
Robust digital twin compositions for Industry 4.0 smart manufacturing systems

Davy Preuveneers
imec-DistriNet, KU Leuven

Leuven, Belgium
davy.preuveneers@cs.kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

Leuven, Belgium
wouter.joosen@cs.kuleuven.be

Elisabeth Ilie-Zudor
MTA SZTAKI

Budapest, Hungary
ilie@sztaki.mta.hu

Abstract—Industry 4.0 is an emerging business paradigm
that is reaping the benefits of enabling technologies driving
intelligent systems and environments. By acquiring, processing
and acting upon various kinds of relevant context informa-
tion, smart automated manufacturing systems can make well-
informed decisions to adapt and optimize their production
processes at runtime. To manage this complexity, the man-
ufacturing world is proposing the ‘Digital Twin’ model to
represent physical products in the real space and their virtual
counterparts in the virtual space, with data connections to
tie the virtual and real products together for an augmented
view of the manufacturing workflow. The benefits of such rep-
resentations are simplified process simulations and efficiency
optimizations, predictions, early warnings, etc. However, the
robustness and fidelity of digital twins are a critical concern,
especially when independently developed production systems
and corresponding digital twins interfere with one another in
a manufacturing workflow and jeopardize the proper behavior
of production systems. We therefore evaluate the addition of
safeguards to digital twins for smart cyber-physical production
systems (CPPS) in an Industry 4.0 manufacturing workflow
in the form of feature toggles that are managed at runtime
by software circuit breakers. Our evaluation shows how these
improvements can increase the robustness of interacting digital
twins by avoiding local errors from cascading through the
distributed production or manufacturing workflow.

Keywords-Cyber-Physical Production Systems, Digital Twin,
Circuit Breaker, Feature Toggle

I. INTRODUCTION

Over the past two decades, the scientific community has
delivered a variety of middleware frameworks [1] that allow
software engineers to make abstraction of the basic function-
alities and interfaces of sensors and actuators of distributed
context-aware systems. Beyond typical application areas,
such as smart homes and offices, these enabling technologies
sparked a digital transformation in the manufacturing world
as well, often referred to as the 4th Generation Industrial
Revolution (Industry 4.0) [2], [3] or the Factory of the
Future (FoF) [4]. These paradigm shifts envision smart
factories where the Internet of Things (IoT) and Cyber-
Physical Systems (CPS)-enabled manufacturing [5] provide
the foundations for creating smart products through smart
processes and procedures. Large factories connect hundreds
− if not thousands − of sensors and devices, not only
within the plant, but also with other factories and the outside
world. Smart products will plan, control and optimize their

own production process with minimal human intervention
by harnessing ongoing developments in sensor technology,
machine-to-machine communication [6], big data analyt-
ics [7] and machine learning [8], [9].

The purpose of this digital transformation is to enhance
the transparency of the production process across the or-
ganizational boundaries of the manufacturing enterprise.
Enhanced access to Industrial IoT (IIoT) [3] data will
support business applications on any device, any time, from
any location. In turn, the data-intensive nature of smart
production systems will enable timely, accurate and detailed
log trails resulting in a real-time augmented view on many
systems and activities in a way that was not previously
possible. A consequence is that the production floor has
become an inherently complex intelligent environment, as
the digital and physical worlds are heavily intertwined.

The interconnectivity not only plays a crucial role within
the boundaries of the manufacturing enterprise to optimize
production processes, but also beyond those boundaries. As
a consequence, manufacturing is inherently a distributed
control process. Traditionally, multiple controlling systems
within the enterprise operated in a hierarchical mode with
supervisory controllers to schedule, coordinate and optimize
production processes, as illustrated in Fig. 1. To account
for more flexibility and the ability to adapt to internal and
external changes, there has been a shift towards a more a

supervisory
controller

local
controller

coordination

negotiation

local
controller

Hierarchy

Heterarchy

Figure 1. Hierarchical versus heterarchical distributed control systems for
manufacturing

Physical Space

● Products
● Machines
● Assets
● Sensors
● Areas

Virtual Space

● Products
● Machines
● Assets
● Sensors
● Areas

Digital
Twin

Business, IT and Operational
Applications

● Simulation
● Visualization
● Augmentation

● Data
● Models
● Context
● ...

● Analytics
● Insights
● Decisions
● KPIs
● ...

● Predictions
● Optimizations
● Early warnings

Figure 2. High-level representation of a digital twin in Industry 4.0
applications

heterarchical manner of operation where such supervisory
controllers are not present. In the world of networked
production with multiple stakeholders in complex manufac-
turing and production workflows, the overall control process
will be inherently a hybrid combination of hierarchical
and heterarchical cooperating processes. It is clear that
an error or fault in one production process may interfere
with processes elsewhere, possibly without a supervisory
controller able to monitor or intervene in the negotiation
or coordination between these processes.

To manage the ever increasing complexity of larger and
larger automated production networks, the manufacturing
world proposed the Digital Twin [10], [11] model to rep-
resent physical products in the real space and their virtual
counterparts in the virtual space, with data connections to
tie the virtual and real products together. Matthew Mikell
and Jen Clark1 of IBM defined the concept as follows:

The digital twin is the virtual representation of
a physical object or system across its life-cycle.
It uses real-time data and other sources to enable
learning, reasoning, and dynamically recalibrating
for improved decision making.

As such, the Digital Twin concept enables an abstraction
layer that simplifies simulation, augmentation, visualization
and prediction of many Industry 4.0 processes, as depicted
in Fig. 2.

During the development of such sophisticated digital
twins, ensuring and maintaining consistency among the
physical and virtual spaces is not straightforward when each
of these spaces is driven by their own application logic and
business rules. The problem of local errors may be further

1https://www.ibm.com/blogs/internet-of-things/iot-cheat-sheet-digital-
twin/

aggravated when multiple smart systems and processes in
a manufacturing workflow are developed independently, but
react to similar contexts, or create circumstances where mul-
tiple digital twins focusing on different objectives interfere
with one another. Guaranteeing the reliability and robustness
of digital twins - especially under unusual conditions that
stress the assumptions of the individual system - remains a
non-trivial challenge. Robust intelligent systems [12] always
ensure acceptable performance, and this both under ordinary
conditions and those that the developers and operators did
not anticipate.

The main contribution of this work − building upon our
previous work [13] − is (1) the addition of safeguards in the
design and implementation of Industry 4.0 digital twins by
means of feature toggles, and (2) improving their reliability
at runtime by managing these feature toggles using software
circuit breakers to avoid local errors from cascading through
the distributed manufacturing workflow.

After reviewing relevant related work in section II and a
motivating scenario in section III, we discuss our approach
for safeguarding digital twins in smart factories in sec-
tion IV. In section V, we illustrate and evaluate the approach
on a prototypical Industry 4.0 workflow. We conclude in
section VI summarizing our main insights and we identify
interesting topics for further research.

Workflows

Interconnected production facilities and
manufacturing processes

Cyber-Physical Systems

Business intelligence in the cloud

Process transparency through data
sharing across organizational

boundaries with partners in value chain

Analytics

Monitoring

Figure 3. Networked production and concerted manufacturing processes

II. BACKGROUND AND RELATED WORK

This section provides an overview of relevant concepts
and related work in the area of digital twins, feature toggles
and circuit breakers.

A. Industry 4.0 networked production and digital twins

With networked production as a key feature of Industry
4.0, people, machines and business processes will interact
with one another to enable personalized products through
flexible, resource-efficient and cost-effective manufacturing.
Interconnected systems will be linked to cloud services for
remote monitoring and data analytics to optimize production
plans, enable proactive maintenance, and respond quicker
to continuously changing customer requirements. The fac-
tory of the future will leverage data-accessing and data-
processing services available on the internet to support data-
intensive business processes and time-critical applications,
as depicted in Fig. 3.

The notion of a digital twin [10], [11], [14] is not clearly
defined. For some, it refers to a virtual representation of
a physical object or system that captures all manufacturing
defects, including the wear and tear of the object while in
use [15], [16]. For others, it reflects a digital and historical
profile of a product or process, based on massive and real-
time measurements from connected sensors that can help
engineers understand not only how products are used by
real customers in real-time, but also how they will perform
in future scenarios and changing circumstances [17]. The
augmented views created by digital twins help optimize
business processes and improve customer satisfaction.

While digital twins can support the entire product lifecy-
cle, including product design, manufacturing, and service,
the reliability of digital twins is a concern that is often
overlooked. Indeed, the implicit assumption is that digital
twins themselves, both in isolation and especially in complex
compositions of distributed manufacturing workflows, do not
fail. This is the challenge we aim to address in this work
using some software engineering best practices, including
feature toggles and circuit breakers.

B. Orchestration and choreography of distributed manufac-
turing processes and workflows

Orchestration and choreography [18] are two well-known
composition strategies in the domain of service-oriented
architectures to build business processes from multiple in-
dividiual web services. These concepts are to some extend
related to the hierarchical and heterarchical modus operandi
of manufacturing control systems. Orchestration, on the one
hand, assumes control from one stakeholder’s perspective
when interacting with internal and external web services.
Choreography, on the other hand, reflects a more collab-
orative interaction allowing each involved stakeholder to
describe its part in the interaction.

Schulte et al. [19] propose virtual factories that bridge
service-oriented computing and service-based workflows
with the Internet of Things. Similar to the typical roles
of a service requester, a service provider and a service
registry in a service-oriented architecture, they propose
service providers, service consumers and virtual factory

brokers as essential roles of the virtual factory. The latter
role is in charge of controlling and governing the virtual
factory, and uses services to model manufacturing processes
and assemble products based on outputs of factories from
different business partners. The plug-and-play nature of vir-
tual factories helps enterprises execute cross-organizational
manufacturing processes as though they were being carried
out within a single company.

In [20], Mangler et al. prosented a Domain Specific
Language (DSL) underpinning the Cloud Process Execution
Engine (CPEE)2, a modular simple and lightweight service
oriented workflow engine. The DSL is an alternative to the
XML-based BPEL language, while the engine supports mul-
tiple execution languages (such as BPEL, YAWL, BPMN),
interaction protocols (such as SOAP, REST, XMPP) and
execution shaping to support ad-hoc changes and custom
behavior at runtime. CPEE has been used in the frame of
manufacturing applications.

More recently, Velasquez [21] surveyed the state-of-the-
art on orchestration beyond services in cloud computing, but
also addressing the Internet of Everything and fog computing
paradigms. The work of Thramboulidis et al. [22] also falls
into that category. They propose an IoT-based framework
for manufacturing systems that allows manufacturing plant
processes to be defined as compositions of primitive cyber-
physical microservices adopting either the orchestration or
the choreography pattern.

C. Feature toggles
Feature toggles [23] have been initially proposed in the

frame of continuous software delivery to incrementally in-
tegrate new features into existing applications or to test bug
fixes. Feature toggles enable rapid software releases while
reducing the probability of integration conflicts. Even after
the final software release, these feature toggles can be used
to only enable certain features for specific users or to quickly
disable a feature that is misbehaving. A feature toggle is
typically a variable that is used in a conditional statement
to enable or disable a piece of code for testing or release
purposes. In the past, such feature toggles were used at
compile time to exclude certain features from the application
binary. Modern feature toggles, however, allow for switching
them at runtime without recompilation of the software.

Martin Fowler3 describes several types of feature toggles
that mainly differ in dynamism and longevity. These fea-
ture toggles include release toggles to disable incomplete
or untested codepaths in production systems, experiment
toggles for multivariate user testing of different codepaths,
and ops toggles to control operational aspects of a system’s
behavior.

Our research leverages feature toggles to characterize the
behavior of digital twins at runtime, both under normal and

2http://cpee.org
3https://martinfowler.com/articles/feature-toggles.html

Closed Open

Half Open

trip
[threshold reached]

reset trip
attempt
reset

success fail fast

fail

success
fail

Figure 4. State transitions of a basic circuit breaker

exceptional circumstances. More specifically, certain feature
toggles will deactivate automated actions that may negatively
influence other digital twins.

D. Circuit breakers

Software-based circuit breakers [24] work in a similar
fashion to the electrical ones that toggle a magnetic switch to
protect the home automation appliances from excess current
on the power lines. In such failure scenarios, the circuit
breaker trips from the closed into the open state to break
the flow of the current to the home automation appliance.
This way, it protects the appliance from breaking down
completely.

The state transitions of a circuit breaker are depicted
in Fig. 4. Under normal operations, the circuit breaker is
closed, allowing the digital twin to operate normally. If
an error is detected, the circuit breaker trips and switches
from the closed into the open state. As a result, it disables
the underlying functionality of the digital twin from being
executed, and the corresponding feature toggle from being
switched. This will be illustrated in the next two sections
with a motivating example.

III. MOTIVATING USE CASE OF INDUSTRY 4.0
NETWORKED PRODUCTION

Our motivating networked production use case is an
orchestration of production systems and services − from
the sensor to the business level within the enterprise − with
information sharing across the organizational boundaries of
the company, possibly with other partners in the production
workflow. Indeed, in an Industry 4.0 networked production
workflow, multiple application and business processes inter-
act with one another, as defined in Business Process Model
and Notation (BPMN) in Fig. 5:

• Vertical integration scenario: Self-guided sensor and
actuator networks control production and diagnostic
activities in real-time. Cyber-physical systems deliver
decision critical information to optimize production
plans, reduce costs and improve efficiency.

• Horizontal integration scenario: Machines receive
information about the production process from systems

Purchase
with

suppliers

Receive
raw

materials

Manufacturing

Product

Quality
control

Distribution

Shipping

Packaging

Inventory

Sales

Marketing

Manufacturing Logistics Analytics

Figure 5. BPMN workflow of concerted processes in networked production

− including those of business partners in the value
chain − to enable individualized production.

Zooming in on the manufacturing process in Fig. 5,
assume one digital twin (marked in green) uses simulations
to reduce cost and optimize the individualized production
plan in terms of available raw materials and suppliers.
Assume a second digital twin (marked in red) uses various
product and environmental parameters and machine learning
techniques for quality control and assurance. The goal of
the second digital twin is to understand whether the cause
of a faulty product is linked to, for example, the supplier
of certain components or raw materials, or is rather due
to specific temperature and humidity levels during the pro-
duction process. By ingesting various streams of data, the
digital twin can help establish correlations with previous
faulty products, and learn patterns to predict whether the
quality of the product (or a batch of products) will be subpar.

In isolation, both digital twins may operate without
problems. However, due to the implicit dependency, errors
may still cascade horizontally throughout the manufacturing
system without the proper safeguards in place. This will be
demonstrated in the next section with local and distributed
failure scenarios.

IV. SAFEGUARDING DIGITAL TWINS

In this section, we discuss our approach for safeguarding
digital twins in smart factories.

A. Implementing digital twins

With the increasing amounts of data, manufacturing en-
terprises are exploring big data [25] and analytics technol-
ogy [26] to (1) identify relevant contexts, (2) transform that

Manufacturing
Customer

Production
Order

Quality Control

UI

Product

Inventory

Database

Database

Database

Web

API

API

API

API

API

API

Sensor API

Optimization

API

Raw Materials
Purchase

UI Web

Browser

API

API

API

Temp

Humid

Figure 6. High-level decomposition of the virtual space of a microservice-based manufacturing workflow

data to identify useful patterns and deviations from patterns
in real-time. Our proof-of-concept digital twin implementa-
tions adopt a microservice architecture [27], [28]. It offers
more flexibility to build data intensive applications, when
compared to monolithic service architectures. Key features
of microservices are that they (1) only provide a limited and
clearly defined set of functions, (2) are developed indepen-
dently in the most appropriate programming language, (3)
are stateless and manage their own database, and (4) all run
autonomously in their own process.

With microservices, digital twins are developed as compo-
sitions of smart data processing endpoints and dumb pipes.
The low coupling and high cohesion of such distributed
choreographies of independent microservices simplify the
introduction of new digital twin functionalities in the data
processing workflow, and they allow for each microservice
to be developed, deployed, modified and scaled out indepen-
dently.

Fig. 6 gives a high-level overview of various microser-
vices involved in the manufacturing workflow for individu-
alized production, with the two digital twins marked in green
and red, as in Fig. 5.

The behavior of each digital twin can be changed with a
software feature toggle, as illustrated below:

optimization {off, alarm, auto}: auto
quality_control {off, alarm, auto}: alarm

In the off state, the feature toggle indicates the digital twin
is inactive. When configured in the alarm state, the digital
twin is active, but any trigger (e.g. occurrence of an error)
creates an alarm for a human operator, rather than a fully
automated response or mitigation effect without a human in
the loop. The latter configuration is achieved with the auto
state of the feature toggle. The initial default configuration
of the feature toggle is also indicated per digital twin.

Each digital twin offers a RESTful interface that can be

used by other microservices or digital twins to toggle the
state at runtime. In a fully automated configuration of both
digital twins, the Quality Control digital twin will indirectly
trigger the Optimization digital twin.

B. Local and distributed failure scenarios

It is clear that whenever bad raw materials are found
as the cause of faulty products in the quality assurance
stage, this local error will influence the optimization process
responsible for individualized production. Whenever raw
materials are flagged as bad, they should not be used in
future individualized production processes. However, the
machine learning algorithms used for quality assurance are
not always 100% accurate and may misclassify the cause
of a faulty product. If a production flaw is due to a
cooling problem during manufacturing (i.e. an environmental
parameter), while the classifier mistakenly identifies a raw
materials supplier as the cause (i.e. a product parameter),
then without failsafes a local error may cascade through the
distributed production or manufacturing workflow due to the
interactions at the level of product parameters (see Fig. 7).

Raw Materials
Purchase

Feature Interaction
Circuit Breaker

Optimization
Digital Twin

trip, configure

state

value

Quality Control
Digital Twin

value

trip, configure

state

Temperature and
Humidity Sensors

Figure 7. Interfering digital twins with undesired feature interactions

1 private enum State { OPEN, HALF_OPEN, CLOSED }
2 private int backoffPeriod = 30000;
3 private State state = State.CLOSED;
4
5 public synchronized void reset() {
6 state = State.CLOSED;
7 }
8
9 public synchronized void trip() {

10 state = State.OPEN;
11 new Timer().schedule(new TimerTask() {
12 public void run() {
13 state = State.HALF_OPEN;
14 }
15 }, backoffPeriod);
16 }
17
18 public synchronized void execute() {
19 if (state == State.OPEN)
20 return;
21 try {
22 // Implement quality assurance with ML
23 // classification based on environmental
24 // and raw material parameters
25 evalProductionQuality();
26 // Quality assurance succeeded, so reset
27 // circuit breaker
28 reset();
29 }
30 catch (Exception e) {
31 // Quality assurance did not pass, so trip
32 // circuit breaker
33 trip();
34 }
35 }

Figure 8. Java-based implementation of a software circuit breaker
wrapping the quality control digital twin

A single digital twin can simply fail due to sensor/actuator
connectivity problems. However, when inter-connecting all
manufacturing systems and processes, the digital twins can
conflict with one another as they depend on the same input
parameters. We therefore introduce software circuit breakers
into the design of our digital twins to improve the robustness
of manufacturing workflows. Fig. 7 depicts a feature interac-
tion circuit breaker that under normal conditions allow the
Quality Control digital twin to have subpar raw materials
to be excluded for further use, and subsequently trigger
the Optimization digital twin to update the manufacturing
workflow. Should the former be erroneous, then the Feature
Interaction circuit breaker should block the latter from being
triggered.

We use a software variant of circuit breakers to protect
digital twins and manufacturing systems from malfunctions.
We group different kinds of digital twin behaviors per feature
toggle, and encapsulate their function in a circuit breaker.

After a local error has been detected, the software circuit
breaker is able to reinstate the digital twin functionality after
a period of time (i.e. a back-off period). To do so, the circuit
breaker automatically shifts from the open into the half-open
state and if the next execution of the digital twin succeeds,
the circuit breaker resets to the closed state. If the next
execution fails again, then the circuit breaker reverts back
from the half-open to the open state until the next timeout of
the back-off period occurs. Fig. 8 provides a high-level Java
implementation with the two functionalities a typical circuit
breaker has to offer, i.e. the trip() and reset() methods,

evalProductionQuality()

Quality
Control

Circuit
Breaker

Optimization

alt [Circuit = Closed / Half Open]

[Circuit = Open]

execute

fall-back

evalProductionQuality()

alt [Operation = Success]

value

[Operation = Failure]

error

trip and
fall-back

back-off
period

attempt
reset

error value

error value

value

reset

opt [Circuit = Half Open]

(Circuit → Closed)

(Circuit → Open)

(Circuit → Half Open)

reschedule
production

Figure 9. Interaction diagram of two interfering digital twins protected
by a software circuit breaker

with a back-off period of 30000 msec to attempt a reset
whenever the circuit breaker changes to the State.OPEN
state. A more elaborate interaction is depicted in Fig. 9.
Whenever the circuit breaker is in the State.OPEN state,
the Quality Control digital twin does not trigger an update
or modification in the Optimization digital twin.

The full implementation of the Feature Interaction circuit
breaker is beyond the scope of this paper, but relies on
(1) a data flow diagram that represents all information
streams in the distributed manufacturing workflow, and (2)
a dependency graph of which components a digital twin
can manipulate directly or indirectly. Both combined, the

Figure 10. Streaming data integration and real-time data processing pipelines in Spring Cloud Data Flow

circuit breaker can identify whether the behavior of one
digital twin may interfere with another. In a more full-
fledged setup, the circuit breaker would carry out a detailed
Root Cause Analysis (RCA). However, preliminary perfor-
mance experiments showed that offering such functionality
continuously and and in real-time would not only require
more computational resources, but also a greater redundancy
of sensor components in cases of cyclic dependencies.

V. EVALUATION

The above example is a simplified version of the con-
figuration we will evaluate in our experimental setup. In
our experiments, we ran multiple simulations of an artificial
but common ’print and labeling’ manufacturing process,
augmented with multiple digital twins and circuit breakers.
In this manufacturing process, a customer-specific label is
created in the form of a heat-sensitive plastic, which is then
wrapped around a container and then exposed to a blast of
heat so that the plastic shrinks and fits tightly around the
object.

Table I
SIMULATION DETAILS FOR INDIVIDUALIZED NETWORKED PRODUCTION

Category Count
Types of raw materials 15
Suppliers 4
Temperature and humidity sensors 10
Product variants 100
Manufacturing processes (virtual space) 3
Digital twins 5
Circuit breakers 5
Faulty products 5%
Quality control misclassifications 10%

A. Deployment and configuration

To evaluate the impact of our digitial twin safeguard
solution, we rely on simulations rather than real world
evaluations. The reason is three-fold: (1) simulations allow
us to repeat experiments under the same operating con-
ditions, and (2) the occurrence of real-world failures is
undetermistic, and (3) purposeful introducing faults into a
production system comes with a non-significant monetary
cost.

We therefore simulate a variety of induced errors in the

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

Manufacturing workflow without circuit breakers

(Cascading digital twin errors)

Run 1 Run 2 Run 3

Time (minutes)

F
a

il
u

re
s
 (

%
)

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

Manufacturing workflow with circuit breakers

(Cascading digital twin errors)

Run 1 Run 2 Run 3

Time (minutes)

F
a

il
u

re
s
 (

%
)

Figure 11. The impact of circuit breakers in digital twins for cascading errors

Quality Control and Optimization digital twins (see Table I
for simulation details of the test deployment) with and
without the circuit breakers, and measure the effectiveness
and overhead:

• Input:
– Missing input due to disconnected sensors
– Incorrect input or outliers due to broken sensors
– Malicious input from an adversary

• Functionality:
– Faulty logic or implementation error
– Disconnected actuators or hardware failures
– Denial of service due to data floods

The misclassification case discussed earlier is an example
of a faulty logic in the functionality of the Quality Control
digital twin (e.g. due to an outdated machine learning model
used for classification). The rescheduling executed by the
Optimization digital twin not meeting its intended efficiency
or cost saving objectives (e.g. due to inaccurate simulations
of the manufacturing workflow) is an example of another.

All components in the virtual space as well as the dig-
ital twins have been implemented as microservices in the
Spring Cloud framework4. More specifically, the streaming
data integration and real-time data processing pipelines are
deployed on top of the Spring Cloud Data Flow toolkit5,
as depicted in Fig. 10. For the sake of simplicity, all mi-
croservices were deployed on a single Dell PowerEdge R620
server with 2x Intel Xeon E5-2650 CPUs, 64GB of memory
and 8 cores on each CPU with hyperthreading, resulting in
32 cores in total each running at 2GHz. The motivation for
this deployment − compared to, for example, a distributed
deployment in a Kubernetes container orchestration6 − is
the ability to measure the computational overhead of our

4http://cloud.spring.io
5https://cloud.spring.io/spring-cloud-dataflow/
6https://kubernetes.io/

solution compared to a baseline deployment with digital
twins not safeguarded by the proposed circuit breakers.

B. Experiments and results

We compared the impact of forced errors (e.g. mim-
icking hardware and network connection failures as well
as implementation logic errors in the digital twin) on the
ability to prevent digital twin failures from cascading further.
Fig. 11 shows the results of 3 simulations, with and without
circuit breakers. It is clear that the circuit breakers do not
circumvent all digital twin errors from rippling through to
other connected manufacturing processes and digital twins,
the impact is nonetheless significant.

In a scenario where the quality assurance digital twin
(which uses a machine learning model to classify the cause
of the faulty product) is wrong in 10% of the cases, the errors
eventually ripple through from the Quality Control digital
twin to the Optimization digital twin, causing unnecessary
costly reschedulings and reoptimizations of the distributed
manufacturing workflow. The same simulations with circuit
breakers in place reduce this undesired effect on average
with about a factor 5.

In a second experiment, we measured the computational

Without circuit breakers With circuit breakers Relative overhead
0

10

20

30

40

50

60

70

80

90

100

Performance impact of circuit breakers

(Computational impact)

Configuration

C
P

U
 l
o

a
d

 (
%

)

Figure 12. Measuring the overhead of the circuit breakers

overhead of the circuit breakers. As in our configuration each
circuit breaker accounts for an additional microservice on
our service, we expect a computational impact. For the given
experiment, Fig. 12 shows the overall CPU load increasing
from 64% to 72%, or a relative overhead of 15%. This
relatively low performance overhead can be explained due
to the computational intensiveness of the machine learning
algorithm (i.e. a Random Forrest multiclass classifier) used
to classify the cause of faulty products based on environmen-
tal and raw material parameters. The performance impact
would be more significant if either the quality assurance
method is less resource demanding, or if the circuit breaker
would implement a computationally more intensive full-
fledged Root Cause Analysis method.

C. Validity threats and discussion

The above experiments only provide insights of the
feasibility and the main benefits of our solution. From a
quantitative point of view, more statistical evidence and
longitudinal studies are needed to be able to generalize to
other smart manufacturing workflows. For that, we need to
evaluate other scenarios considering:

• Larger distributed manufacturing processes with more
complex dependencies between digital twins

• Multiple variations and implementations of circuit
breakers protecting against different errors from prop-
agating

• Different performance indicators and cost models of
misbehaving digital twins, as not all errors should be
treated equally

Furthermore, our circuit breakers aim to intercept local
errors and prevent them from cascading to other systems and
services. However, the circuit breakers themselves may − in
theory − suffer from the same concerns (e.g. faulty trigger-
ing logic). Obviously, the goal is not to increase robustness
and reliability by moving errors from one component to
another, but rather to isolate them. The assumption made in
our work is that the development of circuit breakers is less
complex compared to the implementation of the digital twins
that they are supposed to protect, such that the likelihood of
errors in the former is lower. However, such assumptions are
very hard to validate as they depend on the expertise of the
process, software, and quality assurance engineers involved
involved in the manufacturing workflow and cyber-physical
production processes.

VI. CONCLUSION

In this paper, we investigated the impact of digital twins in
Industry 4.0 manufacturing workflows, and to what extend
failures in digital twins can jeopardize smart cyber-physical
production processes. Building upon previous work, we
proposed to add safeguards to digital twins in the form of
feature toggles and software circuit breakers that are able
to trap local errors and prevent them from propagating or

cascading to other systems. We evaluated our solution on a
simulated manufacturing process to validate the feasibility of
the proposed solution. While our experiments demonstrate a
positive impact on the robustness and reliability of the man-
ufacturing workflow − and this with a limited performance
overhead − further experiments are necessary to generalize
the results to derive reusable insights, lessons learned and
best practices.

One limitation of work is that it only traps errors and
prevents them from propagating further, but it offers no
mechanism to actually resolve them. Future research tracks
could explore whether circuit breakers can help engineers
reduce the Mean Time to Resolve (MTTR) in a realistic
networked production environment.

ACKNOWLEDGEMENTS

This research is partially funded by the Research Fund KU
Leuven. Work for this paper was supported by the European
Commission through the H2020 project EXCELL (http://
excell-project.eu/) under grant No. 691829. Work for this
paper was supported by VLAIO through the SBO DiSSeCt
project under grant No. IWT 150038.

REFERENCES

[1] M. Knappmeyer, S. L. Kiani, E. S. Reetz, N. Baker, and
R. Tonjes, “Survey of context provisioning middleware,”
IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp.
1492–1519, Third 2013.

[2] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical
systems architecture for industry 4.0-based manufacturing
systems,” Manufacturing Letters, vol. 3, pp. 18 – 23, 2015.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S221384631400025X

[3] A. Gilchrist, Industry 4.0: The Industrial Internet of Things,
1st ed. Berkely, CA, USA: Apress, 2016.

[4] S. Karnouskos, A. W. Colombo, T. Bangemann, K. Manninen,
R. Camp, M. Tilly, P. Stluka, F. Jammes, J. Delsing, and
J. Eliasson, “A soa-based architecture for empowering future
collaborative cloud-based industrial automation,” in IECON
2012 - 38th Annual Conference on IEEE Industrial Electron-
ics Society, Oct 2012, pp. 5766–5772.

[5] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh,
S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn,
and K. Ueda, “Cyber-physical systems in manufacturing,”
{CIRP} Annals - Manufacturing Technology, vol. 65, no. 2,
pp. 621 – 641, 2016. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0007850616301974

[6] P. K. Verma, R. Verma, A. Prakash, A. Agrawal,
K. Naik, R. Tripathi, M. Alsabaan, T. Khalifa,
T. Abdelkader, and A. Abogharaf, “Machine-to-machine
(m2m) communications,” J. Netw. Comput. Appl., vol. 66,
no. C, pp. 83–105, May 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2016.02.016

[7] P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan,
“Big data in manufacturing: a systematic mapping study,”
Journal of Big Data, vol. 2, no. 1, p. 20, Sep 2015. [Online].
Available: https://doi.org/10.1186/s40537-015-0028-x

[8] R. A. Perez, J. T. Lilkendey, and S. W. Koh, “Machine
learning for a dynamic manufacturing environment,” SIGICE
Bull., vol. 19, no. 3, pp. 5–9, Feb. 1994. [Online]. Available:
http://doi.acm.org/10.1145/182063.182067

[9] P. Priore, D. de la Fuente, J. Puente, and J. Parreño,
“A comparison of machine-learning algorithms for dynamic
scheduling of flexible manufacturing systems,” Eng. Appl.
Artif. Intell., vol. 19, no. 3, pp. 247–255, Apr. 2006. [Online].
Available: http://dx.doi.org/10.1016/j.engappai.2005.09.009

[10] M. Grieves, “Digital twin: Manufacturing excellence through
virtual factory replication,” White paper, 2014.

[11] E. Negri, L. Fumagalli, and M. Macchi, “A review of
the roles of digital twin in cps-based production systems,”
Procedia Manufacturing, vol. 11, no. Supplement C, pp.
939 – 948, 2017, 27th International Conference on Flexible
Automation and Intelligent Manufacturing, FAIM2017, 27-30
June 2017, Modena, Italy. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S2351978917304067

[12] A. Schuster, Robust Intelligent Systems, 1st ed. Springer
Publishing Company, Incorporated, 2008.

[13] D. Preuveneers and W. Joosen, “Qoc2breaker: intelligent
software circuit breakers for fault-tolerant distributed
context-aware applications,” Journal of Reliable Intelligent
Environments, vol. 3, no. 1, pp. 5–20, Jul 2017. [Online].
Available: https://doi.org/10.1007/s40860-017-0037-y

[14] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and
F. Sui, “Digital twin-driven product design, manufacturing
and service with big data,” The International Journal of
Advanced Manufacturing Technology, Mar 2017. [Online].
Available: https://doi.org/10.1007/s00170-017-0233-1

[15] E. J. Tuegel, A. R. Ingraffea, T. G. Eason, and S. M.
Spottswood, “Reengineering aircraft structural life prediction
using a digital twin,” International Journal of Aerospace
Engineering, 2011. [Online]. Available: https://www.hindawi.
com/journals/ijae/2011/154798/

[16] E. H. Glaessgen and D. Stargel, “The digital twin paradigm
for future nasa and us air force vehicles,” in Proceedings of
the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, 2012.

[17] M. Grieves and J. Vickers, Digital Twin: Mitigating
Unpredictable, Undesirable Emergent Behavior in Complex
Systems. Cham: Springer International Publishing, 2017,
pp. 85–113. [Online]. Available: https://doi.org/10.1007/
978-3-319-38756-7_4

[18] C. Peltz, “Web services orchestration and choreography,”
Computer, vol. 36, no. 10, pp. 46–52, Oct. 2003. [Online].
Available: https://doi.org/10.1109/MC.2003.1236471

[19] S. Schulte, D. Schuller, R. Steinmetz, and S. Abels, “Plug-
and-play virtual factories,” IEEE Internet Computing, vol. 16,
no. 5, pp. 78–82, Sept 2012.

[20] J. Mangler, G. Stuermer, and E. Schikuta, “Cloud process
execution engine - evaluation of the core concepts,”
CoRR, vol. abs/1003.3330, 2010. [Online]. Available:
http://arxiv.org/abs/1003.3330

[21] K. Velasquez, D. P. Abreu, M. R. M. Assis, C. Senna,
D. F. Aranha, L. F. Bittencourt, N. Laranjeiro, M. Curado,
M. Vieira, E. Monteiro, and E. Madeira, “Fog orchestration
for the internet of everything: state-of-the-art and research
challenges,” Journal of Internet Services and Applications,
vol. 9, no. 1, p. 14, Jul 2018. [Online]. Available:
https://doi.org/10.1186/s13174-018-0086-3

[22] K. Thramboulidis, D. C. Vachtsevanou, and A. Solanos,
“Cyber-physical microservices: An iot-based framework for
manufacturing systems,” CoRR, vol. abs/1801.10340, 2018.
[Online]. Available: http://arxiv.org/abs/1801.10340

[23] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams,
“Feature toggles: Practitioner practices and a case study,”
in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16. New York,
NY, USA: ACM, 2016, pp. 201–211. [Online]. Available:
http://doi.acm.org/10.1145/2901739.2901745

[24] M. Nygard, Release It!: Design and Deploy Production-
Ready Software. Pragmatic Bookshelf, 2007.

[25] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mob.
Netw. Appl., vol. 19, no. 2, pp. 171–209, Apr. 2014. [Online].
Available: http://dx.doi.org/10.1007/s11036-013-0489-0

[26] IBM, P. Zikopoulos, and C. Eaton, Understanding Big Data:
Analytics for Enterprise Class Hadoop and Streaming Data,
1st ed. McGraw-Hill Osborne Media, 2011.

[27] M. Fowler and J. Lewis, “Microservices,”
2014. [Online]. Available: http://martinfowler.com/articles/
microservices.html

[28] S. Newman, Building Microservices, 1st ed. O’Reilly Media,
Inc., 2015.

