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Abstract 13 

Hydro-meteorological data is an important asset that can enhance management of water resources. 14 

But existing data often contains gaps, leading to uncertainties and so compromising their use.  15 

Although many methods exist for infilling data gaps in hydro-meteorological time series, many of 16 

these methods require inputs from neighbouring stations, which are often not available, while other 17 

methods are computationally demanding. Computing techniques such Artificial Intelligence can 18 

be used to address this challenge. Self-Organizing Maps (SOMs), which are a type of Artificial 19 

Neural Network, was used for infilling gaps in a hydro-meteorological time series in a Sudano-20 

Sahel catchment. The coefficients of determination obtained were all above 0.75 and 0.65 while 21 

the average topographic error was 0.008 and 0.02 for rainfall and river discharge time series 22 

respectively. These results further indicate that SOMs are a robust and efficient method for infilling 23 

missing gaps in hydro-meteorological time series.  24 

 25 

Keywords: Artificial Neural Networks, hydro-meteorological data, infilling missing data, Logone 26 

catchment, Self-Organizing Maps,  27 

 28 

1) Introduction 29 

Economic progress, rising standard of living, growing populations and expansion of 30 

commercial agriculture in developing countries is putting increasing pressure on fresh water 31 

resources (WWAP, 2015). At the same time climate extremes such as droughts and floods are 32 

becoming more frequent (Coumou & Rahmstorf, 2012). Better informed water resource 33 

management is needed to respond to demand and climate variability. A major requirement for 34 

planning is the availability of good quality and long term hydro-meteorological data. This data 35 

provides indicators of past hydro-climatic behaviour of a region/catchment and is fundamental to 36 

the development of models for prediction of system behaviour (Harvey et al., 2012).  37 

Existing hydro-meteorological time series used for planning and management decisions 38 

often contains missing observations, particularly in developing countries. The gaps are caused by 39 

many reasons, including equipment failure, destruction of equipment by natural catastrophes such 40 

as floods, war and civil unrest, mishandling of observed records by personnel or loss of files 41 

containing the data in a computer system (Elshorbagy et al., 2000). The presence of gaps, even if 42 

there are very short, in a hydro-meteorological time series can hinder calculation of important 43 

statistical parameters as data patterns maybe hidden. This can compromise their use for water 44 
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resources planning as it increases the level of uncertainty in the datasets (Ng and Panu, 2010; 45 

Campozano et al., 2014). This problem is particularly acute in the Sudano-Sahel region where 46 

rainfall is highly variable in both space and time, meteorological and flow gauging stations are 47 

scarce and the available datasets are riddled with gaps. 48 

Several methods exist for infilling gaps in hydro-meteorological time series. However, the 49 

application of each method depends on a range of factors including the information available for 50 

that station; additional datasets from neighbouring stations; the percentage of gaps present within 51 

the time series to be infilled; the season within which the gaps are present; the length of the existing 52 

data series; and the type of application that the infilled series will be used for (Mwale et al., 2012). 53 

These infilling methods range from simple techniques such as linear interpolation, Inverse Distance 54 

Weighting (IDW) and Thiessen polygons; to more complicated advanced techniques such as time 55 

series models, Markov models, Global Imputation, Multiple Regression models, Artificial 56 

Intelligence (Kalteh & Hjorth, 2009; Presti et al., 2010; Ismail et al., 2012; Mwale et al., 2012; 57 

Campozano et al., 2014). 58 

Most of the methods, require additional input data from neighbouring stations in order to 59 

produce reliable results and these additional inputs are often not available. Furthermore, some of 60 

the methods are time consuming and demand subtantial computer power for simulation because of 61 

the complicated algorithms involved (Presti et al., 2010). Some methods also require that the time 62 

series be split into different seasons to obtain reliable results. Although these challenges could be 63 

overcome by using numerical models (e.g. hydrological models); models also demand high data 64 

inputs and cannot be applied to many stations at the same time due to parameter calibration 65 

requirements which are site specific and consequently results cannot be transferred to other stations 66 

even within the same catchment (Harvey et al., 2012). 67 

Some of these challenges can be overcome by using computing techniques such as Artificial 68 

Intelligence (AI) (Daniel et al., 2011). In this class of technique, the most promising approaches 69 

include Artificial Neural Networks (ANN), Fuzzy Logic (FL) and Genetic Algorithms (GA). The 70 

application of Artificial Intelligence in hydrology and water resources management is well 71 

established (ASCE 2000; Kingston et al., 2008a, 2008b; Daniel et al., 2011). Among the AI class 72 

of models, ANNs are probably the most popular as these use available data to learn about the 73 

behaviour of a time series. In addition, they possess capabilities for modelling complex nonlinear 74 

systems; do not require prior knowledge of the system process(s) under study and are robust even 75 

in the presence of missing observations in the time series (Mwale et al., 2012). The main advantage 76 

of ANNs over conventional methods is their ability to model physical processes without the need 77 

for detailed information of the system (Daniel et al., 2011); and they have often been used for 78 

infilling gaps in hydro-meteorological time series (Kalteh & Hjorth, 2009; Dastorani et al., 2010; 79 

Adeloye et al., 2012; Ismail et al., 2012; Mwale et al., 2012; Mwale et al., 2014; Kim et al., 2015).  80 

Within the ANN family, the Multilayer Perceptron (MLP) is one of the most widely used 81 

for infilling gaps in hydro-meteorological time series (Kalteh & Hjorth, 2009; Dastorani et al., 82 

2010; Mwale et al., 2012; Mwale et al., 2014; Kim et al., 2015). Although MLP is robust for 83 

performing this task, it usually demands a long time series for training; and if part of the data to be 84 

used for training is missing, additional pre-processing of the time series will have to be carried out 85 

to provide estimates in the input space before the training can begin (Rustum & Adeloye, 2007; 86 

Mwale et al., 2012). This therefore limits application in situations where significant portions of the 87 

time series to be used for training have incomplete data; or for short time series as the data may 88 
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not be sufficient for training. It is also computationally intensive and needs additional storage 89 

memory (Kalteh et al., 2008). 90 

Another member of the class of ANNs known as Self-Organizing Maps (SOMs), which is 91 

a competitive and unsupervised ANN, is becoming popular for infilling gaps in hydro-92 

meteorological times series and has been shown to outperform ANNs-MLP (Kalteh & Hjorth, 93 

2009; Mwale et al., 2014; Kim et al., 2015). Many studies have successfully applied SOMs for 94 

infilling gaps in hydro-meteorological time series with satisfactory results (Kalteh & Hjorth, 2009; 95 

Rustum & Adeloye, 2011; Adeloye et al., 2012; Mwale et al., 2012; Mwale et al., 2014; Kim et 96 

al., 2015). 97 

Self-Organizing Maps (SOMs) were first introduced by Kohonen, (1995, 1997). The 98 

success of their application in other research disciplines led to their wide application in water 99 

resources processes and systems research especially for data mining, infilling of missing data, 100 

estimation and flow forecasting, clustering etc. (Kalteh et al., 2008). This is due to their ability to 101 

convert nonlinear statistical relationships between high dimensional data onto a low dimensional 102 

display (Ismail et al., 2012). Data points that show similar characteristics are placed closed to each 103 

other or clustered together in the output space. This mapping approach does a quasi-preservation 104 

of the most important topological and metric relationship of the original data (Rustum & Adeloye, 105 

2007). Adeloye et al. (2012) asserted that, the ability of SOMs to cluster data together makes them 106 

robust for data mining and infilling datasets with gaps and outliers as the gaps/outliers are replaced 107 

by their features in the map. The SOMs algorithm generally executes assigned tasks using an 108 

unsupervised and competitive learning approach to discover patterns in the data (Kalteh & 109 

Berndtsson, 2007) thus, the whole process in entirely data driven. A SOM is made up of two layers: 110 

a multi-dimensional input layer and an output layer. Both layers are fully connected by adjustable 111 

weights and the output layer is made up of neurons arranged in a two dimensional grid of nodes 112 

(Figure 1). Each neuron in the output layer of the SOM contains exactly the same set of variables 113 

contained in the input vectors. Despite its wide application for infilling missing data in many 114 

studies around the world, it has rarely been used Africa in general and the Sudano-Sahel region in 115 

particular.  116 

A Self-Organizing Maps approach was applied to infill missing data in monthly rainfall and 117 

daily river discharge time series from January 1950 to December 2007 in the Logone river 118 

catchment covering Cameroon, the Central Africa Republic and Chad. Infilling of missing gaps in 119 

hydro-meteorological time series usually precedes most hydro-climatic studies (Kashani & 120 

Dinpashoh, 2012), and this work is part of an on-going research project to assess the vulnerability 121 

of this catchment to drought and flood events under anticipated increased climate variability.                 122 

The paper is structured as follows: Section 2 describes the data and methodology used in 123 

the study. In Section 3 the results obtained are presented and discussed. Section 4 gives a general 124 

summary and conclusion of the study. 125 

 126 

2) Methodology  127 

2.1) Study area 128 

The Logone catchment is part of the greater Lake Chad basin.  It lies between latitude 6˚-12˚N 129 

and longitude 13˚-16˚E and is a transboundary catchment in the Sudano-Sahel transitional zone in 130 

Central Africa with an estimated catchment area of 86,500 km2 (Figure 1). 131 
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The Logone River has its source in Cameroon through the Mbere and Vina Rivers, which flow 132 

from the northeastern slopes of the Adamawa plateau. It is joined in Lai by the Pende River from 133 

the Central Africa Republic and flows from south to north to join the Chari River in Ndjamena 134 

(Chad) and continue flowing in a northward direction before finally emptying into Lake Chad. The 135 

climate in the catchment is characterized by high spatial variability and is dominated by seasonal 136 

changes in the tropical continental air mass (the Harmattan) and the marine equatorial air mass 137 

(monsoon) (Candela et al., 2014).  138 

 139 

2.2) Data Sources 140 

Monthly gauge rainfall was obtained from SIEREM (Boyer et al., 2006) available for 18 141 

stations covering the period 1950-2000 while daily river discharge data was obtained from the 142 

Lake Chad Basin Commission (LCBC). Discharge time series are available for the stations of Lai, 143 

Bongor, Katoa and Logone Gana covering the period 1973-1998 for Lai and 1983-2007 for the 144 

rest of the stations. 145 

 146 

2.3) Implementation of the SOM Algorithm 147 

A SOM algorithm is implemented in a series of steps. 148 

The multi-dimensional input data is first standardized to make sure that very high or low 149 

value variables do not dominate the map. Since SOMs use Euclidian metrics to measure distances 150 

between vectors, standardization gives equal weight to all the input variables (Vesanto et al., 2000). 151 

In this analysis, data was not standardized because rainfall and river discharge time series were 152 

trained separately.  153 

The input vector is then chosen at random and presented to each of the individual neurons for 154 

comparison with their weight vectors in order to identify the weight vector most similar to the 155 

presented input vector. The identification uses the Euclidian distance defined as: 156 

 157 

ܦ ൌ ඩ ݉ሺݔ െ ሻଶݓ
ୀଵ Ǣ       ݅ ൌ ͳǡ ʹǡ ͵ ǥ Ǥ  ܯ                                                                 ሺͳሻ            158 

  159 

Where:  160 

Di = Euclidian distance between the input vector and the weight vector i; xj = j element of the 161 

current vector; wij  = j element of the weight vector I; n = the dimension of the input vector; mj = 162 

“mask”.  163 

When the input vector contains missing elements, the mask is set to zero for such elements and 164 

because of this, the SOM algorithm can conveniently handle missing elements in the input vector. 165 

The neuron whose vector closely matches the input vector (i.e. with Di minimum) is chosen as the 166 

winning node or best matching unit (BMU). 167 

After finding the BMU, the weight vector of the winner neuron is adjusted so that the BMU and 168 

its adjacent neurons move closer to the input vectors in the input space, thereby increasing the 169 

agreement between the input vector and the weight vector. This adjustment is carried out using the 170 

following equation: 171 

ݐ௧ሺݓ 172   ͳሻ ൌ ሻݐ௧ሺݓ  ሻݐሺݔሻ݄ሾݐሺߙ െ  ሻሿ                                                               ሺʹሻ 173ݐ௧ሺݓ

 174 
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Where: wt = element of the weight vector; t = time; Į(t) = learning rate at time t; hci(t) = 175 

neighbourhood function centred in the winner unit c at time t. 176 

From here, each node in the map develops the ability to recognize input vectors that are similar to 177 

itself. This ability is referred to as self-organizing as no external information is added for this 178 

process to take place. The learning procedure continues until the SOM algorithm converges. 179 

Generally, the learning rate decreases monotonically as the number of iterations increase as shown 180 

by the following equation: 181 

 182 

ሻݐሺߙ            ൌ ሺǤହఈబߙ ሻ                                                                                                                ሺ͵ሻ                                                                                       183 

 184 

Where: Į(t)= learning rate; Į0 = initial learning rate; T = training length 185 

The neighbourhood function used is in this analysis is Gaussian centred in the winner unit c, 186 

calculated as: 187 

 188 ݄ሺݐሻ ൌ exp ൝െ หȁݎ െ ሻሿݐଶሺߪʹȁหଶሾݎ ൡ                                                                                                  ሺͶሻ         189 

  190 

Where: 191 

hci(t) = neighbourhood function centred in the winner unit c at time t; rc and ri = positions of nodes 192 

c and i on the SOM grid; ı(t) = neighbourhood radius which also decreases monotonically as the 193 

number of iterations increases.  194 

The quality of the trained SOM is measured by the total average quantization error and total 195 

topographic error.  The average quantization error is a measure of how good the map fits the input 196 

data (it measures the average distance between each data vector and its Best Matching Unit 197 

(BMU)). The smaller the quantization error, the smaller the average of the distance from the vector 198 

data to the prototypes, meaning that the data vectors are closer to its prototypes; it is a positive real 199 

number with a value close to zero indicating a good fit between the input and the map. The 200 

quantization error is calculated as: 201 

ݍ 202  ൌ ͳܰ ԡܺ െ ܹԡே
ୀଵ                                                                                                             ሺͷሻ 203 

Where: qe = quantization error; N = number of input vectors used to train the map; Xi = ith data 204 

sample or vector; Wc =prototype vector of the best matching unit for X; ||.|| = denotes the Euclidian 205 

distance. 206 

Topographic error measures how well the topology of the data is preserved by the map by 207 

considering the map structure. The lower the topographic error, the better the SOM preserves the 208 

topology of the data. It is a positive real number between 0 and 1 with a value close to 0 indicating 209 

good quality. It is calculated as: 210 ݐ ൌ ͳܰ  ሺܺሻ                                                                                                                          ሺሻேݑ
ୀଵ  211 

Where: te = topographic error; N = number of input vectors used to train the map;  212 

ui = binary integer such that it is equal to 1 if the first and second BMU for Xi are not adjacent 213 

units; otherwise it is zero. 214 
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Since there is always a trade-off between which of the two can be minimized at the expense of the 215 

other, in this study, effort was focused on reducing the topographic error to ensure that the infilled 216 

values reflect the seasonal trend of the different time series. The coefficient of determination (R2) 217 

was used to check the quality of the newly generated time series. R2 gives the proportion of the 218 

variance of one variable that is predictable from the other variable and varies between 0 and 1. R2 219 

is calculated as: 220 

 221 ܴଶ ൌ  σ ሾሺݔ െ ݕҧሻሺݔ െ തሻୀଵݕ ሿσ  ሾሺݔ െ ҧሻଶሿݔ σ ሾሺݕ െ ҧሻଶሿୀଵݔ  ୀଵ                                                                                ሺሻ 222 

 223 

Where: xi = the ith observed value; yi = the ith trained value; ݔҧ= the mean of observed value; ݕത 224 

= the mean of the trained value; n = the number of observations. 225 

 226 

2.4) Setting of SOM algorithm parameters 227 

According to Gabrielsson & Gabrielsson, (2006), the radius of the SOM should be chosen 228 

wide enough at the beginning of the learning process so that the map can be ordered globally as 229 

the radius decreases monotonically with time. To determine the optimum number of neurons, if M 230 

is the total number of input elements, Garcia and Gonzalez (2004), propose that the number of 231 

neurons in the output can be calculated as: 232 

 233 ܰ ൌ ͷξܯ                                                                                                                           ሺͺሻ 234 

Where: M = total number of samples and N = the number of neurons.  235 

Once N is known, Garcia and Gonzalez, (2004) further propose that the number of rows and 236 

columns of N can be calculated by: 237 

 238 ݈ଵ݈ଶ ൌ ඨ݁ͳ݁ʹ                                                                                                                           ሺͻሻ 239 

 240 

Where l1 and l2 are the number of rows and columns respectively, e1 is the biggest eigenvalue of 241 

the training data set and e2 is the second biggest eigenvalue. 242 

In the initialization phase of the algorithm, since the learning process involve in the 243 

computation of a feature map is a stochastic process, according to Gabrielsson & Gabrielsson, 244 

(2006) the accuracy of the map depends on the number of iterations executed by the SOM 245 

algorithm. These authors recommend that for good statistical accuracy, the number of iterations 246 

should be at least 500 times the number of network nodes. In this study, the random initialization 247 

option was used as it is recommended for hydrological applications e.g. (Kalteh et al., 2008), while 248 

the default parameters set by the SOM software for map size and lattice (rows and columns) were 249 

adopted that were exactly the same as using equations (8) and (9). 250 

 251 

The basic steps required to complete the infilling process consists of the following: 252 

1) Data gathering and normalization: The data to be infilled (e.g. rainfall and discharge time 253 

series) is assembled together and standardized; these are the depleted input vectors; 254 

2) Training: The depleted input vector (data matrix) is introduced to the iterative training 255 

procedure to form the SOM. At the beginning of the training, weight vectors must be 256 

initialized by using either a random or a linear initialization method. The process of 257 
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comparison and adjustment continues until the optimal number of iteration is reached or 258 

the specified error criteria are attained. 259 

3) Extracting information from the trained SOM: Check all the minimum Euclidian distances 260 

and isolate the SOM’s BMU for the depleted input vector (i.e. with missing values). The 261 

BMU identified in this step is a node of trained SOM and thus has the full complement of 262 

the missing values; 263 

4) Replacement of missing values: Replace the missing values of the input depleted vector by 264 

their corresponding values in BMU identified in step 3 above. 265 

 266 

2.5) Application of SOM 267 

For the application of the SOM algorithm for infilling of missing data in this analysis, a 268 

SOM toolbox developed at Helsinki University of Technology Finland 269 

(www.cis.hut.fi/projects/somtoolbox/) was used in the Matlab® 2014b environment and a batch 270 

training algorithm was adopted. Due to the fact both datasets (rainfall and river discharge) had 271 

different time-steps, each of the datasets were trained separately. The data was presented in 272 

columns with each column representing measurements from each station. The entries without data 273 

were recorded as NaN (Not a Number) to meet Matlab® data entry requirements. To train all the 274 

data together in a single simulation, the data entries should overlap such that there is no single 275 

day/month for all the stations with no data entry.  276 

The stations with the longest period of continuous missing observation were Katoa with 277 

1418 consecutive days (01/04/1997-18/025/2001) approximately 4 years and Lai with 1200 278 

consecutive days (31/01/1979-15/05/1982), approximately 3 years. Donomanga had the longest 279 

period of missing monthly rainfall observations. 280 

 281 

3) Results and Discussion 282 

Initial simulation results using discharge time series produced an average topographic error 283 

of 0.04 and a visual inspection of the time series was carried out to check the seasonal trends. 284 

Sporadic cases of numerical instability were noticed especially in portions of the time series with 285 

extensive gaps where infilling was done. In some cases, high flow values were observed in the dry 286 

season and low flow values observed in the rainy season. This was not logical as periods of high 287 

flows could not be followed by a single day of abrupt low flow and vice versa. These values were 288 

manually deleted for all the stations and a second simulation was performed using the same initial 289 

parameters. After this second simulation, these abnormalities disappeared and the average 290 

topographic error reduced to 0.02. Results of the overall performance of the model are shown in 291 

Table 1. 292 

The results indicate that after the second simulation, the model was able to replicate with 293 

high accuracy the trends and flow magnitudes (high and low) in the respective seasons as shown 294 

in Figures 3 to 6. This justifies the low value of average topographic error 0.02 and the high values 295 

of R2. From these results, the newly trained time series were used to infill missing gaps in the 296 

different time series in the Logone catchment. The preservation of topology, especially for 297 

discharge time series is important because seasonal variation causes high and low flows. The 298 

results obtained indicate that this seasonal variation was well preserved across all the gauging 299 

stations during the infilling process. In this research more emphasis was put on reducing the 300 

topographic error to ensure that the infilled values reflect the seasonal variation of the time series. 301 

http://www.cis.hut.fi/projects/somtoolbox/
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However, a visual observation of flow hydrographs (Figures 3-6) indicate that, the possibility of 302 

errors in the original river discharge time series may not be discounted especially for the Bongor 303 

station, and this may have a negative impact on the overall performance of the SOM algorithm in 304 

this study. 305 

The results obtained for rainfall observations were similar to those obtained for discharge 306 

with the lowest R2 value of 0.76 and average topographic error of 0.008. Although some authors 307 

(Kalteh & Berndtsson, 2007; Mwale et al., 2012) have proposed that to the rainfall time series 308 

should be trained together according to spatial location to improve the results, this method was not 309 

applied in this study because results obtained were judged to be satisfactory. Of the 18 rainfall 310 

stations, 10 had R2 values of 0.90 and above while 7 stations had R2 values of 0.80 and above with 311 

only one station (Donomanga) which has the highest percentage of missing observations having a 312 

value of 0.76. However, it was noticed that the performance of the model reflected the spatial 313 

location of the stations. For example, apart from Bongor CF with a R2 of 0.80, all stations located 314 

above 10°N had R2 values above 0.90 while most stations located below this latitude had R2 values 315 

between 0.80-0.90. Since the graphs of the all the 18 rain gauge stations cannot be shown, (Figures 316 

7 & 8) are used for illustration. Furthermore, it was observed that the SOM algorithm was able to 317 

preserve seasonal variation when infilling missing data in rainfall time series just as it did for 318 

discharge. 319 

The results also indicate that, although this method is quite robust for infilling gaps in 320 

hydro-meteorological time series, it cannot be used for infilling gaps in time series with extended 321 

periods of missing observations as model performance starts diminishing. This is logical as in such 322 

situations the model does not have sufficient data to learn from, thus cannot correctly replicate the 323 

pattern in the data. For example time series of measured discharge at Katoa had 1200 consecutive 324 

days of missing observations, which represent 13% of the total data entries, produced an R2 of 0.65 325 

compared to Logone Gana with 97 consecutive days of missing observations with an R2 of 0.91. 326 

This implies that time series with extended periods of missing observations should not be used as 327 

the model may infill the missing observations but still fail to replicate the pattern in the data. 328 

Although, as shown by Kalteh et al. (2007) and Mwale et al. (2012) this issue can be resolved for 329 

rainfall time series by training such time series with data from the same spatial zone, this cannot 330 

apply for discharge time series as it is influenced by other catchment characteristics and the river 331 

morphology which vary along the river channel.  332 

Nevertheless results obtained suggest that SOMs are suitable for infilling gaps in hydro-333 

meteorological time series in Sudano-Sahel catchments. Results obtained from this study are 334 

comparable to those obtained by Mwale et al. (2012, 2014) in the Lower Shire Floodplain in 335 

Malawi, Kang & Yusuf (2012) in the Kelantan and Damansara river basins in Malaysia and Kim 336 

et al. (2015) in the Taehwa watershed in Korea  337 

The relationship between discharges measured at various stations along the Logone River 338 

is shown in Figure 9. The Unified distance matrix (U-matrix) is a graphical display used to illustrate 339 

the clustering of the reference vectors in the SOM, it shows the distance between neighbouring 340 

map units. The U-matrix can be seen as several component planes which are stacked together one 341 

on top of the other. Component planes can either be coloured or grey shaded in a two dimensional 342 

lattice. Light colours indicate areas in which the variables are close to each other in the input space, 343 

while dark colours illustrate large distances between variables in the input space. Dark colours can 344 

be seen as cluster separators while light colours are clusters themselves. Component planes are 345 
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therefore, mostly used for visualizing the correlation between the various variables in the SOM 346 

since they can give information concerning the spread of values in each component (Gabrielsson 347 

& Gabrielsson, 2006).  348 

From Figure 9, the relationship between the discharges measured at Bongor, Katoa and 349 

Logone Gana is not very discernible. To illustrate that there is no relationship between the 350 

discharge time series, Figure 10 shows that the discharges measured at Katoa and Logone Gana 351 

gauging stations, which are located downstream of Bongor, are paradoxically lower than discharge 352 

measured at Bongor station upstream. This can partly be explained by the fact that during the rainy 353 

season when the river overflows its banks, immediately after Bongor station, part of the flow is 354 

diverted to fill the Maga dam and part is lost to the floodplains. During the dry season, water is 355 

withdrawn from the river without control for various purposes by the inhabitants thus reducing the 356 

quantity that eventually reaches Logone Gana station located downstream. This can also be 357 

attributed to transmission losses as a result of infiltration to the aquifer through channel bed. Seeber 358 

(2013) observed that the discharge recorded at Ndjamena flow gauging station located downstream 359 

was lower than that recorded upstream at the Logone Gana station.  Candela et al. (2014) reported 360 

that a significant proportion of groundwater in the Lake Chad aquifer system was from the Logone 361 

River through river and aquifer interactions. 362 

 363 

4) Conclusion 364 

The main objective of this study was to use Self-Organizing Maps (SOMs) to infill missing 365 

gaps in hydro-meteorological time series in the Logone catchment using data from four river 366 

discharge and 18 rain gauge stations riddled with gaps  367 

The combination of artificial intelligence and human intelligence (to be able to distinguish 368 

the seasonal discharge trends, patterns and magnitudes) greatly improved the overall performance 369 

of the SOM algorithm in handling missing data. Other advantages of SOMs include: (i) it does not 370 

require input data from neighbouring stations; (ii) unlike other ANN methodologies it does not 371 

require extra datasets to train the time series; (iii) it is not computationally intensive; and (iv) it 372 

does not require extra storage capacity. 373 

Results obtained from this study indicate that, the SOMs algorithm is quite robust for infilling 374 

gaps in hydro-meteorological time series, though it is not suitable for infilling gaps in time series 375 

with extended periods of missing observations as model performance starts diminishing. This 376 

methodology can be used by practitioners to enhance the planning and management of water 377 

resources in areas where available records are infested with missing observations. Preservation of 378 

topology through a good replication of trends and discharge magnitudes in the time series obtained 379 

in this study will reduce the data input uncertainty in our future modelling studies in the catchment.  380 
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 519 

 520 

 521 

Table 1:  Station location, percentage of missing data, results of statistical evaluation and average 522 

topographic error. 523 

Flow gauging Latitude Longitude Time interval Proportion 
of missing 
data (%) 

R2 Average 
topographic 

error 
Lai 11.55 15.15 1973-1997 17.5 0.85 0.02 

Bongor 10.83 15.08 1983-2007 19.2 0.8  

Katoa 10.27 15.42 1983-2007 26.8 0.65  

Logone Gana 9.40 16.30 1983-2007 6.45 0.91  

Rain gauge stations      

Ngaoundere 7.35 13.56 1950-2000 7.52 0.86 0.008 

Baibokoum 7.73 15.68 1950-2000 8.82 0.88  

Bekao 7.92 16.07 1950-2000 5.88 0.90  

Pandzangue 8.10 15.82 1950-2000 14.2 0.81  
Donia 8.30 16.42 1950-2000 12.9 0.84  

Moundou 8.57 16.08 1950-2000 5.39 0.94  

Doba 8.65 16.85 1950-2000 4.08 0.94  

Delli 8.72 15.87 1950-2000 5.88 0.91  

Donomanga 9.23 16.92 1950-2000 16.2 0.76  

Guidari CF 9.27 16.67 1950-2000 12.3 0.85  

Goundi 9.37 17.37 1950-2000 6.05 0.91  

Kello 9.32 15.80 1950-2000 8.99 0.88  

Lai 9.40 16.30 1950-2000 5.23 0.92  

Bongor 10.27 15.40 1950-2000 10.8 0.80  

Yagoua 10.35 15.25 1950-2000 8.17 0.92  

Bousso 10.48 16.72 1950-2000 6.37 0.93  

Bailli 10.52 16.44 1950-2000 5.23 0.95  

Massenya 11.40 16.17 1950-2000 5.72 0.95  

Latitude and Longitude in degrees 524 

 525 
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 526 

Figure 1: Architecture of an SOM (Adapted from Kagoda et al., 2010) 527 

 528 

 529 

Figure 2: Map of study area showing rain and flow gauging stations 530 

 531 
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 532 

Figure 3: Observed and simulated discharge for Lai station 1973-1997 533 

 534 

 535 

             Figure 4: Observed and simulated discharge for Bongor station 1983-2007 536 

 537 
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 538 

Figure 5: Observed and simulated discharge for Katoa station 1983-2007 539 

 540 

 541 

Figure 6: Observed and simulated discharge for Logone Gana station 1983-2007 542 

 543 

 544 

Figure 7: Observed and simulated rainfall for Ngaoundere (1950-1960) 545 
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 546 

 547 

Figure 8: Observed and simulated rainfall for Kello (1990-2000) 548 

 549 

 550 

Figure 9: Component planes for discharge at all the stations 551 
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 552 

Figure 10: Discharge at Bongor, Katoa and Logone Gana 1983-2007 553 

 554 


