

problem and presents a modality combination approach in order to use the multiple

modalities effectively.
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The previous chapters of this thesis has already presented solutions on the above given

problems. However, proposed solutions are mostly focused on the first problem and

there is the need for an effective solution on the ’How-to-fuse’ problem. Through this

direction, we focus on the following needs;

• Use of correlated information: A big majority of the available approaches accept

the fusion as a complementary process, and assume that the fusion inputs are

independent. Thus, the dependency / correlation between different modalities is

usually ignored and each modality is processed separately. Considering that any

object or event occurring in multimedia data is also multimodal (e.g. A ‘car’ has

a visual appearance, a characteristic sound and has some parts including text on

it), it can be argued that there exist a strong dependency between the different

modalities of multimedia data. Hence, the fusion solution should benefit from

such information and support working with both complementary and dependent

(correlated) inputs.

• Working with contemporary approaches: The fusion literature contains a huge

amount of studies that are usually grouped under two broad levels, according

to when the fusion process is applied: early and late fusion. As described in

Chapter 3 in detail, early fusion approaches combine the information on sensory-

level or feature-level, whereas late fusion approaches deal with the outputs of

the classifiers (scores, ranks and decisions). However, contemporary learning

approaches introduce a ‘new’ level into the learning process (i.e. the use of

bag-of-words). Considering that such bag-of-words based learning approaches

are highly popular on the multimedia retrieval domain, we can advocate the need

for combining the information at this level.

• Combining multi-level inputs: Almost all of the fusion approaches assume

the homogeneity of the fusion inputs. However, the fusion inputs may be

in different levels (e.g. combining two systems, one providing features and

another providing scores of classification), or may be in different class-spaces

(e.g. combining the results of two classifiers, one performing a classification

into classes C1, C2, ..., Cn, but the other one into S1, S2, ..., Sm). Although it

may be possible to convert all inputs into the the same level performing a
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classification on the low-level inputs (features), such an operation may lead to

loss of information. Thus, we need a general fusion framework that enables

combining multi-level inputs.

Regarding the above given need, we focus on a solution that combines bags of words

that are generated from different modalities. Through this direction, we propose a

general fusion framework based on BoWs by converting any type of information

into BoW format. After converting all types of inputs into BoW representation, we

incorporate both the complementary and the correlated information into fusion process.

For exploiting the correlated information, we analyze the intramodal relations within

each modality, and the intermodal relations between modalities. Such correlation

information and the provided BoW based features of different modalities exhibit a

complementary behavior, thus they are combined with late fusion approach. Hence,

our proposed approach is composed of four steps: (i) classification of information in

each modality, (ii) intramodal correlation analysis for each modality and classification

of the obtained information, (iii) intermodal correlation analysis between modalities

and classification of the obtained information, (iv) late fusion of all classification

results. For the late fusion, a linear weighted averaging approach is utilized with the

weights generated by using the RELIEF-MM algorithm.

For the intramodal and intermodal correlation analysis problem, we propose a novel

mining and graph based solution. Throughout the intramodal process, the words of

each modality and the correlation between these words are converted into a graph

representation, and then the meaningful phrases are extracted by using these words.

For calculating the correlations between the words, a frequent itemset mining (FIM)

procedure is executed. In order to extract the phrases, the most together occurring

words are extracted from the constructed word graph. For the intermodal process, first,

the correlation between the extracted phrases of different modalities are calculated

based on the Pearson’s correlation coefficients, and then obtained information is

converted into a graph representation. After that, the multimodal phrases are extracted

from the graph. Both of these processes end up with using the extracted phrases for

classification. For the evaluation of the proposed approach, an experimental study

is conducted on TRECVID 2011 dataset with visual, audio, text modalities. The

test results show that the proposed approach is an effective way for fusing BoW-
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Figure 7.1: A Typical Multimedia Analysis Process

based feature vectors of different modalities. In addition, the use of intramodal and

intermodal correlation information helps to improve retrieval performance and the

fusion gain.

The remainder of this chapter is organized as follows: In Section 7.2, an overview

of the contemporary learning approaches and the some descriptions on the use of

bags-of-words are given. In Section 7.3, some related work on combining BoWs and

an analysis of the state-of-the-art approaches are presented. Then, in Section 7.4,

the proposed approach for combining BoWs is given in detail. In Section 7.5, the

empirical results and the evaluations of our proposed solution are given. In Section 7.6,

an evaluation of the proposed fusion architecture is done based on the general fusion

framework for fusion (Section 3.1). In the last section, some conclusions are drawn

and some possible future studies are discussed.

7.2 Background Knowledge

Pattern recognition and computer vision literatures contain a huge amount of multi-

media analysis (especially image analysis) studies [26, 118]. In a traditional analysis

system (as given in Figure 7.1), the process starts with the perception of some input

from the real world via some hardware called sensors. After converting physical inputs

(i.e. sounds or images) into signal data via some sensors and preprocessing such

signals (i.e. enhancement and segmentation operations), a feature extraction step is

employed and several important properties of the real world input that are useful for
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Figure 7.2: BoW Generation Process

classification are extracted by using sensor data. Afterwards, features are used for

classification and class label, score or a ranked list is obtained as the classification

result. Lastly it is possible to have an enhancing post-processing mechanism on the

results (i.e. fusion of several classifiers, features, etc.). In such systems, extracted

features from the input signals are usually global features, which represent the overall

characteristics of given multimedia frame, segment, shot or video.

Different from the traditional approaches, contemporary approaches enhance the

feature extraction process. The contemporary approaches bases on two solid ideas:

• Use of local parts and features

• Employing “Bag of Words (BoW)” approach

Brief descriptions on these ideas are given in the following subsections. As a summary,

Figure 7.2 illustrates such feature extraction process. First, salient local keypoints are

selected from the given multimedia frame or segment and representative local parts

of the given frame/segment are found. Then feature descriptions of these points are

generated. Lastly, the bag-of-words approach is applied on these keypoint feature

descriptions and keypoint features of each multimedia frame/segment are converted

into vector space format by clustering them. A complete example of how BoWs are

generated is presented in Figure 7.3. A detailed description of these ideas can be found

in [117].
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(a) Example ‘Car’ images and local salient points on the images

(b) BoW Generation during training phase

(c) BoW Generation during test phase

Figure 7.3: BoW Generation Example
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7.2.1 Using Local Parts and Features

The idea of using local parts (keypoints) and features is based on the need for iden-

tifying objects in images . Although the pattern recognition literature present many

mature solutions for object detection, the problems due to viewpoint changes, lighting

conditions or partial occlusion make the problem still challenging [117]. Considering

these problems, trying to find objects by some segmentation approaches is not adequate.

A popular solution on this problem is the use of representative local parts (keypoints).

By using an effective local feature, the objects are represented by a set of local regions

(keypoints) each of which is modeled with a feature vector (descriptor) computed from

the region. The keypoints and their descriptors are generated with a controlled degree

of invariance to viewpoint and illumination conditions so that similar descriptors are

computed for all images in the database [117]. Consequently, the idea of using local

parts and features contains two major steps: Salient Keypoint Detection and Keypoint

Description Extraction. These steps are given in detail below.

7.2.1.1 Salient Keypoint Detection

Given an image (or a multimedia frame / segment), salient keypoints are extracted

by employing a saliency detection algorithm. The methods for keypoint detection

can be grouped in two: Dense-sampling and sparse-sampling. In dense-sampling, the

given frame is partitioned into m ⇥ n grid and each cell is used as a keypoint. In

sparse-sampling, a keypoint detection algorithm is used and salient points are decided

by sampling a sparse set of locally stable points [52]. The sampled keypoints are

expected to be invariant to geometric and photometric changes. Some sparse-sampling

algorithms are as follows: Laplacian of Gaussian (LoG) [75], Difference of Gaussian

(DoG) [77], Harris Laplace [80], Hessian Laplace [79], Harris Affine [80], Hessian

Affine [79].

7.2.1.2 Keypoint Description Extraction

Keypoint descriptors are used to describe the regions around the keypoints. The de-

scriptors usually provide a description for each keypoint which is invariant to location,
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scale and rotation, and robust to affine transformations (changes in scale, rotation,

shear, and position) as well as changes in illumination. The most famous keypoint

descriptor is SIFT (Scale Invariant Feature Transform) [77]. SIFT is a 128 dimensional

feature vector that captures the spatial structure and the local orientation distribution

of a region surrounding a keypoint. Recent studies have shown that SIFT is one of

the best descriptors for keypoints [52]. Some other well-known keypoint descriptors

are as follows: SURF (Speeded-Up Robust Features) [8], OpponentSIFT [135], RGB-

SIFT [122], HSV-SIFT [14], Hue-SIFT [136], W-SIFT [38], Color Moment [135],

Self Similarities (SSIM) [115], GIST [88], HOG [25].

Here, it should be noted that any global feature can be used as a local feature after

performing keypoint detection by extracting global features for each local patch.

However, SIFT-like invariant approaches perform superior.

7.2.2 Bag of Words (BoW)

Respecting the huge amount of work done in text retrieval, Bag-of-Words approach

is adapted into multimedia domain from the text retrieval literature. Text retrieval

systems employ a number of steps for text retrieval purposes. Firstly, the words in the

document are extracted and their stems are found. Then, a stop word list is used to

prune very common words (e.g. ‘a’, ‘an’, ‘the’, etc.), which are not discriminative for

any document. After that, the remaining words are processed and the frequency of

each unique word is calculated. The documents are represented with a BoW format,

where each document is a feature vector containing the frequencies of the words the

document contains. The word frequency calculation can be done in various ways

(Term Frequency (TF), Term Frequency - Inverse Document Frequency (TF-IDF),

etc.) [117]. The retrieval is based on the constructed vectors for each document.

With a multimedia aspect, it is possible to make an analogy for each modality with

the textual bag of words. For instance, images including some number of salient

keypoints resemble the documents having some number of words parsed. In other

words, visual bags of words can be constructed by using the visual keypoints in

images / videos. In this respect, the BoW idea is to represent each image / video as an

orderless collection of local keypoint features. In order make the representation more
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compact, the keypoints are first clustered into a visual vocabulary with a predefined

size (Figure 7.3), and each keypoint cluster is accepted as a “visual word” in the

visual vocabulary. Then each image / video is represented with a vector containing the

presence of each word in the vocabulary [52]. Not only the presence of the words, any

other weighting scheme can be adapted (i.e. counts, TF, TF-IDF, etc.). This process

can be applied for any other modality of the multimedia data.

7.3 Related Work and Analysis of the State-of-the-Art Approaches

As discussed in detail in previous chapters, combining the information gathered from

multiple modalities is an empirically validated approach to increase the retrieval

accuracy. Considering that the most popular and effective methods in multimedia

analysis studies in the last decade are based on the use of local parts / features in

multimedia documents and employing Bag-of-Words (BoW) approaches, we would

like fuse all available information obtained via BoWs of different modalities. In this

section, we first analyze BoW approach with regard to the aspects given in Section 3.1.

Then the approaches for combining bags of words are presented with a brief literature

analysis and prototype implementation of these approaches.

An important aspect for information fusion is the content representation method

(Section 3.1.4). Bag-of-words representation is a new type of content representation

considering the feature-based, similarity-based and preference-based representations,

which are discussed in Section 3.1.4. Although its usage is very similar with feature

based representation, the information contained in BoWs has a crucial difference. The

low level features in feature-based representation do not have direct semantic meaning,

and cause the well-known semantic gap problem when used. However, BoWs contain

information on the representative parts of object/concepts occurring in the multimedia

data, without assigning a label to the represented parts. Thus, a BoW-level processing

is a new semantic level between the low level features and the high level concepts.

Another important characteristic of BoWs, which provide simplicity during fusion is

that it is self-normalized or very easy to normalize, which is related to the normalization

issue given in Section 3.1.5. Considering that BoWs are generated according to some
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pre-decided vocabulary sizes, it is possible to set the size of the BoW vector. In

addition, the values in the vector are usually frequencies which are in a predefined

range. Since we generate the BoWs of each modality, we use the same metric and

scales for the values in the vector. Therefore, the issues related to the normalization

of sources, that are discussed in Section 3.1.5, are no a longer problem, when the

combination inputs are in BoW format.

In addition to the representation and normalization issues, the fusion strategy to be

used is also a crucial issue (Section 3.1.3). As mentioned in Chapter 3, the correlation

between the inputs is an important source of information for fusion. Such a fusion

strategy can be applied for the fusion of BoWs. Essentially, although employing a

BoW approach and combining multiple BoWs have a big potential to provide a high

accuracy for multimedia analysis, there is still a crucial source of information that is

not used effectively, which is the relations between words. Standard use of BoWs do

not include any relation information between the keypoints (neither a spatial relation,

nor temporal). Thus, we propose to exploit the spatial relationships between keypoints

in each multimedia frame and temporal relationships between the keypoints occurring

in the successive multimedia frames. The relations between keypoints can be either

intramodal or intermodal. An intramodal relation refers to the correlation between

keypoints with respect to a single modality, whereas an intramodal relation is the

correlation between different modalities. Exploiting such relationships can also be

named as extracting the co-occurrences of interesting patterns or mining multimedia

data for frequent patterns.

Another important affecting factor for fusion is the fusion level (Section 3.1.6). Con-

sidering the common fusion approaches and the time to apply the fusion process,

which are discussed in Section 3.1.6, the combination of BoWs can be done basi-

cally by assuming BoW vectors are usual feature vectors. Thus, basic approaches

for combining several BoWs is to combine the feature vectors (early fusion) or the

classification results (late fusion). However, it is possible to reformulate the fusion

levels for combining BoWs as follows, due to the the additional step of clustering in

BoW generation:

• Pre-Early Fusion: First the keypoints of the multimedia document and the
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corresponding descriptions for each keypoint are extracted. Such extraction is

done for each different feature, and the descriptions of different features for each

keypoint are concatenated. After concatenation, vector quantization (clustering)

is performed and the words are generated. These words can be used in any

type of learning architecture. Here, it should be noted that pre-early fusion is

not applicable for multimodal fusion, but it can be used with a single-modality

multi-feature scheme.

• Early Fusion: First, the keypoints and the corresponding keypoint descriptions

are extracted for each modality. Then, keypoints of each modality are clustered

separately, and the BoWs of each modality is obtained. Lastly, the vector

representations of bags are concatenated.

• Late Fusion: For each modality, keypoint selection, keypoint description ex-

traction, BoW generation and classification using the BoWs are performed

separately. Then, the classification results are combined.

Originality of the proposed approach is that it performs mining operation on the BoW

vectors, which means it uses the representative parts of objects/concepts to mine. Thus,

it prevents one from dealing with the unnecessary details in low level features and

performs the mining in an effective way. In addition, it enables more information than

working with high level semantic concepts for mining. Using high level semantic

concepts for mining depends on the success of the high level semantic extraction,

which includes an important problem, namely the semantic gap between low level and

high level features. Also it is highly affected from the viewpoint, lighting, occlusion

problems. Using parts of objects/concepts eliminates such inefficiencies.

Regarding the above given analysis, the solution framework consists of two parts.

First part combines the available BoWs in Early and Late Fusion schemes. These

approaches are widely applied in the literature [50, 52, 81, 122]. Second part performs

a mining operation in the multimedia data. Actually, video data mining is an attractive

topic in recent years and the literature contains a considerable amount of studies.

However, most of these studies perform the mining operation directly on the high level

semantic concepts, by ignoring the semantic gap problem [11, 33, 154]. The rest of

them, work with low level features for mining and do not use spatial and temporal
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relationships between patterns [111]. In addition, most of the studies do not use

intramodal and intermodal relations effectively and designed in a domain-dependent

way [10]. Below, some applicable approaches for multimodal mining are discussed in

detail.

7.3.1 N-grams

Considering that we would like to exploit the interaction between words, the use of

the spatial and temporal proximity between the words can provide us some valuable

information. In [54], Jiang et al. make an analogy between the spatial co-occurrence

of visual words and the bi-grams or N-grams in text categorization and try to obtain

the geometrical structure of an image by using the spatial proximity of words. The use

of N-gram offers a perspective of modeling the spatial and temporal co-occurrence of

multimodal words. Some of the recent similar ideas include the studies of [54,71,147].

In [54], Jiang et al. construct a two-dimensional co-occurrence histogram to represent

the images based on the visual bi-grams. After eliminating the word couples having

an euclidean distance smaller than a predefined threshold, the resting couples used for

a learning process. With a similar idea, Lazebnik et al. [71] group the neighboring

keypoints for object recognition, and Ye et al. propose a joint audio-visual bi-modal

representation by using the temporal co-occurrence of the audio and visual words.

We can analyze some examples in order to understand the given ideas more clearly.

Let’s consider two BoWs, one of which is visual words, the other one is audio words.

It is mentioned that the spatial proximity of different visual words is important for

classification because it captures the geometrical structure of the image. For example,

visual words depicting ‘tire’ may frequently co-occur with visual words characterizing

‘headlight’. In addition, we can consider the temporal proximity of visual words

depicting ‘tire’ with audio words ‘car voice’, considering that ‘tire’ may frequently

co-occur with the sound of the car which the tire belongs to.

Although N-gram is originally used for predicting a word from a number of consecu-

tive previous words (in text retrieval domain), the approach provides the probabilities

of occurrence for a set of words, as used in [54]. In order to be used with a multi-

modal mining, the definition of N-gram should be extended. Originally, N-gram is
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one-dimensional and neighborhood based. So we should modify N-gram selection al-

gorithm from one-dimensional neighborhood based selection to a spatial and temporal

proximity based algorithm.

7.3.1.1 Prototype Implementation

We implement a preliminary test to analyze the usability of N-grams approach. For the

test, we use the TRECVID 2011 dataset with visual SIFT feature. We construct bag-

of-words representations with a vocabulary size of 1000, for both. For the weighting,

we prefer a binary approach (1 if word exists, 0 otherwise), for simplicity. We select

the ‘Car’ concept for learning and construct bi-grams for visual BoWs and audio

BoWs. As a choice for the spatial proximity between words, we assume that the words

occurring in the same frame are close enough. However, considering that the size of

all 2-grams for such configuration is
✓
1000

1

◆
·
✓
1000

1

◆
= 10

6 , (7.1)

it is necessary to reduce number of bi-gram outputs. Thus, a similar approach with

[147] is preferred for pruning the set of word couples and top 1000 results having the

largest SupportDifference value are selected;

SupportDifference = support(‘Car0)� support(‘Non� Car0) , (7.2)

where support(X) is the count of a bi-gram selection among the all training samples.

After finding the bi-grams, we perform an SVM-based classification with the SIFT and

bi-gram features separately and combine the results with a Linear Weighted Fusion

approach with the following formula

DFUSION = (1� w) ·DSIFT + w ·D2�GRAM , (7.3)

where w is the weight of 2-gram decisions. Figure 7.4 presents the resulting Average

Precision values.

As seen on the graph, using 2-grams of SIFT increases the accuracy from 64.63%

to 65.24%, which is not statistically significant. The reason why the increase is not

statistically significant is the very simple configuration of the test. We have made two

crucial assumptions for simplicity, that possibly affected the fusion performance:
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Figure 7.4: Average Precision for the fusion of SIFT and bi-gram based retrieval

• The number of 2-gram components are fixed at 1000, which means we use 0.1%

(1, 000/1, 000, 000) of all 2-gram components.

• We used N-grams for only n=2. It is possible to extend the test n=2 to m, where

m is tractable.

The above given preliminary test and the analysis show us that obtaining a reasonable

increase in the performance is possible, but the process may be computationally

complex. Consequently, N-gram approach has a potential to provide extra intramodal

and intermodal correlation information, however it suffers from the combinatorial

explosion problem.

7.3.2 Frequent Itemset Mining

Considering the efficiency problem with N-gram approach, a practical solution for the

extended N-gram idea can be obtained by finding the co-occurrences of interesting pat-

terns directly instead of an exhaustive search by N-gram approach. Finding interesting
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patterns is also called as mining multimedia data for frequent patterns.

In the literature, there are several studies using data mining, more specifically asso-

ciation rule mining (ARM) or frequent itemset mining (FIM), techniques in order to

perform semantic indexing (mostly on image data). In [10], Bhatt et al. perform a

recent survey on multimedia data mining. Pioneers of the multimedia mining studies

mostly deal with high-level features occurring in multimedia data and try to mine fre-

quent patterns on these high-level features. Actually, this approach is very suitable for

finding the correlations between modalities. However, a big majority of the currently

available studies perform the mining only in an intramodal way and do not deal with

multiple modalities. In addition, building the solution on top of the high-level features

causes ignoring the semantic gap problem. Although the BoW representation is a

mid-level representation and BoWs may be applicable instead of high-level features,

still the solutions should be revisited for such an extension. Another deficiency with

these approaches is that they use the same itemsets for learning any of the classes.

However, it is highly probable that each class has a different list of frequent itemsets.

Some of the recent studies [11, 21, 49, 154] discuss various solutions for multimedia

data mining. For instance, in [154], Zhu et al. work on the frequent high-level features.

Firstly, they employ several video processing techniques to find some audio/visual cues

such as court field, camera motion activity, applause in basketball videos; then perform

association mining among these cues and assign each association a high-level class

label. In [11], Bhatt et al. perform the probabilistic mining process, considering the

accuracies of the detected events may change over a time interval. In [21], the authors

focus on the temporal information in the video and propose a hierarchical temporal

association mining approach by extending the traditional association mining method.

Not only the study of Chen et al., but the former two studies are also based on traditional

association mining approaches. Yet, considering that the traditional association mining

approaches may lead to combinatorial explosion problem, in [49], Jiang et al. propose

a non-traditional association mining approach, and use a neural network to learn direct

mapping between the visual and textual features by automatically and incrementally

summarizing the associated features.
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7.3.2.1 Prototype Implementation

Considering above ideas, we carry out a prototype implementation by using the

TRECVID 2011 dataset. We have used 71,502 training shots and 34,179 test shots

with 50 concepts, which is the configuration for the Lite Run of the Semantic Indexing

task of TRECVID 2011. We extract visual SIFT and audio MFCC features and

construct bag-of-words representations with a vocabulary size of 1000 for both. For

the weighting, we prefer the TF approaches (TF: number of word occurrences in shot).

During the evaluation, we first calculate the retrieval accuracies for SIFT and MFCC

features, with an SVM based approach. Then we calculate the intramodal correlations

for each multimodal feature. For correlation analysis, we employ frequent itemset

mining and utilize a FP-Growth implementation [13] to calculate the frequent itemsets.

We prefer selecting the maximal frequent itemsets during the FIM. After finding

frequent itemsets, we accept each itemset as an attribute of our new feature vector. We

perform an SVM based classification approach in order to find retrieval accuracy of

the correlation based features.

Before the classification step, considering that the number of itemsets obtained from

the FIM is really huge, we perform a filtering step on the attributes and try different

alternatives for how the attributes are selected. For the filtering of attributes, we prefer

support (Sup) based filtering, for which we select the itemsets with top-k support

values, where k is a predefined value. Here, the support value denotes the occurrence

percentage of the itemsets among the samples of each class. For the attribute selection

step, we compare three alternatives:

• Common: A single feature vector is constructed for using with any of the classes,

which also means the same itemset list is used for learning any of the classes.

This is the way how the current studies construct attributes from itemsets.

• Combined: Top-k attributes are selected for each class, separately. Then, all

attributes are combined into a single vector.

• Separate: Top-k attributes are selected for each class, separately. Then, only the

corresponding attributes of each class is used as the feature vector.
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For the above given configurations, we perform several tests. The tests are based on

the semantic retrieval of the video shots according to the semantic concepts. The

Mean Average Precision MAP) values are presented in Table 7.1. In addition, Average

Precision results of some example concepts are also presented.

According to the empirical results presented in Table 7.1, following evaluations can be

done:

• The retrieval performances seems to be very low and insufficient, in general.

However, we should note that we do not spend much time on optimizing the SIFT

and MFCC features (specifically, for salient keypoint detection), finding the

optimal number of vocabulary count and kernel optimization of SVM classifier,

since this is only a prototype testing. In addition, it is should be remarked

that best MAP accuracy obtained in TRECVID 2007 Semantic Indexing task is

around 15% and the median of all participants is about 5.6%. Thus, we do not

stick to the low performance and continue with the tests.

• It is clear that ‘Combined’ attribute selection performs better than a ‘Common’

selection, however a ‘Separate’ selection is the worst. It is expected that selecting

top-k itemsets is better than using the same itemsets for all classes; however,

it is interesting to see that it is necessary to combine itemsets of all classes

into a single vector. This can be evaluated as a consequence of early fusion of

attributes.

• Considering the results of SF2, SF3; we can state that the number of attributes

incorporated affects the performance, however, using more attributes increases

the training time for SVM classifiers. Thus, it is important to find an optimum

value of attributes by filtering the attributes.

• Considering that accuracy of S+SF1 is better than S and SF1, and M+MF1 is

better than M and MF1; it can be resulted that using an intramodal FIM provide

useful information for the fusion process.

• Considering the accuracies of the SMF and the configurations including SMF ,

it seems that intermodal FIM provides more useful information than the in-

tramodal FIMs.
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• During the intermodal FIM, we combine the attributes of both modalities (SIFT

and MFCC). When multiple modalities are combined with a concatenation

approach, an important problem occurs since each modality have different

support intervals. Actually, this is the well-known problem of ‘rare itemsets’

in data mining domain. If we apply a unique support threshold for both of

the modalities, one of them (in our case, it is SIFT) becomes more dominant.

Thus, it is required to solve such problem in an intelligent way which is not

affected from the different support levels of each modality. In this test, we

simply selected the itemsets having items from both of the modalities. Here,

we should note that performing a combined frequent itemset mining as we do

here is not studied even in the data mining domain before (e.g. finding frequent

itemsets from two market-baskets collaboratively).

• The ‘rare itemset problem’ also occurs while working with different classes.

This leads us to use class-specific support thresholds for each class.

7.3.3 Improving Frequent Itemset Mining with Locality and Graphs

In the previous subsection, it is stated that the multimedia mining studies usually focus

on mining based on the high-level features extracted from multimedia data. Yet, in

accordance with the popularity of local features, keypoints and BoWs, the frequent

itemset mining on BoWs has also become popular in the last few years. By using

the BoWs, the studies usually calculate most frequently occurred word-sets as the

itemset and use these itemsets for classification. In addition to the use of BoWs, the

video/image mining literature has more sophisticated approaches that makes use of

frequent itemset mining. Majority of these studies benefit from the occurrence of

similar patterns in the local parts of the images and aims to find frequently occurring

objects or scenes in the images. The rationale behind the use of locality with FIM is

the fact that parts of a particular object or a scene usually occurs together in different

samples of that object/scene. Thus, obtaining the salient keypoints, constructing

transactions as the salient keypoint and the neighbors of it and then performing a FIM

operation can give a valuable information about the particular object / scene.

Some of the recent studies, which employs the locality idea, are summarized as follows:
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In [100] Quack et al. introduce a novel method for mining frequently occurring objects

and scenes from videos. They incorporate the keypoints in the frames of the videos and

spatial information of the keypoints, and generate transactions for mining by listing

the neighboring keypoints of each keypoint with their positional relation (top-left,

top-right, etc.) as the items. After generating transactions, they apply the Apriori

algorithm to select frequent patterns. Such selection gives the possible frequent objects

/scenes. In [99], they extend their approach to automatically find spatial configurations

of local features occurring frequently on foreground objects of target types, and rarely

on the background objects. In [153] Yuan et al. carry out a similar study and name it as

obtaining visual phrases from visual words. They use the neighborhood of the visual

words (keypoints) and try to group them as visual phrases, by using the frequent itemset

mining techniques. In [35] Fernando et al. state that most of the studies using FIM

for image classification were not able demonstrate competitive results, and propose

an improved approach. In their approach, they improve the way the transactions are

generated. They propose to find frequent local histograms (FLH) which is based on

the neighboring keypoints. However they employ a TF similar approach instead of a

binary calculation. Furthermore, they propose a bag-of-FLH approach.

Considering the above given studies, a typical BoW-based mining-oriented classifica-

tion approach can be summarized as given in Algorithm 4. The algorithm identifies

the training phase of the classification and it is assumed that the algorithm is executed

separately for each different class / concept. First, each multimedia document (image,

frame / shot of the video, etc.) of given collection is processed and salient keypoints

in the document are extracted. Then, neighborhoods of the keypoints are calculated

and a transaction (for mining operation) is generated for each keypoint by including

the keypoint and the neighbors. After processing all keypoints and constructing the

transaction set, an elimination on the transactions is performed, according to some

predefined rules (e.g. removing the transactions not occurring on some number of

consecutive frames). Then, the frequent itemset mining operation is performed, fre-

quent itemsets are obtained and a pruning on the frequent itemsets (e.g. removing

some percentage of most and least occurring) is done if necessary. Lastly, each itemset

is accepted as a representative pattern, and used for a learning process. For instance,

a rule based approached can be used simply, and the representative pattern can be
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Algorithm 4: A Typical BoW-based mining-oriented classification
Input: Multimedia documents D = {di}ti=1, corresponding class c

Output: Learning schema L

1 begin
2 T  {} ; // Transaction list

3 for di 2 D do
4 K  extractSalientKeypoints(di);

5 for k 2 K do
6 N  calculateNeighbors(k);

7 T  T + {k,N} ; // Add a new transaction

8 end

9 end
10 prune(T );

11 I  findFreqItemset(T );

12 prune(I);

13 L performLearning(I, c);

14 end

associated with the class. Alternatively a classification approach can be used; the

existence / frequencies of each pattern can be calculated for each training document as

a feature value, and a training feature vector can be generated. Querying phase of the

classification is not different from the training phase. First the keypoints are extracted,

then the training frequent itemsets (representative patterns) are used to convert the

query keypoints to query feature vector and passed to the classifier.

An important deficiency with the current studies is that they are usually limited to

single modality and reflect only the intermodal correlations. The use of spatial relations

is still limited, and temporal relations are not used at all. Since we work on the video

data, it is very probable to apply the mining process both with intra and inter modal

ways. However, if multiple modalities are combined with a simple approach like

concatenation, similar problems with the use of FIM occurs. So, performing FIM

with locality does not solve the problems with the FIM approach, and a better way of

dealing with multimodality and employing spatial/temporal relations is necessary.
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A promising way of employing spatial/temporal relationships between the salient

keypoints is to represent the document as a graph. With a basic definition, in this

approach, the salient keypoints are assumed as the nodes of the graph, and the edges

are the connections between the nodes. In order to draw an edge between two nodes,

different considerations can be applied such as neighborhood, a threshold based

distance, or a correlation value. Some of the recent studies are given below.

In [93], Ozdemir et al. apply the idea on satellite images. They extract the interesting

regions/points in the image and accept the points as the nodes of the graph. For the

edges, in order to provide a scale invariant solution, they construct voronoi diagrams

on the image by drawing a voronoi cell for each point. Then, they connect each

two node if they are neighbors in the voronoi diagram. After constructing the graph,

they perform a Frequent Subgraph Mining operation by extending the gSpan [146]

algorithm, and try to find frequent patterns for each class. In [87], Nowozin et al. work

on the images with objects in them, extract salient keypoints in the images (with SIFT)

and accept each keypoint as a vertex on the graph. Then, they connect each two vertex

with an undirected edge and obtain a completely connected graph. For each edge, they

assign a label including the following information; ratio of scales of the two vertices

connected, normalized distance between vertices and a horizontal orientation measure.

They use the gSpan [146] algorithm for graph mining. Although there exists several

recent studies about graph mining, given two studies are enough to understand the

solution technique. However, we include one more interesting study which offers

a novel technique for the edge labels. In [23], Chen et al. work on predicting the

relationships between people in group photos by converting the arrangement of the

faces in the photo to a graph. Then, they assign each face as a vertex on the graph, and

calculate the label of each edge as the order distance between the vertices. In order to

find the order distances, the Minimum Spanning Tree (MST) is calculated on the graph

and the order distance is calculated as the length of the shortest path between vertices.

Performing graph mining is a sound alternative for finding the intramodal and inter-

modal correlations. However, during the graph mining process, checking the similari-

ties of graphs (isomorphism tests) is a required operation and executed several times.

Thus, the biggest problem of this approach is the high computational complexity of the

isomorphism tests. Another problem with the graph construction is the unreliability
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of spatial distance measures inside the visual frames, due to the scale changes. For

this problem, similar approaches with the studies presented above can be applied (i.e.

MST based orders, neighboring based approaches, etc.). Still, the problem of finding

the intramodal and intermodal correlations may be highly computationally-complex,

considering that using all the salient keypoints of all modalities makes the graph a

giant one.

Regarding the inefficiencies of using all salient keypoints in a graph, the ideas of

using FIM and subgraph can be used together. In such a scheme, firstly a frequent

itemset mining is applied on the salient keypoints, and then each itemset is converted

into a graph with the keypoints as the vertices and the spatial / temporal distances

between keypoints as the edges. Then a frequent subgraph mining can be applied

in a more efficient way. This procedure enables to work on much smaller graphs

than the previous, thus reduces the computational complexity. However, following

such algorithm may lead to lose the correlations between different modalities since

different modalities usually have different support intervals. Furthermore, many of the

previously discussed problems remain unsolved. Thus, a better approach is proposed

in the next section.

7.4 Combining Bags of Words: A Novel Mining and Graph Based Approach

Considering the above discussed motivation and analysis, we focus on a solution that

combines bags of words that are generated from different modalities. As mentioned

before, BoW model is a middle level information between low level features and high

level concepts. Thus, we can still use valuable information contained in the low level

features, but behave the features like high level concepts, since words represent the

parts or regions in the concepts.

The proposed approach assumes that all inputs are in the BoW form. However,

converting any type of information into the BoW form is not complicated. Fusion

inputs can be analyzed under two types as discussed below. Up until now, only the first

type is mentioned and focused due to the effectiveness of the type. Yet, we can propose

a general fusion framework based on BoWs by converting any type of information
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Figure 7.5: BoW-based General Framework for Fusion

into the BoW format. The idea is summarized in Figure 7.5.

• Type-1 (Working with low-level features): Regardless of being invariant or not,

or generated after a sparse or dense sampling, the extracted low level features

can be used as the inputs for fusion. However, the requirement is to have some

keypoints, or local parts. After obtaining the keypoints, they are clustered into

words to construct a vocabulary. Then the training data is converted into the

BoW format by using the vocabulary, as given in Section 7.2 in detail. Any other

type of information, that cannot be represented via local parts, can be processed

as the second type given below.

• Type-2 (Working high-level features): High-level features (concepts) are the

second input type for fusion. The complete set of high-level features occurred in

the training set of multimedia data is assumed to be the vocabulary, and each

high-level concept to be a word. Then the data can easily be converted into

the BoW format. Through this way, depending on the type of classifier, or the

target class types of classifier, we can generate and combine many types of

bags: Bag of Objects, Bag of Events, Bag of Actions, Bag of Faces, Bag of

Silhouettes, Bag of Activities, etc. In addition to the use of high-level concepts

directly, any type of data that cannot be represented via local parts can also be
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accepted in this type. This type of data is firstly classified into some defined

high-level concepts, and then converted into the BoW format. Here, it should

be remarked that having a more number of high-level concepts, and having a

successful classification step are important issues for the fusion performance.

After converting all types of input into the BoW representation, we would like to use

both complementary and correlated information during the fusion process. Thus we

follow the procedure given in Figure 7.6. The figure represents the fusion of two

different modalities. The procedure basically includes four steps, as listed below.

These steps are presented in details, in the following subsections.

• Classification of information in each modality,

• Intramodal correlation analysis for each modality and classification of the ob-

tained information,

• Intermodal correlation analysis between modalities and classification of the

obtained information,

• Late fusion of all classification results

Here, it should be noted that, this study mostly focuses on the combination of correlated

information within the BoW inputs, considering that the late fusion step of the given

procedure is rather simple and attacked during the What-to-Fuse part of the thesis work.

Combination of correlated information is usually accepted as a type of early fusion.

Hence, the proposed fusion mechanism is a multi-level approach, which includes both

early and late fusion stages. The early fusion focuses on the correlated information,

whereas the late fusion mostly deals with the complementary information.

As a solution to the intramodal and intermodal correlation discovery problem, we

prefer a novel mining, graph and correlation based solution, which is constructed on the

ideas discussed in Section 7.3. It has been previously stated that the N-gram approach

has a potential to provide extra intramodal and intermodal correlation information,

however it suffers from the combinatorial explosion problem. A practical solution

for this problem can be obtained by finding the co-occurrences of interesting patterns

by using the association rule mining (ARM) or the frequent itemset mining (FIM)
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Figure 7.6: Workflow for Combining Bags of X

techniques instead of an exhaustive search of the N-gram approach. While using

these techniques, using the local information (keypoints and scale/rotation invariant

local features) and representing the extracted information with graphs are promising

techniques. After the analysis of pros / cons of each idea discussed, we come up with

a novel solution, as detailed in the following subsections.

7.4.1 Learning from Single Modalities

Even though we conduct a study that focuses on the fusion of multimodal inputs,

it should be noticed that fusion enhances the recognition performance, where the

performance without fusion is still important. Thus, the learning process by using each

single modality should be as effective as possible. In this direction, Jiang et al. [54]

perform a detailed analysis on the optimal use of bag-of-words based approaches. In

this study, we follow the findings of Jiang et al. and propose to use the following

learning scheme:

• Classifier & Kernel Choice: Support Vector Machine (SVM) is one of the most

popular classifiers for the BoW-based classification. For SVMs, the choice of an

174



appropriate kernel function is a critical issue for the classification performance.

In literature, existing studies usually prefer Linear Kernel, Histogram Intersec-

tion Kernel, Gaussian Radial Basis Function (RBF) Kernel and �2-RBF Kernel.

In [54], Jiang et al. experimentally show that �2-RBF Kernel is superior to the

others when BoW-based feature vectors are used for classification. Thus, we

prefer SVM with �2-RBF kernels for the classification tasks. Another issue

with the classification procedure is how to handle the multi-class classification.

Considering that multimedia data is usually multi-labeled, the classification

procedure should be correspondingly multi-class and multi-labeled. For such

a purpose, we prefer a 1-against-all approach, where we train k number of

classifiers for k different class labels.

• Weighting scheme: Weighting in BoWs is statistical information about the

occurrences of words in the multimedia documents. The most basic scheme is

the binary weighting, which indicates the presence / absence of a word in each

document. More sophisticated schemes include term frequency (TF) and/or term

frequency - inverse document frequency (TF-IDF), which perform superior than

binary weighting. Thus, we prefer TF weighting.

• Vocabulary size: For BoW modeling, vocabulary is the set of keypoint clusters

in the clustering process. Having a small sized vocabulary may cause a loss of

discriminative power since two keypoints may be assigned into the same cluster

although they are not similar to each other. On the contrary, a large vocabulary

is less generalizable, less tolerant to noises, and causes extra processing. The

studies in the literature work with a large range of vocabulary sizes from 100 to

10,000. In [54], it is shown that the impact of vocabulary size is less significant

when sophisticated weighting schemes are employed. Hence, we prefer a mid-

level size (4096).

7.4.2 Intramodel Correlation Analysis

For the intramodal correlation discovery part of the problem, each modality is pro-

cessed separately. Considering that parts of a particular object or a scene usually

occurs together in different samples of that object/scene, grouping the together oc-
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curring words is a promising idea. Thus, we propose to use phrases as the groups

of frequent word occurred together. In order to find the phrases, a mining and graph

based algorithm (Unimodal Phrasing Algorithm, given in Algorithm 5) is used on the

training dataset. Through the algorithm, we first try to find some meaningful phrases

from the words in each modality, with the help of FIM and graph representation. Thus

we manage to exploit the intramodal relations within each modality.

Here, it should be noted that samples of each class should be processed separately,

which means that the algorithm is executed separately for each class, in order not to

cause the ‘rare itemset’ problem. While performing frequent itemset mining, support

thresholds for frequent patterns highly differs in different classes. Thus, class-specific

support thresholds should be applied for each class. In addition, processing samples

of different classes separately is beneficial since the samples of multimedia data is

multi-labeled (multi-label issue is discussed in Section 6.3.2 in detail).

The algorithm is composed of two parts; mining and phrase extraction. The first

part requires performing a frequent itemset mining (FIM) operation and calculating

support values of frequent 2-itemsets. For this purpose, all BoW feature vectors of

all multimedia documents (i.e. videos or video shots) are processed and a transaction

for each document is generated. Each transaction includes the words existing in the

corresponding feature vector. Here, an ‘existing word’ refers to the words having

weights larger than zero. After constructing the transaction list, a FIM operation is

performed (i.e. via FP-Growth or Apriori algorithms) for calculating the frequent

2-itemsets from the obtained transaction list. The algorithm requires the freqThr

parameter as the minimum support threshold for calculating the frequent 2-itemsets

at this step. Each 2-itemset is a set consisting of two words. The support value of

2-itemset is the co-occurrence probability of the corresponding two words.

The second part of the algorithm is based on a graph construction. In order to extract

phrases and find the words included by each phrase, a graph representation is con-

structed by using the support values of 2-itemsets and the vocabulary of words. In

the graph, the words are assumed as the vertices, and the edges are valued by using

the support values of 2-itemsets. As mentioned before, previous studies on this issue

usually prefer the neighborhood information or a threshold based spatial / temporal
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Algorithm 5: Unimodal Phrasing Algorithm
Input: Multimedia documents D = {di}ti=1, vocabulary W = {wi}mi=1, minimum support for

itemsets freqThr, threshold for graph pruning neiThr, depth threshold for graph

pruning h

Output: Phrases list P

1 begin

// Mining

2 T  hi ; //Initialize transactions list

3 for di 2 D do

4 bi  extractBoW (di,W);

5 ti  generateTransaction(bi);

6 T  add(T, ti) ; //Add a new transaction

7 end

8 I  findFreqItemsets(T, freqThr, 2) ; //2-itemsets, sup>freqThr

// Phrase extraction

9 GhV,Ei  constructGraph(W, I);

10 P  hi ; //Initialize phrases list

11 for vi 2 V do

12 N  selectNN(vi, neiThr, h) ; //NN within h-depth, sup(vi,vj)�neiThr
13 phri  {v}+N ;

14 add(P, phri);

15 end

16 end

distance as the edge values. However, we find it promising and helpful to use the

support values of the 2-itemsets as the edge values. This preference is based on two

assumptions; (i) different words occurring together in several shots/videos can be

accepted in the same phrase; since it is actually not required for these words to be the

parts of the same object / concept, (ii) support value is a better metric than the distances

between words for phrase construction, since co-occurrence is more important than

closeness for the words.

After constructing the graph, the phrases are extracted by processing the graph. Alterna-

tive approaches may be applicable for the efficient handling of the graph. Considering

that the task is to extract group of words from the word graph, finding the maximum

cliques in the graph is an applicable idea. However, we take the following restrictions
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into account; (i) the clique decision problem is NP-complete, (ii) the graph constructed

by using the words and the 2-itemset supports is a large-sized complete graph (i.e. we

use a 4096-word vocabulary), (iii) pruning of the edges is possible, however, a low

threshold for pruning cannot prevent the graph to be densely connected, whereas a high

threshold may cause the loss of valuable information, (iv) finding a maximal clique

is not enough; for fairness among the words, a maximal clique should be calculated

for each word (or for the most frequent ones, at least). Thus, even the heuristics for

maximal clique calculation are not timely-efficient for our problem. Therefore, we

propose an alternative heuristic for the phrase extraction task, which is based on the

k-nearest neighbors approach.

In the above mentioned phrase extraction task, nearest neighbors of each word vi in the

vocabulary are selected considering the following requirements; (i) the neighbor (vj)

should be within h-depth with respect to the word, (ii) the support value sup(vi, vj)

should be larger than the neiThr threshold value. Thus, the most co-occurring words

for each word in the vocabulary are found. Although the results are not the cliques for

each word, they are still meaningful for using as phrases.

After obtaining phrases with the above given procedure, phrase-based feature vectors

should be extracted from the training and test data. Considering that each phrase

contains multiple words, we need an aggregation method to assign some numerical

values for each phrase. For this purpose, we prefer a simple averaging approach. In

this approach, average of TF values of the words in each phrase is calculated as the

phrase value. After performing the aggregation task, phrase-based feature vectors are

obtained for each training and test document.

The learning procedure by using the extracted phrase-based feature vectors is similar

to the procedure given in Section 7.4.1. The data is classified with a �2-RBF kernel

based SVM classifier.

The time complexity of the algorithm depends on the most complex operation, which is

the frequent itemset mining task. If the FP-Growth implementation is preferred for this

task, the task performs two passes on the whole training documents, which makes our

algorithm bounded by linear time space complexity, in terms of number of multimedia

documents. In fact, the number of modalities is also an important concern for this
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study. However, the number of modalities is very small according to the number of

multimedia documents. Yet, if the number of modalities is concerned, the algorithm is

still in linear time since operation is performed in a single modality.

Besides, the space complexity of the algorithm is highly dependent on the imple-

mentation. The largest space requirements are caused by the multimedia documents,

transaction list, word graph, phrase list and frequent itemset mining task. Actually, it is

not reasonable to hold features for all documents and the constructed transaction list in

the memory. Instead, one document at a time is read, processed and the corresponding

transaction is written to disk for further processing. So, the space requirement for

reading features and transaction construction is only the size of the feature vector for a

single training sample, which is bounded by the vocabulary size. On the other hand,

the space complexity of the frequent itemset mining task is bounded by the number of

items (or the vocabulary size, for our case), if an FP-Growth implementation is utilized.

The space necessary for the word graph can be calculated by adding vocabulary size

(number of nodes) and number of 2-itemsets (edges), which is in quadratic time in

terms of vocabulary size. Lastly, the space required for phrase is also bounded by

squared vocabulary size. Consequently, the space complexity of the algorithm is

O(m2
), where m is the vocabulary size .

7.4.3 Intermodel Correlation Analysis

For the intermodal correlation discovery part of the problem, all modalities are pro-

cessed together and the correlation between the words and phrases in different modali-

ties is exploited. The idea given for intramodal correlation analysis is also applicable

for intermodal processing. The sensed data of a particular scene, which is collected

though different channels (modalities) usually has some parts occurring together in

different samples of that scene. For instance, if different samples of ‘car’ videos are

processed, it is highly probable that several visual words depicting that parts of a car

will occur together with some sound signals belonging to a car.

Considering that we have already grouped the frequently co-occurred words into

phrases during the intramodal correlation analysis, in this section we propose to

extract multimodal phrases by grouping phrases of different modalities. In order
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to find the multimodal phrases, a correlation and graph based grouping algorithm

(Multimodal Phrasing Algorithm, given in Algorithm 6) is applied on the training

dataset. Through the algorithm, firstly the correlation between the pairs of phrases,

where each of the phrases in a pair belongs to different modalities, is calculated. Then,

multimodal phrase groups are formed, by selecting only one phrase from each modality

and generating a multimodal phrase for each phrase of each modality. Similar with the

intramodal analysis, the given algorithm is executed separately for each class. Thus,

we manage to exploit the intermodal relations within each modality.

The proposed intermodal correlation analysis approach differs from the intramodal

analysis approach for the following aspects:

• The intramodal analysis is based on the words of a single modality and outputs

phrases as the group of words. In each phrase, there is not a limit for the included

number of words. On the other hand, intermodal analysis is not based on the

words, it exploits correlation between phrases, and outputs groups of phrases.

In addition, the number phrases in each group (multimodal phrase) is limited

and equals to the number of modalities. The reason for such a preference is

two-fold; (i) to prevent the domination of a particular modality, since strong

intramodal correlation of a particular modality may cause adding the phrases of

that modality densely, (ii) not to include any intramodal correlation information

into the multimodal phrases, since adding more than one phrase from any

modality will contain an intramodal correlation information of that modality.

• As mentioned in Section 7.3.2.1, when the words / phrases of multiple modalities

are combined for a FIM operation, the well-known problem of ‘rare itemsets’

occurs. The problem is caused by applying a single support threshold for both

of the modalities. For instance, we have experimentally experienced that SIFT-

based words usually have higher support values than the MFCC-based words.

Considering that the actual problem is not the selection of co-occurring items

in a set, but items of different sets, and combining the different sets into a

single set for FIM causes inefficiencies, we prefer a correlation based selection

approach. In our approach, the correlation between all pairs of phrases from

different modalities are calculated, although it can be argued that the approach
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Algorithm 6: Multimodal Phrasing Algorithm
Input: Modalities M = {mi}ni=1, multimedia documents D = {di}ti=1, phrase vocabulary list of all modalities

PW = hPW iini=1 s.t. each phrase vocabulary PW i = {phrj}rj=1

Output: Multimodal phrases list MMP

1 begin

// Correlation calculation

2 for dk 2 D do

3 for mi 2M do

4 P i  getPhraseV ector(dk,mi);

5 for pa 2 P i do

6 mean[mi][pa] mean[mi][pa] + value(pa)/size(D)

7 end

8 end

9 end

10 for dk 2 D do

11 foreach {mi,mj} 2M⇥M, i 6= j do

12 P i  getPhraseV ector(dk,mi);

13 P j  getPhraseV ector(dk,mj);

14 for {pa, pb} 2 P i ⇥ P j , pa 2 P i ^ pb 2 P j do //Pearson’s corr.coeff.calculation

15 partX  value(pa)�mean[mi][pa];

16 partY  value(pb)�mean[mi][pb];

17 partCov  partX ⇥ partY ;

18 cov[mi][mj ][pa][pb] cov[mi][mj ][pa][pb] + partCov;

19 stdDev[mi][pa] sdtDev[mi][pa] + partX2;

20 stdDev[mj ][pb] sdtDev[mj ][pb] + partY 2;

21 end

22 end

23 end

24 foreach {mi,mj} 2M⇥M, i 6= j do

25 foreach hphrk, phrli 2 PW i ⇥ PW j , phrk 2 PW i ^ phrl 2 PW j do

26 r[mi][mj ][phrk][phrl] cov[mi][mj ][phrk][phrl]/(stdDev[mi][phrk] · stdDev[mj ][phrl])1/2

27 end

28 end

// Phrase extraction

29 MMP  hi ; //Initialize multimodal phrases list

30 for mi 2M do

31 for phrk 2 PW i do

32 mmPhri  {phrj};

33 for mj 2M�mi do

34 phrl  argMax(r[mi][mj ][phrk]) ; //Get max correlated phrase

35 mmPhri  mmPhri + {phrl};

36 end

37 add(MMP,mmPhri);

38 end

39 end

40 end

181



Figure 7.7: A sample graph representation for intermodal analysis

is computationally complex. Yet, the approach is just in quadratic (or sub-

quadratic) time in terms of the number of modalities. However, for a mining

task, the number of modalities is not the main concern since the number of

modalities is very small according to the number of multimedia documents.

Considering that the documents are traversed twice, as the FP-Growth algorithm

does, the complexity is not a problem.

• Intramodal analysis constructs a complete graph, from a single modality, by

adding the words as the nodes and support values of the word pairs as the edge

weights. In intermodal analysis, not only a single modality but all modalities

are included into the graph, by adding the phrases of all modalities as the nodes

of the graph. Actually, this graph is composed of several sub-graphs, each

sub-graph is composed of the nodes a different modality. There does not exist

any edge between the nodes within a sub-graph; the edges are between the

nodes from different sub-graphs. Edge weights are based on the calculated

correlation values between the phrases. Such a graph is illustrated in Figure 7.7.

During the multimodal phrase extraction, for each node (phrase) in the graph, a

single nearest neighbor (having the largest edge weight) from each sub-graph is

selected.

The algorithm is composed of two parts; correlation calculation and phrase extraction.

The first part requires calculating the correlation between the phrases of different
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modalities. The correlation is calculated based on the Pearson’s correlation coefficient.

Definition 1. Pearson’s correlation coefficient between two variables is defined as the

covariance of the two variables divided by the product of their standard deviations.

For samples X and Y, the sample Pearson’s correlation coefficient is calculated as the

following:

r =
cov(X, Y )

�X�Y
=

Pn
i=1 (Xi �X)(Xi �X)qPn

i=1 (Xi �X)

2
qPn

i=1 (Yi � Y )

2
. (7.4)

Considering that the number of multimedia documents used for training may be so

large that it may not be possible to load the features all documents into memory to

process, the algorithm should process the documents sequentially. Thus the algorithm

pass over the whole documents twice. In the first turn, the mean values for all phrases in

each modality are calculated and stored in an array. In the second turn, the covariance

(numerator) and the standard deviation (denominator) calculations are performed,

which are necessary to calculate the correlation coefficient. After these calculations,

the third step is performed by passing over all phrases of all modalities. In this step,

the final Pearson’s correlation coefficients for all phrase pairs are obtained.

The second part of the algorithm enables finding the most correlated phrases in each

modality for all phrases and construct the list of multimodal phrases. The number

phrases in each multimodal phrase is limited and equals to the number of modalities.

As mentioned above, it is possible to construct a graph by including the phrases of all

modalities as the nodes of the graph, in order to perform the phrase extraction, as it

is done in intramodal correlation analysis. Such a graph should contain several sub-

graphs, each sub-graph is composed of the nodes a different modality. For multimodal

phrase extraction, for each phrase in the graph, a single nearest neighbor from each sub-

graph is selected. Considering that we are interested in selecting 1-nearest neighbor,

the algorithm is given with a simpler representation without mentioning the graph

construction. Actually, 1-nearest neighbor selection, or the argMax operation given

in the algorithm can be easily implemented by a heap data structure. In short, the

constructed correlation coefficients array is used to find the maximum correlated

phrase pairs. Thus, the list of multimodal phrases is generated.

After obtaining the multimodal phrases with the above given procedure, feature vectors
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for multimodal phrases should be extracted from the training and test data. Similar

with the intramodal analysis, a simple averaging approach is used for aggregation the

multiple phrases into a single multimodal phrase and assign some numerical values for

each multimodal phrase. After averaging the TF values of the phrases and assigning

these values as the multimodal phrase values, multimodal phrase-based feature vectors

are obtained for each training and test document.

The learning procedure for intermodal analysis is also is similar to the procedure given

in Section 7.4.1. For learning and querying, the extracted multimodal phrase-based

feature vectors are used. The data is classified with a �2-RBF kernel based SVM

classifier.

The time complexity of the given algorithm is bounded by the correlation calculation

operation, which is the most complex operation. As mentioned above, the number of

modalities is very small according to the number of multimedia documents. Thus, the

given algorithm in linear time in terms of the number of multimedia documents, since

the algorithm requires two passes on the whole dataset. If the number of modalities is

concerned, the complexity of the algorithm is in quadratic time (or sub-quadratic time,

depending on the implementation) in terms of the number of modalities, since all pairs

of phrases from different modalities are calculated.

As discussed in the unimodal phrasing algorithm, the space complexity of the algorithm

is highly dependent on the implementation. The space requirements are based on the

following components; multimedia documents, correlation calculation and multimodal

phrases. Similar with the previous algorithm, it is not reasonable to hold features for

all documents, thus one document at a time is read, and included into the correlation

calculation. The space requirement for reading features is only the size of feature

vector for a single training sample, which is bounded by the phrase vocabulary size (r).

The correlation calculation requires holding three parameters; mean matrix (O(n · r)),
cov matrix (O(n2 · r2)) and stdDev matrix (O(n · r)), where n is the number of

modalities. The extracted multimodal phrases costs an O(n2 · r) complexity space, for

having r number of multimodal phrases for each modality, and having n number of

items in each multimodal phrase. Consequently, the space complexity of the algorithm

is O(n2 · r2).
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7.4.4 Late Fusion of All Inputs

As mentioned in Section 7.4.1, fusion helps to improve the retrieval performance,

yet the major component for retrieval is the learning procedure by using each single

modality. Learning schemes provided by different modalities and the intramodal /

intermodal analyses abstract videos from different aspects. Each of these learning

schemes most likely complement each other, and the sets of patterns misclassified by

different learning schemes do not necessarily overlap. Thus, all these schemes should

be combined to improve the recognition capability.

Figure 7.6 illustrates the workflow of our proposed combination approach. After

performing the classification procedures of each modality and also the intramodal

/ intermodal analyses, the results of classifications are combined with a late fusion

scheme. The results are fused by applying a Linear Weighted Averaging approach.

As discussed previously, Linear Weighted Averaging is the most frequently utilized

approach in the information fusion literature [37, 133, 145], due to its simplicity and

reasonable performance despite its simplicity. The approach requires good selection of

the weights for successful results, thus it is supported with the RELIEF-MM algorithm

for modality / feature weighting.

7.5 Empirical Study

In this section, we evaluate the proposed modality fusion approach for semantic

retrieval of multimedia data. For the retrieval task, the multimedia data is queried

based on the semantic concepts. First, retrieval for each single modality is performed,

then a multimodal retrieval is done.

7.5.1 Experimental Setup

Experiments are carried out on the TRECVID 2011 dataset [90], which is a frequently

utilized benchmark datasets for multimedia retrieval. The dataset characteristics are

summarized in Table 7.2. Further details and a performance comparison of TRECVID

participants can be found in the corresponding references.
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Table 7.2: TRECVID 2011 dataset characteristics

Train Test

Dataset length (hours) ⇠ 400 ⇠ 200

Number of videos ⇠ 16,000 ⇠ 8,000

Number of shots 71,502 34,179

Concepts

Adult, Anchorperson, Beach, Car, Charts, Cheering, Danc-
ing, Demonstration_Or_Protest, Door_Opening, Doorway,
Event, Explosion_Fire, Face, Female_Human_Face, Female_-
Person, Female-Human-Face-Closeup, Flags, Flowers, Hand,
Head_And_Shoulder, Indoor, Male_Human_Face, Male_Per-
son, Mountain, News, News_Studio, Nighttime, Old_People,
Overlaid_Text, People_Marching, Quadruped, Reporters, Run-
ning, Scene_Text, Singing, Sitting_Down, Skating, Sky, Speak-
ing, Speaking_To_Camera, Sports, Streets, Studio_With_An-
chorperson, Table, Text, Traffic, Two_People, Urban_Scenes,
Walking, Walking_Running

While using the TRECVID 2011 dataset, we prefer using the outputs of common shot

reference provided with the dataset, for shot segmentation. For these datasets, the shots

are used as the retrieval documents. The dataset also provides concept annotations

for each shot. The annotations are provided in a multi-label manner, which means

each shot can contain more than one label. In this experimental evaluation, we prefer

working with the configuration for the Lite Run of the Semantic Indexing task of

TRECVID 2011. Thus, 50 concepts are used as the shot annotations. A complete list

of these concepts is given in Table 7.2. The semantic queries performed during the

tests are based on these semantic concepts.

For a multimodal setting, we use three features from different modalities. The modali-

ties of multimedia data are usually accepted as audio, visual and text, thus we employ

one BoW-based feature for each of these modalities. Detailed description of how these

modalities have been obtained and utilized are as follows:

• SIFT (Visual): The BoW-based SIFT features are not extracted from scratch.

We prefer using the 4096-bin histograms of the SIFT BoW features extracted by

INRIA from IRIM consortium [7] for the TRECVID 2012 evaluation. Having

4096-bin histogram means that we use 4096 visual words in the vocabulary of

visual modality. During the feature extraction, INRIA prefers dense-sampling

186



for keypoint extraction, and keypoints are extracted from the frames provided by

the common shot reference. The weighting scheme for the features is TF based.

• MFCC (Audio): Similar with the SIFT features, we use the 4096-bin histograms

of the MFCC BoW features extracted by LIRIS from IRIM consortium [7] for

the TRECVID 2012 evaluation. In the provided dataset, the MFCC features

are extracted by using the audio waves of 2 seconds around the keyframes of

each video shot, with parameters of 20 ms window length and 10 ms window

shift. After extracting the MFCC features, the extracted audio keypoints are

clustered into a 4096 word vocabulary. The weighting scheme for the features is

TF based.

• TF-IDF (Text): The textual TF-IDF features are calculated by using the Auto-

matic Speech Recognition and Machine Translation texts, which are provided by

TRECVID. Before the calculations, a stop-word filtering procedure is applied

and all the remaining words are used as textual vocabulary, without feature

selection or any further processing.

As mentioned in the previous section, we combine the modalities, intramodal / inter-

modal phrases with a late fusion process, thus each of these sources are first processed

with a Support Vector Machine (SVM) classifier, with �2-RBF kernel. For the SVM

implementation, LibSVM [18] is utilized. After classification, the classifier outputs

are combined with a Linear Weighted Averaging approach. The weights are calculated

using the RELIEF-MM algorithm.

During the intramodal correlation analysis, first the dataset is converted into transac-

tions for frequent itemset mining. For this purpose, the BoW based feature vectors

are converted into binary transactions. If the TF value of any word is larger than zero,

it is accepted as 1 in the transaction, and 0 otherwise. For the parameters freqThr

(minimum support for itemsets) and neiThr (threshold for graph pruning), the average

of the 1-itemset supports is used, since such preference is both practical to calculate

and halves the number of words used during mining. For the frequent itemset mining

implementation, FP-Growth implementation of Borgelt [13] is utilized.

To measure the retrieval accuracy, Average Precision (AP) and Mean Average Precision
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(MAP) are used. The AP is the sum of the precision at each relevant hit in the retrieved

list, divided by the minimum of the number of relevant documents in the collection

and the length of the list. Here, precision is the fraction of retrieved documents that

are relevant to the query concept. Regarding the evaluation rules of TRECVID, AP

is measured at 2000. MAP is the AP averaged over several query concepts. In other

words, the AP of each concept is calculated separately and then the MAP is found by

averaging them.

To perceive the effect of the fusion process, we also measure the Fusion Gain (FG).

Fusion gain gives the relative performance increase between to two different configu-

rations:

FG(x, y) =
MAP (x)�MAP (y)

MAP (y)
, (7.5)

where x and y denote different configurations (i.e. different feature selections). In our

experiments we calculate three FGs:

• FGBestSM : The fusion gain is calculated by comparing with the best single

modality.

• FGCombS : The fusion gain is calculated by comparing with the combination of

all single modalities.

• FGCombSI
: The fusion gain is calculated by comparing with the combination of

all single modalities and the results of the intramodal analyses of all modalities.

7.5.2 Test Results and Evaluations

In order to see the effectiveness of the proposed fusion approach, and also the effect of

intramodal and intermodal correlation analysis procedures, retrieval accuracies of the

following configurations are measured.

• Each single modality (V isual, Audio, Text): Retrieval accuracy of each single

modality is measured.

• Intramodal analysis of each single modality (PhrV ,PhrA,PhrT ): Intramodal

analysis outputs phrases for each modality. PhrV ,PhrA,PhrT denotes the use

of extracted phrases from each modality; Visual, Audio and Text, respectively.
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• Best single modality (BestSM ): This is not an actual configuration, but the

results for using each single modality is used select the best single modality for

each concept.

• Combination of all modalities (CombS): All modalities (V isual, Audio, Text)

are combined with a late fusion scheme.

• Combination of all intramodal analyses outputs (CombI): Modality phrases

(PhrV ,PhrA,PhrT ) are combined with a late fusion approach.

• Intermodal analysis (MMPhr): Intermodal analysis outputs multimodal phrases.

MMPhr denotes the use of extracted multimodal phrases for retrieval.

• Combination of modalities and intramodal analyses outputs (CombSI): CombSI

is the combination CombS and CombI

• Combination of all inputs (CombAll): CombAll is the combination CombS ,

CombI and MMPhr.

Using each single modality and reporting the best single modality helps to represent

the lower accuracy bound for the fusion system. A fusion system can be accepted

successful if it provides better accuracy than any of the single modalities. Moreover,

the retrieval accuracy of intramodal phrases for each modality and the intermodal

(multimodal) phrases are measured to see how much successful they are before fu-

sion. In addition to those representing the accuracies without fusion, several fusion

results are also reported; combination of single modalities (CombS), combination

of all intramodal phrase based classification results (CombI), combination of single

modalities and intramodal outputs (CombSI), and finally combination of all inputs

(CombAll). CombS is important to see how much increase provided by the intramodal

and intermodal analysis. Similarly, CombSI is necessary to see the improvement

obtained by the intermodal process.

In order to evaluate the proposed approach, one may argue that there should be com-

parisons with other studies using the TRECVID 2011 dataset. However, considering

below given restrictions, we do not find it fair to compare our experimental results

with other studies. Yet, we present a brief information about the retrieval results of

TRECVID participants in Table 7.3. In the table, the best and the median retrieval
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Table 7.3: Retrieval Performances of TRECVID Participants. ‘Best MInfAP’ refers to
the best retrieval performance achieved in terms of Mean Inferred Average Precision.
‘Median MInfAP’ is the median of the retrieval performances reported by the all
participants.

Best Median
TRECVID 2010 10.3% 2.1%
TRECVID 2011 14.9% 5.6%
TRECVID 2012 35.8% 21.2%
TRECVID 2013 32.1% 12.8%

performances performed by the TRECVID participants are given. It is worth noting

that the retrieval performances highly differ in different years. This is probably caused

by the amount of annotated information, the quality of annotations and the semantic

indexing concepts used for retrieval. The restrictions that prevents a fair comparison is

as follows:

(i) As described in the TRECVID dataset descriptions, the training and test samples

of an evaluation at year t is used as training samples at year t+1. In order to

obtain annotated training and test dataset, we use the training samples of the

TRECVID 2012 dataset and the corresponding annotations. The training set of

the TRECVID 2012 dataset is composed of the training and the test samples of

TRECVID 2011. Thus, we state that our tests are performed with TRECVID

2011 dataset. In principle, the samples of these two years are the same. However,

the annotations are improved every year, so it is not fair to compare the results of

TRECVID 2011 participants with a system using TRECVID 2012 annotations.

(ii) In TRECVID 2011 evaluation, there are 137.327 shots in the test dataset. How-

ever, we consider only 34.179 shots, which are the ones annotated as including

at least one concept in it. Thus, it is not fair to compare two systems that has

different sampling scheme for testing.

(iii) In TRECVID evaluation, the basic accuracy metric is Inferred Average Precision

[3], which estimates average precision very well using a small sample of test

samples. However, we prefer measuring with Average Precision. Although the

quality of Inferred Average Precision has been experimentally confirmed during
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previous TRECVID evaluations, they are still different metrics and there is a

possibility of deviation.

(iv) The fine-tuning of the classifiers has an important effect on the retrieval perfor-

mance. In the TRECVID evaluations, participants try to do their best perfor-

mance in retrieval. However, our tests are primarily focused on investigating the

effect of fusion, and thus, the SVM classifiers are usually not fine-tuned.

Table 7.4 and Table 7.5 presents the AP values for the retrieval of 50 concepts. In the

tables, retrieval accuracies for above given configurations are reported. The concepts

are given in alphabetical order. Figure 7.8 illustrates the AP values of all concepts for

BestSM , CombS and CombAll configurations. In Figure 7.9, corresponding MAP

values are illustrated. In addition, Table 7.6 shows the fusion gains of each fusion

configuration with respect to other fusion configurations as described above.

From the given experimental results, we arrive at the following observations:

• Combining different modalities provide more accurate results than the single

modalities. The AP values of CombS is higher than the BestSM for 48 of the

50 concepts. In addition, MAP for CombS is also better than the BestSM , and

CombS provides a 8.92% fusion gain on the best single modality based on the

MAP values. Here, it should be noted that the selection / weighting of modalities

is a critical issue, and the use of RELIEF-MM enables such a successful result.

A wrong selection can lead to worse results than the best of the single modalities.

• Our proposed approach, including both intramodal and intermodal analyses,

performs superior than any single modality and the combination of the single

modalities. The proposed approach achieves 40.64% retrieval rate, whereas the

best single modality performs 36.15% success and the combination of single

modalities obtains a rate of 38.94%. Considering these results, exploiting the

intramodal and intermodal correlations in / between modalities enables doubling

the fusion gain. The fusion gain of the proposed approach (CombAll) is 17.12%

with respect to best single modality, whereas the fusion gain for CombS is

8.92%.
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Figure 7.9: MAP comparison for different fusion configurations

Table 7.6: Fusion Gains for combination approaches

FG(BestSM) FG(CombS) FG(CombSI)

CombS 8.92%
CombSI 13.12% 3.31%
CombAll 17.12% 6.89% 3.24%

• The phrases constructed by the intramodal process (PhrV , PhrA and PhrT )

do not provide an adequate level of retrieval accuracy. Moreover, the combi-

nation of the intramodal phrase based classifications (CombI) is not enough

to be evaluated as successful. Considering that the phrases include only the

information about the co-occurrences of the words in each modality, but not

a definitive information about the occurrences of the words, such a result is

expected. Thus, the intramodal phrases are not intended to be used for a retrieval

operation on their own, but, as described in previous chapters, the actual idea is

to use the classification results of intramodal phrases as an input to the final late

fusion process. Here, one may argue that the intramodal phrases obtained from

each modality can be early-fused with that modality by using a concatenation
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approach. However, using such concatenation causes the number of features

used for classification to be doubled in size, which has a similar effect with

increasing the vocabulary size. Increasing the number of features or using a

large vocabulary may lead to a ‘curse of dimensionality’ effect and over-fitting

to the training samples. Hence, the solution may be less generalizable and less

tolerant to noises. In addition, performing a classification with a double sized

feature vector causes extra processing. Consequently, we do not include the

given idea and the problems into the scope of this study, and consider that the

idea is straight-forward to apply but time-consuming, leave it as a future work.

• The multimodal phrases constructed by the intermodal process (MMPhr) is

also not adequate for a retrieval operation on their own. The issues discussed for

intramodal phrases is also valid for the multimodal phrases.

• In order to evaluate the effectiveness of intramodal and intermodal phrases, we

can compare the accuracies of MMPhr with PhrV , PhrA and PhrT . Consid-

ering the presented experimental results, following observations are done.

– for 31 concepts MMPhr performs superior than the PhrV ,

– for 39 concepts MMPhr performs superior than the PhrA,

– for 48 concepts MMPhr performs superior than the PhrT ,

– for 20 concepts MMPhr performs superior than the combination of PhrV ,

PhrV and PhrV , which is CombI .

Thus, based on the observations of our experiments, we can state that the combi-

nation of the intramodal phrase based classifications is better than multimodal

phrases although using multimodal phrases provides better retrieval than the

phrases of any single modality. The MAP values for these configurations also

support such an evaluation. However, this results may be dependent on the

characteristics of the utilized concepts due to the multimodal capability of each

concept, so this conclusion should be evaluated in the scope of utilized concepts.

• It may be also attractive to understand if there exists a correlation between

the retrieval performances of phrases and multimodal phrases. However, it is

hard to infer such a correlation based on the available experimental results. As
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summarized in the previous evaluation, the performance of multimodal phrasing

may be better than all the phrasing results for some of the concepts. For some

others, multimodal phrasing may be worse than all phrasing results, or better

than audio and text but worse than visual phrasing. In short, current evidences

show that there is not a correlation between the performances of phrases and

multimodal phrases, and thus a successful phrasing cannot guarantee a successful

multimodal phrasing, or vice versa. The reason for this situation is also the

same with the previous evaluation; the accuracies of phrasing and multimodal

phrasing is dependent on the nature of the concepts.

• The late fusion of all modalities and the intramodal phrases of all modali-

ties (CombSI) provides a fusion gain of 13.12% on the best single modality

(BestSM ), and a gain of 3.31% on the combination of all modalities (CombS).

In addition, CombSI performs better retrieval than CombS for 41 of the available

concepts, whereas for 9 concepts, they are equal in accuracy. These observations

show that including the intramodal correlation information into the fusion pro-

cess improves the retrieval performance. Hence, intramodal correlations within

the modalities are important sources of information. Although it is hard to con-

cretize which parts of the concepts are correlated, the experimental results prove

that they are correlated, and such information helps to increase the retrieval

accuracy.

• The late fusion of all components (CombAll) provides a fusion gain of 17.12%

on BestSM , a gain of 6.89% on CombS , and a gain of 3.24% on CombSI . In

addition, CombAll performs better retrieval than CombS for 44 of the available

concepts, whereas for 6 concepts, they are equal in accuracy. Considering that

CombAll includes intermodal correlation information on top of the configura-

tion in CombSI , these observations show that using the intermodal correlation

information improves the retrieval performance. Thus, we can argue that the

correlations between different modalities is also an important source of informa-

tion.

• In the above given two evaluations, it is seen that CombSI never performs

worse than CombS and also CombAll does not perform worse than CombSI

for any concepts. Such a situation is the result of using RELIEF-MM for
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feature weighting, instead of a simple averaging. RELIEF-MM provides a

weighting scheme for maximizing the retrieval performance, and eliminating

the unsuccessful components by assigning zero weight.

In order to make a clearer visualization on the fusion gains of each component, the

fusion gains for all concepts are illustrated in a stacked bar chart, in Figure 7.10. The

information sources in our experiments are the modalities, the intramodal analyses

of all modalities and the intramodal analysis. Thus, the components for fusion gain

comparison are these three information sources (CombS , CombSI , CombAll). The

given chart helps to perceive the contribution of each component. Based on Figure 7.10,

the following evaluations can be done:

• It is observed that the contribution of modality fusion is more than the intramodal

and intermodal analysis for 39 concepts, where the intramodal analysis has more

contribution in 7 concepts and the intermodal analysis has more effect in 10

concepts. For 5 concepts, the only contribution comes from the modality fusion.

• If the intramodal and intermodal analysis is compared, the intermodal analysis

has more contribution in 35 concepts, whereas the intramodal analysis has more

effect for 10 concepts. For 5 concepts, they are equal.

• It is clear that the modality data is an indispensable source of information. Yet,

the correlation data provided by the intramodal and intermodal analysis has

an important contribution on the fusion result. For one third of the concepts,

only correlation data has more contribution than the modality fusion. Moreover,

including the phrases and multimodal phrases into final late fusion step increases

the fusion gain from 8.92% to 17.12%.

• The contribution of the intermodal process is more than the intramodal process.

This is somehow expected, since phrases of each modality is extracted from

that single modality. Having the same source of information may limit the

contribution. On the other hand, the multimodal phrases of the intermodal

process is extracted by using the multiple modalities and captures the correlation

between different modalities, which is not an available information in any single

modality.
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In addition to the above given discussions, the following general evaluations can also

be done:

• The proposed approach provides an effective way for fusing BoW-based feature

vectors of different modalities. The approach put the intramodal and intermodal

correlation analysis forward, however it is actually based on a late fusion of

several information sources. Yet, the correlation analysis part enhances the

fusion process, and doubles the fusion gain.

• It has been stated that including intramodal and intermodal correlations into

the fusion process enhances the fusion performance. The correlation based

phrasing and multimodal phrasing procedures can be accepted as a type of early

fusion since the inputs are processed before the fusion process and combined

in a systematical way. Considering that we apply a late fusion step to combine

all modalities and the intramodal / intermodal phrases, the whole process is a

multi-level fusion approach including both the early and late fusion steps.

• The approach is based on the extraction of the intramodal and intermodal

correlations, and provide promising results. Thus, it can be argued that the

correlated information, or in other words the redundant information, has a

potential to increase the performance.

7.6 Evaluation of Fusion System Design

Considering the general fusion framework proposed in Section 3.1, an evaluation of

the fusion architecture described in this chapter is given below. The approach is based

on a ‘multi-modal, multi-classifier’ fusion scenario and focuses on the ‘How to Fuse’

problem. Below, how each affecting factor is handled through the proposed solution is

described.

• Fusion Setting: The approach combines multiple modalities, each of the modality

being a different feature. Before combination, the data of each modality is

classified with a separate classifier, and the results of the classifiers are combined.
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• Selection of Sources: The RELIEF-MM algorithm proposed in the previous

chapter is utilized for the late fusion part of the proposed fusion mechanism.

• Fusion Strategy: The approach focuses on the use of both the complementary

and correlated information.

• Content Representation: A feature-based representation is preferred. Consider-

ing that the proposed solution enables combining BoWs, the representation can

be also be accepted as BoW-based.

• Normalization of Sources: A normalization process is not applied on the fusion

inputs.

• Fusion Level: The approach is a multi-level fusion approach, where both an

early and a late fusion approaches are included.

• Fusion Methodology: In this study, a new fusion methodology is proposed.

The approach is a novel mining and graph based solution. The approach first

performs the intramodal and intermodal correlation analyses on the modalities.

Then, the results of the correlation analyses and the modalities are combined

with a linear weighted averaging approach.

• Operation Modes: The mode for operation is a parallel scheme.

• Synchronization: Since BoW features are extracted in a shot-based manner, the

synchronization is shot-based.

• Adaptation: The weighing part of the solution is adaptive, since RELIEF-MM is

utilized. However, early fusion part is not adaptive.

7.7 Remarks

In this chapter, the ‘how to fuse’ problem of information fusion is studied, and

a novel mining and graph based combination method for combining the Bags of

Words (BoW) obtained from different modalities. The preference of combining BoWs

is based on learning schemes used by the state-of-the-art studies. The approach

is basically based on the late fusion of modalities, yet powered by the use of the

201



intramodal and intermodal correlations. Considering the fact that most of the studies

do not use the intramodal and intermodal relations of the available words in the

BoW model effectively, the proposed approach combines the classification outputs

of each single modality, intramodal relations within each modality and intermodal

relations between modalities. In addition, the approach is presented in a way that any

type of input can be converted into the BoW format, and included in the proposed

fusion approach. Consequently, the approach fulfills three important needs: (i) using

correlated (redundant) information for fusion, (ii) a novel approach compatible with

the contemporary learning methods, (iii) combining multi-level inputs.

Empirical study conducted on TRECVID 2011 dataset with visual, audio and text

modalities validate the usability and effectiveness of the proposed approach. The use

of the intramodal and intermodal relations improves the retrieval performance and

enhances the fusion gain.

The experiments carried out exhibit several ideas for future work. In order to further

improve the proposed approach, we put forward the following ideas for future study:

• As discussed before, the phrases obtained from intramodal analyses are accepted

as a new source of information and included in the fusion process with a late

fusion approach. However, it may be reasonable to early-fuse the intramodal

phrases obtained from each modality with that modality by using a concatenation

approach. Despite the risk of ‘curse of dimensionality’ and extra processing

cost, the idea may provide an improvement on the retrieval performance.

• The procedure for applying frequent itemset mining (i.e. FP-Growth) requires

to convert BoW-based feature vectors of a training sample into transactions for

mining, where the transactions are composed of binary values stating occurrence

of each word in the corresponding sample. Although we prefer a TF-based

weighting for the words in our BoW models, converting them to binary values

for mining may cause an information loss. Yet, it is not possible to utilize

FP-Growth algorithm with real values. Thus, alternative approaches can be

designed to perform the mining procedure with the real word values instead of

converting them into binary values.
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• In the scope of phrasing algorithms, a pruning step is required while selecting

the nearest neighbors. Instead, a traditional feature selection can be applied

before construction of the transaction list, accepting the risk of losing some

information. Such an action may facilitate the procedures during / after graph

construction, but causes extra processing before mining.

• Implementation of a multi-level input schema, including local features, global

features and classification results is also left as a future work item.

203



204



CHAPTER 8

A DEMO APPLICATION FOR MULTIMODAL

INFORMATION RETRIEVAL

In this chapter, a demo application for multimedia information retrieval is presented.

The application is based on the studies presented in Section 6.4 and helps to visualize

how a multimodal fusion enhances the retrieval performance.

8.1 Brief Description

This thesis study advocates that fusing multimodal information in multimedia data

improves the retrieval performance. Though this assertion, new approaches for fu-

sion are proposed and extensive experimental analyses are conducted. Although an

experimental study is enough to prove the benefits of fusion, having an application that

demonstrates the comparison between the retrieval performances of single modalities

and multimodal fusion makes the idea clearer and more visually comprehensible.

For this purpose, we have prepared a demo application for multimodal information

retrieval. The demo application enables;

• querying and retrieval of previously trained concepts,

• visualizing the top retrieval results with marks for true/false retrieval,

• comparison of retrieval results for single modalities and multimodal fusion,

• watching retrieved videos.
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8.1.1 The Dataset & Modalities

The demo is based on the Columbia Consumer Video (CCV) Database [55] dataset.

The dataset is composed of 9,317 YouTube videos, which takes approximately 210

hours in total, and equally partitioned into training and test sets.

The videos in the dataset is manually labeled into 20 target concept classes, as presented

in Figure 8.1. The trained concepts are; Basketball, Baseball, Soccer, Ice Skating,

Skiing, Swimming, Biking, Cat, Dog, Bird, Graduation, Birthday, Wedding Reception,

Wedding Ceremony, Wedding Dance, Music Performance, Non Music Performance,

Parade, Beach, Playground.

In the demo application, three different modalities are visualized: visual, audio and

motion. For these modalities, SIFT, MFCC and STIP features are used from the video

dataset, respectively. The features are provided by the CCV dataset.

Figure 8.1: Samples for each concept in CCV dataset
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8.1.2 Multimodal Fusion Approach

The demo application visualizes the benefits of using multimodal fusion by comparing

the retrieval results of multimodal fusion with the results of single modalities. The

approach used for multimodal fusion is a late fusion approach, specifically Linear

Weighted Averaging. As mentioned before, in this approach, the data for each modality

is classified separately and then the results are combined by a weighted averaging.

The weights are determined with the RELIEF-MM approach, which is presented in

Chapter 6.

8.1.3 Implementation Details

The demo application is actually a user interface for visualizing the previously indexed

data. Although retrieval operation is an online process, it should be backed by an

off-line indexing process, which is usually provided by some learning procedures.

For our demo application, the test videos in the dataset are first classified into the

target concepts and the classification results are stored in particular index files. The

classification results and index data are based on the results of experimental studies

presented in Section 6.4. When a query is performed, the queried concept is found

in the previously stored index files and the results are visualized by showing the

keyframes of each resulting video, decision score and accuracy of the resulting video

(true/false). The application supports the visualization the results for each modality

separately, and also the multimodal fusion result.

Considering that the dataset is an online resource (YouTube), the demo application

is implemented to be an online application. Thus, the implementation of the demo

application is performed by using HTML, CSS, and Javascript with the help of Boot-

strap framework [89], and served online1. The application is lightweight, and fully

integrated with YouTube. No images or videos are stored; all of them are accessed via

YouTube on runtime.

1 The demo application can be accessible online via http://www.turgayyilmaz.net/mvs
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8.2 The Demo Application

A web-based graphical user interface (GUI), which is served online, is prepared for all

operations mentioned above. A basic scenario for using the application is described

below, with sample screenshots.

Figure 8.2 presents the home page of the application. In this page, brief information

on the dataset, modalities used, query concepts and the multimodal fusion approach

are given, as well as the search input form.

Figure 8.2: Homepage for the demo application

In order perform a query, the query concept is written into the search input area. When

a few letters are entered, a pop up list for the alternative query concepts is shown

(Figure 8.3). After selecting a query concept, the "Search Videos" button is pressed

and the search operation is started.

In Figure 8.4, the query result page is given. In the result page, the retrieval results are

presented in four columns. The first column presents the retrieval results for using only

visual modality, the second is for audio modality, the third is for motion modality, and

finally the last column show the results for the multimodal (combined) retrieval. Each

column includes small boxes, each of which represents a video object and contains

a frame from the video. Each box is colored with green or red, green representing

a correct retrieval, and red means a false retrieval. This accuracy information is
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Figure 8.3: Performing a query

based on the CCV dataset ground truths. In addition to the accuracy information, the

probabilities of being a queried concept type is also given in the left bottom parts of

each box.

The result page lists four videos in a line, for each modality type, as default (Figure 8.5).

However, it can be customized to show two, three or six videos, in order to see more or

less retrieval results in a single view. In Figure 8.4, query results for the dog concept

is given in a 3-in-a-line format. In Figure 8.5, the results of the baseball query is

presented as four videos in each line. In Figure 8.6, the results for query cat is given

with a 6-in-a-line format.

After obtaining a general view on the query results, each of the retrieved videos can

be watched by clicking on the video frames. When clicked, the video is loaded from

YouTube and can be played (Figure 8.7).

8.3 Evaluation

An evaluation on the implemented demo application is presented below.

• The implemented demo application presents the retrieval results of single modal-

ities and multimodal fusion side by side on the same view. Such view makes
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Figure 8.4: Retrieval results page for dog query concept

Figure 8.5: Retrieval results page for baseball query concept

it easy to compare the retrieval performances. Hence, the advantages of fusion

becomes more clear and visually comprehensible. For example, Figure 8.5

shows the retrieval results for baseball query concept. In the top-24 results,

visual modality returns 19 correct results, audio modality gives 4 correct results

and motion modality returns 10 correct results. Besides, multimodal fusion

returns 24 correct results.

• In retrieval operations, average precision (AP) or mean average precision (MAP)
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Figure 8.6: Retrieval results page for cat query concept

Figure 8.7: Watching a retrieved video

metrics are more important than precision and recall metrics. The user inter-

face of the demo application shows top-K retrieval results with an information

about the accuracy (green for correct, red for false retrievals), which helps to

understand which method is superior in terms of average precision.

• The demo applications supports querying only the trained 20 concepts. However,

the application can be extended by increasing training dataset size and concepts.

Also, any keyword search can be handled by including a text retrieval mechanism
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and mapping the keywords to trained concepts. Yet, increasing the number of

concepts trained depends on the dataset characteristics. For example, CCV

dataset is annotated for 20 concepts, whereas TRECVID dataset is annotated for

500 concepts.
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CHAPTER 9

CONCLUSION

The increasing usage of digital capture devices has shown the need for multimedia

retrieval systems. In order to provide more relevant results, searching multimedia

data requires content analysis in the data. Although the content of the multimedia

data can be modeled with some low level features, the variety of the features and how

they are utilized have an importance on the performance of the constructed retrieval

system. The use of just one low-level feature is unsatisfactory, because of the fact that

multimedia data usually has a complex structure containing multimodal information in

it. The information contained by different modalities usually complements each other,

and thus, fusing multimodal information in multimedia data improves the retrieval

performance. This thesis has been concerned with an investigation of the problems of

multimodal information fusion in the context of multimedia information retrieval.

The studies conducted throughout the thesis include the construction of a general fusion

framework by performing a literature survey, and the following two core challenges

of information fusion in the context of multimedia information retrieval: (i) How to

determine the best modalities? (ii) How best to fuse them? For the former problem,

firstly, a class-specific feature/modality selection approach is proposed. Then, this

approach is extended into RELIEF-based feature/modality weighting algorithm. For

the latter problem, a novel mining and graph based combination approach, which

enables an effective combination of the modalities represented with Bag-Of-Words

models, is proposed. In addition, a non-linear weighted averaging approach, which

attacks the both problems together, is proposed.

The thesis first focuses on identifying the design aspects of a general information
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fusion system and make a contribution for the construction of a general fusion frame-

work. To this end, a literature survey on information fusion is conducted, and a general

framework, which helps to represent a big picture for designing information fusion

systems, is proposed. The proposed general framework describes the affecting vari-

ables of fusion systems, helps to design a fusion system by presenting the alternative

approaches and pros/cons, and simplifies the construction and evaluation of new fusion

systems.

After defining a general framework for fusion, as the first step, two major problems

of fusion are considered together, and an efficient fusion architecture is investigated

by regarding the most frequently utilized approaches in the literature. Thus, an ANP-

based non-linear weighted averaging method, which is a non-linear extension on the

linear weighted fusion, is proposed. The linear weighted fusion suffers from the

performance upper-bound of linearity and dependency on the selection of weights.

The method extends linear weighted fusion with two crucial ideas; interdependency

between classes and dependency of classes on the features. The approach is tested on

the Columbia Consumer Video Database by using multimodal features of SIFT, MFCC

and STIP. The results demonstrate that the proposed non-linear weighting approach

is superior than linear weighting, and is less-dependent on the selection of weights.

Hence, we argue that the proposed non-linear weighted averaging approach is a sound

alternative for linear weighting.

As the second step, the study is focused on the problem of finding the best features

/ modalities for fusion. For this purpose, a class-specific feature selection (CSF)

approach for the fusion of multiple features is proposed. In order to eliminate the high-

dimensionality of multiple features and provide efficient querying over the multimedia

documents, a dissimilarity based approach is utilized. The class-specific features are

determined by using the representativeness and discriminativeness of features for each

class / concept. The calculations of representativeness and discriminativeness are

based on the statistics on the dissimilarity values of training data. In order to evalu-

ate the proposed approach, experiments with multi-feature and multimodal settings

are conducted. In addition, utilization of the approach in a Wireless Video Sensor

Networks application is performed. The multi-feature experiments are performed by

using the CalTech 101 dataset with 8 MPEG-7 visual features. For the multimodal
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experiments, TRECVID 2007 dataset is used with 3 visual, 2 audio and 1 textual

modalities. For all experiments, the retrieval performance of the proposed approach is

compared with the performances of single features, simple combination approaches

and exhaustive search approach. The results obtained from these tests show that the

proposed class-specific feature selection approach is an effective and efficient feature

selection method.

Considering that the proposed CSF approach is a promising idea and the problem

of modality weighting / selection is a major one, a more sophisticated algorithm,

named as the RELIEF-MM algorithm, is also introduced. RELIEF-MM is a RELIEF

algorithm extension, and utilizes the ideas proposed for the CSF approach. The original

RELIEF-F algorithm is employed for multimodal feature selection on multimedia

data, and several weaknesses of the algorithm are identified. Considering these

weaknesses, the following issues are focused for extending the original RELIEF-F

algorithm: class-specific representation, multi-labeled data, noisy data, unbalanced

datasets, using classifier predictions instead of feature values for weighting. The

proposed approach is extensively tested on TRECVID 2007, TRECVID 2008 and

CCV datasets with several modalities in a multimodal information fusion scenario. In

these tests, RELIEF-MM has achieved higher accuracies than any single modality, and

showed much better performance than simple averaging and RELIEF-F based methods.

In addition, RELIEF-MM has provided slightly better performance than the class-

common exhaustive-search based approach, although it is computationally much more

efficient than class-common exhaustive-search. In addition, several comparative tests

are performed against the RELIEF-F approach, aiming to examine each extension idea,

and it is confirmed that the proposed extensions lead to improvements on RELIEF-F.

Consequently, we argue that our proposed approach is a timely efficient, accurate and

robust way of modality selection.

As the third step, the problem of finding a way to fuse the modalities effectively is

taken into consideration. For this purpose, the most popular and effective methods in

multimedia analysis studies in the last decade are considered. Considering that these

studies are usually based on the use of local parts / features in multimedia documents

and employing one of the Bag-of-Words (BoW) approaches, the last part of the thesis

is focused on combining the BoWs obtained from different modalities. Hence, a novel
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mining and graph based combination approach, which exploits the intramodal and

intermodal relations, is proposed. The intramodal process extracts phrases from words

of each modality by using the correlation between the words within each modality.

Besides, the intermodal process extracts multimodal phrases by using the correlation

between phrases of different modalities. The proposed approach is tested on TRECVID

2011 dataset by using visual, audio and text modalities. The results show that the use

of the intramodal and intermodal analysis doubles the fusion gain, and thus improves

the retrieval performance.

In addition to the proposed algorithms, an application is implemented to demonstrate

the comparison between the retrieval performances of single modalities and multi-

modal fusion. The demo application makes the fusion idea more clear and visually

comprehensible.

The studies conducted throughout this thesis study have shown that multimodal fusion

is a beneficial approach for improving the retrieval performance for multimedia in-

formation retrieval. It has been experienced that different modalities abstracts videos

from a different aspect, thus different modalities in multimedia data complement each

other. Although fusion is usually beneficial, an inadequate configuration for fusion

may lead to inefficiencies. Thus the components to fuse, and the fusion approach

should be selected carefully. The general fusion framework presented in this thesis

helps to evaluate alternative techniques and construct a new fusion system. In addition,

the proposed algorithms for modality weighting, non-linear weighted averaging and

combining BoW-based features are promising approaches for performing successful

fusion operations.

One important issue to mention is the applicability of the proposed approaches in

different domains and research areas. In this study, the domain focused for information

fusion is multimedia retrieval. The proposed approaches are designed by considering

the needs for multimedia data, and the experimental study has been conducted only

on the multimedia data. However, the approaches are beneficial for other research

areas utilizing fusion for improving performance, including pattern recognition, other

information retrieval systems, geospatial information systems, cheminformatics, bioin-

formatics, wireless sensor networks, biometrics systems. For instance, the non-linear
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weighted averaging approach (Chapter 4), focuses on a simple alternative approach for

linear weighting, which is not limited to the linear boundaries and less-dependent on

the selection of weights. Such an improvement will be useful for any study, regard-

less of the domain and the research area, which performs a late fusion approach and

combines the results of several classifiers. Similarly, Chapter 6 proposed a modality

weighting approach which handles multi-label, noisy and unbalanced data issues, as

well as the use class-specific feature selection. These issues are not only the problems

for multimedia data, but for any other domain or research area, which may face similar

problems depending on the dataset. Any retrieval or classification study utilizing a

fusion method can benefit from the CSF (Chapter 5) and RELIEF-MM Chapter 6

algorithms for feature weighting / selection. Not only the fusion based studies, but

many other studies can also benefit from the ideas applied for the proposed algorithms.

For instance, in pattern recognition, feature selection is an important research topic,

the CSF and RELIEF-MM algorithms will be useful for feature selection before per-

forming a classification. Applying the proposed approaches for other domains and

research areas, and further modifications and improvements are left as future work. In

addition to such a utilization study, some other future work items are discussed below.

9.1 Future Work

Considering that potential future work of the studies in each chapter are presented

specifically within each chapter, here a list of general future work items are given.

Actually, the variables depicted in the general framework given in Section 3.1 and

the open issues given in Section 3.2 can be used to point out the future work for

information fusion. Below, some future work items are listed:

• The fusion studies in the literature usually describe the fusion method in their

context of application. Although we provide a general framework in this thesis

to identify all affecting variables, a theoretical background as well as the theo-

retical performance boundaries and experimental evaluation of such theoretical

boundaries are still missing. However, determining general theoretical perfor-

mance boundary may not be feasible due to the variety of fusion approaches and

high dependency of the performance on the fusion inputs.
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• Using multimodal information requires the synchronization of modalities accord-

ing to each other as mentioned in Section 3.1.9. In addition, the occurrences of

concepts in different modalities does not necessarily overlap in terms of timing,

and some delay between the modalities may be required. However, this is an

issue that has not yet been explored exhaustively.

• In this thesis we provide an important contribution to the development of an

effective modality weighting for fusion. Although the algorithm is an online

procedure and support adaptiveness, no further analysis has been performed on

the adaptivity issue. Potential improvements and an adaptive way of determining

best sources can be accepted as a future study.

• The available fusion studies usually assume that all of the sources are ready at

the fusion time and fused at once, in a parallel operation mode. However, the

serial and hybrid architectures are not studied adequately. We think that a serial

operation mode has a potential to improve the efficiency of the algorithms and

decrease the required execution time for fusion.

• We show that correlated information has a potential to improve the fusion gain.

However, most of the recent studies focus on the complementary components

for improving accuracy. Thus, alternative approaches for analyzing correlations

in dataset can be considered as an early fusion approach, which can also be

evaluated as a promising future work.
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