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ON THE DUCTILE ENLARGEMENT OF 

VOIDS IN TRIAXIAL STRESS FIET,DS* 
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and D. AI. TRACEY 
Dcpart,ment of Nrchanical Engineering, Jlassachusetts Inst,itutc of Terhnology, Canlbritige, 

BIassacllusetts 

THE FRACTURE of ductile solids has frequently been observed to result from the large growth and 
coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile 
stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in 
continuum plasticity. First, a variational principle is established to characterize the flow field in 
an elastically rigid and incompressible plastic material containing an ioternal void or voids, sod 
subjected to a remotely uniform stress and strain rate field. Then an approximate Rayleigh-Ritz 
procedure is developed and applied to the enlargement of an isolated spherical void in a non- 
hardening material. Growth is studied in some detail for the ease of a remote tensile estensioo 
field with superposed hydrostatic stresses. The volume changing contribution to void growth is 

found to overwhelm the shape changing part when the mean remote normal stress is large, so that 
growth is essentially spherical. Further, it is found that for any remote strain rate field, the void 

enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the 
ratio of mean normal stress to yield stress. Some related results are discussed, including the long 

cylindrical void considered by F. A. MCCLINTOCK (1968, J. uppl. Mech. 35, 363), and an approsi- 
mate relation is given to describe growth of a spherical void in a general remote field. The 
results suggest a rapidly decreasing fracture ductility with increasing hydrostatic tension. 

1. INTRODUCTION 

THE FI~ACTURE of ductile solids has frequently been observed to be the result of the 

growth and coalescence of microscopic voids, both in nominally uniform stress 

fields (ROGERS, 1960; GURLAND and PLATEAU, 1963; BLUI~M and MORRISSEY, 1966) 

and ahead of an extending crack (BEAC~IEBI, 1963). ROSENFIELD (1968) has recently 

surveyed metallurgical aspects of this fracture mechanism. Rogers explains that 

the central portion of the CLIP and cone fracture which occurs at the neck of a 

specimen is produced by the coalescence of internal voids which grow by plastic 

deformation under the influence of the prevailing triaxial stress system. To begin 

development of a comprehensive fracture criterion, the relation between the growth 

of a void and imposed stress and strain must be found. MCCLINTOCK (1968) has 

presented a start on the problem through his analysis of the expansion of a long 

circular cylindrical cavity in a non-hardening material, pulled in the direction of 
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its axis wliilc subjcctcd to trans\rcrsc tensile strcases. The noteworthy result is that 

the relati\-e A-oid expansion per unit applied strain increment increases cxponen- 

tinily with the transrcrse stress. Our present work seeks to determine the relation 

between \-aid growth and stress triaxiality for a more realistic model, i.e. an isolated 

sp1lerica.l \-oid in a remotely uniform stress and strain rate field. We treat the void 
growth problem as in the domain of continuum plasticity, in accord with the 

contemporary view of ductile fracture as described by ME.~KIY and PE~~~II (1963) 

which considers separation as a kinematienl result of large bllt localized plastic 

deformations. 

The non-linearity of field eqltations seems to eschlde exact. analyses for all but the 

one-dimensional case studied by McClintock. Thus we start by deril-ing a varia- 

tional principle governing cavity expansion in an infinite rigid+A:tstic medium, and 

employ- a Raylcig+Ritz proccdlu~~ for approximate solutions. Tile HUIII_kKsl<Y 

and Vrm:ssnK (1955) variational methods for infinite regions eoiiltl be adapted to 

oiir present purposes? but we find that the procedure used in Section 2 requires 

somewhat weaker assunlptions on the beh:t\iour of solutions at large distances. 

While the formulation applies cithcr to hardcuitlg or lion-hardening materials, wv(’ 

present applic7~tions to the latter type only. 

Consider an infinite body of an incompressible rig&plastic material (either 

perfectly plastic or strain hiLrdC1lillg) containing an internal void or voids with 

bounding surface ,S2,. We asslum that the prior deformation history- is known so 

that the current void boundaries and flow stress at each point are specified. At the 
current instant the material is sul)jected to a rmiform remote strain rate field 

’ Eij m. This determines the remote deviatoric stress state Sijm :md, in addition, the 

current rcmotc mean normal stress oco is specified so that 

Oij m :_- Sijm +- om &j. (1) 

We seek to dcterminc the current velocity field throughout the material and, in 

particular: the growth rate of the void(s). Consider any I-clocity field <ii satisfying 

incompressibilit>- and agreein, (7 with the remote strain rate: 

iij = f (lii,j -t- 7ii.i) --f <ij” X3 5i 2) + CO; iii z 0. (f4 

The yield surface in stress space at each point of the material is assumed convex 

with normal strain rate increments so that a deviatoric stress state sii (6) can be 

associated with each iij in such a manner that sii (6) iii is unique. Note that 

convexity md normality both follow from and imply the basic inequality of 
plasticit) 

[*Yij (6) - Sij”] iij > 0. (3) 

where s$ is any stress state within or on the current yield surface. The inequality 

follows from HILL’S (1950) principle of maximum plastic work, from DRUCKER’S 

(1951) stability postulate, or from other roughly equivalent starting assumptions 

in plasticity. 

Now define a functional Q (ti) of any velocity field tii satisfying (2) as 



On the ductile enlargement of voids in triatial stress ficl~ls 203 

Q (ic) = j [si, (6) - sijm] iii dV - u@j ni tij dS. 

v s, 

Here V denotes the infinite volume exterior to the void(s). In the integral over the 

void surface, ?ai is a unit normal drawn into the material so that ai** times the surface 

integral represents the work rate of the remote stress field on the distortion of the 

void interior. The following convergence assumptions are essential to the sub- 
sequent development. Let S, denote some imaginary spherical surface drawn in 

the material exterior to the void(s). Then it is assumed that all fields icj considered, 

including the actua,l field, approach iiirn sufficiently rapidly so that, if the super- 

scripts 1 and 2 refer to any two of these fields and the superscript A denotes the 

actual field, then 

lim (crij* - aijm) Iii (tij2 - Zig’) dS = 0 

s,+m s 
s e 

and 
s 

[sif (~1) - s@] (;$ - iij”) dV is bounded. 

V 

(5) 

The second assumption is satisfied if I_& - iij* xj falls off faster than R-*-” 

where R is radial distance and 8 is any positive number. The first is certainly 

satisfied if 42 - iij* xi falls off as R-2, and is most likely satisfied under much less 

stringent conditions. The lack of knowledge of the actual field makes more precise 

st,atements impossible, but we note that corresponding conrergence requirements 

in a two-dimensional case discussed subsequently, for which the solution is known, 

arc satisfied within a wide margin. The latter convergence assumption is sufficient 

to show the existence of the volume integral of (4) for the perfectly plastic case and 

to show that if it diverges in the strain hardening case, it does so in an essentially 

t,rivial way. To see this, rearrange terms so that 

s [S$j (i) - s@] i6j dV = s [SC, (4) - Sip] (ii;- i@) dV 

V V 

(6) 
+ s [Sij (6”) - “@I +* CZV + I [Sij (6) - S(j (i”)] iij* av. 

V V 1 
The integral on the left is non-negative and the third integral on the right is non- 

positive by (3), and the first integral on the right is bounded by hypothesis. For 

perfect plasticity, stj (P) = 8ijrn so that the volume integral on the left cannot 

diverge. For strain hardening, convergence is tied to the second integral on the 

right. But its integrand is independent of the assumed field iii and, if divergent, 

one may show that a convergent integral results in (4) if one subtracts out the 
second integrand on the right in (6) above. This point is not pursued further, 
since it affects neither the computation of Q (ti) - Q* nor the validity of the 

minimum principle. 

Again letting the superscript A refer to the actual field, 
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since OJ~* ILL vanishes on the void sllrface. But by an application of the principle of 

virtual work to the infinite region, as jllstifirrl by the first convergence assumption 

since the integrand is non-negative by the fundamental inequality of (3). The 

resulting minimum principle is that no assumrd field can render the functional 

Q (ti) smaller than its value for the actual flow field. 

We shall employ the minimum principle as a. basis for approximate sohltions 

via the Rayleigll-Ritz method. In particular. an nssumed flow flcld will hc repro- 

sented in thr form 

Iii =: <ifa xj + 91 ki (1) -+ 42 ,ii’“’ -I- . . . + q, tip) @(‘I 

where each tit(k) is a specified incompressible velocity field approaching zero at 

infinity so as to meet convergence requirements. The set of constants gk giving the 
‘best approximation are chosen to minimize the functional Q (ir) = Q (91, 92,. . . . p,). 
Note that in computing derivatives for the minimization, 

(‘1) 

by normality, sincr thp stress derivative is tallgent to the yield surface. Thus the 

‘best’ set is giycri by 

Now let ql*, qz*, . . . denote a solution of these equations with sdj* being the corre- 
sponding deriatoric field. By virtual work. the surface integral is transformed t,o 
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ThUS. 1 (sij* - sip) i(j’k’ dV = 0, (14) 

so that the difference between the actual and the approximate deviatoric fields is 

orthogonal, in a weighted sense, to each assumed field. 

Uniqueness of the Rayleigh-Ritz approximation is of interest since solutions 

to (12) for the q’s must generally be searched out numerically. Let superscripts 

* and ** denote two sohitions. Both must satisfy (14) and thus 

r (sij* - ssg**) ip dF’ = 0. (15) 

Multiplying by qk* - qk** and summing on k, 

s (“ii* - sif**) ( +* - iii**) (g’ = 0. (1’3) 
V 

Now the integrand in this equation is non-negative by (3), so that it must vanish 

everywhere. Hence, for yield surfaces containing no corners, the direction of the 

strain rate is fully unique at every point. Since both strain rate fields are derivable 

from a velocity field in the form of (IO), in general, for a finite number of terms, 

coincidence of direction can be achieved only if qk* = qk**. This is indeed the case for 

velocity fields employed subsequently, but no all-inclusive statement can be made 

since uniqueness of strain rate direction is the most that can be asserted even for 

exact solutions, without extra considerations. 

3. GROWTH OF A SPHERICAL VOID IN A UNIAXTAL TENSION STRAIK 

RATE FIELD 

As a first application of the variational principle, consider a spherical void of 

radius Rs as in Fig. 1, and suppose that the remote strain field consists of a tensile 

extension at the rate i in the x3 direction, with contractions at the rate $ i in the 

~1 and 2s directions (as required by incompressibility). The remote deviatoric 

stress state S@ then corresponds to that of a tensile test, and it is supposed that in 

addition the remote mean normal stress Us is specified. Now for the assumed 

incompressible velocity field to be employed in the variational approximation, it is 

clear that any assumed field ( as well as the actual field) can be split into three 

parts: (i) a velocity field resulting in a uniform strain rate field ii,*, so as to meet 

remote boundary conditions, (ii) a spherically symmetric velocity field correspond- 

ing to a change in volume of the void but no change in shape, and (iii) a velocity 

field, decaying at remote distances, which changes the void shape but not its 

volume. Hence we write in the form of (lo), 

I& = i@ xj + D&D + &iiE, (17) 

where D and E’, playing the role of the q’s in our general development, are constants 
to be determined, z&D is a spherically symmetric volume changing field, and ZidE is a 

shape changing field which preserves void volume. 

Incompressibility and spherical symmetry require that the volume changing 

field be 
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FIG. 1. Spherical void in a remote simple tension strain rate field. Later used for a void in a 

grncral remote field, with rl the grmtcst, x2 the least, and ;s’~ tlrc intmr>cdi:ltr principal strain 
r:ltcb directions. 

where we have chosen the constants in this expression so that lI may be inter- 

preted as the ratio of the average strain rate of sphere radii to the remotely imposed 

strain rate. Thns if we use the symbol 110 to represent the average radial velocity 

on the void boundary, lI will qua1 l?o/iRo (note that the other velocity terms in 

(17) result in zero average radial velocity). The approximation is involved with 

choice of the shape changing field ti(E and fortunately, as we shall see, results arc 

not very sensitive to the particular choice. We assume that spherical surfaces 

concentric with the void are moved by this field so as to become axially symmetric 

ellipsoids of the same \~ohune in a small time interval. This constraint is met by 

deriving USE from a stream potential, 

I,P = 4 i&s F (R) sin2 4 cos (b, where If’ (Ro) = 1, (20) 

with B’ (12) otherwise arbitrary, but resulting in vanishing strain rates at infinity. 

The choice of constants in (20) is such that the net radial \4ocitics on the void 
boundary, in the direction of rcniotc tcnsilc rxtcGon and in the transvcrsr dircc- 

tion, are compiitctl from (17) as 
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ziri: (&J, 0) = (D + Y. + E) iRo and 

457) = (II - ‘-Fj &(I b (Rot 
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rcspcctively. Thus the: assumed velocity field deforms the void interior with a 

mean dilatational strain rate lIi, on which is superimposed an incompressible 

extension strain rate (1 + E) i in the remote tensile direction. Several different 

choices of the function P (12) of (20) were employed for the numerical calculations, 

as described subseqLIent1~. 

The amplification factors II and B are determined so as to minimize the func- 

tional Q (u) -; Q (II, E)? and this leads to two equations in the form of (12) : 

Here, sdj (U, E’) is the deviatoric stress field corresponding to the assumed strain 

rate field 

<if = ci$j (ZI, E) = Z@ -+- L&j” + Ed@. (23) 

Also, we have simplified (12) by noting that the deviatoric remote stress does no 

work in the surface integral involving the D field and the mean remote stress does 

no work in the surface integral involving the E field. 

Numerical solutions for D and E have been obtained in the case of a non-harden- 

ing &&es material, with yield stress 70 in shear, for which deriatorie stresses 

corresponding to a strain rate ~(2 are 

&j = ‘$2 TO &j/(&l ik$. (24) 

Upon carrying out the surface integrals in (22), introducing spherical coordinates 

in the volume integrals, and dividing through by a few constant terms, the two 

equations to be solved are: 

where Gil depends on D and E as in (23). The integrands are quite complicated 

functions of the integration variables R and (75, depending on the former through 

the function F (R), but their detailed forms need not be given here. We note simply 
that after mt~~tiplying by the factors in front, the integrals define dimel~sionless 

functions involving only pure numbers and the unknown factors B and 14, to be 

set equal to the triaxiality ratio in the first case and to a pure number in the second. 

Completion of the solution relies on quite lengthy numerical integrations and search 

techniques. The most efficient procedure is to choose a value of D and then to 
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search out the corresponding value of E so as to satisfy the second equation. Then 

this D, E set is inserted into the first equation to compute the ratio of remote mean 

stress to yield stress required to produce the chosen dilatational amplification ZI. 

We have carried out det,ailed computations for a non-hardening Mises material. 

employing six different choices for the function P (R) appearing in (20) for the E 

field. Remarkably, the vahle of Z? corresponding to a given P/TO appears almost 

insensitive to the particular flmction F (R) employed. Also, at large values of 

am/70, D turns out to be large compared to E so that the volume changing part of 

the growth overwhelms the shape changing part. 

The six different functions F’ (R) examined a.rc 

(27) 

Fs (R) = 3 (RO/R)3 ~ 2 (RO/R)6. 

F6 (R) = Q [13 (Z&/R) - 4 (Z&/R)l”]. 

Some of those were chosen because they appear in similar incompressible flow 

problems for a linearly viscous material. For example, F1 (R) provides a solution 

for a spherical inclusion bonded to a viscous matrix. with the inclusion given a 

uniform incompressible extension strain rate field. Pz (R) satisfies the same bonndar) 

conditions, bllt is not admissible for a viscous material. F3 (R) is the viscous field 

corresponding to a similar spherical inclusion undergoing a uniform incompressible 

extension, except that t,he inchlsion is in smooth contact so that normal stress but 

no shear stress is transmitted to the matrix. Thus, this field makes i,, vanish on 

the void surface, a. proper boundary condition for the plastic case also. F4 (R) 

sinndtnneously satisfies both the bonded inclusion and zero shear strain rate 

boundary conditions, and t,hcreforc cannot be a viscous solution. Finally, E’s(R) 

and Zf’6 (Z2) were chosen simply because they represent somewhat unrealistic fields, 

and we wished to see if even this would significantly alter the essentially identical 

values of the dilatational factor D resulting for the other four fields. For exa,mple, 

these fields both result in a sign reversal of ZL, at particular values of R. Of course, 

the best procedure would bc to let the variational principle serve as a basis for 

choice of F (II’) through the associated Euler-Lagrange differential CY~LGI tion, rather 

than to examine a set of different choices with ord>~ the multiplying factor E as a 

free paramctcr. This is not as simple as it might seem. Not, only is the resulting 

differential equation of fourth order and highly nonlinear, but terms in the equation 
depend on Ih, D, F(R), F’(R). and F”(R) through difficult integrals on C/I which 

cannot he evahlatcd in closed form. 

Figure 2 gives the resulting values of the incompressible extension portion of 

the void enla.rgement rate per unit remotely imposed strain rate, I + E, as a 

function of D, as computed from (36) for each F (R). The first four functions F (R) 

give roughly similar results for 1 -;-- R, with differences that arc large in absolute 
terms but quite small compared to D orer most of the range plotted. li; (R) and 

Fs (R) gi\-c a quite erratic behaviour, as might have been expected, and nctuall~. 
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___----- 
_._.-for F.+(R) 

__/-d I averaae l+E for F.(R) to F.(R) 
---- 

-- 
------for F,(R) 

________-,;=-=-z-rrl___ --for F,(R) 
\for F,(R) 

‘too 

FIG. 2. Itelation between incompressible extension factor (1 -t E) and dilatational factor 

(D), as computed from several assumed forms for the velocity field, for a spherical void in a 
remote tensile strain field. 

predict that at larger values of D the void should flatten rather than elongate in 
the remote extension direction. 

The dimensionless mean stress cP/T~ is shown as a function of 11 in Fig. 3. 

The solid line represents results from all six incompressible extension fields. Differ- 

ences from field to field are not great enough to appear on the graph, except for a 

slight broadening of the curve in the range of D between 0 and 3. For example, at 

40 ( or ko/:Ro) 

30 I 

- Result of numerical calculations, 
- from eqs. (25,26), for several 

25_ different assumed flow fields 
- as given in eqs.(27). Predictions 
- of D differ negligibly from field 
- to field. -----__ -_Z 

20 

ls- High trioxiolity opproximation, 

- D=0.283 exp(flrrV2T,), 

_ from eq. (37) 

FIG. 3. Dilatational amplification factor D, as a function of mean normal stress ooo, for a 
spherical void in a remote tensile strain rate field. 
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D = 041 the range of P/TO values is from --- 0.015 to - 0486, but. the curve is so 

steep that all points essentially fall on the line drawn. At 11 = 1.0 the variation 

appears greatest, with a range of U~/TO from 1 .-LO to 140. At L) = 3+, the range 

is from 2.70 to 2.76 The variation rapidly deervases at larger \-alues of 11, being 

in the neighbourhood of 0.5 per cent or less of the mean for D greater than 6. The 

dashed line represents the result of a large D calculation in Section 4’. 

We have seen in Section 3 on a tensile remote field that, the sphericall\~ symmetric 

volume changing pa.rt of void growth far oT_erwhrlms the shape changing part 

when the remote mean stress is Inrgr. A calculation is presented here of the rrla- 

tion between this dilatational amplification and the remote mean stress on tht 

assumption that both are large. It will be seen that a simple exponential dependence 

on urn/,0 results, and that this gives an cxccllcnt approximation to the detailed 

results of Fig. 3 even at low triaxinlity. 

Since the calculations are relatively straightforward, it is possible to consider 

the spherical void in a general remote strain rate field iijm, rather than just a tensile 

field. Anticipating that dilatational growth dominates, we choose an assumed 

velocity field involving only the contribution from the remote strain rate field and a 

spherically symmetric void expansion field : 

Comparing with (IS), we see that the ttnsile strain rate i has hccn replaced by the 

factor involving the square root sign, and this is simply the ‘equivalent’ tensile 

strain rate, which equals i when the remote field consists of a simple tensile ex- 

tension. If Z?o is the average radial velocity of the void surface, the physical 

interpretation of 11 is 

Of course, for large 11 the growth is nearly spherical and the radial wlocity differs 

little from RO. 

The dilatational amplification is chosrn so as to minirrrizc the functional Q. 

leading to 

s 
[S[j (II) --- s$q i@ dC’ =~ C7m 

.f 
I/i IFi” rlS. (31) 

V s, 

For a non-hardening Mises material, the dcviatoric stresses corresponding to t,hc 

assumed field are gircn by (24) as 

(32) 

Upon computing the various terms involved and simplifying. equation (31) for II 

becomes 
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where X =. (&@)3. dQ denotes an increment of solid angle, tltc outer irdxyption 

is over the unit sphere, and p is a function of position on the unit sphere given by 

the ratio of the radial component of the remote strain rate to the equivalent strain 

rate, 

Upon performing the inner integral, 

- 4Dp + 1): -(- ?I) - p] - log (1 - p) 

+ p log [$ (ADZ - AZ+ + I)* + 4 - D/A]) dQ = uTm/rO. (35) 

Xaking the ass~ln~ption that L) is large, as consistent with choosing a dil~~tatioIla1 

field alone for the assumed field, we now expand the arguments of the logarithms 

in powers of D and drop all terms of order I/U. The terms involving U can be 

integrated nt once over the unit sphere, and there results 

-$ log (4D) - _$-J 
s 

(1 - p) log (1 - /J) d,r2 = P/q. (36) 

a 

Solving for D, we have the high triaxiality exponential result 

D==C(v)exp j3am c 12 270 

where the constant C (v) (this notation will be explained shortly) is given by 

(1 - CL) log (1 - P) d&Z’ 
3 

. 

R 

(37) 

The constant depends on the ratios of the remotely imposed strain rate compo- 

nents, as somewhat different functional forms for p result in (34) for different remote 

fields. We show this dependence t~lroL~gh a Lode rariable v for the imposed strain 

rates, which we define as 
3i1rm y = _ -m_ . . o. ) 

El - El11 
(3% 

where iIm 2 ZIlm > ilILM are the principal components of the remote field. This 

variable lies between - I and _t 1, with v = + 1 for a remote simple extension 

(or biaxial compression}, v = 0 for a remote simple shear2 and v = - 1 for a 

remote simple compression (or biaxial extension). To evaluate C(V), WC choose 

the angles 0, (b of Fig. 1 to describe position on the unit sphere. Then if the 21, ~3, 

and ~2 axes are chosen to agree with the greatest, intermediate, and least principal 

strain rate directions, respectively, one finds that 

1. 
p == - 

2 (3 + v2)f 
[V (I 3 co@ 4) + 3 sin2 4 cos ‘LB]. 

Making the substit,ution 6 = cos 4 and performing the integral on 0 in the solid 

angle integration of (38), one finds for the constant, 
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C(v) = _:r exp { ([A log (!tcq - P)ij + A _ (A2 _ B2),] @} 
i) 

where A = 1 _ VP - 359 

2 (3 + .2)i 

and B = 3 (1 - E2)' 
w(3+-v5j2 * (41) 

Pl;umerical calculations hare been performed for the range of v from - 1 to -1 1. 
Remarkably? C (v) is very nearly independent of V, and the dependence on v can bc 

given to within an error never exceeding 0.2 per cent by the linear relation 

C (v) m 0.279 + WOO4 Y. (42) 

Thus, to within about 1 per cent. the high triaxiality void growth rate depc~ds on 

the remote strain rate only through the equivalent tensile rate. 

For a simple tension remote field, as in Section 3, C (v) r= C (1) can be evaluated 

exactly as I.5 c-5/3 = 0.283, and 1) = 0.283 exp (2/3 cF/~T"). This resldt is shown 

by the dashed line in Fig. 8. It is indistinguishable from the solid line, representing 

detailed calculations, at values of 1) greater than unity (or P/TO greater than l-5) 

so that the high triaxiality result appears accurate even at low stress levels where 

the dilatational growth does not dominate the shape changing growth at all. 

Finally. we note that a similar analysis to the above could be carried out for the 

case of a large ncgati\re remote mean stress. One then finds in analogy to (37) that 

Since C(V) is almost iuclel~rndent of V. for a given remote straiu rate thr dilatational 

amplification is nearly the same under tensile and comprcssivc mean stress. 

A1ctually, one can obtain an even closer approximation to the detailed calcu- 

lations of I) in Fig. 3 by choosing a relation between 11 and P/TO which reproduces 

both thr correct high posit,ive mean stress result (37) and the high negative result 

(4.7). It is natural to think of the two exponential tails as resulting from hyperbolic 

functions at large values of their arguments, and so to choose 

11 = [C(V) + C( -- v)] sinh (43 um/270) + [C(v) -- C ( - v)] cash (~‘3 u~/%T~). (44) 

With the close approximation to C (v) in (A?), this becomes 

I> == 0.558 sinh (~‘3 0~/2-‘7~) -1. WOOS v cash (2/S am/2’70). (45) 

When v - 1 for comparison with tensile calculations, this expression for 11 comes 

quite close to the solid curve in Fig. 3, and the value of D = 0*008 for zero mean 

stress is a close approximation to the axis crossing of the solid line (about 0.01). 

Also, for a pure shcar remote field, v = o and (45) predicts no dilatational growth 
when am = 0. That this prediction is correct is easily seen from a symmetq 

argumrnt, for reversing all quantities in the remote shear field must reverse the 

I-oid growth rate, but the re\-ersed remote shear field is indistinguishable from the 

original remote shear field except for changes in principal directions. These remarks 

suggest that (45) be viewed as a good a.pproximation to the dilatational pa,rt of void 

growth for all values of the remotr mean stress and for all \-&es of v (i.e. for all 

remote strain rate ratios). 



The exponential amplification of void growth rates by stress triaxiality, as 
found here for the spherical void, has also been found by MCCLINTOCK (1968) in his 
study of the long cylindrical void (Fig. a), stretched at a uniform rate i in the 

FIG. 4. I,ong rylindrical void cstcmtled ill thr tlircction of its axis. 

dirrction of its axis while subjected to a remote transvcrsc stress ~7~~~. This pro- 
blem could be solved directly from our v-ariational principle. III view of axial 
symmetry and incompressibility, the velocity field is 

uz = iz, 7,& z - & ir + (j. -1 g ir’“) !!!. 
? 

(4‘3) 

where is is the uuknown transverse velocity of the cavity boundary. The cor- 
responding two-dimensional version of the functional Q (ti) in our general develop- 
ment is 

whcrc i is tire strain rate dcrix-cd from the \-elocity field (46). Now, since the 

actual velocity field has the form of (46). WC get the exact answer by minimizing Q 
with respect to +o, which leads to 

This could have been written down through a conventional equilibrium approach 
by integrating the mdin.1 equation Aa,,./~r + (or,. - aeo)/r -= 0. MCCLIKTOCK’S 

(3068) results from solving (48) f or non-hardening Mises and Tresca materials are 
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(hcrc sgn ( . . . ) means ‘sign of’). WC note that the growth rate in a Tresw niaterial 
is non-uniqiu2 at crrT m == 0, with any 7-ahic between the limits ~ (I ij + 2)/L? am1 
+ (1 iI - ;)/2Z constituting a x-alit1 solution for l;0/,‘0. 

llesults for the spherical cavity in a Trcsca nintcrinl arc sonwwhat dillicrilt to 
ol)tain, but we haArc performed the: high triasiality computation when the remote: 
field is a simple tcnsilc esterlsion at the rate i. as in Fig. 1. Again one assumes a 

I-clocitj. field consisting of a term corrcsporltlillbrondiq to the rcrnotc strain rntc and a 
tmni reprcscnting splimicall\- s>-rnlrwtric A-c&l growtlr, just as in (28, 2!1) with 

(5 iij” i&y rcplarcd t,y i. The tlilnt:~tional growth factor 11 has the irltcrpretntion 

ns in (30) and it is obtnincd as the solution to (31). The following steps arc in\ol\-cd 

in comptiting de\ktoric stresses corresponding to the nssui~~ctl deformation field. 

First, principal extension rates are found, as is possible in view of the axial syni- 

metry, and it tlirns out that the assumed deformation field splits into two parts, 

one ha\-ing the intermediate rate i,, > 0 and the other having i,, < 0. The 
boundary lwtween thcsc two regions is the sphere 123 = f?DM$. The two regions 

correspond to corners on the Trcsca \-icltl silrfarc and in the former sI :z sJI ~-: 

--. s,1J/2 = L)70/:3, wlirrcns in thcl latter sl .~ I, AI1 - Ys,,, = 470/:3. OJlW 

principal stresses and directions arc f’ollntl. tile I-cnsor product in (31) is computctl, 

arid with the snl)stitutions A ==~ (IIo/K)~ uld [ -2 cos +> there rcsiilts 

The large II result is now obtained through steps similar to those following from 
(33). I’irst one intcgratcs o\~r h and then performs a series expansion which drops 
all terms vanishing when 11 is large, with the final result king 

D =-= 2 c-513 esp (%9/470) =- OW(i exp (3a~/470) = 0.376 exp (3a”/?cr0). (5’1) 

Iicrc. in the final form. wc ha\-c crnplo>-cd tlir: tcrisilc J-icld stress a0 7: 270. For 
comparison, the large 1, result for a iVises material with the sanic remote simple 

extension strain rate fcl(l is 

I) = ; e-5’3 exp ($4 a”/270) =- O.‘,‘XJ exp ($0 @/L’T,]) - 0.283 cxp (:hP/:!ao), (53) 

where the Mises tensile !,ic%Id a,, .mm x/3 5-0 is c~nployctl in tile last fornl. Ikmlining 

(5?, 53) tog&her with (49, SO), we see that both idealizations (and pcrliaps all 

isotropic idealizations) lead to the same coefficients in the exponential terms when 

materials arc matched in tension for the case of a spherical rarity, and in shear for a 
long cylindrical caL7ity. .ipar’t from this, howe\-er, tllc cocflkient multipl!_ing the 
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exponential for expansion of a sphere in a Tresca material is one-third greater than 

that for a Mises material. 

So far, all of our examples have been for non-hardening materials. An indication 

of strain hardening effects for spherical voids is given by the extreme case of a 

rigid-plastic material exhibiting a linear relation between stress and ‘true’ strain 

in simple tension. Then for isotropic strain hardening with a Mises equivalent 

stress dcflnition, stress-strain relations are 

Here G is a constant and the formula applies only if, at the current instant, i > o 

and 7 equals the greatest value achie\*ed in previous stressing. Otherwise, the 

material is rigid and ifj = 0. For small strains and proportional stress elevations, 

this results in the incompressible linear elastic form EQ = si3/2G, with rig being 

the infinitesimal strain tensor. Thus proportional stress elevations will result for 

small deformations around the spherical void if the remotely applied stresses arc 

kept in constant ratio. The analogous linear elastic problem is readily sol\-cd for 

general remote strain fields. One may verify that the deformat,ions transform 

initia.lly spherical surfaces into infinitesimally neighbouring ellipsoids, as was 

assumed for the shape changing fields employed in the nou-hardening analysis with 

a remote tensile field. 111 fact, the exact shape changing field in the present case is 

given by l+‘l (El) of (27), for a remote tensile field. The results for void growth rates 

are most simply expressed in terms of remote principal extension rates i, 03, iIIco, <nTrn. 

Then if li,,l, Ron, Z?,,,, denote radial velocities of the void boundary at points 

aligned with the remote principal directions, the linear cla.stic analogy leads to 

where 7m is the remote value of the equivalent flow stress in shear. 

6. ~ISCG3310N ASD Sr-MMARY 

Our results here for a spherical void, as well as McCLrN~roc:r<‘s (196X) for t.he long 

cylindrical void, show that growth rates are significantly clerated by the super- 

position of hydrostatic tension on a remotely uniform plastic deformation field. In 
both cases, moderate and high stress triaxiality leads to an amplification of relative 

void growth rates over imposed strain rates by a factor depending cxponcntiall\ 

on the mean normal stress. In view of the complexity of dctailcd computations, a 

simple approximate formula is developed below for the computation of void growth 

rates in arbitrary remote fields. 

A step has already been taken by (as), describing the dilatational contribution 

to growth of a spherical void in a non-hardening material. We now turn to approxi- 

mating the shape changing part. In (55) for the strongly hardening material, the 
first term represents the shape change, and this involves a simple amplification of 
the remote strain rate field by a factor of 5/3. Now, if we put (21) for a remote 
tensile field into the same form, it is seen that the 513 factor is replaced by 1 + E. 

While Fig. 2 for this shape change factor does not lead to a definitive result, it is 
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seen that for U near zero (low triaxiality) all four ‘reasonable’ shape change fields 

girye \-alms around 5/3 or slightly higher. Then, over a substantial range of 11 
(say, I1 greater than 2, corresponding to a triaxiality ratio CF/T~ greater than 83 

in Fig. 3) all predictions of 1 $ E give a value in the neighbourhood of H as does the 
solid average line. Deviations are significant at large values of I), but not very 

important since I1 then overwhelms 1 + E in value. Assuming these observations 
to bc appropriate also for other types of remote fields, we can now write a general 

approxiniate rquation for growth rates in the form of (55) as 

R OK ((-Z to 2) iKm -i- (; iL” iLOO)* u> R”, K, I; - T, II, III. (56) 

Here Zj is given by (45) for a non-hardening material, and by the second term of 

(55) for the strong linear hardening. It is evidently influenced greatly by hardening. 

The shnpc changing part is not much influenced. with the 5/3 factor appropriate 

for strong hardening or very low triaxiality in a non-hardening material, and the 

2 factor appropriate at higher triaxiality in the latter cast. Thus the clarification 

of strain hardening effects on dilatational growth is an important area for further 

st,udy. ~~CCLINT~CI~ (1968) has suggested a simple empirical correction to the long 

cylinder results in terms of a hardening exponent. :USO~ ‘~ACEY (1968) reports 

some results of detailed solutions for the same simple configuration in a companion 

paper. Our variational procedure could be applied for the more realistic spherical 

void model through a step by step procedure. In view of the relative insensitivity 

of the shape changing field to hardening, a simplification would result by letting 

the dilatational growth factor 1) be the only free parameter in the assumed velocity 

field, with an equation similar to (31) resulting at each step of the deformation. 

To gain an appreciation for the numbers involved, consider contained non- 

hardening plastic deformation near a crack in plnnc strain (RICE, J 968). The mean 

normal stress directly ahead is go0 - (1 -t- T)TO, and since the state of deformation 

is pure shear, strain rates can be represented as ii” := i. iIIm : 6, iIIIDo = -- i 

where i is the maximum extensional strain rate. Computing 1) from (45) and 

taking the factor of :! for the shnpe changing field, velocities in principal directions 

on the \,oid bountlar~ are given by (56) as 

R,, 7= 18.6 ill”, Z&i 7 11.6 ilz,, k,,,, -- 9.6 CR,,. (57) 

The significance of the numerical factors becomes clearer after integration, which 

can be done so as to account for finite shape changes in an approximate way by 

itlentifying Re as the mean of the three principal radii. We note that i is a ‘true’ 

strain, and if wc let C ~- cxp (6) 1 be the associated ‘engineering’ strain, the 

results arc 

&I 
~- = 1.17 (1 + ,-y1.c - 0.17, 

(%)init. 

(Z$+,, ~~ (1 + E)ll’G, 

- 0.83 (1 +- i)ll’F + 0.17, (58) 

where (ZQitit. is the initial radius of the void. Thus. for a 10 per cent strain the 

three size ratios are 3.3, 3.0, and 2.7, whereas for a 50 per cent strain the ratios are 

J 29,110. and 91. These large numbers suggest that the 50 per cent dimension change, 
so readily achieved in a tension test of a ductile metal, would be unachie\~ablr 
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over any reasonable size scale ahead of a crack, and that even the 10 per cent 

dimension change would be difficult to accommodate without large void spacings, 

Strain hardening no doubt reduces these ratios significantly for the same stress 

triaxiality, but the problem is further complicated by a very rapid increase of 

stress triaxiality ahead of a crack with increasing values of the hardening exponent 

(RIG and ROSENGREN, 1968). 

Apart from hardening, the interaction and unstable coalescence of neighbouring 

voids are major features yet to be brought into the modeling of ductile fracture. 

While the isolated void analysis predicts ample growth for fracture with high 

stress triaxiality, quite the opposite is true in a simple tension stress field. Our 

results then indicate no transverse expansion, and MCCLINTO~K (1968) found that 

actual tensile ductility, as recorded in extensive data on copper by EDELISOK and 

BALDWIN (1962), was greatly overestimated by his long cylindrical void model even 

when stress triaxiality in necking was included. THACEY’S (1968) study of the 

same model did, however, lead to a substantial reduction in predicted ductility 

with the approximate inclusion of interaction effects. We note that an analysis 

based on continuum models of void growth will necessarily lead to a tensile test 

ductility independent of the absolute void size or spacing, but dependent only on 

the volume fraction, as observed by Edelson and Baldwin. The same will not be 

true for fracture at a crack tip, or for other situations in which strain gradients 

over typical void spacings are large, so that size effects are to be expected. 
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