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Abstract

New malicious nodes appear everyday on the Internet. Previous studies have
shown that these nodes are not randomly distributed on the Internet; similar
to the high density of criminal activities in real world bad neighborhoods, there
exist Internet bad neighborhoods. Two common features to draw the local net-
work boundaries within Internet and hence identifying the bad neighborhoods
are fixed /24 IP prefix and dynamic Border Gateway Protocol (BGP) IP prefix.
The main difference between these two features is the size of the underlying
neighborhood and hence the granularity in the measurement of malicious activ-
ity. In this study, by analyzing a dataset of Command and Control servers and
botnets, we show that BGP prefix is preferred in identifying bad neighborhoods
because it offers 8% better detection rate in identifying new malicious nodes.
In summary, our contributions in this study are:

1. We show that likelihood of having malicious activity from a neighborhood
is a precise metric for malice prediction based on regression modeling

2. We show that likelihood of having malicious activity in adjacent /24 pre-
fixes within a BGP prefix is very similar with a 4% of change on average
and hence the loss of granularity by using BGP is negligible

3. We show that BGP prefixes offer a detection rate improvement of 8%

4. We conclude that based on precision, granularity, detection rate and lookup
performance BGP is a better feature for Internet bad neighborhood iden-
tification
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Chapter 1

Introduction

Internet has become an inseparable part of our daily lives. At the same time,
the security of Internet world has become one of the main concerns in the
world. Only in 2016, over 100000 cyber incidents were reported targeting Health
institutions, financial organizations, Industrial systems etc [1]. One of the main
sources of these cyber incidents is malware. Malware is a piece of program that
its purpose is to do some harm to the host system it infects. For instance, one
of the malware that caused much damage in 2016 was Mirai botnet [2]. This
malware could temporarily paralyze part of the Internet connectivity using a
type of attack known as Distributed Denial Of Service(DDOS) attack. In this
type of attack, many infected hosts at the same time send traffic to a destination
and hence disrupt the service. Another instance of malware that caused a cyber
incident in 2017 is Wannacry ransomware. Ransomware make the data on the
infected computer inaccessible to the user and ask for a ransom in return of the
data. It is estimated that this malware caused $4 billion of damage [3].

Internet is actually a collection of smaller local networks that are connected
together. Evidence shows that cyber attackers are more concentrated in some
of these local networks than others. In order to better understand the concept,
we make an analogy to the real world so called ”bad neighborhoods”. In New
York, law enforcement tags some neighborhoods as ”bad” based on the number
of crime reports. The crime rate in some neighborhoods is higher due to variety
of reasons such as poor economy of the neighborhood. These neighborhoods
in future are expected to foster more malicious activities, and henceforth, law
enforcement would carefully monitor these neighborhoods. Similar to the real
world, there exist bad neighborhoods in the Internet world.

Internet bad neighborhood concept can be used to predict attackers’ source
addresses and mitigate cyber threats [16]. For example, figures 1.1 shows the
distribution of the infected hosts by Mirai. We can see from the figure that
infected hosts are more concentrated in some regions. This is because these
regions, or hereafter Internet bad neighborhoods, have poor security measures
in place and infection spreads quickly within them. Given this, we can prevent
DDOS attack from these infected hosts by blocking traffic from them; after see-
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Mirai distribution of infected hosts

ing malicious traffic from a few IP addresses, we can predict the attack from
the remaining IP addresses of the neighborhood and hence prevent it. Identi-
fying Internet bad neighborhoods enables Intrusion Detection Systems to predict
attacks from neighbor nodes within a network.

In order to identify Internet bad neighborhoods with homogeneous behavior,
we need to understand the structure of Internet. Internet is composed of several
Autonomous Systems (AS), see Figure 1.2. An Autonomous System is a large
network that is responsible for the distribution of traffic within the network.
An AS, itself, consists of several smaller networks. The communication between
different Autonomous Systems is through Border Gateway Protocol (BGP).
Via Border Gateway Protocol, an AS announces the IP addresses of the smaller
networks it controls i.e. through BGP prefix announcements. A BGP prefix is
in X.Y.Z.W/N format where X,Y,Z and W are integers between 0 to 255 and N
is an integer between 8 to 24. Based on this mechanism, the neighbor ASes pass
the traffic to one another until it reaches the AS that contains the destination
IP address.

Based on the above explanation, one may assume that an autonomous system
is a neighborhood. Although that assumption is not wrong, the neighborhood
in such case is too large. We can not expect a homogeneous malicious or benign
behavior from such large entity because an AS is further split into smaller net-
works that are managed by different administration entities. For instance, many
of the autonomous systems are actually Internet Service Providers (ISPs). An
ISP would use a BGP prefix for DSL users, a prefix for WAN users, a prefix for
servers in a rack and another for a large organization such as a university. Since
these prefixes are used for different purposes and have different administration
entities, we can not expect the same behavior from all of them.

Two common approaches to identify an Internet neighborhood to which
an IP address belongs are based on BGP announcements and Classless Inter-
Domain Routing(CIDR) /24 prefixes, hereafter as fixed /24 prefixes. The
former is based on the explanation that we gave in the previous paragraph; we
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Figure 1.2: Internet Structure and Autonomous Systems

can expect same behavior from the nodes within /BGP prefixes since they have
the same administration policies and are probably physically neighbors [17].
The latter is based on the logic that a BGP prefix length can be as long as 24
[13]. Hence, a /24 prefix is a smaller neighborhood within a BGP prefix.

Our research goal in this paper is to compare the Internet bad neighbor-
hoods based on the BGP and fixed /24 prefixes. The difference in the size of the
neighborhoods derived from each approach affects the error and the latency
in the prediction of attack from an IP address. The error can be misidentifying
a traffic as malicious i.e False Positive (FP) or benign i.e False Negative (FN).
The low rate of FP and FN are of high importance for an Intrusion Detection
System. A high FP rate results in large number of intrusion alerts that are
in fact wrong. Therefore, the human operator has to manually validate the
accuracy of many alerts. A high FN means many attacks remain undetected.

Size of neighborhoods has a direct impact on both FP and FN. The larger
a neighborhood, the lower false negative rate of Intrusion Detection. This is
because we blacklist more IP addresses by enlarging neighborhoods. For in-
stance, assume that we blacklist the entire Internet i.e the whole IP space. In
this case, the FN rate is zero since we label traffic from any given IP address
as malicious. On the other hand, by enlarging the neighborhood size we also
increase FP rate. This is because FN and FP have reverse correlation [14]. For
instance, in blacklisting the entire Internet, many of our detections are actually
false because not every traffic is malicious.

Size of neighborhood also impacts the latency of the Intrusion Detection
System in checking a traffic malice. To understand the effect of the neighbor-
hood size on latency, assume that there is only one neighborhood with 256 IP
addresses. In such case, only the traffic from these 256 IP addresses would be
checked for Intrusion analysis. In contrast, assume that the neighborhood has
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1 million IP addresses. In such case, the Intrusion Detection System has to
analyze the traffic from these 1 million sources and this delays the detection.

In summary, our research goal is to compare the Intrusion detection and
prediction error and latency of Internet bad neighborhoods based on BGP and
fixed /24 prefixes. In the following section 1.1, we discuss the background of
the Internet bad neighborhood topic. In section 1.2, we discuss the granularity
(effect of size) of Internet bad neighborhood. In section 1.3, we present our pre-
cise research questions and our approach to answer those questions. In section
1.3.1, we explain the value of our research for Intrusion Detection systems.

1.1 Background

The concept of Internet bad neighborhood is built upon IP addresses reputation.
IP addresses reputation is often one of the elements in a vector of features
used for malice detection. Reputation of an IP address is defined based on
its historical malicious activities. The reputation of an IP address is usually
shown with 1 and 0 representing, in order, listing or not listing in a blacklist.
The intuition behind IP address reputation is that if an attacker attacks once,
it will attack again in near future and we can identify the same attacker by
its IP address. For instance, IP reputation, among other features, is used in
[4, 5] for spam detection. In [6], IP reputation is used in a vector of features to
detect malicious DNS addresses. Since reputation by definition depends on the
historical records, it has limited capability in malice detection; we must have
already detected malicious activity for an IP address in order to further blacklist
it.

Single IP address reputation has several limitations. Firstly, IP addresses
are often leased for a short period. Due to the short leasing time [7, 8], the
historical malicious activity of the current IP address can not always accurately
be attributed to the endpoint (source or destination of a traffic) that holds the
IP address. Secondly, the IP address space is 4G large. Tracking the reputation
of all these nodes is expensive in a sense that we need to have traffic data
from all the 4G space in order to detect all the malicious addresses. We also
need to store the reputation of these nodes that might be expensive for network
appliances with limited disk space and memory size. As a result, False Negative
(FN) rate of IP blacklists is high [9]. Sinha et al measure the effectiveness of
blacklists for Spam Detection. They find out that 21% of the traffic that Spam
detectors such as SpamAssassin can detect remain undetected by blacklists.
This is mainly because a large portion of the missed sources (around 90%) are
observed for just one second in the network [9]. Such a short lifetime would
not allow blacklist maintainers to effectively identify and report such malicious
sources.

Findings from previous works suggest that malicious activities are concen-
trated more in some Internet neighborhoods. We can exploit this fact to predict
attacks from neighbors and reduce FN rate. Collins et al. realized that deduced
IP prefixes from blacklists’ entries are not randomly distributed [10]. Based on
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their result, it’s likely to see more malicious activity from the same network
of an already seen malicious host, similar to dangerous neighborhoods in the
real world. [11, 12, 4, 5, 13] also reach the same findings. For instance, based
on the reputation of 1.1.1.1, 1.1.1.2 and 1.1.1.3 IP addresses we can derive the
reputation of 1.1.1.0/30 subnet and assume that every traffic from this subnet is
malicious. Several studies confirm the effectiveness of the aggregated reputation
in spam detection [10, 4, 5, 14].

1.2 Granularity

We identify Internet bad neighborhoods by aggregating the reputation of a few
nodes and then attributing it to the network from where those nodes come.
The aggregation of nodes reputation can be carried out with different levels of
granularity and based on a feature, hereafter as aggregation feature. From a
very high level view, with a low granularity, we can aggregate the reputation
of the nodes within an Autonomous System (AS) and use Autonomous System
Number (ASN) as the aggregation feature. Although ASN for reputation aggre-
gation is used in [12, 15, 16] in order to find malicious Autonomous Systems, we
don’t find ASN granular enough for a reputation attribution. In the following
paragraphs we explain why.

Nodes within an AS are further grouped under some IP routing prefixes that
may be controlled by one or more network operators. For instance, Internet
Service providers may use one IP prefix for their DSL users and another for
the mobile users. They may further lease an entire prefix to an organization
like a university. The autonomous system identified by ASN 1103 or name
SURFnet is a service provider in Netherlands that serve multiple universities
and organizations under different IP prefixes. Each of these organizations has
different network administration policies and hence different levels of security.
Furthermore, the nodes within an organization are likely to be geographically
close to each other. Henceforth, BGP prefixes are used to cluster Internet nodes
in different networks [17, 11, 12, 4, 14].

Krishnamurthy and Wang coined the term network aware clustering [17]. Via
traceroute and reverse DNS resolving, they find out that 90% of IP addresses
can be correctly clustered in this way. Jung et al used network aware clustering
to predict IP addresses that perform DOS attack in the near future. Network
aware clustering has been frequently used for spam filtering [11]. [4, 14]. These
works assume that BGP prefixes draw the network boundaries under the same
administration. Therefore, we can assume that nodes within an administration
network would expose the same behavior i.e. the IP BGP prefix would entail
the neighborhood to which a node belongs. That said, the networks derived
from BGP prefixes have different sizes and hence the attributed reputations
have different granularities.

The longest BGP prefix length is 24 and hence the derived reputation from
these prefixes has the highest level of granularity i.e. we generalize the reputa-
tion of only 256 nodes. Based on this, /24 prefix aggregation has been chosen to
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identify bad neighborhoods in [10, 18, 13]. While ASNs and BGP prefixes carry
semantics and entail network boundaries, /24 prefixes are not correspondent
to any specific semantics in Internet routing except that they are the smallest
chunks within an ASN or BGP prefix. That said, it is unclear that fine gran-
ularity of /24 aggregation leads to any particular advantage in terms of malice
detection error and latency.

Since /24 prefixes are subset of a BGP prefix, the definition of neighborhood
can apply to both aggregations i.e. based on BGP prefix feature or /24 prefix
feature. The difference is the granularity; BGP neighborhood is a larger or same
size neighborhood in comparison to /24 prefix. The level of granularity has an
effect on the false positive and false negative [14]. The larger our aggregation
group, the better our detection rate and false negative. At the same time, by
enlarging the aggregation size and generalizing the reputation we should expect a
higher false positive rate [14]. Furthermore, the difference in granularity results
in the difference in the number of stored entries in our reputation database.
Such difference, in turn, affects the lookup performance when inquiring the
reputation database.

1.2.1 Example

The difference in the level of granularity leads to a difference in the number
of black listed IP addresses. For instance, let’s analyze the AS AS31549. This
ASN number belongs to Aria Shatel Company Ltd. Aria Shatel Company is
an Internet Service Provider in Iran. Under this AS number, there are 230
IP V4 BGP prefixes announcement of different lengths. In total, 1,214,464
IP addresses are originated from this Autonomous system. According to our
dataset, around fifty /24 prefixes that have a least one malicious IP address
belong to this AS number. Seventeen of these /24 prefixes fall under one BGP
prefix announcement (see Table 1.1). Dividing the number of malicious IP
addresses within a prefix by the size of the prefix (which is 256) we get likelihoods
of malicious activity between 0 and 0.04 with a median and mean of 0.01 for
these seventeen prefixes. If we aggregate the reputation of these seventeen /24
prefixes by their advertised BGP prefix, which is 2.181.224.0/19, the resulted
malicious activity likelihood of this BGP prefix after aggregation is 0.01.

By keeping the reputation of this BGP prefix not only we can flag a potential
malicious traffic from the seventeen /24 prefixes from which we already observed
malicious IP addresses but also we expand our prediction to the adjacent prefixes
of these 17 prefixes. All these 32 prefixes with a malicious activity likelihood of
0.01 are represented in routing snapshots with one single BGP entry and one
organization description name ”Information Technology Company (ITC)”. Our
hypothesis is that, these prefixes are administrated by one single entity and we
should expect the same behavior for all the nodes. We could also use the ASN
number 31549 and give a likelihood to all IP addresses that are originated from
this AS. However, we only have malicious activity with likelihood of 0.01 for
only two other prefixes of length 23 within this AS except 2.181.224.0/19; other
prefixes have zero likelihood of malicious activity. Precisely, the likelihood for
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Prefix CIDR Malicious IP addresses Likelihood = Malicious IP addresses
Prefix CIDR size

2.181.224.0/24 2 0.01
2.181.225.0/24 3 0.01
2.181.226.0/24 3 0.01
2.181.227.0/24 2 0.01
2.181.228.0/24 1 0.00
2.181.229.0/24 1 0.00
2.181.231.0/24 2 0.01
2.181.232.0/24 3 0.01
2.181.238.0/24 5 0.02
2.181.239.0/24 4 0.02
2.181.242.0/24 1 0.00
2.181.244.0/24 2 0.01
2.181.245.0/24 7 0.03
2.181.246.0/24 8 0.03
2.181.247.0/24 9 0.04
2.181.250.0/24 1 0.00
2.181.253.0/24 1 0.00
2.181.255.0/24 1 0.00

Table 1.1: /24 prefixes with malicious activity from AS31549

the AS would be 106
1214464 which is epsilon. In other words, we would be penalizing

1214464 IP addresses for a malicious activity of only 106 IP addresses that
mostly come from one BGP prefix. In conclusion, the underlying reason that
the ASN is not granular enough is that although the AS31549 represents one
ISP name, we observe around 20 different organization names that use the 256
announced prefixes. In summary, we can not expect a homogeneous behavior
from a large entity such as AS but our hypothesis is that we can expect the
same behavior from /24 prefixes represented by a single BGP entry.

1.3 Research Questions

As already stated in the beginning of this chapter, our main research question
is:

Which of prefix types, BGP or fixed /24, is more effective in Internet bad
neighborhood identification, in terms of Intrusion detection prediction error and
latency?

As noted in the previous section, there are two lines of work; one line of
works use BGP prefix for aggregation while the other use /24. BGP offers
better false negative rate while /24 offers better false positive rate (see chapter
3 for mathematical proof). Furthermore, there will be fewer BGP entries in
comparison to /24 that may impact the latency. However, the interplay of
the above parameters and the tradeoff between them is unknown to us. As
we explain in detail in chapter 2, none of the previous works investigated the
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effect of finer granularity of fixed /24 prefix in comparison to BGP on the above
parameters. Qian et al compare the granularity of BGP aggregation with that
of DNS based clustering. Moura et al compare the different prefix sizes but not
BGP with fixed prefixes [16].

The state of the art mainly focused on spam filtering (see chapter 2) whereas
we need to apply bad neighborhood for malware traffic detection. Based on the
application of Internet bad neighborhood in our research, an ideal comparison
would be based on false positive and false negative measurement. That said,
measuring these metrics require access to network traffic and a reliable ground
truth. Unfortunately, computer security domain has a tangible lack of ground
truth [19]. In addition, due to privacy concerns, the author of this research
could not collect any network traffic regardless of tiring efforts to address the
privacy concerns of the officials.

Since measuring FP/FN is not feasible for the author, he investigates other
aspects of BGP and /24 prefix aggregation that facilitate answering the main
research question. The research questions that we follow in the rest of this work
are:

1. How different is the granularity of BGP aggregation in comparison to /24
fixed aggregation?

2. How much is the difference in the detection rate of BGP in comparison to
/24 fixed aggregation?

3. How much is the difference in the lookup performance of BGP in compar-
ison to /24 fixed aggregation?

4. Which aggregation feature can more precisely predict the malice of a net-
work?

5. Which aggregation can better identify bad neighborhoods based on the an-
swers to the above questions?

The granularity, detection rate and precision aim to measure the detection
error and the lookup performance aims to measure the detection latency of an
aggregation feature in Intrusion detection and prevention. In chapter 3, we
precisely define granularity, detection rate, lookup performance and precision.
For now, granularity measures the malice of a Internet neighborhood based on
its size. Detection rate measures the number of malicious IP addresses that
we detect. Precision measures the malice prediction capability of an aggrega-
tion feature. Lookup performance measures the processing time required for
searching the reputation of an IP address.

1.3.1 Approach

To answer the above question, we run an experiment on a dataset of Indicators
of Compromise. This dataset helps us identify malicious nodes and their con-
centration in some neighborhoods. Since we don’t have an independent ground
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truth, our approach would be splitting the dataset to two training and testing
sets based on different time periods. Although the ground truth problem can be
addressed in this way, the lack of traffic still prevents measuring false negative
and false positive rates. Due to the lack of network traffic and novelty of the
application of badhood in our work, we have to define new metrics to further
this research.

We first formally define aggregation and reputation and present a formal
framework of metrics that allow the comparison in the context of our work.
We formally define malice likelihood, granularity, precision, detection rate and
lookup performance metrics (see Chapter 3) that can be practically used (based
on the available data) for experimental analysis. We then collect the indicators
of compromise from a Malware Detection Company database. Afterwards, we
extract the IP addresses and build the Internet neighborhoods based on /24
prefix feature and BGP. By using the defined metrics and the provided data,
the author measures reputation in form of malice likelihood, and compare the
granularity, precision, detection performance and lookup performance of the
badhoods reputation extracted from one month of data. Finally, we conclude
which aggregation can better identify the bad neighborhoods for malware traffic
detection based on the quantitative results.

1.4 Research Value

The findings in this research will improve the prediction capability of Intrusion
Detection systems as explained in section 1.2. The findings answer whether
BGP or fixed /24 prefix better identifies Internet bad neighborhoods. Intrusion
Detection Systems hopefully can use our results to:

1. Improve the FN, FP rate of their products without much performance
compromise.

2. Automate the process of generating aggregated blacklists

As a matter of fact, the author of this research conducted this research while
doing Internship in the vendor company Redsocks 1. Such collaboration helped
the author to better identify the requirements of the vendors and the end users
and consider them while comparing BGP with fixed /24 prefix.

1.5 Summary

In this chapter, we explained the motivation of our research topic and the re-
search questions we will answer through the rest of this thesis. Furthermore,
we explained how we aim to answer these research questions. In the rest of this
thesis, in the chapter 2, we first review the related works and present the find-
ings of the research topic assignment that has led to the research questions of

1https://www.redsocks.eu/
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this work. In chapter 3, we formally present the definitions and the metrics that
would be our framework for the comparison and answering the research ques-
tions. In chapter 4, we present two reputation lookup algorithms that would be
the base for our implementation performance comparison of the two aggregation
approaches. In chapter 5, we elaborate on our data collection methodology and
give an overview on the data that we will use for the experimental comparison.
In chapter 6, we answer the first four research questions using the experimen-
tal comparisons on the data that we collect and based on the metrics that we
define. Finally, in chapter 7, we answer the last research question and conclude
the research.



Chapter 2

Literature Review

In this chapter, we review the state of the art literature that somehow uses rep-
utation, hereafter as Internet Host Reputation Systems(IHRSs), for malicious
detection. Internet host reputation systems output the reputation of a host
based on its historical activities. The historical malicious activities, in practice,
are mainly found in public blacklists based on IP or DNS address. We use the
term reputation oracle for any medium that the state of the art refers to for
the malicious activities of connected nodes to the Internet, hereafter as Internet
hosts, in past. The data from the reputation oracle is the input to a reputa-
tion function in IHRSs. Different works use different reputation functions and
algorithms for further processing. Eventually, the reputation output of a repu-
tation system can be a trained classifier or a reputation database. The former
is usually an engine that takes traffic and outputs malice based on a backend
reputation oracle. The latter outputs the identifiers of malicious hosts. Differ-
ent works use different identifier metrics, hereafter as aggregation feature such
as IP or DNS to identify hosts. State of the art reputation systems choose var-
ious benchmarks to evaluate their results. Figure 2.1 shows how Internet Host
Reputation Systems work in practice. This figure aims to visualize the Internet
Host Reputation System’s structure and the relevance of our terminology, i.e
the characteristics we use to categorize the state of the art, to these systems.

The works that we choose to review in this study are selected in a systematic
way. First, we searched in google scholar based on Reputation system, Predic-
tive blacklisting, Network clustering, Proactive spam detection, Internet bad
neighborhood and Internet host aggregation keywords. We removed the results
older than 10 years unless the work has been a break through. Next, we selected
the works that have been cited more than 10 times. Afterwards, we shortly read
the papers and selected the most relevant works to our research. In the rest of
this section, we compare the literature based on reputation oracle, reputation
function, reputation output, aggregation feature, and Benchmarking.
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Figure 2.1: Internet host reputation systems

2.1 Reputation Oracle

In Internet host reputation systems, the reputation is measured based on previ-
ous activities of hosts. We use the term reputation oracle to refer to a database
that stores the reputation of Internet hosts based on their malicious activi-
ties in past. A majority of the literature use public blacklist datasets such as
SURBL[20], SBL [21], CBL [22], XBL [23], Spamcop [24], Malware Domain List
[25], DNS-BH [26], Zeus tracker [27], JWSDB [28], URIBL [29], SORBS [30],
DSheild [31], Phishtank [32], hpHosts [33], OpenBL [34], VERIS [35], WHID
[36], WPBL [37], Support Intelligence [38], UCEPROTECT[39], APWG [40],
Viruswatch [41], Malware Patrol [42] and Bot Command and Control IP ad-
dresses from ShadowServer Foundation [43]. A few works use Malware gener-
ated traffic in a controlled environment or the traffic to a Honeypot [6][18] or
Spamtrap [4][14][13] as their reputation oracle. These works record the Internet
host identifier (IP, DNS name or URL) that the malicious program tries to con-
nect to. Finally, a few works use the reputation computed by another product,
such as IDS, to track the reputation of a host [44].

The nature of the datasets and how data is collected is different. Several
datasets are providing the IP and DNS of spammers: SBL [21], CBL [22], [24],
JWSDB [28] and SORBS [30]. Some other datasets identify phishing websits:
SURBL[20], Phishtank [32] and APWG [40]. Datasets such as Zeus tracker [27]
and Bot Command and Control IP addresses from ShadowServer Foundation
[43] identify Botnet’s command and control servers. DSheild [31] provides the
attackers’ addresses based on firewall and IDS logs.

Different studies use different datasets based on the aim of the study and
the type of malicious hosts the dataset would reveal. Nonetheless, there is
a tradeoff between malicious detection capability and detection latency while
choosing various datasets. Increasing the dataset size would possibly increase
malicious detection performance but at the same time it would increase the
processing time. Table 2.1 reports the datasets and approaches that different
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Dataset The literatures that used the dataset as their reputation Oracle
1 [45] [46] [6] [47] [15] [48] [4] [14] [13]
SURBL
SBL
CBL
XBL
Spamcop
Malware Domain List
Zeus tracker
JWSDB
URIBL
SORBS
DSheild
Phishtank
hpHosts
OpenBL
UCEPROTECT
VERIS
WHID
WPBL
Malware Domains
Support Intelligence
APWG
Viruswatch
Malware Patrol
ShadowServer
Honeypot traffic
Spamtrap

Table 2.1: Datasets used by literature

works use. We note that few studies use the same datasets.

2.2 Reputation Function

Reputation function computes the reputation of an Internet host based on some
historical features of the sender. Many of the state of the art works use classifiers
in order to compute the reputation based on a set of features. [5] [14] [4]
[13] are simple linear classifiers that label malice based on a malicious activity
threshold. The threshold is usually based on a number of historical malicious
activities e.g. the number of sent spams, the number of blacklists that list an IP
address or DNS, the number of IP addresses in a network that are blacklisted, or
spam ratio i.e. the percentage of spams to total sent emails. Several works use
sophisticated Machine Leaning (ML) classifiers and label maliciousness based
on an extensive set of features [44][6][48]. [44] uses RuleFit classifier and uses
13 network and traffic related features such as message length and time of the
day for classification. [6] uses Logit-Boost strategy (LAD) decision tree based
on 16 domain related statistical features. These features span from number of
related IP addresses and domains to the number of related malicious domains

1The authors of the works, in order, are Soldo et al, Zhang et al, Antonakakis et al,
Felegyhazi et al, Shue et al, Liu et al, Venkataraman et al, Qian et al, Moura et al
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literature category algorithm Number of features
Soldo et. al. [45] Recommendation Exponential Weighted Moving Av-

erage - Cross Validation (CA) clus-
tering algorithm - K-Nearst neigh-
bors

2

Zhang et. al. [46] Recommendation similar to Google’s page rank algo-
rithm

1

Hao et. al.[44] Classification RuleFit 13
Antonakakis et. al. [6] Classification Logit-Boost strategy (LAD 16
Liu et. al. [48] Classification Random Forest classifier 256
Felegyhazi et. al.[47] Clustering Manual ˜10
Shue et. al. [15] Classification linear classifier 1
Venkataraman et. al. [4] Classification linear classifier 1
Qian et. al. [14] Classification linear classifier 1
Moura et. al. [13] Classification linear classifier 1

Table 2.2: Reputation function characterization of state of the art

and lexical features of the domain name. [48] uses Random Forest classifier and
a list of 258 features that are mainly related to mismanagement issues such as
open resolver in the network or mis-configured HTTPS certificate.

Other works use recommendation ML algorithms to output the reputation
of an Internet host [46][45]. These systems aim to build a customized blacklist
for a victim. Their input is a matrix that shows which attackers attacked which
victims. They aim to find the most relevant attackers to a victim. While
[46] only searches a two-dimensional matrix to find the relevance of different
attackers to a victim, [45] also takes into account the temporal behavior of the
attacks and searches in a 3-dimensional space. Table 2.2 reports the reputation
function category, the algorithm and the number of features that different works
use.

2.3 Reputation output

Internet Host Reputation Systems (IHRSs) usually output either of two general
artifacts: blacklist; or a trained classifier. Regardless, the state of the art may
use the blacklist or the classifier in a detection engine later on. For instance,
[4, 14] deploy the result of reputation system they develop in SpamAssassin.
Many public IHRS and state of the art works output a blacklist. Other IHRSs
based on reputation usually output a trained classifier that may be used in a
malicious detection engine. Detection engines that solely use blacklists usually
have a less detection latency in comparison to the trained classifiers that work
with multiple features because the processing would be limited to only querying
the reputation of the node from the blacklist. On the other hand, the trained
classifier output of an IHRS usually has a better detection performance accuracy;
similar to solving a crime case by law enforcement, more evidences facilitate
a better decision. In summary, detection engines based on blacklist artifact
have lower detection performance accuracy while maintaining shorter detection
latency in comparison to trained classifiers.

A blacklist would assign reputation to an Internet host based on its address
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output artifact The literatures that output such artifact
2 [47] [14] [13] [48] [45] [46] [15] [6] [44] [4] [5]
blacklist
trained classifier

Table 2.3: Internet host reputation systems taxonomy based on output artifact

whereas a classifier is trained based on many attributes, including the Internet
host address. In addition, a compiled blacklist is independent of the final im-
plementation and it can be used in numerous systems e.g. firewall, IDS etc;
however, a trained classifier can hardly be used anywhere else except in the
designed detection engine.

A majority of state of the art output a reputation blacklist [47, 14, 13, 45,
46, 15, 4, 5]. [6, 44, 48] train a classifier based on a reputation oracle. [6] and
[44] use the trained classifier in a detection engine while [48] uses the classifier
to predict future cyber incidents. In addition to the previous works, there are
few researches that can not be strictly characterized in one category. Table 2.3
reports the characterization of the literature based on the decision time.

2.4 Aggregation feature

Reputation is assigned to an Internet host based on a metric by which the host
can be distinguished from the others. We use the general term aggregation fea-
ture to such host identifier even when there is no aggregation in practice. In such
case, we consider aggregation size equal to one. Reputation is commonly as-
signed to Internet hosts based on IP address [13] [45][46][4][14]. Except [46], the
rest use an aggregation of IP addresses based on IP prefix. One popular alter-
native to IP address is DNS address. There is usually a mapping between DNS
host name and IP address through A record and vice versa through DNS PTR
record. Since IP addresses are often dynamically assigned, DNS name some-
times maintains more stability. [6] and [47] use DNS records. [14] uses reverse
Domain authoritative reverse DNS server (rANS) and reverse DNS(rDNS) as
aggregation feature. In addition to DNS, Autonomous System Number (ASN)
can be used as an aggregation feature. The mapping between IP address and
ASN is not usually intuitive; the routing BGP broadcasts need to be examined
for the mapping. [15] and [49] use ASN number as aggregation feature. Finally,
some works use Geo location of an Internet host such as country or city to assign
reputation [50, 18].

Aggregation metric may represent an individual host or a group. IP address,
and DNS A records represent an individual host while the rest of the indicators
represent a group of hosts and the assigned reputation applies to all the group’s

2The authors of the works, in order, are Soldo et al, Felegyhazi et al, Qian et al, Moura et
al, Liu et al, Soldo et al, Zhang et al, Shue et al, Antonakakis et al, Hao et al, Venkataraman
et al, Wanrooij and Pras
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Literature IP DNS ASN Geo location Organization Aggregated Network-Aware
Soldo et. al.[45]
Zhang et. al.[46]
Antonakakis et. al.[6]
Felegyhazi et. al.[47]
Shue et. al.[15]
Van Polen et. al.[18]
Venkataraman et. al.[4]
Qian et. al.[14]
Moura et. al.[13]
Liu et. al.[48]

Table 2.4: IHRSs taxonomy based on aggregation feature

members. Aggregating the Internet nodes based on a metric may be carried
out in different ways. For instance, IP prefix is a common method to aggregate
Internet nodes. That said, the IP prefix based on an IP addresses can be
calculated either statically and based on a fixed prefix or dynamically and based
on BGP prefix. The latter is called a network aware cluster because it represents
a network in real world. Several studies suggest that network aware clusters
have a fine granularity, and hence the precision derived from these clusters is
acceptable [4, 14, 51]. On the other hand, granularity increases the entries’ size
that need to be stored, and hence the detection latency may increase.

Table 2.4 reports the result of categorizing the state of the art based on their
aggregation feature. We note that systems which output a trained classifier
are not mentioned in the table. The reason is that these works, as already
mentioned, are taking a holistic approach; they don’t use only one metric to
track the reputation. For instance, [6] uses both the IP address prefix and the
Domain name of a host for training the classifier.

2.5 Benchmarking

The literature use different benchmarking to validate the proposed reputation
system. The first category of works use their reputation oracle to validate
their results. In other words, they split the data from reputation oracle to two
sets: training data set; and the testing data set. The testing data set, used
for validation, contains the malicious activity records of later time, hereafter as
future versions of blacklist. For instance, the records of SBL from the October
of one year may be used for detection, and the records of November of the same
year may be used for validation. [47] reports false positive and true positive
based on presence or absence of the predicted malicious domains in JWSDB,
URIBL and McAfee SiteAdvisor. Sophisticated classification solutions follow
a similar approach but in a more systematic way. [44, 6, 48] use multi fold
cross validation to report false positive and true positive. The second category
of works use another well-known malicious detection system to compare their
results. [14, 5, 4] use SpamAssassin as the ground truth to evaluate their system.
What they report is basically the improvement they obtain by employing their
compiled list in SpamAssassin. For instance, Qian et. al. report that their
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Ground truth Accuracy metric Measurement method TP/FP value compared work
[45] Reputation Oracle Hit Rate experimental analysis [46]
[46] Reputation Oracle Hit rate experimental analysis None
[44] Reputation Oracle TP/FP 10-fold cross validation 70%/0.3% None
[6] Reputation Oracle TP/FP 10-fold cross validation 96.8%/0.38% None
[48] Reputation Oracle TP/FP 10-fold cross validation 90%/10% None
[47] Reputation Oracle TP/FP cross validation 75%/5% None
[14] SpamAssassin FN/FP experimental analysis 10%/1% 3 None
[13] information lost - error mathematical calculation None
[5] SpamAssassin FP/FN experimental analysis None
[4] SpamAssassin server goodput experimental analysis None

Table 2.5: Benchmarking of the state of the art

aggregation method improves the false positive rate of SpamAssassin by 50%.
Venkataraman et. al. report the percentage of the Spams that were detected
when the server was overloaded. Such measurements are not comprehensive
enough to compare the malicious detection performance of their underlying
reputation systems. The third category, Recommendation-based solutions, do
not report based on FP and NP; they concentrate on hit count [45][46]. Hit
count is calculated based on the number of blacklist entries that are seen in
the actual traffic. The reason to choose this measurement is the goal of such
works i.e. optimizing the size and effectiveness of the public blacklists. Table
6.1 reports the characterization of the literature based on their benchmarking.

2.6 Summary

State of the art’s findings show intrusion detection based on reputation of In-
ternet hosts is effective. Statistical analysis of attackers’ IP addresses show
that attacks are likely to happen from the same malicious networks. Hence,
clustering Internet hosts based on an aggregation features leads to detecting
more attacks i.e. reducing False Negative rate and reducing the size of black-
list. That said, aggregation increases False Positive(FP) while reducing False
Negative(FN) based on the level of granularity.

Various aggregation features have different levels of granularity i.e. different
members and group sizes. IP prefix aggregation can be based on either a fixed
size or announced IP BGP prefixes, and these two have different granularities.
The difference in granularity results in different detection performance (in terms
of FN/FP) and detection latency. Although we can hypothesize about either
detection performance or detection latency advantage of one aggregation feature
solely, we can not speculate about the tradeoff of these two metrics and to extent
which that granularity affects these metrics.

State of the art lack a comprehensive comparison of the different aggregation
features in intrusion detection in terms of detection performance and latency.
According to Tab.6.1, few works use standard accuracy metrics in their work.

3The reported accuracy in this work differs based on threshold and the aggregation feature.
Our reported value is an approximation of the optimum balance of FP/NP of DNS and IP
BGP prefix clusters
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Moreover, each work reports the measurement for one specific aggregation fea-
ture; an exception is [14] that investigates the difference in granularity of IP
BGP prefix aggregation vs. DNS in Spam detection. Furthermore, the state of
art rarely considers also the detection latency effect of an aggregation feature.
Finally, the benchmarking in various works is different, making it harder for
comparing one to another.

In a research, following this proposal, we will investigate if the loss of granu-
larity by using BGP prefix aggregation in comparison to /24 fixed prefix aggre-
gation is significantly different. Furthermore, we will investigate the detection
performance, the reputation precision and the implementation performance of
the two aggregation features.



Chapter 3

Problem Formulation and
Definitions

In the previous chapters, we explained that generalizing the reputation of the
IP addresses within an BGP prefix is a common approach. Such generaliza-
tion is based on the way that BGP prefixes are managed; it is expected that
nodes within a BGP prefix are managed similarly, and they together form a
uniform behavior. That said, BGP prefixes have different lengths and hence
the granularity of the assigned reputation will be different. Decrease in the
level of granularity, attributing reputation to a larger number of nodes, will
affect false positive, false negative and the implementation (or processing) per-
formance of the reputation aggregation. The finest granularity of a BGP prefix
is for the longest length that is 24. Henceforth, aggregation based on fixed 24
length to achieve high granularity is an alternative to BGP aggregation. Yet,
the advantage in doing so, in terms of measurable detection and implementation
performance metrics is unclear.

The objective of this chapter is to define some formal metrics that allow the
comparison of BGP and /24 fixed prefix aggregation. In chapter 1, we explain
that Redsocks Security, and possibly other similar vendors, is concerned about
False Positive (FP), False Negative(FN) and Performance Penalty effect of a
chosen aggregation feature. However, measuring FP and FN of an aggregation
feature highly depends on the ground truth and the observed traffic. That said,
both ground truth and traffic are rare commodities in the Network Security
domain. Abt et al extensively discuss the lack of ground truth for security
researches in [19].

The main problem to obtain traffic and hence ground truth is the concern
about privacy. The author of the current work and the supervisors spend months
of negotiation with several Dutch organizations to access network traffic and use
an IDS to assign labels. Although such method would have its own limitations,
it could have been a starting point in constructing a ground truth. The author
and the supervisors even proposed a technical solution to the privacy concern

27
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of the correspondents. Yet, no party gave us access to the network traffic data.
Henceforth, we are not able to compare FP and FN of the aggregation features,
and in the rest of section, we define metrics that we can employ using our
available data.

In this chapter, we formally formulate the terms and the metrics that we
will use for our comparison analysis in chapter 6. These metrics are Precision,
Detection Rate, Granularity Delta and Lookup Performance. We measure these
metrics based on Likelihood (see section 3.1) metric that we define. In section
3.2, we define the basic terms that we will use in the rest of this paper. In section
3.3, with recourse to the basic definitions, we formally define above metrics that
allow us compare the two aggregation features and answer the research questions
we earlier presented.

3.1 Likelihood

Measuring the malicious activity of a network is a subjective task. In case
of spamming, spam ratio measurement is a common way in the state of the
art as mentioned in the previous chapter. In case of phishing, the number of
malicious URLs or domains could be an effective metric. In our case, case of
C&C and bot detection, the focus is the number of malicious Internet nodes.
Since there is a relation between IP and Internet nodes, there may be one or
multiple nodes corresponding to one IP address, we base our measurement on
the number of malicious IP addresses in a network. That said, the number itself
is not representative considering the variable size of BGP prefixes. For instance,
16 malicious hosts in a prefix of length 24 does not represent the same amount
of malicious activity comparing to a prefix of length 22. Henceforth, we define
likelihood of malicious activity that takes into consideration the size of a prefix.

This likelihood, later, will be used as one of the features fi in V = {f1, f2, ..., fn}
to represent the malice of the network where the IP originates. The larger the
likelihood, the higher the chance that the traffic is malicious. The reader shall
note that we do not see badhood in a black and white manner, either the net-
work of the IP address is safe or not. Our measurement is independent of the
wight of the malice likelihood in the vector of features used for malware traffic
detection. In other words, discussing the weight of this feature in comparison
to other features is out of the scope the current work. That said, we give an
example of using likelihood for malice detection. We assume that network x has
a malice likelihood of 60%. If there is an outgoing traffic to this network and
the connection is uploading a data of size 1GB, there is a high chance of data
exfiltration by a malware. Such detection accuracy can be enhanced by other
features, such as the country that the traffic flows to, the lexical characteristics
of the domain and the URL and etc.
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3.2 Basic definitions

In this section, we first present the basic definitions. In the end of this section,
we further clarify the definitions via an example. We start our definitions from
the aggregation feature labels. We define two constants BGP and Fixed that
will be used as labels and indexes to successively reference to aggregation based
on BGP and fixed prefixes. We define a set of IP indicators of compromise as:

Is,t = {i1, i2, i3, ..., in}

s represents the start date of collecting indicators and t represents the number
of days that the collection lasted. I, in simple terms, represents our dataset of
indicators of compromise. We define an aggregation feature value domain Df

as the the set of all the values that aggregation based on a feature, F (x) can
have. We define |.| operator that outputs the size of a set. Formally speaking:

Df = {a1, a2, a3, ..., an}, f ∈ {BGP,F ixed}, |D| = n

F (x) ∈ Df

We define the set of all the prefixes derived from an indicator set by Af
s,t:

ai ∈ Af
s,t only if ∃x ∈ Is,t such that F (x) = ai

A prefix ai represents a group of IP addresses. We name this set Uai
. The size

of Uai
, |Uai

|, depends on the length of prefix. For Fixed prefix, the prefix length
is always 24, however, for BGP the length can be anything greater or equal to
8 and less than or equal to 24. Given a prefix size l for prefix a:

|Ua| = 232−l

Similarly, we define set Mai :

x ∈Mai
only if x ∈ I and F (x) = ai

We define the likelihood of having malicious activity from an IP address x by
P (x). This likelihood can be different in different times t since Internet hosts
may be infected and cleaned. Henceforth:

P (x) ≈ σ(x, t)

σ(x, t) is a function that is unknown to us. By aggregation, we generalize the
reputation of few hosts in a group to th whole group. Formally speaking, we
are modeling σ(x, t):

P (x) ≈ Ps,t(a) such that F (x) = a

Ps,t(a) is the probability that an IP address from a prefix a is malicious based
on our training data collected from s up to t days. For the sake of simplicity, we
refer to Ps,t(a) by simply using P (a) notation unless we strictly say otherwise.
We define score of prefix a as Sa which is simply |Ma|, and we define P (a) based
on Sa:

P (a) =
Sa

|Ua|
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3.2.1 Example

In order to clarify the notations, we give an example using all the notations.
We assume our dataset has the following entries and it has been collected from
2017-Mar-18 for 7 days:

I2017−Mar−18,10 = {15.14.13.10, 15.14.13.11, 37.3.0.1, 156.147.2.1}

DFixed in this case is all the following entries:

DFixed = {0.0.0.0/24, 0.0.1.0/24, ..., 255.255.255.0/24} |DFixed| = 16777216

DBGP , however, depends on the BGP announcements between 2017-Mar-18
and 2017-Mar-25. An interesting reader can refer to [52] in order to download
the appropriate dataset to generate DBGP . F (x) in case of fixed aggregation
is a simple masking with 0xffffff00 value. In case of BGP, F (x) should be
implemented by checking the routing snapshots of the given period. Below is
the result of aggregation:

AFixed
2017−Mar−18,10 = {15.14.13.0/24, 37.3.0.0/24, 156.147.2.0/24}

ABGP
2017−Mar−18,10 = {15.0.0.0/8, 37.2.0.0/15, 156.147.0.0/16}

M15.14.13.0/24 = M15.0.0.0/8 = {15.14.13.10, 15.14.13.11}

M37.3.0.0/24 = M37.2.0.0/15 = {37.3.0.1}

M156.147.2.0/24 = M156.147.0.0/16 = {156.147.2.1}

Based on the above data, P (15.14.13.0/24) is 2
256 . This probability means that

if we observe traffic from any IP address that its masking with 0xffffff00

is 15.14.13.0/24 there is 2
256 chance that this traffic is malicious. In contrast,

with BGP aggregation, the probability of having malicious activity from any
equivalent IP address is 2

65536 . The reader should notice that our example is
not representative of the real world since we are only considering a dataset of
only 4 IP addresses; we only gave this example to clarify the definitions and not
to compare Fixed with BGP aggregation.

3.3 Metrics definition

In the following paragraphs, we define four metrics that aim to answer the first
four research questions.

3.3.1 Granularity Delta

In order to answer Research Question (RQ) 1, we define Granularity Delta met-
ric. By definition, fixed aggregation is more granular than BGP; the reputation
derived from fixed aggregation is attributed to a smaller group of hosts. In other
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words, we have more likelihood records in our database and this can give us a
more granular view of the Internet host reputations. Formally speaking:

|ABGP
t,s | <= |AFixed

t,s |

The above relation exists because all advertised prefixes in wild are less than or
equal to 24, and all the prefixes in the Fixed approach are exactly 24. Although
the fixed aggregation is more granular than BGP, the probabilities distribution
in BGP can still neutralize the effect if:

PFixed
s,t (a) = PBGP

s,t (a)∀a ∈ AFixed
t,s

However there is not guarantee that all prefixes a exist in ABGP
t,s . As a matter

of fact, we first ensure this is not the case; otherwise, comparison of BGP and
fixed prefix is meaningless since AFixed

t,s = ABGP
t,s .

Nevertheless, PBGP
s,t (a) can still be derived from an a′ that encompass the

IP addresses that a encompass. This is because, by definition, we generalize the
reputation of Ma to ∀x ∈ Ua. Since a′ encompasses a, Ua ⊂ U ′a. Henceforth, the
reputation of Ua members is represented by the reputation a′ and P (x) x ∈ Ua

is represented by P (a′).
In order to clarify the concept, assume that we want to lookup the reputation

of 9.50.10.1 based on aggregation. In fixed approach, we need to lookup the
maliciousness probability of 9.50.10.0/24 in our database. Assume that based
on the routing snapshots 9.50.10.1 belongs to 9.50.10.0/23 prefix. In the BGP
approach, in order to lookup the probability of 9.50.10.1 we need to look for
9.50.10.0/23 entry. If PFixed(9.50.10.0/24) = PBGP (9.50.10.0/23), there hasn’t
been indeed any granularity loss. This can happen if the adjacent \24 prefixes
that comprise a BGP prefix have almost the same probability of maliciousness.
For instance, in the former example, if 9.50.10.0/24 and 9.50.11.0/24 both have
probability y, then PBGP (9.50.10.0/23) would also have the probability of y.

In order to compare the granularity of BGP and fixed aggregation, and
answer RQ 1 we investigate if the above phenomenon exists i.e. the adjacent
/24 prefixes based on the BGP view have the same probabilities. To perform
such analysis, we define ∆(a), read as granularity Delta of prefix a:

Delta(a) = PFixed(a)− PBGP (a)

We compute PBGP (a) in the same manner that we explained in the above
paragraphs. We then analyze the distribution of Delta and analyze its statistical
characters.

3.3.2 Detection Rate

In order to answer RQ 2, we define detection rate metric. We define the hits as
the number of records in Af

s,t that also appear in Af
s′,t. Based on this definition:

J = Af
s,t

⋂
Af

s′,t′ Hit(Af
s,t, A

f
s′,t′) =

|J|∑
i=1

|Mai
| ∀ai ∈ J
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Similarly, we define Detection Rate:

Detection Rate =
Hit(Af

s,t)

|Af
s′,t′ |

In simple words, this metric shows the ability of our prefix set based on an
aggregation to detect the malicious IP addresses. Of course this metric does
not say anything about the confidence of the prediction; detection, here, simply
means that we can have an estimation on the probability of having malicious
traffic from a prefix. In order to better understand the nature ot the detection
that a prefix set may have we define Cumulative Distribution Function(CDF )
of Hits based on the malice probability x:

CDF (x) =

n∑
i=1

|M ′a| ∀a s.t. P (a) <= x

CDF graph gives us an insight about the probabilities that we report for the
hits and our confidence about the malice chance. This insight will help the
designer of a malicious detection solution to better understand how to employ
the aggregated reputation and what to expect from the reputation.

By the detection rate metric, we aim to see the potential of each aggregation
feature to identify the entire malicious IP addresses. In this regard, it is expected
that BGP identifies more malicious IP addresses since:

∀a ∈ DFixed ,∀b ∈ DBGP , Ua ⊂ Ub

The above relation holds because the derived BGP prefixes from our IP indica-
tors set are either of size 24 or larger size that encompass the /24 prefix. Since
the IP space that a BGP aggregated reputation database covers is always bigger
than its Fixed /24 counterpart, the Detection Rate of BGP is always equal to
or greater than /24 Fixed aggregation. Larger IP space coverage, however, has
a downside; the chance of having higher false positives increases by an IP space
coverage growth. That said, it is the tradeoff between the Detection Rate and
the space growth that can justify the usage of BGP. If the Detection Rate of
BGP is meaningfully different, we can use our probability metric to signify a
chance of malicious activity and expect other malicious detection features to
distinguish false positives from the true positives. Otherwise, the Fixed aggre-
gation is preferred since it will have smaller false positive rate.

3.3.3 Lookup performance

In order to answer RQ 3 and compare the implementation performance of the
two aggregation features we define two lookup performance metrics. Firstly,
we compare the processing overhead of each aggregation feature based on the
lookup algorithm Order value. We present two lookup algorithms that are inde-
pendent of the employed aggregation feature in chapter 4. Yet, since the number
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of prefixes derived from each aggregation is different, O(x) that is dependent on
the number of records can be different. For instance, if the lookup algorithm
has O(n) the performance would be two times more if n becomes n

2 .
Secondly, we compare the Footprint of each aggregation feature. Again, foot-

print depends on the implementation of the lookup algorithm and the underlying
data structure; we take this into consideration and base our measurement on the
two algorithms that we present in the chapter 4. We report the footprint based
on the number of records and the size of the lookup algorithm data structure in
Bytes on disk and in memory.

3.3.4 Precision

In order to answer RQ 4, we define precision metric that measures the capability
of the prefixes likelihood metric in predicting malice of a network. In order to
measure precision of BGP and fixed aggregation, we split our datasets to two
subsets: training; and testing. Our training set spans from date s to s+ t and
our testing set spans from s′ to s′+t′ such that s′ > s+t. We, then, measure the
likelihood of malice for the observed prefixes in the training set and the testing
sets. Afterwards, we extract (P f

s,t(a), P f
s′,t′(a)), f ∈ {BGP,F ixed} points from

the prefixes a ∈ J :

J = Af
s,t

⋂
Af

s′,t′ f ∈ {Fixed,BGP}

P f
s,t(a), hereafter as P (a) unless stated otherwise, measures the probability that

an IP address from prefix a sends malicious traffic based on our training dataset.
P f
s′,t′(a), hereafter as P ′(a) unless stated otherwise, measures the probability

that an IP address from prefix a sends malicious traffic based on our testing
dataset. In simple words, P (a) is our predicted probability and P ′(a) is our
observed probability. After constructing J , we plot it to examine the relation
between P and P ′. We then investigate if there is any correlation through
regression modeling. We compare the precision of BGP and Fixed aggregation
based on the standard error.

3.4 Summary

Aggregation based on /24 fixed prefixes lead to a subset of BGP aggregated
prefixes. This inevitably leads to a more granularity of fixed aggregation in
comparison to BGP prefix aggregation. On the other hand, since BGP prefix
aggregation covers a larger portion of IP space the false negative rate of BGP is
equal or less than /24 fixed aggregation. That said, we can not directly measure
false negative or false positive rate because our efforts to obtain a reliable ground
truth and traffic were impeded by privacy concerns.

Based on the available data (see chapter 5), we define several metrics in this
chapter to measure the detection and implementation performance difference
of BGP and /24 fixed aggregation. Firstly, we define Granularity Delta metric
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to see how much /24 fixed aggregation is more granular. Secondly, we define
Precision and Detection Rate metrics to compare the detection performance of
the aggregation features. Finally, we define Order Value and Footprint metrics
to compare the implementation performance of the aggregation features.



Chapter 4

Aggregated Reputation
Lookup Implementation

In the previous chapter, we explained that implementation performance compar-
ison of the two aggregation features depends on the reputation lookup algorithm.
In this chapter, we present two algorithms that are independent of the repu-
tation aggregation method; they only depend on the size of prefixes database.
After compiling the reputation of a group of IP addresses, aggregated based on
a Fixed or BGP size, the database will be used for reputation lookup of single
IP addresses.

Our implementations in this chapter are independent of the aggregation
feature that we use to build the reputation database. In other words, we assume
that the reputation lookup algorithm is unaware of the reputation compilation
algorithm. In order to achieve this, we abstractly assume that the database
keeps the reputations in a NetID, PrefixLength, Probability tuple format. For
instance, 2.16.196.0/23 prefix with a malice probability of 79% is stored as
34653184, 23, 0.79. Therefore, in the Fixed aggregation all the entries in our
database have length /24 while for BGP the length can be anything between
8 and 24. The difference in the length of prefixes leads to a difference in the
number of stored records. We explain in this chapter that there is a tradeoff
between the lookup performance and the footprint of the lookup implementation
based on the number of stored records.

In the rest of this chapter, in Section 4.1, we present an algorithm that can do
the lookup in O(1) regardless of the aggregation compilation feature. In Section
4.2, we present another lookup algorithm that can do the search in O(log(n))
but is significantly more efficient from footprint perspective. We assert that
the algorithms and the data structures that we introduce here are based on
the standard algorithms in computer science and hence not novel. That said,
in order to apply those algorithms and data structures, a few adjustments and
preprocessing are required.
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4.1 Indexing Search Algorithm (ISA)

The IP reputation lookup can be implemented in a fast manner via indexing.
Since IP space can be presented as a finite series, 232 members, we can exploit
this feature for indexing. We may use the IP address integer value as an offset
to a memory location. This memory location would store the reputation of
the IP addresses. As prefixes also can be represented by integer, we can split
the IP space to the prefixes of same length. Given a prefix length of l, the
IP space would be split to 2l chunks. We assign a reputation to each of these
chunks and then later we can query the reputation of an IP address by finding
its corresponding chunk. This approach is to implement an ideal hash table.
Following the hash table concept, the chunks are indeed the defined buckets in
a Hash table and the hash function is a simple division of the IP by 232−l value;
the reader shall note that this is an ideal hashing and each prefix is assigned to
a unique bucket.

4.1.1 Data Structure

As mentioned in the previous section, our data structure is an ideal hash table.
We simply use an array to implement the hash table (see Figure 4.1); such
simple choice of data structure would allow the implementation of the algorithm
regardless of the programming language. This array has 224 entries. We split
the IP space to buckets of length 256, or prefixes of size 24. Each element stores
the reputation of a corresponding /24 Net block. The corresponding element of
a Net block can be retrieved by adding an index to the the start of the array
address. The index is the result of dividing IP address with 0xff. For instance,
the reputation of 0.0.5.57 IP is stored in the 6 element of the array. For the /24
entries that we haven’t recorded any malicious activity, we store 0. This value
is logically correct since based on historical records, there is 0 chance that an
IP from this space exposes malicious activity.

4.1.2 Initialization

In order to materialize the Indexing Search algorithm, we first need to initialize
a byte array of size 224 with the corresponding probabilities of the /24 prefixes.
Since the reputation database may contain shorter net block entries than /24,
l < 24, we first need to process the reputation database entries and split large
net blocks to /24 entries. This processing is done using Algorithm 1. The inputs
of this algorithm as mentioned earlier in this chapter come from the aggregated
reputation compilation. After that, Algorithm 2 initializes the Indexing array
in the memory. We use by default one byte to store the reputation of a net
block. In order to realize storing a float as a byte, we multiply the probability
by 256. If this precision is not sufficient, the reputation can be stored as a float;



4.1. INDEXING SEARCH ALGORITHM (ISA) 37

Figure 4.1: Array data structure to use for O(1) algorithm
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the footprint, however, increases as a result.

Algorithm 1: Covert a reputation database with entries’ prefix larger
than 24 to 24

Data: Three arrays of NetIDs, Lengths and Probabilities
Result: Two derived lists of Fixed NetIDs and Fixed Probabilities
Fixed NetIDs:=List();
Fixed Probabilities:=List();
for i:=1 to len(NetIDs) do

start NetID = NetID[i];

Num Of Prefixes = 224−Lengths[i] ;
for j:=1 to Num Of Prefixes do

m:= (j-1) * 256;
Fixed NetID := start NetID + m;
Fixed NetIDs.append(Fixed NetID);
Fixed Probabilities.append(Probabilities[i]);

end

end

Algorithm 2: Initialize the Indexing Array with the corresponding prob-
abilities

Data: Two lists of Fixed NetIDs and Fixed Probabilities
Result: Array Indexed NetIDs with corresponding probabilities
Indexed NetIDs := Byte[224];
for i:=1 to len(Indexed NetIDs) do

Indexed NetIDs := 0;
end
for j:=1 to len(Fixed NetIDs) do

PrefixID := Fixed NetID.ElementAt(j);
Index := PrefixID/256;
Indexed NetIDs[Index] := Fixed Probabilities.ElementAt(j);

end

4.1.3 Searching

Using the Indexed array, the reputation of any IP address can be easily fetched
by converting it to an index to its reputation. The reputation searching is
illustrated in Algorithm 3.

Algorithm 3: Initialize the Indexing Array with the corresponding prob-
abilities

Data: Indexed NetIDs and IP
Result: Reputation
Index := IP / 256 ;
Reputation := Indexed NetIDs[Index] ;
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4.2 Binary Search Algorithm

For the second algorithm, we employ the classic Binary Search algorithm with
a small adjustment. In order to employ Binary Search, we initialize an array
with the start and the end addresses of every net block. The difference with the
classic Binary Search Algorithm is that we don’t store a value but abstractly a
range start and end address in the array. Then, in order to find a reputation,
we find the array index of the corresponding prefix starting address of an input
IP, and use it as an index to the probabilities array.

4.2.1 Data structure

Our data structure for this algorithm is a sorted array. This sorted array con-
tains the initial and end addresses of every net block for which we have a reputa-
tion. Our goal in the binary search implementation is not to find a value in the
array but to find the relevant range for an IP address. For instance, given a set
of {1.1.1.0/24, 1.1.24.0/24, 2.16.196.0/20}, our data structure to start the search
is an array of [16843008, 16843520, 16848896, 16849152, 34653184, 34654208]

4.2.2 Initialization

To build our data structure, we need to load all the initial and end addresses
of a net block in a sorted array. To achieve this, we read each NetID and the
corresponding lengths from a sorted array, and according to its prefix size, we
compute the end address of the prefix. We store the initial addresses at Odd
indexes and the end addresses at even indexes of the array. It goes unsaid that
this array is as twice as the initial NetID array. Algorithm 4 illustrates the
process to construct our data structure.

Algorithm 4: Initializing range array data structure for the binary search

Data: Sorted NetIDs and NetID Lengths
Result: Sorted range array R NetIDs
R NetIDs size := 2 * len(NetIDs) ;
R NetIDs = Byte[R NetIDs size] ;
for i:=1 to len(NetIDs) do

odd := NetIDs[i];

even := odd + 232−NetID Lengths[i] ;
R NetIDs[2i-1] := odd;
R NetIDs[2i] := even;

end

4.2.3 Searching

Our binary search algorithm has a very similar structure to the classic binary
search algorithm. That said, we adjusted the algorithm to search for the range
an IP address belongs to. If there exists a reputation entry for the net block
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of the IP address in our database, then the IP address value falls between
an odd (lower band) and an even (higher band) value in our data structure.
Otherwise, the IP address value falls between an even (lower band) and an
odd (higher band) value. Following the example we presented in the begin-
ning of this section, the result for searching 1.1.25.53 must return 0. Looking
at [16843008, 16843520, 16848896, 16849152, 34653184, 34654208], we learn that
16849205, integer value of 1.1.25.53, falls between element 4 and 5 of the array.
Since the lower band, 4, is even we return 0. Algorithm 5 illustrates our binary
search algorithm.

Algorithm 5: Binary search algorithm based on our data structure

Data: R NetIDs, Probabilities and IP
Result: Reputation
low := 1 ;
high = len(R NetIDs) ;
while low + 1 < high do

middle := d low+high
2 e;

if R NetIDs[middle]>=IP then
high := m;

else
low := m;

end

end
if low%=1 then

index := b low2 c+ 1 ;
Reputation := R NetIDs[index];

else
Reputation := 0;

end

4.3 Summary

In this chapter, we presented two algorithms that will be the based of our
comparison for implementation performance of the two aggregation features.
We adopt Hash Table and Binary Search concepts to implement our algorithms.
The first algorithm that we present has O(1) and is optimized for fast processing
while the second algorithm is optimized for footprint and has o(log(n)).



Chapter 5

Data Collection
Methodology

In this chapter, we explain what dataset we use for our analysis. Our data
comes from Redsocks company that is a cyber security solution provider in the
Netherlands. The data that they shared with us contains Indicator of Com-
promise used for malicious detection from network traffic. A majority of the
data identifies command and control servers and also bots. We process the raw
data that we receive and build a dataset of IP prefixes with an assigned score
showing the number of malicious IP addresses within that prefix. In the rest
of this chapter, in Section 5.1, we explain in detail what our raw dataset from
Redsocks Security (RS) contains. In Section 5.2, we discuss the structure of the
prefix dataset we would generate from raw data. In Section 5.3, we present our
preprocessing steps on the raw data to construct the prefix dataset we will use
later for experimental analysis. In section 5.4, we give some statistics about our
prepared prefix dataset.

5.1 Redsocks Raw Dataset

Redsocks Security(RS) collects Indicators Of Compromise (IOC) on a daily
basis. These IOCs are used for behavioral detection of malicious activity. RS
gave us access to this database for a period of 1 month starting from 2017-04-
18. Since they store IOCs with a timestamp, we fetch only the IOCs that are
collected within the aforementioned period. The number of indicators for four
weeks of data collection that we have are reported in Table 5.1. These values
report the indicators from all types e.g. file hash, URL etc. In Section 5.3, we
explain how we process these indicators and extract the data we need.
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Start Date End Date Indicators
2017-04-18 2017-04-24 336037
2017-04-25 2017-05-01 349656
2017-05-02 2017-05-08 757027
2017-05-09 2017-05-15 329075

Table 5.1: RS IOC statistics

5.1.1 Indicators Of Compromise

An indicator Of Compromise (IOC) is a unique trace from malware that can
be used to identify malware activity. The IOCs in the dataset that we had
access to have many attributes. Both because of confidentiality and also lack
of relevance we do not discuss all the attributes. The relevant attributes to our
work are indicator, source and timestamp. The indicator is a string value of
different length that contains the valuable data to indicate a malicious activity.
IP address, DNS name, URL and file hash value, among others, are some types
of IOC that one can expect from the raw dataset we had access to. Source
stores the information about the source that the IOC has been collected from
e.g. a malware lab. In the next subsection, we elaborate on some of the sources.
Timestamp says about the date that the IOC is collected. This attribute is
important to us since an IOC is not always valid; for instance, an infected
workstation IP address may be an IOC in the dataset to identify a C&C but
after the workstation is cleaned the corresponding IP must also be removed.

5.1.2 IOC Sources

Due to business confidentiality, we can not mention all the sources that RS
uses to collect IOCs. That said, we mention the tops sources, based on count
analysis, that the majority of the IOCs come from. Our count analysis shows
that manual input from RS malware analysts, VirusTotal and two malware labs
that RS has are the main providers of IOCs. RS also uses public datasets such
as Zeus Tracker and Phishtank. However, the data from such sources is one
order of magnitude less than the other sources that we mentioned.

5.1.3 How accurate is our raw data?

The raw data that we base our work on reveals the IOC based on malware anal-
ysis. This means we expect that a majority of the IP addresses are associated
with command and control servers and also bots. Via manual analysis, we ran-
domly selected some of the indicators and checked the associated IP addresses
with public DNSBLs. Our analysis showed that most of the indicators are also
blacklisted by DNSBLs. There are however some indicators that are not listed
in DNSBLs. Redsocks Security claims that this is their added value and their
database contains IOCs that can not be found in other databases. That said,
because of lack of ground truth [19] in computer security domain, we can not
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independently qualify our dataset and report False Positive and False Negative
values for it.

5.2 Prefix Dataset Structure

In order to analyze /24 Fixed aggregation or BGP aggregation, we need to ana-
lyze the distribution of IP addresses in their corresponding prefixes. Henceforth,
we build a dataset of prefixes from indicators showing the number of malicious
indicators (IPs) in each prefix. The high level schema of our database is shown
in Figure 5.1. Each row in our dataset has the following attributes:

� NetID : a 32 bit integer that is numeric representation of a net block ID.
For instance, 188.201.133.0 is represented with 3167323392 value

� PrefixLength: Prefix length is the number of bits used to represent the
NetID of an IP address. For instance, in CIDR representation 188.201.133.0/24,
24 is the PrefixLength.

� IndicatorsCount : This attribute reports the number of malicious IPs within
the network of the NetID.

� BGPID : This attribute reports the CIDR that the NetID belongs to ac-
cording to the routing snapshots. For instance, our previous example
belongs to 188.200.0.0/14.

� timestamp: Since indicators and BGPIDs are valid only for a period, we
store the date that we compile the record.

5.3 Preprocessing

We process the raw data from RS and then compile our prefix dataset. We
perform this preprocessing in three steps (see Figure 5.2). The steps in details
are:

1. IP extraction: Since not all the indicators are IP, we need to extract the
IP indicators or try to map an indicator to an IP address. A mapping can
be drawn between URL and domain indicators and an IP address. For
URLs, we extract the host name part of the URL and then resolve it to an
IP address. For domains, we again query it and try to resolve it to an IP
address. We note that not all host names are resolvable; in such cases, we
discard the indicator. We also note that an IP address may be pointed by
multiple indicators i.e. different URLs, domain names etc. In our analysis,
such IP addresses are treated same as other IP addresses; considering the
weight for such IP addresses and analyzing the effect is beyond the scope
of the current work. Finally, we note that not the same IP addresses can
be derived at different points of time from the same dataset of indicators;



44 CHAPTER 5. DATA COLLECTION METHODOLOGY

Figure 5.1: Prefix dataset structure

domains and URLs may point to different IP addresses at different points
of time. That said, the closest time to the time when an indicator is
collected is the best time to query it for the malicious IP address.

2. /24 prefix mapping : In our analysis, a /24 prefix is the smallest prefix
(from the number of hosts point of view) that an IP address can belong
to; for fixed aggregation, this prefix is indeed the one and for BGP the
prefix is either of size 24 or larger. Henceforth, we first mask every IP
address with 0xffffff00 value and derive the prefix it belongs to. If it
is not already listed in our dataset, we include that prefix. Otherwise,
we increase the IndicatorsCount value by one. The PrefixLength as the
name of this step implies is always 24; analysis based on other sizes would
change this value.

3. BGP querying : To compare fixed /24 prefix aggregation with that of BGP,
we need to know how IP addresses are distributed in BGP prefixes. We
map each fixed /24 prefix to a BGP one. The mapping is done using [53].
To have an accurate mapping, we load the relevant BGP announcements
according to indicators date from [52] into pyasn script. To compute the
number of malicious IP addresses in a BGP prefix, we have to aggregate
the score of all the /24 prefixes that it encompasses. To expedite analysis,
we store the result of such aggregation separately.
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Figure 5.2: Preprocessing

5.4 Generated Prefix Datasets

The result of our data collection and the final dataset on which we base our
analysis is accessible from [54]. This dataset contains the prefixes from which
we observe malicious activities based on the Indicators of Compromise that
Redsocks Security shared with us from 2017-04-18 to 2017-05-18. Each BGP
and /24 prefix has an assigned score that reflects the number of malicious IP
addresses from that prefix. The dataset is in SQL format and it has been
implemented in a MySQL database. The data from each week and based on the
aggregation feature (fixed or BGP) is reported in a different table. Furthermore,
aggregation based on each training length (1,2 and 3 weeks) is reported in a
corresponding separate table.

Table 5.2 reports the data that the database that we will use[54] has. The
number of IP addresses, /24 prefixes and BGP prefixes that we observed in each
week is reported in Table 5.3.
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Start Date End Date name aggregation feature
2017-04-18 2017-04-24 fixed week 0418 Fixed
2017-04-18 2017-04-24 bgps week 0418 BGP
2017-04-25 2017-05-01 fixed week 0425 Fixed
2017-04-25 2017-05-01 bgps week 0425 BGP
2017-05-02 2017-05-08 fixed week 0502 Fixed
2017-05-02 2017-05-08 bgps week 0502 BGP
2017-05-09 2017-05-15 fixed week 0509 Fixed
2017-05-09 2017-05-15 bgps week 0509 BGP
2017-04-18 2017-05-01 fixed 2weeks 20170418 Fixed
2017-04-18 2017-05-01 bgps 2weeks 20170418 BGP
2017-04-18 2017-05-08 fixed 3weeks 20170418 Fixed
2017-04-18 2017-05-08 bgps 3weeks 20170418 BGP

Table 5.2: [54] dataset that we will use for analysis

Start Date End Date Unique IP addresses /24 prefixes BGP prefixes
2017-04-18 2017-04-24 113357 61222 26197
2017-04-25 2017-05-01 103298 71866 30274
2017-05-02 2017-05-08 154939 83018 34782
2017-05-09 2017-05-15 128475 62557 26768

Table 5.3: Processed IOC and prefixes statistics



Chapter 6

Experimental Results

In chapter 3 and 4, we presented the groundwork for quantitative comparison of
BGP and /24 fixed aggregation. In chapter 5, we presented our data collection
methodology and an overview of our data. In this chapter, we employ the
metrics we defined in chapter 3 and present quantitative measurements based
on our data. Our evaluation of the data is based on splitting the data to two
training and testing sets. For all the experiments, testing period is one week
immediately after the training end date.

In section 6.1, we analyze the distribution of prefix lengths in BGP aggre-
gation. We expect a significant portion of the prefixes to have lengths different
than 24; otherwise, both aggregation features lead to the same view of the In-
ternet neighborhoods and further analysis is not required. In section 6.2, we
analyze the precision of each aggregation feature in predicting the likelihood of
having malicious activity from a given prefix and answer RQ4. In section 6.3, we
answer RQ1 and see whether better granularity of /24 fixed aggregation leads
to a significantly different view of the likelihood of having malicious activity.
In section 6.4, we investigate the detection rate of each aggregation feature and
answer RQ2. In section 6.6, we answer RQ3 and compare the reputation lookup
performance of each aggregation feature.

6.1 BGP Prefix Length Distribution

We measure the distribution of the BGP prefixes and IP indicators over different
lengths. Figure 6.1 shows the distribution. This graph gives us two insights.
First, BGP aggregation leads to a significant difference in the length of the
prefixes. Second, there is not a a correlation between BGP prefix length and the
number of hits; it may be assumed that since a larger prefix length encompasses
a larger space, it should also have higher hits while this is not the case in reality.
Third, there is not any correlation between the number of prefix entries and the
number of hits. In other words, more entries for a specific length does not result
in the identification of more malicious IP addresses. In conclusion, we learn from
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the distribution of the prefixes with malicious activity over different lengths in
BGP aggregation that aggregation based on BGP would lead to a different view
of the prefixes and grouping of Internet hosts.

Figure 6.1: Distribution of IP indicators and prefixes over different lengths

6.2 Precision

As we discussed in 3.3.4, we plot the points in J , prefixes that appear both
in training and testing period, to see if there is a correlation between P , the
probability of malice based on the training set on the x axis, and P ′, the prob-
ability of malice based on the testing set on the y axis. The graphs (see Figure
6.2a, 6.2b and 6.2c) show a strong correlation for both approaches. In order to
measure the precision we will rely on numeric values.

Table 6.1 and 6.2 respectively illustrate the result of linear regression mod-
eling of P ′ based on P for Fixed and BGP aggregation. By analyzing the values
we conclude the followings:

� In both cases, there is a very strong correlation between P and P ′. This
means that we can safely use P to predict the probability of maliciousness
with a small error based on either approaches

� Two weeks of training for both aggregations lead to a finer modeling of P ′.
Longer training has diminutive effect on both approaches but relatively
better effect on BGP



6.2. PRECISION 49

(a) Training(P) and Testing(P’) Probabilities based on 1 week of training

(b) PP’ graph based on two weeks of training

(c) PP’ graph based on three weeks of training
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Training
length

Coefficient Standard
Error

P value Residual
std error

Multiple
R squared

1 week 0.8808146 0.0105130 < 2 ∗ 10−16 0.03193 0.4109
2 weeks 0.8857 0.001517 < 2 ∗ 10−16 0.01493 0.8602
3 weeks 0.9692774 0.0020672 < 2 ∗ 10−16 0.02034 0.7987

Table 6.1: Linear Regression modeling of P’ based on P for Fixed aggregation

Training
length

Coefficient Standard
Error

P value Residual
std error

Multiple
R squared

1 week 1.0140342 0.0084435 < 2 ∗ 10−16 0.01912 0.5872
2 weeks 0.7635 0.002823 < 2 ∗ 10−16 0.01354 0.7416
3 weeks 0.9429 0.002527 < 2 ∗ 10−16 0.01285 0.8501

Table 6.2: Linear Regression modeling of P’ based on P for BGP aggregation

� Based on the residual standard error, we can see that BGP has always a
better modeling with less error

� Based on short training of 1 week of training, BGP can better predict P ′

based on Standard error, Residual Standard error and Multiple R squared

Based on our measurement, the answer to RQ4 is as follows:
BGP and Fixed aggregation are both adequately precise in the prediction of

malice based on likelihood metric. BGP is slightly better especially for shorter
training time

This analysis, however, does not say anything about the probability values
effect on our final prediction. To illustrate the concept, let’s review an example.
Assume that a /20 prefix in BGP has 20 malicious indicators based on our
training dataset. The probability of compromise for all the members in this
/20 prefix is 20

212 . If all these indicators are accumulated in a /24 prefix X, the
probability of malice for members of X is 20

28 . Since for the adjacent prefixes of
X we don’t have any record the probability of malice for the those prefixes is
zero. Now assume that the same values hold also for the testing set. In such
situation, P’ is no different than P. What our analysis revealed now is that based
on the testing set, the probability for all the members of the set (either BGP
or fixed) remains almost the same; in this example, the probability for the /20
prefix does not grow or drop significantly, and the same holds for the /24 prefix.
That said, the probability of some /24 prefixes based on Fixed aggregation is
zero but based on BGP is 20

212 .

6.3 Granularity

What our precision analysis misses to consider is the granularity of the proba-
bilities. Following our previous example, fixed aggregation gives a probability of
20
28 to all the X members while BGP gives the probability of 20

212 to these mem-
bers that is 16 times larger! Of course this is an example; however if in reality
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Figure 6.3: Normalized Delta(p) distribution

BGP aggregation indeed leads to such scenario then fixed /24 prefix aggregation
accuracy is preferred.

In order to compare the granularity of the two aggregations and see if the
above phenomenon exists we analyze the distribution of Delta(p). Since PBGP

can be small, due to the BGP prefix size, we normalize Delta(p) by dividing it
to PBGP . This normalization allows us to understand how many times larger
the probability can be if we use fixed aggregation instead of BGP.

Figure 6.3 shows the distribution of normalized Delta(p) value. We can
instantly notice that most probabilities have the same value for both approaches.
Furthermore, except some outliers the normalized Delta(p) is less than 10. In
order to precisely analyze the granularity we report the statistical features of
this distribution, excluding the outliers, in Table 6.3. As illustrated in Table 6.3,
75% of the data has no difference in probability and the mean of difference is 4%
change with a small variance. The conclusion is that although fixed aggregation
is inevitably more granular, the loss of information by using BGP is negligible.
The underlying reason could be homogeneous distribution of maliciousness in
the /24 prefixes of a BGP; in other words, nodes withing a BGP prefix behave
similarly.

3rd Quartile Mean Standard Deviation Variance
0 0.04401 0.8731013 0.7623059

Table 6.3: Normalized Delta distribution statistics
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Training
length

#of hit
prefixes

# of hit
indicators

Detection
rate

Testing
prefixes
Size

Testing
indicators
Size

Training
prefixes size

Disappeared
prefixes(%)

1 week 53014 83445 80% 71866 103293 61222 14%
2 weeks 55396 115562 74% 83018 154930 80072 31%
3 weeks 54835 107655 83% 62557 128470 107692 49%

Table 6.4: Detection rate and values for Fixed aggregation
Training
length

#of hit
prefixes

# of hit
indicators

Detection
rate

Testing
prefixes
Size

Testing
indicators
Size

Training
prefixes size

Disappeared
prefixes(%)

1 week 23430 91291 88% 30274 100061 26197 11%
2 weeks 25494 133202 86% 34782 149771 33041 23%
3 weeks 24535 110365 86% 26768 122207 42328 42%

Table 6.5: Detection rate and values for BGP aggregation

Based on the above analysis, answer to RQ1 is as follows:

Fixed /24 aggregation is more granular but by using BGP we get likelihoods
of malice that are on average 96% of their of /24 counterparts value.

6.4 Detection Rate

In order to see if BGP has a meaningful higher Detection Rate (see 3.3.2 for
definition), we compare the number of hits and the Detection Rate of fixed and
BGP aggregation successively in Table 6.4 and 6.5. A quick glance reveals that
Detection Rate of BGP is meaningfully higher than fixed /24 prefix aggregation.
We note that after three weeks of training, the Detection Rate of fixed aggre-
gation enhances and becomes very close to that of BGP. This can be explained
by the growth in the number of stored fixed prefixes in fixed aggregation; the
coverage of IP addresses by the two methods become very similar. The number
of stored BGP prefixed, however, is 40% of Fixed prefixes.

Although longer training enhances the detection rate, we note that the num-
ber of entries without any hit also increases (see Table 6.4 and 6.5 last columns).
The increase in number of such entries can result in false positives if there is
traffic from such prefixes to a monitored source. Therefore, based on the high
detection rate and also the low percentage of unused entries(entries without hit)
of BGP, we answer RQ2 as follows:

BGP has a better detection rate of around 8% for shorter learning; it can
faster learn and predict the net blocks that indeed expose malicious activity pos-
sibly with lower false positives.

6.5 False Positive (FP) and False Negative (FN)

In this section, we explain how our previous metrics are related to FP and
FN. The precision metric (see section 6.2) measures how reliable likelihood is
for malice measurement. Higher reliability of likelihood decreases FP. In other
words, when we report malice likelihood of x for an IP, there is indeed probability
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of x that the IP is sending malicious traffic. In contrast, if likelihood was not
precise, reporting likelihood would be erroneous and this affects the detection
decision probably increasing false positive.

The Granularity Delta metric (see section 6.3) also impacts false positive
and false negative. Let’s assume that our malice likelihood of neighborhood is
to be used in a traffic classifier. A high granularity delta shows that for instance
there are many /24 entries that their likelihood is multiple times higher than
their parent BGP entry; for instance, a /24 prefix has 10% likelihood of malice
while its BGP parent has 1% likelihood of malice. Of course, in this case, the
way that the classifier learns would be more granular for /24 and hence the false
positives would be less.

While precision and granularity don’t reveal meaningful difference between
BGP and fixed /24 aggregation, detection rate metric does so. Based on our
analysis, BGP is expected to identify more malicious IP addresses and hence
have a better false negative rate. The reader shall note that in this study
we don’t suggest that neighborhood malice likelihood should be solely used for
detection and hence we don’t recommend a cutoff threshold. The above analysis
is also based on this concept; the detection concept that we presented in section
6.4 only says that we can report the reputation of the IP address, which appears
in the traffic, through the reputation of its net block. It goes unsaid that the
higher the probability that we report, the higher the chance that the traffic is
indeed malicious. This implicitly means that for lower probabilities we need to
rely more on other features to detect malicious activity.

In order to give an insight about the probabilities that we would report
based on the hits, we employ CDF metric that we defined in Section 3.3.2 for
two weeks of training. Figure 6.4 illustrates the CDF of hits for both aggregation
features. We note that for almost 80% of the data we report probabilities less
than 20%. Furthermore, for around 60% of hits we report numbers close to
zero. For the entire data, fixed /24 aggregation reports higher probabilities and
from section 6.3 we know that the difference in likelihood values is almost 4%
on average. From Section 6.2 results, we know the reported probabilities are
adequately precise for both aggregation features.

The above implies that a designer of an IDS must treat such traffic with
low probabilities of malice with discretion; on one hand, networks with low
probabilities can not be treated as benign since there are indeed malicious traffic
from such networks. On the other hand, if other detection features can not
distinguish harmful from benign traffic in these networks, a lot of false positives
will be raised that is not desired. For other 20% of the hits, we report relatively
high probabilities.

We maintain that by only using prefix reputation, we can not comprehen-
sively identify the entire malicious traffic. This is because in such case, we
should have a cutoff threshold to alert malicious activity; such threshold must
be chosen as high as possible to avoid false positive. Our CDF analysis revealed
that by having a probability threshold of greater than or equal to 85% we can
identify 10% of the hits in BGP aggregation. In contrast, by having a threshold
of around 95% in fixed /24 aggregation, we can identify around 20% of the hits.
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Figure 6.4: CDF of hits based on probability of malice

6.6 Lookup performance

In Chapter 4, we presented two algorithms that are the base for our comparison
in this section. Indexing Search Algorithm (see Algorithm 3) is optimized for fast
processing with O(1). There is, however, a memory footprint penalty with this
algorithm. In contrast, Binary Search Algorithm (see Algorithm 5) is optimized
for memory footprint with a processing performance penalty that results in
O(log(n)). In this section, we compare Fixed with BGP aggregation based on
each of this algorithm.

For Indexing Search Algorithm, the lookup order value and footprint for both
approaches are the same. Since the Order of this algorithm is O(1) the lookup
order value for both approaches is 1. The memory (and Disk) footprint for both
Fixed and BGP aggregation is 16MB (based on 224 prefixes of length /24 and
1B for score storage). This may come as a surprise to the reader since BGP
has less entries than /24 Fixed prefixes. In 2, however, we processed the BGP
entries and derived the probabilities of child /24 prefixes. Therefore, for both
cases our point of reference for fetching the malice probability of an IP address
is its /24 prefix that is computed by masking the IP value with ffffff00. This
entails that we have the same values for all the adjacent /24 prefixes in parent
BGP prefix.

For Binary Search Algorithm (BSA), the lookup order value and footprint is
different for each approach since n (the number of prefixes) is different. Table
6.6 reports the result of our computation for each approach. Footprint column
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b
Training length Performance metric /24 Fixed aggregation BGP aggregation

Number of prefixes(n) 61222 26197
1 week Lookup order value O(log(61222))=O(15.90) O(log(26197))=O(14.68)

Footprint 0.55MB 0.24MB
Number of prefixes(n) 80072 33041

2 weeks Lookup order value O(log(80072))=O(16.29) O(log(33041))=O(15.01)
Footprint 0.72MB 0.30MB

Number of prefixes(n) 107692 42328
3 weeks Lookup order value O(log(107692))=O(16.72) O(log(42328))=O(15.37)

Footprint 0.97 0.38MB

Table 6.6: Lookup performance comparison based on BSA with O(log(n))

is calculated based on Algorithm 5. In the implementation of this algorithm,
two arrays are required; one for storing the lower and higher band of each prefix
and another for storing the scores. Since IP is 32 bits long we assume that the
size of the first array is 4∗n∗2 = 8n Bytes where n is the number of prefixes. 4
in the calculation represents a 4B integer and 2 represents the lower and higher
band for each prefix. The second array stores a score of one byte long for each
prefix. Hence, the footprint for n prefixes is 9n Bytes.

It is hard to measure the exact computation time performance since it de-
pends on the CPU power and also the number of IPs that are looked up in a
unit of time. Yet, according to Table 6.6, we answer RQ3 as follows:

BGP has a better lookup performance; the lookup order value for BGP is
O(1) faster for the order of n that our dataset has. The footprint for BGP is 2
to 2.5 times less than fixed /24 aggregation given n based on our datasets.

6.7 Summary

In summary, our analysis shows that aggregation of reputation based on BGP
announcements is better than aggregation based on fixed /24 prefixes. Firstly,
BGP is equally precise and sometime preciser than fixed aggregation in predict-
ing the malice likelihood of the neighborhood where an IP address is originated.
Secondly, although fixed aggregation is always more granular by definition, the
loss of likelihood granularity by BGP aggregation is negligible. Thirdly, BGP
has a better detection rate given a short training time; this possibly leads to
less false positives. Finally, in terms of lookup performance BGP has equal or
better lookup performance in terms of lookup Order and footprint.
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Chapter 7

Conclusion

IP address reputation is an important element in detecting malware traffic ac-
tivity. Individual IP address reputation, however, has a high false negative
rate. Findings from analysis of malicious IP addresses distribution suggest that
so called ”Bad Internet neighborhoods” with high density of malicious activity
exists. Based on these findings, aggregating reputation and attributing reputa-
tion to Internet neighborhoods can improve the prediction and hence the false
negative rate.

Two important aggregation approaches based on BGP and /24 IP prefixes
differ in their level of granularity. The level of granularity in reputation aggre-
gation impacts the criteria that are important for Malware Threat Detection
vendors; these criteria are low False Positive (FP), low False Negative (FN) and
low processing overhead. Finer granularity is expected to reduce FP while in-
creasing FN. That said, investigating the effect of finer granularity of fixed /24
prefix aggregation on FP/FN in comparison to BGP aggregation is hindered by
lack of ground truth and live traffic data.

Based on available data, the author of this thesis defined substitute metrics
(to FP and FN) to compare the detection and implementation performance of
fixed /24 with BGP prefix aggregation. Fixed /24 prefix aggregation is more
granular and has less detection rate than BGP since /24 prefixes are a subset of
BGP prefixes. That said, investigating the loss of granularity by BGP aggrega-
tion and the gain in detection rate need experimental analysis. Furthermore the
processing overhead of each aggregation approach should be considered based
on the underlying reputation lookup algorithm.

The author in this thesis measured precision of malice likelihood, malice
likelihood granularity loss, detection rate, Reputation lookup Order value and
footprint of BGP and fixed /24 aggregation. The author used a dataset of
Indicators of Compromise for a period of one month. For evaluation, the author
split the dataset to different length training and testing sets.

The experimental analysis shows that the loss of granularity in malice like-
lihood view of the IP space by using BGP is negligible, around 4% of difference
on average, while the detection rate improvement is substantial, almost 10%.

57
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Furthermore, malice likelihoods derived from either approach are adequately
precise in predicting the probability of having malicious activity; the p-value
based on regression analysis in both cases is almost zero. Moreover, the lookup
performance and footprint of BGP prefixes are slightly better than fixed /24
prefixes; lookup performance of BGP is O(1) better and its footprint is half of
fixed /24 prefix. In summary, BGP prefixes better identify the neighborhood to
which an IP belongs and hence are preferred for reputation aggregation.

7.1 Relation to State of The Art

Our work is similar to [17, 11, 10, 4, 5, 14, 16, 12] but it has three major differ-
ences. Firstly, the application of ”Internet bad neighborhood”, ”Network aware
clustering” or uncleanliness 1 to exploit the networks structure characteristics is
novel in our work. Jung et al use network aware clustering, aggregation based
on BGP announcements, to detect DOS attacks[11]. [12, 4, 5, 14, 55] propose a
spam mitigation technique based on IP aggregation. Except [55], the rest of the
works examine also the content in conjunction with the IP aggregation filter.
Because spam can be identified based on the content, measuring false positive
is straightforward. Based on the same reason, the usage of IP aggregation is
less prone to false positive since content itself has a very low false positive. On
the other hand, we aim to identify malware traffic activity, and malware infec-
tion can not be easily identified while there is not still any published signature.
Identifying malicious activity via network traffic without deep packet inspection
is even harder since a malicious traffic can look exactly like a legit traffic.

Secondly, in the current work, we introduce likelihood of having malicious
activity from the source network of an IP address as a malice detection feature.
In contrast, previous works mainly see aggregated reputation in a black and
white manner; the IP is either malicious based on its originating network or
benign. Qian et al define spam ratio of the originating network and then use
a threshold of spam ratio to blacklist the entire IP space of the prefix [14].
They measure the FP/FN pair of different spam ratios and then find the best
ratio that balances this pair. We maintain that aggregation can not be seen
in a black and white state for malware traffic detection. [16] reports the top
autonomous systems and organizations with highest amount of spam activity.
Although such report provides valuable insight about the poor security measures
in some Internet Service Providers the underlying data is too coarse to be used
for malicious detection.

Thirdly, none of the previous works investigated the loss of granularity by
using BGP announcements in comparison to fixed /24 prefix. There are two
school of thoughts in the literature. The first school of though uses /24 prefix
to aggregate reputations [10, 5, 55]. The second school of thought uses BGP
announcements for aggregation and grouping Internet hosts [11, 12, 4, 14, 16].
The first group believes that /24 has the finest granularity since BGP prefixes
can be as long as /24. The second group believes that the clustering of the

1In the literature, all refer to the same concept
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Internet hosts must be based on the administration boundaries and BGP draws
such administration boundary. In this work, thanks to the likelihood of having
malicious activity concept, we show that the granularity loss by using BGP is
negligible while the detection rate gain is substantial (around 10%). Qian et al
also examine the granularity of BGP prefixes [14]. That said, Qian et al do not
compare BGP with /24, and rather try to refine the BGP prefixes granularity
using DNS clustering. Based on their finding, 10% of BGP prefixes can be
refined and coarse prefixes are usually shorter than /16. That said, we haven’t
observed any entry in our aggregation with prefix length shorter than 16; the
malice likelihood of those entries are zero because of their large size. Once again,
such finding shows that likelihood is a fine metric and can neutralize the effect
of size growth of coarse BGP prefixes.

7.2 Future Work

Two directions can be pursued following this work. The first direction is inves-
tigating the application of aggregated reputation of BGP prefixes for different
purposes. For instance, the effect of adding badhood likelihood feature to net-
work traffic classifiers’ vector of features on detection accuracy can be investi-
gated. Another instance of badhood application is using badhood concept for
network massive scanning. In such a work, scanning the Internet to identify
a command and control server based on a special signature can be prioritized
based on likelihood of having malicious activity.

The second line of work can improve the current aggregation scheme. For
instance, in chapter 6, we reported that for few BGP entries the granularity loss
can be substantial. The reason is aggregation of routing entries in the routing
tables, or the lack of enough BGP announcements to the outside world from
the autonomous systems. For these BGP entries, individual /24 entries within
the BGP prefix can be used instead. The aggregation can be further enhanced
by merging the entries that have similar likelihoods; the goal is to draw the
administration boundary that is invisible from the outside of the autonomous
system.

7.3 Lessons and Final words

The research behind this thesis has been conducted in the last six months of
the author MS program. These six months significantly developed the author
both scientifically and socially. In the scientific context, the author learned
that Ground Truth is a must for any field including computer security to grow.
Unfortunately, as a young scientist, I used to think that ground truth is a given.
This lack is felt not only in academia but also industry. Henceforth, both the
state of the art and security products are very diverse while the true effectiveness
of the methods in terms of measurable and comparable quantitative metrics is
unknown.
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Furthermore, the author learned that there exist a privacy phobia in the
world that appears to the advantage of the attackers. Based on the code of
conducts, most security researches would not use traffic data and other avail-
able resources for analysis without permission. The best security researchers
can do to further their research is to design methods and tools to make pro-
cessing possible whilst addressing the privacy concern. Yet, the officials would
not understand the designed technology and do not allow the analysis on the
sensitive data. On the other hand, attackers would use the same resources to
improve their attacks and tools.

In the social context, the author learned invaluable lessons. First of all,
the author learned that the most difficult part of any research or development
is communicating the motivation and the findings. Unless the author finds a
way to communicate effectively, there would not be any contribution. This is
because in high tech studies, there are many details that only a few people fully
understand. Therefore, the audience would not understand the importance
of the work and would not further go into the details of the work in case of
ineffective communication. In consequence, it is only the author who is aware
of the advancement and the work is lost.

Second of all, the author learned that the world is not neither fair nor rational
all the time. The author used to think that an action has a predictable conse-
quence; the prediction may be wrong but this is an error of the predictor nor the
environment. During this research, the author learned that consequences may
not be always predictable because the humans’ actions are not always logical.
The lack of logic is due to the lack of unbiased truth. In other words, everybody
sees the world through his own frame and this causes inconsistency in our logics.

Last but not the least, the author learned that the only way to beat the
mishaps and succeed is not to give up. The world can be unfair, the actions
may be unreasonable but not always! The only way to ensure success is to try
again and again. As long as there is an effort, there is hope. We may not know
but every failure makes us only closer to the final goal. In conclusion, I would
like to say it is the journey that matters not the destination!
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