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Abstract: 

In the last decades, green and sustainable supply chain management practices have been 

developed, trying to integrate environmental concerns into organisations by reducing unintended 

negative consequences on the environment of production and consumption processes. In 

parallel to this, the circular economy discourse has been propagated in the industrial ecology 

literature and practice. Circular economy pushes the frontiers of environmental sustainability by 

emphasising the idea of transforming products in such a way that there are workable 

relationships between ecological systems and economic growth. Therefore, circular economy is 

not just concerned with the reduction of the use of the environment as a sink for residuals but 

rather with the creation of self-sustaining production systems in which materials are used over 

and over again.  

Through two case studies from different process industries (chemical and food), this paper 

compares the performances of traditional and circular production systems across a range of 

indicators. Direct, indirect and total lifecycle emissions, waste recovered, virgin resources use, as 

well as carbon maps (which provide a holistic visibility of the entire supply chain) are presented. 

The paper asserts that an integration of circular economy principles within sustainable supply 

chain management can provide clear advantages from an environmental point view. Emerging 

supply chain management challenges and market dynamics are also highlighted and discussed. 

Key Words: Green Supply Chain Management, Circular Economy, Product Lifecycle Analysis, 

Environmental Sustainability, Decision Support 

 

  



2 
                   

 

1. Introduction 

Circular economy (McDonough and Braungart 2000) represents a theoretical concept which 

aims at creating an industrial system that is restorative by intention (Srivastava, 2007; Seuring and 

Müller, 2008); in recent times, business have become more aware about such concept, seeing it 

as a mechanism that can be used to create competitive advantage (Ellen Macarthur Foundation 

2013). As such, the paper seeks to address the implications of these practices in a supply chain 

context from environmental, market, policy and societal points of view. 

The recent embracing of new business models that encourage design for re-use and improve 

materials recovery represents a departure from historic production and consumption systems. In 

fact, classical economic theory posits that disproportionate production and consumption 

patterns represent a natural or desirable outcome since they drive the creation of wealth resulting 

from economic activity (including the flow and use of raw materials and resources) and trade of 

goods and services (Smith and Nicholson 1887). However, it has also been established that 

economic and production systems cannot be separated from the environment, with 

contemporary ecological economic theory emphasising the increasing impacts of human 

activities on the natural environment (Costanza 1984; Harte 1995). This phenomenon has led to 

the crossing of certain biophysical thresholds (Rockström et al 2009). As a result, the emphasis 

on sustainability, a concept which is now integrated in most disciplines since the publication of 

the Brundtland Report by the World Commission on Environment and Development (1987), 

has become even more important in the present time. 

The increasing influence of sustainability in supply chain management and operations practices 

can also be attributed to the fact that, in addition to increased demands of strong economic 

performance, organizations are now held responsible for the environmental and social 

performance by major stakeholders (Zhu et al. 2005; Walker et al., 2014). As such, sustainability 

has forced the redefinition of the operations function (de Burgos Jiménez and Lorente 2001). 

Additionally, sustainable supply chain management has become a strategic process enabling firms 

to create competitive advantage (Sivaprakasam 2014). This assertion is backed by Porter’s (1991) 

hypothesis, which states that the conflict between environmental sustainability and economic 

competitiveness is a false dichotomy based on a narrow view of the sources of prosperity and a 

static view of competition. 

Within this context, in the last decades, sustainable supply chain management theories have been 

emerging (inter alia: Walton et al. 1998; Seuring and Müller 2008; Sarkis et al. 2011). These 
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frameworks are underpinned primarily by product lifecycle influences and operational influences 

(Sarkis, 2003). Savaskan et al. (2004) suggest that the requirement to take a holistic view of the 

whole product supply chain is a fundamental step for establishing greener and more sustainable 

production systems (Genovese et al. 2013), based on re-using and re-manufacturing materials 

(Zhu et al. 2008). These systems could also lead to the creation of new competitive business 

models (Kleindorfer et al. 2005). Such models could be based on the paradigm of cradle-to-cradle, 

encouraging the use of raw materials known as technical and biological nutrients, which do not 

have a negative impact on the environment, have an entirely beneficial impact upon ecological 

systems and return to the ecosystem without treatments (Braungart et al. 2007). 

Interestingly, the concepts of green and sustainable supply chain management have been 

developed in parallel (although there are some fundamental differences in principles) to the 

circular economy discourse, which has been propagated in the industrial ecology literature and 

practice for a long time (Lowe 1993; Ehrenfeld 1995). In fact, sustainable supply chain 

management seeks to integrate environmental concerns into organisations by minimizing 

materials’ flows or by reducing unintended negative consequences of production and 

consumption processes (Srivastava, 2007; Srivastava, 2008; Sarkis et al. 2011; Dong et al. 2014). 

On the other hand, as described by McDonough et al. (2002), circular economy pushes the 

frontiers of environmental sustainability by emphasising the idea of transforming products in 

such a way that there are workable relationships between ecological systems and economic 

growth (Francas and Minner, 2007). This is achieved by creating a paradigm shift in the redesign 

of material flows based on long-term economic growth and innovation (Braungart et al. 2007). It 

is implied that circular economy is not just concerned with the reduction of the use of the 

environment as a sink for residuals (Andersen 2007) or with the delay of cradle-to-grave material 

flows (as sustainable supply chain management suggests) but rather with the creation of 

metabolisms that allow for methods of production that are self-sustaining, true to nature and in 

which materials are used over and over again (McDonough and Braungart 2000).  

Finding ways to align sustainable supply chain strategies to circular economy principles has 

therefore become important if the boundaries of environmental sustainability are to be pushed. 

Additionally, circular economy is primarily concerned with material flows in economic systems 

(Moriguchi 2007; Mathews and Tan 2011) through a paradigm shift in production philosophy; 

this therefore leaves other important issues such as understanding environmental impacts (such 

as the ones related to energy usage and carbon emissions) and the implications of such impacts 
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unresolved. Consequently, the main research questions which would be addressed in this paper 

are: 

 How can sustainable supply chain management be enhanced by aligning it to the circular 

economy concept? 

 What are the environmental implications of circular production systems in terms of 

carbon emissions, resource use and waste recovered when compared to a traditional 

linear production paradigm? 

 What are the potential market dynamics, policy and societal implications that could arise 

by the implementation of circular production systems? What kind of challenges do they 

pose? 

To answer to these questions, based on the theoretical constructs of circular economy, two case 

studies (based on product supply chains from different process industries) are analysed. The 

findings would be used to provide insight to the analysis and discussions. Chosen case studies are 

concerned with food (specifically, the waste cooking oil supply chain) and chemical (ferrous 

sulphate supply chain) industries. Greenhouse gas emissions (in the following, simply referred to 

as carbon emissions) were selected as the main environmental impact indicator because of their 

prominence in contemporary literature and as a result of easy access to data. 

Food and chemical supply chains were chosen for this study because (apart from the fact that 

they are two very different process industries) both supply chains have been known to have 

significant consequences on the environment. Additionally, according to Beamon (2008) limited 

research has been carried out on the food processing sector mainly because of the complexity of 

the supply chain, hence leaving important issues involving waste, re-use of resources, greenhouse 

gas (GHG) emissions unaddressed (French and LaForge 2006). Regarding the chemical industry 

supply chain the OECD (2008) reports that despite it being one of the most regulated of all 

industries, there is a potential for a negative impact at every stage of its lifecycle. This situation is 

exacerbated by the increase use of chemicals in major economic development sectors (UNEP 

2012). 

To address these issues, the paper is structured as follows: in Section 2, a literature review is 

conducted on the principles of circular economy, on frameworks for evaluating the 

environmental performance of supply chains and on supply chain configurations. In Section 3, 

methodological notes and generalities about the case studies are presented. Section 4 addresses 
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the key findings, analysis and discussions of the study leading to the concluding remarks reported 

in Section 5. 

 

2. Theoretical Backgrounds 

2.1 The Circular Economy Paradigm 

Environmental economics is concerned with identifying and solving problems related to damage 

and pollution associated with the flow of residuals (Fisher, 1981; Andersen 2007). In this 

context, the principles underlining circular economy suggest that, by assuming the planet as a 

closed system, the amount of resources depleted in a period is equal to the amount of waste 

generated in the same period. This principle is thus subject to the Laws of Thermodynamics 

(Victor 1991; Robèrt et al. 1997), although in practice this is not the case because Daly (1985) 

reiterates that the circular flow of exchange (which consist of the physical flow of matter and 

energy) is ultimately linear and unidirectional beginning with low entropy resources from the 

environment and ending with the pollution of the environment with high entropy waste. Despite 

these limitations, due to basic physical laws, the paradigm of circular economy seeks to 

continually sustain the circulation of resources and energy within a closed system (the planet) 

thus reducing the need for new raw material inputs into production systems. The principles of 

circular economy thus reveal an idealistic ambition of pushing the boundary of sustainable 

supply chain management practices. Such practices, indeed, are ultimately concerned with the 

reduction (or the delay) of unintended negative impacts on the environment due to cradle-to-

grave material flow (Prahinski and Kocabasoglu, 2006). Thanks to initiatives such as The Circular 

Economy 100 (Ellen Macarthur Foundation, 2013), a number of companies have embraced 

these concepts also as a mechanism for collective problem solving. The circular economy 

paradigm has then provided a framework by means of which businesses operating within the 

same supply network (and beyond) can engage with sustainability activities, enabling best 

practices to be adopted. 

In this context, the concept of Reverse Supply Chain Management has been developed (French and 

LaForge 2006; Li et al., 2014) as an adaptation of circular economy principles to supply chain 

management. Indeed, a reverse supply chain includes activities dealing with product design, 

operations and end-of-life management in order to maximize value creation over the entire 

lifecycle through value recovery of after-use products either by the original product manufacturer 

or by a third party.   

file:///C:/Users/ec1ag/Downloads/Environment%20and%20Planning%20A_July%202013-Final.docx%23_ENREF_25
file:///C:/Users/ec1ag/Downloads/Environment%20and%20Planning%20A_July%202013-Final.docx%23_ENREF_25
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Reverse supply chains are either open-loop or closed-loop. Basically, open-loop supply chains 

involve materials recovered by parties other than the original producers who are capable of 

reusing these materials or products. On the other hand, closed-loop supply chains deal with the 

practice of taking back products from customers and returning them to the original 

manufacturer for the recovery of added value by reusing the whole product or part of it (French 

and LaForge 2006). Because of the benefits of reverse supply chains, it is unsurprising that 

manufacturing industries have been placing, recently, a lot more emphasis on achieving 

sustainable production by shifting from end-of-pipe solutions to a focus on whole lifecycle 

assessments and integrated environmental strategies and management systems (OECD 2009). 

Early contributors to the design of circular supply chains include Thierry et al. (1995), who 

designed an integrated supply chain model in which product returns from the end-user undergo a 

recovery operation (such as re-use, repair, remanufacture or recycling); hence products are 

integrated back into the ‘forward’ supply chain.  

Despite its idealistic principles, the concept of circular economy has still implications of 

environmental externalities. This is because external effects always occur as a result of 

transactions between different entities (Perrings 2005), represented, in this case, by the flow of 

materials and resources between different production systems or different stages of a same 

production system. Methodologies that can be used to evaluate the environmental implications 

of such production systems are generally based on the principles of lifecycle assessment (LCA). 

 

2.2 Frameworks for Environmental Assessment of Product Supply Chains 

Lifecycle assessment (LCA) is a widely applied methodology in the context of environmental 

analysis to support cleaner production (Yong 2007) and greener supply chains (Acquaye et al. 

2014).  UNEP (2012) have also reported that such methodology can be utilized to assess 

resource use throughout the lifecycle of a product, indicating precisely where inefficiencies exist, 

and for analysing environmental impacts taking into account the whole amount of goods and 

services needed to manufacture and deliver that particular product (Luo et al. 2009). The LCA 

framework for a product, process or activity/operation can bring together the impacts of 

collaborative supply chain partners arising from extraction and processing of raw materials; 

manufacturing, transport and distribution; re-use, maintenance recycling and final disposal. LCA 

is therefore a holistic approach which brings environmental impacts into one consistent 

framework, wherever and whenever these impacts have occurred or will occur (Guinee et al. 

file:///C:/Users/ec1ag/Downloads/Environment%20and%20Planning%20A_July%202013-Final.docx%23_ENREF_25
file:///C:/Users/ec1ag/Downloads/Environment%20and%20Planning%20A_July%202013-Final.docx%23_ENREF_25
file:///C:/Users/ec1ag/Downloads/Environment%20and%20Planning%20A_July%202013-Final.docx%23_ENREF_62
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2001). Adopting LCA provides useful advantages in supply chain management practice (Acquaye 

et al., 2015). Indeed, production paths associated with high energy and resource usage, pollution 

and emission of greenhouse gases (here synthetically defined as carbon hot-spots) can be identified 

and appropriate intervention strategies devised and implemented in order to address them.   

Two basic LCA modelling techniques can be used to examine the environmental impact of a 

supply chain production system, namely the process (bottom-up) models or the macro-economic 

environmental (top-down) models (IPCC 2001).  

 

2.2.1 Bottom-Up Models: Process Lifecycle Assessment Methodology 

Traditional (or process) LCA methodology is highly defined by ISO standards (International 

Standard Organisation 1998), working by creating a system boundary dictated by the aims of the 

study and accounting for individual impacts assessments (for instance, carbon-equivalent emissions, 

as used in this paper) within the system (Refer to Figure 1 for a schematic representation of a 

typical process LCA system). This methodology has been described as incomplete, primarily 

because it is not possible to account for the theoretically infinite number of inputs of very 

complex product supply chains into the LCA system (Crawford 2008; Rowley et al. 2009). 

However, because of the specificity of individual inputs within the defined LCA system 

boundary, the environmental impacts of those inputs can be more accurately determined 

(Lenzen and Crawford 2009). Extending this methodology to address its limitations in terms of a 

restricted LCA system boundary, but leveraging on its advantage in increasing the accuracy is 

therefore crucial when setting up environmental assessment models of product supply chains 

(Acquaye et al. 2011). 

 

Figure 1: Schematic representation of a typical process LCA system. 

 

2.2.2 Top-Down Models: Environmental Input-Output Methodology 

Environmental Input-Output (EIO) is a LCA methodology that uses country and/or regional 

input–output trade data coupled with sector-level emissions to calculate environmental impacts, 
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yielding an all-encompassing result within an extended system boundary (Berners-Lee et al. 2011; 

Acquaye et al. 2012). However, it has the drawback of being less specific due to aggregation of a 

range of products or services in one sector (Mongelli et al. 2005) and the assumptions of 

proportionality and homogeneity (Acquaye and Duffy 2010). 

The EIO framework is a macro-economic model based on a generic top-down model of the 

economy (Wiedmann et al. 2007), thus simulating the whole supply chain at an economy-wide 

level, along with its sectorial changes and production and consumption patterns (Barrett and 

Scott 2012). The whole economy can therefore be described as an aggregation of different 

sectors as shown below in the EIO framework (Figure 2). In the manufacturing of a product, 

any resource input used directly or indirectly at any tier of the supply chain can be traced to one 

of these economic sectors. As such, the EIO framework provides a complete system boundary 

for the environmental assessment of the product supply chain (Wiedmann 2009; Majeau-Bettez 

et al. 2011). Thus, the EIO offers a global (or multi-regional) supply chain perspective to the 

environmental analysis, by extending the system boundary in such a way to account for the very 

large number of supply chain inputs. 

 

Figure 2: Whole economy representation based on an EIO framework. 

 

2.2.3 Integrating Bottom-Up and Top-Down Models: Hybrid LCA Methodology  

The combination of process (bottom-up) and macro-economic (top-down) approaches can offer 

a third methodology (the so-called hybrid methodology) that integrates the process and 

environmental input-output methodology into a more consistent and robust framework based 

on a whole lifecycle assessment principle. This is because the hybrid methodology integrates the 

advantages of both process LCA and environmental input-output methodologies while 

overcoming their respective limitations. Indeed, process LCA is complemented with EIO LCA 

which is used to estimate missing indirect inputs not included in the original system boundary 
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(Lenzen and Dey 2000; Wiedmann 2009). The integration of the two basic approaches leads to 

the development of a more robust methodology; that is the Hybrid LCA. In the Hybrid LCA 

approach used in this paper, we adopt a multi-regional input-output (MRIO) framework in 

which EIO is interconnected with the matrix representation of the physical process LCA system. 

As a result, in the upstream and downstream inputs into the LCA system, where there are no or 

better process LCA data available, EIO estimates are used (Suh and Huppes 2005). A detailed 

explanation of the Hybrid LCA methodology is provided in Acquaye et al. (2011) and Wiedmann 

et al. (2011).  

It is an established fact that the Hybrid LCA methodology has been well promoted. However, 

because of the inherent complexity of product supply chains (as a result of the globalized nature 

of product, process and service inputs), hybrid LCA must be developed not just using country 

specific IO models, but a multi-regional IO framework. Additionally, the results should be 

presented in such a way that they have direct benefit and relevance to supply chain management 

practices. This paper therefore seeks to use these methodological constructs to answer the posed 

research questions.  

 

3. Research Methodologies and Applications 

3.1 General Input-Output Model 

An input-output (IO) model records the flows of resources (products and services) from each 

industrial sector considered as a producer to each of the other sectors considered as consumers 

(Miller and Blair 2009). An IO model is therefore a matrix representation of all the economic 

(production and consumption) activities taking place within a country, region or multi-region.  

The general input-output methodology has been well documented in literature (ten Raa 2007; 

Ferng 2009). In the general IO notation, it can be shown that:  𝑥 = (𝑰 − 𝑨)−1 ∙ 𝑦 

In this equation, 𝑨 = [𝑎𝑖𝑗] describes all the product requirements (𝑖) needed by industry (𝑗) to 

produce a unit monetary output. It is called the technical coefficient matrix because it describes 

the technology of a given industry which is characterised by the mix of supply chain inputs 

(including raw materials, machinery, energy, goods, transport, services, etc.) required to produce 

a unit output (Barrett and Scott, 2012). The vector 𝑥 represents the total output in a given sector. 
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It is equal to the sum of those products consumed by other industries and those consumed by 

the final demand 𝑦. (𝑰 − 𝑨)−1 is referred to as the Leontief Inverse matrix and (𝑰 − 𝑨)−1 ∙ 𝑦 

describes the total (direct and indirect) requirements needed to produce the output, 𝑥 for a given 

final demand 𝑦 (Miller and Blair 2009).  

Hence, in terms of supply chain visibility (Vachon and Klassen 2006), the supply chain of a given 

product can be set up in such a way that not only direct inputs are captured, but also, irrespective 

of the origin of these inputs (domestic or imported), indirect ones can be considered in the 

analysis. This is a result of the extended system boundary of the IO framework (Acquaye and 

Duffy 2010; Mattila et al. 2010; Wiedmann, et al. 2011). As a result, a whole lifecycle perspective, 

which is a key principle of sustainable supply chain management, is adopted (Carter and Easton 

2011). 

 

3.1.1Multi-Regional Input-Output (MRIO) Hybrid LCA model 

The MRIO model used in environmental input-output analysis is usually presented as a 2-region 

model (see for instance McGregor et al. (2008) who used a two-region MRIO model to 

enumerate CO2 emissions embodied in interregional trade flows between Scotland and the rest 

of the UK). In this paper, the Supply and Use format within a two-region (UK and the Rest of 

the World - in the following referred to as ROW) IO framework is adopted (see Figure 3 for an 

exemplification). As reported by EUROSTAT (2008), the advantages of Supply and Use tables 

as an integral part of the national accounts lies in the fact that they have a stronger level of detail 

which ensures a higher degree of homogeneity of the individual product and therefore better 

possibilities for determining categories of uses and consequently the environmental impacts. 

Additionally, it enables to perform a split between emissions associated with supply chain inputs 

as a result of UK production and ROW production. The methodology, developed within the 

integrated Hybrid LCA framework, (Suh and Huppes, 2005) is presented below. The following 

Equation 1 represents the general expression of the model (see also Acquaye et al., 2011):  

 Total Emissions Impact = [𝑬𝒑 𝟎𝟎 𝑬𝒊𝒐] [ 𝑨𝒑 −𝑫−𝑼 (𝑰 − 𝑨𝒊𝒐)]−1 [𝑦0]                               (1) 
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Where: 𝑨𝒑 provides the square matrix representation of process inventory (dimension: s × s) 𝑨𝒊𝒐 represents the MRIO technology coefficient matrix (dimension: m × m) 𝑰  represents an identity matrix (dimension:m × m) 𝑼 provides the  matrix representation of upstream cut-offs to the process system 

(dimension:m × s) 𝑫 reproduces the matrix of downstream cut-offs to the process system (dimension:s × m) 𝑬𝒑 represents the  process inventory environmental extension matrix. CO2-eq emissions are 

diagonalised (dimension:s × s) 𝑬𝒊𝒐 represents the MRIO environmental extension matrix. CO2-eq emissions are diagonalised 

(dimension:m × m) [𝑦0] represents the functional unit column matrix with dimension (s + m, 1) or where all 

entries are 0 except y 

Following on this, (Aio) is presented in the Supply and Use format as shown below: 

 

 

Figure 3: Supply and Use Input-Output Framework 

In a matrix representation, this becomes 

𝑨𝒊𝒐 = [  
           𝟎     𝑨(𝑼𝑲)𝑼         𝑨(𝑼𝑲)𝒔   𝟎𝟎      𝟎 𝑨(𝑼𝑲)𝑰𝑴𝑷      𝟎            𝟎               𝟎            𝑨(𝑼𝑲)𝑬𝑿𝑷               𝟎                  𝟎          𝑨(𝑹𝑶𝑾)𝑼                        𝑨𝒊𝒎𝒑         𝟎 ]  
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Where Aio becomes the 2-region MRIO technical coefficient matrix. This includes the respective 

technical coefficient matrices for UK Domestic Use, 𝑨(𝑈𝐾)𝑈 , UK Domestic Supply, 𝑨(𝑈𝐾)𝑠, UK 

Export to ROW,  𝑨(𝑈𝐾)𝐸𝑋𝑃, ROW Use, 𝑨(𝑅𝑂𝑊)𝑈, UK Imports from ROW,  𝑨(𝑈𝐾)𝐼𝑀𝑃  and 

ROW Supply to ROW,  𝑨(𝑅𝑂𝑊)𝑠. All of the individual 𝑨 matrices are of dimensions 224 𝑥 224; 

hence, Aio and 𝑰 (the Identity Matrix) are therefore of dimension 896 𝑥 896.. 

The Technical Coefficient Matrix for UK Imports from ROW,  𝑨(𝑈𝐾)𝐼𝑀𝑃 , for example, is 

defined as: 

 𝑨(𝑈𝐾)𝐼𝑀𝑃 = [𝑞𝑖𝑗(𝑅𝑂𝑊,𝑈𝐾)𝑥𝑗 ] 
Where 𝑞𝑖𝑗(𝑅𝑂𝑊,𝑈𝐾) represents elements of UK Imports input-output table from the ROW region 

indicating the input of product (𝑖) from ROW into the industry (𝑗) of the UK, while 𝑥𝑗 

represents the total output of UK industry, (𝑗).  

Referring back to Equation (1),  Ap can be described as a matrix representation of the Process 

LCA framework. For 𝑛 different types of supply chain inputs into the Process LCA system, 𝑨𝒑 

would be of dimension (𝑛 + 1) 𝑥 (𝑛 + 1); where there are 𝑛 supply chain product inputs and 1 

main product output. Let  𝑞𝑛 represents the quantity of supply chain inputs used for any given 

input, 𝑛 and 𝑘𝑟,𝑐 the elements of 𝑨𝒑 so that 𝑨𝒑 = [𝑘𝑟,𝑐] where 𝑟 (rows) represents inputs and 𝑐 

(columns) processes of those inputs in the Process LCA system. A simplified way of formulating 

mathematically the Process LCA system is presented below:  

 

 

𝑨𝒑 = [𝑘𝑟,𝑐] =  
 

  

 

 

 

𝑘𝑟,𝑛+1 = −𝑞𝑟      ∀ 𝑟 𝑒𝑥𝑐𝑒𝑝𝑡 𝑓𝑜𝑟 𝑟 = 𝑛 + 1 𝑘𝑟,𝑐 = 0              𝑖𝑓 𝑟 ≠ 𝑐 

𝑘𝑟,𝑐 = 𝑞𝑟     𝑖𝑓 𝑟 = 𝑐 𝑎𝑛𝑑 (𝑟 ≠ 𝑛 + 1, 𝑐 ≠ 𝑛 + 1)     𝑘𝑛+1,𝑛+1 = 1   
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3.1.2 Environmentally Extended MRIO Hybrid Model  

The Input-Output analysis component of the hybrid model can be extended to an 

Environmental Input-Output (EIO) lifecycle assessment (LCA) to generate results which can be 

used in the assessment of product supply chain emissions.  

Given that 𝑥 = (𝑰 − 𝑨)−1 ∙ 𝑦 defines the total (direct and indirect) requirements needed to 

produce an output 𝑥 for a given final demand, 𝑦; the EIO LCA can therefore be defined in a 

generalised form as:  𝐸 = 𝑬𝑖𝑜 ∙ 𝑥 = 𝑬𝑖𝑜  ∙ (𝑰 − 𝑨)−1 ∙ 𝑦 

Where 𝑬𝑖𝑜  is the direct emissions intensity (kg CO2-eq/£) of the IO industries and 𝑬𝑖𝑜  ∙(𝑰 − 𝑨)−1 the total (direct and indirect) emissions intensities (kg CO2-eq/£).  

By extension, the matrix 𝑬𝑖𝑜 expressed in terms of the MRIO Supply and Use structure 

becomes:  

𝑬𝑖𝑜 = [ �̂�𝑼𝑲 𝟎𝟎 𝟎 𝟎        𝟎𝟎         𝟎   𝟎     𝟎   𝟎     𝟎 �̂�𝑹𝑶𝑾 𝟎𝟎 𝟎] 

Where �̂�𝑼𝑲 and �̂�𝑹𝑶𝑾 are respectively the diagonalised direct emissions intensity (Sector 

emissions in kg CO2-eq per total output in £) of each industrial sector in the UK and the ROW. 

Similarly, the environmental extended component for the process LCA system 𝑬𝑝 in the hybrid 

model (Refer to Equation 1) is defined as a diagonalized matrix of the respective environmental 

values 𝑒𝑛 of each input 𝑛 into of the process LCA system obtained by multiplying product input 

quantities 𝑞𝑛 and emissions intensities  𝑒(𝑖𝑛𝑡)𝑛.   

𝑬𝑝 = [�̂�𝑛]  
Where ∀ 𝑛 into the process lCA system; 

𝑒𝑛 = 𝑞𝑛 ∙ 𝑒(𝑖𝑛𝑡)𝑛 
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As described earlier, 𝑦 represents the final demand; in this instance, the output of the LCA 

system. This final demand matrix is represented as a column matrix. 

The generic matrix dimension or size of 𝑦 has already being established to be (s + m, 1). 
However, specific to this study, this dimension equals ((𝑛 + 1 + 896), 1 ), where 𝑛 is the 

number of supply chain product inputs for the process LCA system and 896 the dimension of 

the MRIO matrix. Since 𝑦 is a column matrix, let 𝑓(𝑑,1) be the elements of 𝑦 such that 𝑑 

represents the row elements of the single column (represented as 1).  

Hence:   

𝑦 = [𝑓𝑑,1];𝑤ℎ𝑒𝑟𝑒 𝑓𝑑,1 = 1 𝑖𝑓 𝑑 = 𝑛 + 1 𝑎𝑛𝑑 0, ∀ 𝑜𝑡ℎ𝑒𝑟 𝑑  
The environmentally extended MRIO model (with each part of the model described in Section 

3.1) is the methodological basis used to calculate the product supply chain emissions. Input-

output data and sectorial environmental extensions used in this paper are based on a 

disaggregation of UK input-output tables which is structured in the form of the two region Multi 

Regional Input-Output framework as presented in Wiedmann et al. (2010) (See also (Wiedmann 

et al. 2011; Acquaye et al. 2012). 

 

3.2 Applications: Case Studies 

In this paper, case studies from the chemical (ferrous sulphate supply chain) and food 

(specifically, the waste cooking oil supply chain) industries will be illustrated, in order to evaluate 

the performance of different supply chain configurations. Circular supply chains, that assume a 

broader perspective of the entire production system (in order to include post-production 

stewardship) will be compared to linear production systems, just concerned with the production 

of a specific product (Linton et al. 2007). The first case study, dealing with the comparison of 

chemicals in the water industry, is based primarily on empirical data (collected from the focal 

company and its suppliers), which is complemented with secondary data sources.  The second 

case study, concerned with the production of biodiesel from cooking oils, is however solely 

based on secondary data sources. 

 



15 
                   

 

3.2.1 Case Study I-Chemical Supply Chain (Ferrous sulphate) 

Delivering quality drinking water and returning clean wastewater to the environment represent 

energy intensive activities that have environmental implications in terms of carbon emissions on 

the environment. A good portion of the environmental impact is related, in this context, to the 

use of chemical compounds in the water supply and management process.  

Among the main chemicals used in the water treatment processes, the following ones can be 

mentioned: Ferric Chloride and Ferrous Sulphate which are alternate ferric salts; and Sodium 

Hydroxide and Calcium Hydroxide which are alternate alkaline reagents used for acid 

neutralization. For the purposes of this paper, the case study will analyse Ferrous Sulphate and 

the Ferric Chloride supply chains which can both be used as coagulant. Data for the chemical 

supply chains have been obtained from actual company sources from the UK and are 

complemented with secondary data from Ecoinvent (2010). 

In order to analyse the carbon emissions implications of a circular production process involving 

the production of Ferrous Sulphate, which can be produced by using a by-product (the acidic 

waste) of titanium dioxide as raw material, its supply chain is compared to the Ferric Chloride 

supply chain which is produced from a mainly linear production system. For details of the 

process data used in this case study, refer to the Appendix (sub-section Supplementary Data I).   

 

3.2.2 Case Study II-Food Supply Chain (Waste Cooking Oil) 

The second case study assesses the carbon emissions implications of two different supply chain 

configurations using cooking oil for the production of biodiesel: a traditional (linear or forward) 

supply chain based on a linear production system where virgin cooking oil is utilized in the 

production of a secondary product (biodiesel) and a circular (open-loop) supply chain configuration 

based on  the recovery of value from waste cooking oil used in the production of biodiesel 

(Refer to Figure 4). Data for these processes were sourced from Ecoinvent (2010) with details 

presented in the Appendix (sub-section Supplementary Data II).  
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Figure 4: Linear and Circular Cooking Oil Supply Chain Configurations in Biodiesel Production 

 

4. Results and Discussions 

4.1 Case Study Results 

Based on the methodological framework of the Environmentally Extended MRIO Hybrid 

Model presented in Section 3.12, the carbon emissions implications of the implementation of a 

circular supply chain were examined for both the chemical (ferrous sulphate) and the food (waste 

cooking oil) supply chains. This involved a calculation of the comparative change in lifecycle 

carbon emissions of the whole supply chain. Tables 1, 2, 3, 4, 5 provide an overview of the 

breakdown of the results. These are used to construct synthetic supply chain carbon maps (Refer 

to Figures 6, 7, 9 and 10). Within the carbon maps, process categories highlighted as hot-spots 

provide an indication of the relative high carbon emission paths in the supply chain. These maps 

provide a visualisation technique of illustrating supply chains in order to support decision-

making. The following thresholds for emissions ranking are adopted: Very High (shown in Red, 

it indicates inputs with emissions greater than 10% of the total lifecycle emissions); High (orange, 

5-10%); Medium (Yellow, 1-5%); Low (Green, Less than 1%).  

Coherently to the use of the Hybrid LCA, the study also calculates and assesses the indirect 

carbon emissions impacts which consist of inputs from the wider economy, not captured 

through process inputs. These are indicated on carbon maps as indirect inputs, representing an 

aggregation of 18 sectors, namely: agriculture, forestry, fishing, mining, food, textiles, wood and 

paper, fuels, chemicals, minerals, metals, equipment, utilities, construction, trade, transport and 

communication, business services, personal services. 

An analysis of the two case studies is presented in the following sub-sections. 
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4.1.1 Results: Chemical Supply Chain 

The results compare the carbon emissions implications of using Ferrous Sulphate produced from 

a by-product (acidic waste) of the production process of titanium dioxide, seen as the 

implementation of a circular open-loop supply chain, compared to the use of Ferric Chloride 

which is produced from a mainly linear production system. Results are presented in Tables 1 and 

2, reporting the complete breakdown of emissions across supply chain inputs; Figures 6 and 7 

also illustrate category-aggregated carbon maps for the two supply chains. 

Based on the methodology presented in Section 3, the total Ferric Chloride emissions (0.9932 kg 

CO2 eq/kg) were determined to be more than three times higher than the Ferrous sulphate 

(0.3282 kgCO2-eq/kg). Comparative levels of direct and indirect emissions are presented in Figure 

5. As observed above, the difference in emissions between the two salts is significant; moreover, 

because the Ferrous Sulphate is manufactured from acidic waste (a by-product of titanium 

dioxide production or, alternatively, from steel production) emissions that would have generated 

for the neutralization of the acidic waste and its disposal are also avoided. According to data 

retrieved from Ecoinvent (2010), the emissions generated by the disposal of 1 kg residue from 

TiO2 production to landfill equals 0.3289 kgCO2-eq/kg. As seen from Figure 5, the total emission 

of producing 1 kg of Ferrous Sulphate is practically the same as that the emissions of disposing 1 

kg of residue from Titanium Dioxide. The use of Ferrous Sulphate produced by this circular 

process is not only generating less emission than the linear production system of Ferric Chloride 

supply chain, but also preventing the occurrence of emissions generated by the disposal of waste. 

 

Figure 5: Comparative levels of emissions by Ferrous Sulphate and Ferric Chloride supply chains 
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The breakdown of CO2-eq emissions for the circular configuration (Ferrous Sulphate) is 

presented in Table 1; the carbon map in illustrated in Figure 6. It can be observed that electricity 

is the main “hotspot” since it is the main input used in the purification of the by-product (acidic 

waste). It contributes to 35.94% of the total emissions, followed by the operations of the 

chemical plant (15.07%) and outbound road transport (12.10%). Direct and indirect inputs 

account, respectively, for 73.28% and 26.72% of the total emissions. In the case of the Ferric 

Chloride (see Table 2 and Figure 7), the main hot-spot is represented by the mercury-cell 

production process of chlorine (a very electricity-intensive process). This contributes towards 

54.00% of the emissions, followed by the chemical plant (12.45%), chlorine production through 

membrane-cell process (9.84%) and road transport from supplier (8.45%). It was also 

determined that direct inputs (process emissions) and upstream indirect emissions account, 

respectively, for 89.71% and 10.29% of the total emissions.  

Input Category Quantity Unit 
Emissions Intensity  

(kgCO2-eq/unit) 
Emissions 
(kgCO2-eq) 

Emissions % 

Electricity, medium 
voltage, at grid 

Utilities 0.2220 kWh 0.5314 0.1180 35.94% 

Chemical Plant, 
Organics 

Organic 
Chemicals 

0.0000 Unit 123660000.0000 0.0495 15.07% 

Transport, lorry 3.5-20t, 
fleet average, outbound 

Transport 0.1420 tkm 0.2798 0.0397 12.10% 

Chemicals Indirect N/A N/A N/A 0.0289 8.81% 

Transport, lorry 3.5-20t, 
fleet average, inbound 

Transport 0.1000 t.km 0.2798 0.0280 8.52% 

Utilities Indirect N/A N/A N/A 0.0227 6.91% 

Transport and 
Communication 

Indirect N/A N/A N/A 0.0151 4.60% 

Mining Indirect N/A N/A N/A 0.0105 3.20% 

Transport, transoceanic 
freight ship 

Transport 0.5000 tkm 
0.0108 

0.0054 1.64% 

Fuels Indirect N/A N/A N/A 0.0033 1.00% 

Metals Indirect N/A N/A N/A 0.0020 0.60% 

Minerals Indirect N/A N/A N/A 0.0020 0.60% 

Agriculture Indirect N/A N/A N/A 0.0016 0.50% 

Business Services Indirect N/A N/A N/A 0.0007 0.20% 

Trade Indirect N/A N/A N/A 0.0003 0.10% 

Equipment Indirect N/A N/A N/A 0.0003 0.10% 

Wood and Paper Indirect N/A N/A N/A 0.0003 0.10% 

Personal Services Indirect N/A N/A N/A 0.0000 0.00% 

Construction Indirect N/A N/A N/A 0.0000 0.00% 

Textiles Indirect N/A N/A N/A 0.0000 0.00% 

Food Indirect N/A N/A N/A 0.0000 0.00% 

Fishing Indirect N/A N/A N/A 0.0000 0.00% 

Forestry Indirect N/A N/A N/A 0.0000 0.00% 

Total Emissions  
(kgCO2-eq/kg] 0.3282 100.00% 

Table 1: Supply Chain Emissions breakdown for Ferrous sulphate 
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Input Category Quantity Unit 
Emissions 
Intensity  

(kgCO2-eq/unit) 

Emissions 
(kgCO2-eq) 

Emissions 
% 

Chlorine, gaseous, mercury 
cell 

Inorganic Chemicals 0.4920 kg 1.0900 
0.5363 54.00% 

Chemical plant, organics Organic Chemicals 0.0000 unit 123660000.0000 0.1237 12.45% 
Chlorine, gaseous, membrane 
cell 

Inorganic Chemicals 0.1060 kg 0.9220 
0.0977 9.84% 

Transport, lorry 3.5-20t, fleet 
average (from supplier) 

Transport 0.3000 tkm 0.2798 0.0839 
8.45% 

Chemicals (Indirect) Indirect N/A N/A N/A 0.0309 3.11% 

Utilities (Indirect) Indirect N/A N/A N/A 0.0248 2.50% 
Hydrochloric acid, 30% in 
H2O 

Inorganic Chemicals 0.0220 kg 0.8530 
0.0188 1.89% 

Transport and 
Communication (Indirect) 

Indirect N/A N/A N/A 0.0173 
1.74% 

Iron scrap Metals 0.3280 kg 0.0420 0.0138 1.39% 

Mining (Indirect) Indirect N/A N/A N/A 0.0116 1.17% 
Transport, lorry 3.5-20t, fleet 
average 

Transport 0.0220 tkm 0.2800 
0.0062 0.62% 

Business Services (Indirect) Indirect N/A N/A N/A 0.0060 0.60% 
Transport, transoceanic 
freight ship 

Transport 0.3930 t.km 0.0108 0.0042 
0.43% 

Fuels (Indirect) Indirect N/A N/A N/A 0.0037 0.37% 
Disposal, sludge from FeCl3 
production, 30% water, to 
underground deposit Waste Management 0.0060 tkm 0.6040 0.0036 0.36% 
Electricity, medium voltage, 
at grid 

Utilities 0.0186 kWh 0.1310 
0.0024 0.25% 

Minerals (Indirect) Indirect N/A N/A N/A 0.0024 0.24% 

Metals (Indirect) Indirect N/A N/A N/A 0.0023 0.23% 

Agriculture (Indirect) Indirect N/A N/A N/A 0.0017 0.17% 

Trade (Indirect) Indirect N/A N/A N/A 0.0005 0.05% 

Wood and Paper (Indirect) Indirect N/A N/A N/A 0.0004 0.04% 

Tap water, at user Utilities 1.2300 kg 0.0003 0.0004 0.04% 

Equipment (Indirect) Indirect N/A N/A N/A 0.0003 0.03% 

Food (Indirect) Indirect N/A N/A N/A 0.0001 0.01% 

Construction (Indirect) Indirect N/A N/A N/A 0.0001 0.01% 

Textiles (Indirect) Indirect N/A N/A N/A 0.0001 0.01% 

Forestry (Indirect) Indirect N/A N/A N/A 0.0000 0.00% 

Fishing (Indirect) Indirect N/A N/A N/A 0.0000 0.00% 

Personal Services (Indirect) Indirect N/A N/A N/A 0.0000 0.00% 
Total 

Emissions  
[kg CO2-eq]/kg] 0.9932 

       
Table 2: Supply Chain Carbon Emissions breakdown for Ferric Chloride 
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Figure 6: Supply Chain Carbon map for Ferrous sulphate 

 
Figure 7: Supply Chain Carbon Map for Ferric Chloride 

 

4.1.2 Results: Food Supply Chain 

For a food supply chain, achieving circularity allows meeting two important requirements. 

Firstly, circular supply chains divert end-of-life products from being considered waste and hence 

discarded; also, the secondary resources that result from the reprocessing of these end-of-life 

products replace primary resources in forward supply chains (Geyer and Jackson 2004). As a 

result, in addition to the carbon emission implications of the supply chain, virgin resources used 

and potential waste recovered have been also examined from a lifecycle assessment perspective.  

A comparison between a linear supply chain based on a production system where virgin cooking 

oil is utilized in the production of a final product (biodiesel) and a circular supply chain 

configuration based on the recovery of value from waste cooking oil for the production of the 

same final product is presented in Table 3. The complete breakdown of the supply chain analysis 

is reported in Tables 4 and 5. A synthetic breakdown of the emissions (between direct and 

indirect ones) is presented in Figure 8, with aggregated carbon maps shown in Figures 9 and 10.  
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It can be observed from Figure 8 that the circular supply chain (which consists of the collection 

and reprocessing of waste cooking oil and its use in the production of biodiesel) reports a total 

lifecycle emissions value of 0.7602 kg CO2-eq per kg of biodiesel. On the other hand, the linear 

supply chain has a total lifecycle emissions value of 1.2737 kg CO2-eq per kg of biodiesel. It can 

clearly be observed that the there is an environmental gain of 0.5135 kg CO2-eq per kg of 

biodiesel in terms of avoided emissions produced when the circular supply chain is benchmarked 

against the linear alternative.  

 

Environmental Indicator 

 

Units 

Linear 

Supply Chain 

Circular 

Supply Chain 

 

 

 

Carbon 

Emissions 

Total 
Emissions 

kgCO2-eq/kg  1.2737 0.7602 

 
 
 

Identified  
Hot-Spots 

(top five listed) 

% of  
kgCO2-eq/kg 

Virgin Veg. Oil (68.31%) Vegetable Oil (37.05%) 

Upstream Mining (7.38%) Upstream Mining (11.25%) 

Methanol (6.59%) Methanol (10.40%) 

Heat, Gas, >100kW 
(4.03%) 

Heat, Gas, >100kW (7.57%) 

Upstream Utilities 
(3.13%) 

Upstream Utilities (4.92%) 

Resource: Virgin resource used Kg 0.964 0 

Waste: Recovered Waste Kg 0 0.895 

Table 3: Summary of results for environmental indicators for biodiesel linear and circular supply chains 

 

Figure 8: Total (including direct and indirect) carbon emissions breakdown of the supply chains 
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In managing product-level supply chain impacts, focal firms can implement low carbon 

interventions and measures that can directly reduce the impacts of inputs classed as direct supply 

chain inputs. On the other hand, although the focal firm may not be able to directly address the 

indirect impacts associated with the product supply chain, it can be able to: (i) gain a better 

understanding of the overall emissions profile of activities; (ii) identify emissions reduction 

opportunities; (iii) track performance and engage suppliers through closer supply chain 

collaborations. The direct supply chain impacts for the linear and circular supply chains 

represents the biggest potential for emissions reduction since it constitutes the bigger proportion 

of the total lifecycle supply chain emissions (83.51% and 72.87% respectively). From a pure 

environmental sustainability perspective, a focal firm can understand that in the circular supply 

chain of waste cooking oil, where value in the form of refined vegetable oil is recovered (Table 

4), the biggest potential to reduce the carbon emissions potential directly from their perspective 

lies on intervention options targeted at: 

 the use of refined vegetable oil (0.3705 kg CO2-eq per kg or 37.05%) 

 upstream mining: 0.0855 kg CO2-eq per kg or 11.5% (from activities related to extraction 

of raw materials for energy production, minerals for fertilizer, etc.); 

 use of methanol in the biodiesel esterification process (0.0791 kg CO2-eq per kg or 

10.40%); 

 use of industrial gas furnaces (>100kW) for heat production: 0.0716 kg CO2-eq per kg or 

7.57%; 

 upstream utilities: 0.0374 kg CO2-eq per kg or 4.92%  (from agricultural activities related 

to  the raw materials used in  the production of the vegetable oil). 

 upstream agriculture: 0.0275 kg CO2-eq per kg or 3.62%  (from agricultural activities 

related to  the raw materials used in  the production of the vegetable oil).  

On the other hand, the carbon hot-spots analysis for  the linear supply chain (Table 5) shows 

that the use of virgin vegetable oil (0.8701 kg CO2-eq per kg or 68.31%), upstream mining 

(0.0940 kg CO2-eq per kg or 7.38%), use of methanol (0.0840 kg CO2-eq per kg or 6.59%), use 

of industrial gas furnace (>100kW) (0.0513 kg CO2-eq per kg or 4.03%), upstream utilities 

(0.0399 kg CO2-eq per kg or 3.13%) and upstream agriculture (0.0296 kg CO2-eq per kg or 

2.33%) are the top-ranking hotspots.  

Interestingly, for both the linear and circular supply chains, with the exception of the vegetable 

oil (virgin resource for the forward supply chain: 0.8701 kg CO2-eq per kg; refined resource 
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recovered from waste for the reverse one: 0.3705 kg CO2-eq per kg), the other identified hot-

spots are very similar in terms of their carbon emissions impacts.  This goes to reaffirm the 

environmental benefits deriving from the implementation of circular supply chain strategies to 

recover value from waste and re-use it where applicable in the production of secondary products. 

Circular supply chains provide the benefit of diverting used products from being discarded as 

waste through the recovery of value and reused in the production of secondary products. The 

benefit of these is clearly noticed in the summary of results presented in Table 3. For every kg of 

biodiesel that is produced, the forward supply chain which is based on the principles of a linear 

production paradigm uses 0.964 kg of virgin cooking oil. This is in contradiction to the circular 

supply chain, which uses 0.895 kg of refined cooking oil recovered from waste cooking oil which 

otherwise may have illegally ended up in the environment or in waste disposal sites. A crucial 

supply chain implication of the linear production paradigm is the creation of a direct competition 

between the supply chains of food for human consumption and food as a feedstock for 

bioenergy production. When the 0.964 kg of virgin cooking oil used for biodiesel production are 

scaled up, the risk posed to the food supply chain becomes clearer. For instance, the US 

Department for Agriculture (2011) reports that about 15% of 2010/11 global soy oil production 

was used for biodiesel production. This direct competition between food and bioenergy may also 

result in higher prices for food (Ciaian and Kancs 2011), land use issues (Rathmann et al. 2010) 

and food security (Schmidhuber and Tubiello 2007), thus threatening the sustainability of food 

supply chains. Implementing circular supply chains for biodiesel production represents also a 

way to address this challenge, preserving virgin resources. 
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Input Category Quantity Unit 
Emissions Intensity  

(kgCO2-eq/unit) 
Emissions 
(kgCO2-eq) 

Emissions 
% 

Vegetable oil, from 
waste cooking oil 

Biomass/Fuels 0.8950 kg 0.4140 0.3705 37.05% 

Mining Indirect N/A N/A N/A 0.0855 11.25% 

Methanol Biomass/Fuels 0.0989 kg 0.7998 0.0791 10.40% 

Heat, gas, furnace 
>100kW 

Utilities 0.8040 MJ 0.0716 0.0576 7.57% 

Utilities Indirect N/A N/A N/A 0.0374 4.92% 

Agriculture Indirect N/A N/A N/A 0.0275 3.62% 

Electricity, medium 
voltage, at grid 

Utilities 0.0368 kWh 0.5314 0.0196 2.57% 

Potassium hydroxide 
Inorganic 

Chemicals 
0.0099 kWh 1.9059 0.0188 2.48% 

Chemicals Indirect N/A N/A N/A 0.0176 2.31% 

Transport and 
Communication 

Indirect N/A N/A N/A 0.0115 1.51% 

Food Indirect N/A N/A N/A 0.0107 1.41% 

Phosphoric acid, 85% 
in H2O 

Inorganic 
Chemicals 

0.0040 M3 1.4201 0.0057 0.75% 

Metals Indirect N/A N/A N/A 0.0046 0.60% 

Minerals Indirect N/A N/A N/A 0.0046 0.60% 

Fuels Indirect N/A N/A N/A 0.0031 0.40% 

Business Services Indirect N/A N/A N/A 0.0015 0.20% 

Transport, freight, rail Transport 0.0677 tkm 0.0207 0.0014 0.18% 

Transport, lorry >16t, 
fleet average 

Transport 0.0103 tkm 0.1336 0.0014 0.18% 

Trade Indirect N/A N/A N/A 0.0008 0.10% 

Equipment Indirect N/A N/A N/A 0.0008 0.10% 

Wood and Paper Indirect N/A N/A N/A 0.0008 0.10% 

Tap water, at user Utilities 0.0238 kg 0.0003 0.0000 0.00% 

Waste management 
Waste 

Management 
0.0001 m3 0.0149 0.0000 0.00% 

Personal Services Indirect N/A N/A N/A 0.0000 0.00% 

Construction Indirect N/A N/A N/A 0.0000 0.00% 

Textiles Indirect N/A N/A N/A 0.0000 0.00% 

Fishing Indirect N/A N/A N/A 0.0000 0.00% 

Forestry Indirect N/A N/A N/A 0.0000 0.00% 

Total Emissions  
[kg CO2-eq]/kg] 0.7602 

 

Table 4: Circular Supply Chain Emissions breakdown for biodiesel production from waste cooking oil 
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Input Category Quantity Unit 
Emissions 
Intensity  

(kgCO2-eq/unit) 

Emissions 
(kgCO2-eq) 

Emissions % 

Soybean oil Biomass/Fuels 0.9460 kg 0.9198 0.8701 68.31% 

Mining Indirect N/A N/A N/A 0.0940 7.38% 
Methanol, at 
regional storage 

Biomass/Fuels 0.1050 kg 
0.7998 

0.0840 6.59% 
Heat, gas, 
furnace >100kW 

Utilities 0.7170 MJ 0.0716 
0.0513 4.03% 

Utilities Indirect N/A N/A N/A 0.0399 3.13% 

Agriculture Indirect N/A N/A N/A 0.0296 2.33% 
Electricity, 
medium voltage, 
at grid 

Utilities 0.0389 kWh 0.5314 
0.0207 1.62% 

Chemicals Indirect N/A N/A N/A 0.0155 1.21% 
Phosphoric acid, 
85% in H2O 

Inorganic 
Chemicals 

0.0105 kg 1.4201 
0.0149 1.17% 

Heat, hard coal 
furnace 1-10MW 

Utilities 0.0960 MJ 0.1313 
0.0126 0.99% 

Transport and 
Communication Indirect N/A N/A N/A 0.0116 0.91% 

Metals Indirect N/A N/A N/A 0.0052 0.40% 

Minerals Indirect N/A N/A N/A 0.0052 0.40% 

Fuels Indirect N/A N/A N/A 0.0039 0.30% 
Hydrochloric 
acid, 30% in 
H2O 

Inorganic 
Chemicals 

0.0042 MJ 0.8529 
0.0036 0.28% 

Heat, light fuel 
oil, furnace 
1MW 

Utilities 0.0374 MJ 0.0910 
0.0034 0.27% 

Transport, lorry 
>16t, fleet 
average 

Transport 0.0120 tkm 0.1336 
0.0016 0.13% 

Transport, 
freight, rail 

Transport 0.0716 tkm 0.0207 
0.0015 0.12% 

Business Services Indirect N/A N/A N/A 0.0013 0.10% 

Trade Indirect N/A N/A N/A 0.0013 0.10% 

Equipment Indirect N/A N/A N/A 0.0013 0.10% 

Wood and Paper Indirect N/A N/A N/A 0.0013 0.10% 

Tap water Utilities 0.0252 kWh 0.0003 0.0000 0.00% 
Waste 
management 

Waste 
Management 

0.0001 m3 0.0149 
0.0000 0.00% 

Personal Services Indirect N/A N/A N/A 0.0000 0.00% 

Construction Indirect N/A N/A N/A 0.0000 0.00% 

Textiles Indirect N/A N/A N/A 0.0000 0.00% 

Food Indirect N/A N/A N/A 0.0000 0.00% 

Fishing Indirect N/A N/A N/A 0.0000 0.00% 

Forestry Indirect N/A N/A N/A 0.0000 0.00% 
Total Emissions  
[kg CO2-eq]/kg] 1.2737 100.00% 

Table 5: Linear Supply Chain Emissions breakdown for biodiesel production from non-waste cooking oil 
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Figure 9: Circular configuration carbon map of biodiesel production from waste cooking oil 

 

Figure 10: Circular configuration carbon map of biodiesel production from non-waste cooking oil 

4.2 Implications to Sustainable Supply Chain Management 

The principles of circular economy assume that the raw materials used in production systems 

must be both technical and biological. These raw materials should not have a negative impact on 

the environment and should be regenerative, hence returning to the ecosystem without 

treatments required to rebuild the natural capital. In essence, there is no degeneration and 

environmental impact of materials within a production system which operates in a restorative 

cycle. 

Since the concept of circular economy is subject to the universal laws of thermodynamics, there 

would still be a degeneration of the raw materials in a production system over time. This is due 

to the fact that the circular flows of exchanges are coupled with the physical flows of matter-

energy, which are not circular (Stokes 1994). Hence, resource flows are ultimately linear and 
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unidirectional, beginning with the depletion of low entropy resources from the environment and 

ending with the pollution of the environment with high entropy waste (Daly 1985). Nevertheless, 

the implications of circular economy can be aligned to sustainable supply chain management, by 

noticing that, although supply chains cannot be theoretically circular, the underlining principle of 

using the higher entropy waste as substitute for lower entropy virgin materials could form a 

pivotal underlining principle for greener production systems. This holds true as argued by 

Beinhocker (2006), who suggested that in order to have a sustainable economy where damage to 

the environment is reduced, overall entropy of our earth system must be reduced.  As such, the 

circular economy concept can describe a framework in which businesses operating within the 

same supply chain and beyond can engage with sustainability activities to create shared value.  

 

4.3 Implications to Market Dynamics  

The transition towards a sustainable economy is a challenging process, as a wide spectrum of 

constraints emerges. The case studies reported above have shown that some obvious 

environmental advantages can be achieved by utilizing circular rather than linear supply chains. 

However, the economic viability of the circular supply chains may be questionable, as 

mechanisms to enact them may be very fragile.  

As regards the case study from the chemical supply chain, it has been shown that total emissions 

related to the linear supply chain (0.99kg CO2 eq/kg) are more than three times higher than 

emissions for the reverse one (0.3285 kg CO2 eq/kg), and that advantages can be achieved in 

terms of diversion of waste from landfill and virgin resources preservation. However, it has to be 

considered that, as mentioned above, manufacturing of Ferrous Sulphate relies on the acidic 

waste from the production of Titanium Dioxide (TiO2) by the sulphate method. In 2009 the 

production of TiO2 by the sulphate process stopped in the UK; therefore, the metal slag used in 

the circular supply chain is imported from overseas (Frost and Sullivan 2012). This has a 

detrimental impact in the cost and production of the ferrous sulphate. Data shows that the price 

of Ferrous Sulphate has increased by 80% in the last 5 years and that the annual production 

capacity in UK has declined by 15%. Demand is expected to outstrip its offer in the next years 

(Frost and Sullivan 2012). Price and the supply of Ferrous Sulphate could represent a problem in 

the future, making the circular alternative less attractive than the linear one (based on Ferric 

Chloride) in terms of economic convenience. 
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In the case of the biodiesel production, availability of used cooking oil to be recycled is not a 

problem, due to abundant and widespread supply. However, manufacturing costs may make 

some issues arise: indeed, currently, in the UK, biodiesel costs around 75p/litre to produce 

compared with petrodiesel at 52p/l (Smith et al. 2013). If biodiesel is made from 100% verified 

renewable sources (like used cooking oil), it is eligible for government support (24p/l); this puts 

the biodiesel production at a 1p advantage to petrodiesel.  The risk here is the longevity of the 

government support regime, together with the cost of the used cooking oil, currently reported to 

be between 25 and 60p/l depending on the quality (Smith et al. 2013). Margins are fairly tight for 

the producers; collectors (who operate on a very fragmented market) may operate at even tighter 

margins. 

Therefore, both the analysed cases highlight that, while environmental benefits may be obvious, 

the implementation of circular supply chains may be challenging from an economic point of 

view. Thus, bottom-up initiatives at a supply chain level might need to be incentivized through 

some form of top-down governmental support (such as in the case of the biodiesel supply 

chain). 

 

4.4 Policy and Societal Implications  

In terms of the policy implications, as a result of the increasing need to address unsustainable 

patterns of resource consumption and waste production, national governments in the European 

Union (European Commission, 2014) and China (Geng and Sarkis, et al, 2013), along with 

international agencies (OECD, 2014) are beginning to recognise the need to adopt production 

systems inspired by the circular economy concept. A direct implication of this change on society 

would be a gradual shift from an economy based on the sale of goods to an economy based on 

the sale of performance (EMG, 2013). For businesses, a rethink of the value chain cycles and a 

whole system design approach would play significant role in operational practices. 

These positive implications of circular economy concepts to policy strengthen the overall green 

agenda. Indeed, an example of the increasing alignment of circular economy concepts and 

sustainable supply chain management practices is provided by the fact that the United Nations 

Environment Programme (2006) reported that the Chinese implementation of the circular 

economy initiative is undertaken within a Sustainable Consumption and Production program. 

Such a programme strives to meet resource consumption and waste challenges through cleaner 

production, industrial ecology and life-cycle management; all fundamental principles of 
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sustainable supply chain management (Sarkis, 2003; Zhu et al, 2007; Acquaye and Yamoah et al, 

2014). 

 4.5 A Systems Approach for the transition towards a more sustainable economy 

The transition towards a sustainable economy is a challenging process, as a wide spectrum of 

constraints, including political, cultural, human, economic structures and technological 

limitations emerge. This transition can be viewed from two extreme perspectives; a top-down 

approach and a bottom-up one (Refer to Figure 11). This paper has presented a bottom-up view 

to the initiation of environmental sustainability, starting from the product-level (Type IV System 

perspective) and stimulating impacts across higher-level systems. This follows Sikdar (2003) 

identification of four types of sustainable systems of which System Type IV (products) is a 

subset of System Type III (Businesses) which in turn is a sub-set of System Type II 

(Regions/Cities). An aggregation of regions and cities then forms System Type I (The Earth). 

This approach offers opportunities to develop sustainable business models benefiting from 

environmental assessments at a much disaggregated level of analysis (product-level systems). The 

framework provides a first step in decision support, thereby enabling businesses to choose 

appropriate and specific green business models in any low carbon transition plan. These green 

business models may include radical and systemic eco-innovations (Demirel and Kesidou, 2011), 

product-service systems (Roy and Baxter 2009), industrial symbiosis (Eckelman and Chertow, 

2013), cradle-to-cradle systems (Braungart et al. 2007). 

Compared to top-down models where international and national policies are expected to diffuse 

down to companies and their operations and supply chains, the bottom-up approach works on 

the principle that, informed by environmental assessments, sustainable solutions at the product 

level can be aggregated across businesses in order to improve their sustainability and, ultimately, 

at the one of the wider economic systems. Top-down policies should therefore be also aimed at 

enhancing bottom-up initiatives. 
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Figure 11: Bottom-Up Sustainable Pathway Framework. (The types of System Perspective to Sustainability: Type I 

(Earth); Type II (Regions/Cities); Type III (Businesses); Type IV (Sustainable Technologies or Product Level); 

adapted from Sikdar (2003) 

Some of the practical challenges that such a framework would face are concerned with the 

implementation of the output of the analysis and the scaling up of solutions across a wider 

context. These are respectively indicated in the framework diagram (Figure 11) as Impact 

Boundary and the Transfer and Aggregation of Solutions/Policies. In particular, the bottom-up 

approach illustrated in this study could also be adopted by policy-makers and other relevant 

stakeholders in regional context as a tool to identify and encourage greening and decarbonisation 

opportunities to be promoted through appropriate schemes and programmes. Indeed, by 

identifying synergies between supply chains, relevant bodies (such as Central Government 

Departments, Local Authorities and Chambers of Commerce) could encourage the use of by-

products (derived by some product supply chains) as raw materials to be re-processed in further 

supply chains, favouring the transition towards a more sustainable economy by reducing virgin 
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resources usage, carbon emissions and waste production; such bodies could encourage this 

transition by improving the economic convenience of these options.  

Optimizing materials and energy flows among facilities within specific regions or industrial 

ecosystems is a basic industrial ecology strategy. In this context, external stakeholders (such as 

local and central governments, governmental agencies, industrial bodies) could play a 

“facilitator” role, by helping the matching of virgin resources demand and equivalent by-

products supply, by developing integrated approaches to eco-industrial development. Examples 

of these approaches include the establishment of appropriate eco-industrial parks for resource 

recovery and tax exemption policies for companies involved in reverse supply chain activities 

(see, for instance: Roberts 2004; Gibbs and Deutz 2007). This, as argued by Mathews and Tan 

(2011) would provide the required top-down support to complement bottom-up initiatives. 

 

5. Conclusions  

In the last decades, green and sustainable supply chain management practices have emerged, 

trying to integrate environmental concerns into organisations by reducing unintended negative 

consequences of production and consumption processes. 

In parallel to this, the circular economy discourse has been propagated in the industrial ecology 

literature and practice. Circular economy pushes the frontiers of environmental sustainability by 

emphasising the idea of transforming products in such a way that there are workable 

relationships between ecological systems and economic growth. Therefore, circular economy is 

not just concerned with the reduction of the use of the environment as a sink for residuals, but 

rather with the creation of self-sustaining production systems in which materials are used over 

and over again.  

Within this context, the main objective of the paper has been the verification of a potential 

enhancement of sustainable supply chain management practices by aligning them to circular 

economy concepts. By using a case-based approach (adopting examples from the chemical and 

food industries) the study has investigated the environmental implications related to the 

implementation of circular production systems, providing a comparison with traditional linear 

production alternatives. 

The analysis was formulated using a Hybrid LCA methodology, combining both process LCA 

and the environmentally extended multi-regional input-output (MRIO) hybrid model. This led to 

the calculation and analysis of direct, indirect and total lifecycle emissions, of resource used and 
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recovered waste. Also, supply chain carbon maps were derived, providing a holistic visibility of 

the supply chain.  

The paper has asserted that integrating the core principles of circular economy within green 

supply chain management can provide clear advantages from an environmental point of view. 

However, the implementation of circular supply chains may be challenging from an economic 

point of view. Thus, bottom-up initiatives at a supply chain level might need to be incentivized 

through some form of top-down governmental support (such as in the case of the biodiesel 

supply chain). For this reason, the paper also discussed a theoretical base for the potential 

implementation of environmental sustainability measures inspired by circular economy concepts, 

starting from the product-level of the value chain. As such, it is envisaged that the paper would 

strengthen the knowledge-base of green supply chain management practice. 

Further researches will be addressed to widen the empirical evidence, by developing further case 

studies related to the assessment of circular production systems. From a methodological point of 

view, more relevant environmental indicators could be considered in order to perform the 

comparison between linear and circular systems. Also, attention will be devoted to the cited 

economic implications, in many cases representing the main challenge for the implementation of 

circular economy initiatives. 
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