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Skin Temperature Prediction in Lower
Limb Prostheses

Neha Mathur, Student Member, IEEE, Ivan Glesk, Senior Member, IEEE, and Arjan Buis

Abstract—Increased temperature and perspiration within a
prosthetic socket is a common complaint of many amputees. The
heat dissipation in prosthetic sockets is greatly influenced by the
thermal conductive properties of the socket and interface liner
materials. These materials influence the body’s temperature regu-
lation mechanism and might be the reason for thermal discomfort
in prosthetic sockets. Monitoring interface temperature at skin
level is notoriously complicated. The problem might be considered
notorious because embedding wires and sensors in an elastomer
eventually results in elastomer failures because of the high strain
induced when donning a liner (amputees roll the liners onto their
limbs). Another reason is because placing sensors and wires di-
rectly against the skin could cause irritation and chaffing over just
a short period of time. We describe a route wherein if the ther-
mal properties of the socket and liner materials are known, the
in-socket residual limb temperature could be accurately predicted
by monitoring the temperature between socket and liner rather
than skin and liner using the Gaussian process technique.

Index Terms—Gaussian process for machine learning (GPML),
lower limb prosthetics, modeling, temperature.

I. INTRODUCTION

MONITORING and predicting the residual limb skin
health in lower limb amputees is of principal impor-

tance as the socket of the prosthesis creates a warm and humid
microenvironment that encourages growth of bacteria and skin
breakdown [1], [2]. Elevated residual limb skin temperature is
considered one of the major factors that could affect the health
of soft tissues in that region [3]–[7]. Studies on temperature
within the prosthetic sockets of transtibial prosthetic users have
been described by Peery et al. [8], [9]. They investigated the
in-socket temperature of five transtibial amputees at 14 differ-
ent locations on the residual limb and at four different stages,
i.e., donning, steady-state resting, initial walking, and steady-
state walking. Their results indicated that the thermal dissipa-
tion characteristics of socket and liner restrict heat loss from
the residual limb and the temperature increase is larger in areas
where there is more muscle bulk. It was also seen that differ-
ent socket and liner materials affect the temperature increase
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in the residual limb differently. Also these temperature rises
were different between patients. The impact of environmental
factors has also been investigated by Klute et al. [10], [11] by
looking at the in-socket residual limb temperature at four lo-
cations throughout a whole day. Simultaneously, they recorded
environmental temperature, humidity, and also the activity of
the patient. It was found that in-socket residual limb tempera-
ture increased gradually throughout the day, and an increase in
activity caused a further increase in temperature. Also, the en-
vironmental humidity and temperature influence the perception
of whole body and residual limb thermal comfort [12]. Limi-
tations to this study were small sample size and the variation
of prosthetic liners and socket materials between patients. The
population on which these studies were done was small. Hence,
a generalized statement about the temperature of residual limb
skin cannot be made.

Limited research has been done on the thermal behavior of
the socket and liner materials and their effect on stump skin
temperatures [13]–[16]. Klute et al. [17] investigated the ther-
mal conductivity of different liner and socket materials. Their
investigations disclosed that there was a large variation in the
thermal conductivity of liner materials, whereas the prosthetic
socket materials—thermoplastic and carbon fiber—had simi-
lar thermal conductivities. They concluded that liner material
selection has a considerable effect on the residual limb skin
temperature as compared to the thermoplastic and carbon fiber
socket materials which has little effect. The results presented
in [17] suggested that some prosthetic components can act as
a barrier to conductive heat transfer due to low thermal con-
ductivity. This implies that different liner and socket materials
produce a different thermal environment and, hence, can lead to
different residual limb skin temperatures [18], [19].

This leads to a hypothesis that if the thermal properties of
the socket and liner materials are known, then the in-situ skin
temperature could be predicted by monitoring between socket
and liner. The purpose of this is to assess whether or not a
temperature measurement device can accurately measure the
temperature of the residual limb when it is placed either on the
inner or outer surface of a prosthetic socket. If that is achievable,
then the monitoring of the residual limb skin temperature can
be done without undesirable contact of any temperature sensor
with the skin thus avoiding any increased skin irritation.

Our approach was to determine an accurate mathematical
model using the Gaussian processes for machine learning
(GPML) to predict the residual limb skin temperature of the
amputee. The temperature measurement device when placed
directly in contact with the skin would give the most accurate
reading. However, this could create practicality issues with
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Fig. 1. Placement of the thermocouples on the lateral and medial side of
residual limb skin and its corresponding positions on the liner of the transtibial
amputee.

normal prosthetic use in a domestic situation such as protruding
lead wiring, consistent positioning of sensors, and possible
skin irritation. Embedding sensors and wires in the hard
prosthetic socket is possible during the manufacturing process
for prosthetic sockets. This would eliminate the practicality
issues as described earlier. In addition, no damage to the device
would occur through donning and doffing and the longevity of
the device would not be impaired.

The aims of this project are to investigate how differing ac-
tivity levels and ambient temperatures influence the in-socket
temperature. It would be then investigated that whether the pre-
dictive model developed is accurate enough and its response
time and repeatability are also sufficient.

II. METHOD

To investigate the correlation between the position of ther-
mocouples (skin and in-socket), one transtibial traumatic am-
putee was recruited to perform in a 35-min laboratory protocol.
The investigation was implemented following ethical approval
granted by the University of Strathclyde Ethics Committee (Ref
UEC13/04).

The subject was a 68-year-old male who weighed 70 kg and
wore a 6-mm Otto Bock HealthCare GmbH Technogel liner
with a resin laminate socket. For the experiment, the subject
was dressed in shorts and t-shirt. Hence, it should be noted that
there was no extra clothing layer on the prosthesis. To moni-
tor and record the skin and in-socket temperatures, four K-type
thermocouples via a data logger (type HH1384; Omega Engi-
neering) were used. Two thermocouples were taped onto the
residual limb in lateral and medial position. The other two ther-
mocouples were put on the corresponding positions on the liner
(in-socket). This is indicated in Fig. 1. Data from the four chan-
nels were simultaneously collected at 0.5 Hz at a predetermined
ambient temperature.

After the thermocouple heads were secured with tape, the
prosthesis was donned with the thermocouple wires exiting the
proximal edge of the socket. The subject was asked to complete

Fig. 2. Profiles of residual limb skin and liner temperature at ambient temper-
ature 10 °C on (a) lateral side and (b) medial side.

the following protocol: resting (sitting) for 10 min, walk at self-
selected pace of 0.62 m/s on a treadmill for 10 min, and finally
rest for 15 min. The residual limb skin and the socket tempera-
tures were sampled at 0.5 Hz for the entire 35-min protocol. For
analysis purposes, three steady-state periods were defined as the
last minute of each period: initial rest, walking, and final rest.
The temperature profile of the residual limb skin and liner was
analyzed at different ambient temperatures to see how closely
they are correlated. This study was conducted in Scotland for the
Spring/Summer profile where the ambient temperature ranges
from approximately 10 °C to 25 °C. Hence, the temperatures
from this range were picked. We conducted the experiment at
10 °C and then repeated for 15 °C, 20 °C, and 25 °C (Dataset
A). The experiments were conducted again after a time span of
two months to confirm the influence of ambient temperature on
the residual limb skin temperature (Dataset B). All experiments
were conducted in a climate-controlled chamber with zero wind
velocity and 40% humidity level.

III. RAW DATA

The temperature profiles of the liner and residual limb skin at
ambient temperatures of 10 °C, 15 °C, 20 °C, and 25 °C from
set B are shown in Figs. 2–5.

From the studies on the amputee subject, it is seen that don-
ning causes a moderate temperature increase as also reported in
[20], walking causes a significant increase, and the rest periods
following activities must be substantially long to return the limb
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Fig. 3. Profiles of residual limb skin and liner temperature at ambient temper-
ature 15 °C on (a) lateral side and (b) medial side.

Fig. 4. Profiles of residual limb skin and liner temperature at ambient temper-
ature 20 °C on (a) lateral side and (b) medial side.

Fig. 5. Profiles of residual limb skin and liner temperature at ambient temper-
ature 25 °C on (a) lateral side and (b) medial side.

to temperatures before donning the prosthesis. Figs. 2 and 3
indicate that the residual limb temperature profile for ambient
temperatures of 10 °C and 15 °C has a similar pattern of being
steady throughout the experiment. However, this temperature
profile of the residual limb is significantly different from that at
ambient temperatures of 20 °C and 25 °C as indicated in Figs.
4 and 5.

Both the lateral and medial residual limb skin temperatures
showed a steady increase in the temperature throughout the
experiment. After the end of the experiment, the temperatures
in both lateral and medial side were 2.1 °C higher than the
starting.

It can be seen from these studies on amputee subject that
the residual limb skin temperature behavior is a function of
ambient temperature. This reflects that though the human body
self regulates to maintain a stable internal environment despite
changes in the external environment, in case of prosthetic users
there are layers of liner and socket materials which inhibit the
body’s ability to thermoregulate effectively.

Since, the temperature profiles of the residual limb are almost
similar for the ambient temperature pairs of 10 °C, 15 °C and
20 °C, 25 °C, the Gaussian predictive model at ambient temper-
atures of 10 °C and 25 °C are only discussed in this study.

IV. GAUSSIAN PROCESS FOR MACHINE LEARNING

The data from the data logger indicated that at any given
ambient temperature, the trace of the liner temperature follows
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that of the residual limb skin as in Figs. 2–5. This suggested
a possibility to model the liner temperature as a function of
skin temperature and create a mathematical model of the same.
Processing was performed with custom developed software (us-
ing MATLAB, Mathworks). The model designed takes the liner
temperature as the input x and the predicted output is the residual
limb skin temperature y.

The predictive model was developed using the GPML [21].
Similar with other regression methods, the goal of Gaussian
process regression is to infer a continuous function f(x) from
a training set of input–output pairs in a supervised learning
context. The key assumption in Gaussian process modeling is
that our data can be represented as a sample from a multivariate
Gaussian distribution. A Gaussian process model infers a joint
probability distribution over all possible outputs for all inputs.
This form enables the implementation of Bayesian framework in
a simple way [22], [23]. Bayes’ theorem states that the posterior
probability of a condition is given by the product of the prior
probability and the likelihood in the light of the evidence. This
can be written as

posterior
P (B|A,H) =

likelihood prior
P (A|B,H) P (B|H)

evidence
P (A|H)

. (1)

P(B|A,H) is the posterior probability that statement B is true,
given that condition A is observed and that hypothesis H is cor-
rect. P(A|B,H) is the probability of observing A if B is true and
H is correct, which is called the likelihood. P(B|H) is the prior
probability of B being true, without having made any observa-
tions. P(A|H) is the evidence: the probability of observing A if
hypothesis H is correct [23].

The inference of a joint probability distribution function in-
volves deducing a number of quantities called the hyperparame-
ters Θ. These hyperparameters are an indication of the precision
and relevance of the input parameters for predicting the output.
Thus, the aim in a Gaussian process model is to choose model
parameters for which the probability of the training data is max-
imized [22].

If the training data contain N points comprising of their set of
targets yN with their corresponding input xN , then the Gaussian
model is defined by an N-dimensional covariance matrix CN .
The covariance matrix is basically indicative of the closeness
to each other outputs for different inputs, taking into account
the model parameters. This allows predictions of outputs y∗
to be made, based on the difference between the new inputs
x∗ and those seen in the training data. Each element of CN is
defined by covariance function Cf , which is a function of inputs
and hyperparameters [22]–[24]. For the element ij in covariance
matrix, Cij = Cf (xi, xj ,Θ). The covariance function can be
user defined. In this study, the covariance function that was
used was

Cf = θ1e
− (x i −x j ) 2

2 l 2 + σ2
nδij (2)

where the set of hyperparameters Θ = {θ1 , l, σn} and δij is a
delta function whose value is zero for all i �= j. The first term

in the above equation allows the closeness of two outputs to be
related to the closeness of the inputs. The length scale l for an
input parameter indicates how much the output will vary relative
to changes in an input. The initial values of the hyperparame-
ters were selected as [0.1, 1, 1]. To prepare for Gaussian process
regression, we calculate the covariance function, (2), for all pos-
sible combinations of these points, summarizing in the matrices
in the following equations:

CN =

⎡
⎢⎢⎢⎣

Cf (x1 , x1) Cf (x1 , x2) · · · Cf (x1 , xN )

Cf (x2 , x1) Cf (x2 , x2) · · · Cf (x2 , xN )
...

...
...

Cf (xN , x1) Cf (xN , x2) · · · Cf (xN , xN )

⎤
⎥⎥⎥⎦

(3)

CN ∗ =
[

Cf (x∗, x1) Cf (x∗, x2) . . . Cf (x∗, xN )
]

(4)

CN ∗∗ = Cf (x∗, x∗). (5)

Since the key assumption in Gaussian process modeling is
that the data can be represented as a sample from a multivariate
Gaussian distribution, we have

[
y
y∗

]
∼

(
0,

[
CN CT

N ∗

CN ∗ CN ∗∗

])
(6)

where T indicates the matrix transposition. The conditional
probability p (y∗|y), “given the data, how likely is certain pre-
diction for y∗,” follows a Gaussian distribution as

y∗|y ∼ (CN ∗C
−1
N y,CN ∗∗ − CN ∗C

−1
N CT

N ∗). (7)

The reliability of the regression depends upon on covariance
function and in turn the hyperparameters. Typically, we would
not a priori know the values of the hyperparameters. To get the
optimal hyperparameters, (1) becomes

P (Θ|yN , xN ,Cf ) =
P (yN |xN ,Cf ,Θ) , P (Θ)

P (yN |xN ,Cf )
. (8)

Referring to (8), it is apparent that the evidence is independent
of hyperparameters and is constant for a given dataset. To find
the optimal hyperparameters, the posterior probability is maxi-
mized as the prior maybe noninformative. This corresponds to
minimizing the log marginal likelihood (nlml) as in (9). Hence,
for a particular training set and covariance function, the Gaus-
sian process would select the best hyperparameters that give the
best predictions for training data [23], [24]

logp (y|x,Θ) = −1
2
yT C−1

N y − 1
2
log |CN | − n

2
log2π. (9)

Several multivariate optimization algorithms can be utilized
to calculate the hyperparameters, such as Laplace’s approxima-
tion, Markov Chain Monte Carlo sampling, Kullback–Leibler
optimal approximation, or the Variational Bayes approximation.
In the present study, kernel hyperparameters were optimized by
the exact inference technique. For real-valued outputs, it com-
bines the Gaussian process prior with a Gaussian likelihood and
perform an exact posterior inference in closed form.
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TABLE I
SUMMARY OF GPML FOR VARIOUS TESTING AND TRAINING SCENARIOS

Training Test Number of Number of Normalized
Training Test error error training test log
Set Set (rms) (rms) points points likelihood

A A 0.142 0.142 250 100 0.786
A A 0.0924 0.0924 500 100 0.893
A A 0.0913 0.0913 750 100 0.897
A A 0.0910 0.0910 1050 100 0.895
A B 0.0910 0.102 1050 100 0.896

V. MODEL GENERATION AND PREDICTION

The aim of the model is to predict the residual limb skin
temperature from the liner temperature. Hence, the input to the
model is the liner temperature and the output of the model would
be the residual limb skin temperature. To test the predictive
capability of a model, it is trained on one set of data and tested
on previously unseen data. It is seen from Section II that the
skin temperature is dependent on ambient temperature. Hence,
individual Gaussian process models for the lateral and medial
side of the residual limb were designed, using the principle as
described in the previous section for ambient temperatures of
10 °C and 25 °C. Consider the ambient temperature 10 °C,
first the lateral side model was trained on different scenarios
to investigate the optimal training required. Table I presents
the different testing and training cases presented to the model.
Initially the model was trained by 250 data points from set A.
The training points are inclusive of the three stages of protocol
(initial rest, walking, and final rest) and are picked in the ratio of
time intervals used for the respective protocol periods. Hence,
the first 70 points from initial rest, first 70 points from walking,
and first 110 points from the final rest were taken for training.
The predictive capability of the model is gauged by computing
the training error, test error, and the normalized log likelihood
by testing with 100 data points (not seen by the model during
training) from set A which are again drawn in the ratio of time
intervals used for the respective protocol periods. This process
is continued by increasing the number of training data points
from set A. The normalized log likelihood for each set of test
data is also given, calculated by dividing the value of marginal
likelihood by the number of points in the test set. It can be seen
that as the number of training points increase, the error value
decreases and the likelihood of the data increases. This implies
that with greater training points, the new model either predicts
data closely or has higher confidence due to a higher density of
training points.

When the model is trained on all the values of set A and
tested with 100 points (randomly picked from set A), the training
error does decrease while the likelihood also decreases slightly.
This might be an indication that too much of training to the
model might lead to over fitting the data. Next the model trained
on the entire set A was tested on 100 points in set B which
were unseen by the model. The results indicated that the test
error has a substantial increase, but the likelihood function is
still consistent with the uncertainty predictions of the Gaussian
model. This may be because the dataset B is similar to dataset A,
leading to points closer to the smooth relationship predicted by

Fig. 6. Illustration of prediction with Gaussian process regression for ambient
temperature of 10 °C at (a) lateral side and (b) medial side. The test data points
are given by crosses. The shaded area represents the pointwise 95% confidence
region of the predictive distribution.

the Gaussian process. It was then deduced that when the model
is trained on whole dataset A and hyperparameters optimized
in (9), then its predictions for set B lie in the 95% confidence
interval (±2 standard deviations). This is indicated in Figs. 6
and 7.

After hyperparameter optimization, the covariance hyperpa-
rameters for the lateral side at 10 °C were [−1.27, 2.92, −1.41]
and the likelihood hyperparameter was −1.79. The final neg-
ative log marginal likelihood (optimized) was 285.84. Table II
presents the hyperparameters for the predictive model at differ-
ent ambient temperatures.

A similar process was done for the medial side of residual
limb skin. After the predictive algorithm was formulated, the
actual and predicted data are then averaged after every five
samples to create a single mean, and done till the end of all data
points. This helps in smoothening out short-term fluctuations
and highlighting the longer term trends.

VI. DISCUSSION

From the raw data, it can be noted that for the ambient tem-
perature of 10 °C, the lateral skin temperature was almost same
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Fig. 7. Illustration of prediction with Gaussian process regression for ambient
temperature of 25 °C at (a) lateral side and (b) medial side. The test data points
are given by crosses. The shaded area represents the pointwise 95% confidence
region of the predictive distribution.

TABLE II
SUMMARY OF HYPERPARAMETERS FOR PREDICTIVE GAUSSIAN MODEL

Optimized Initial Final Initial Final
Scenario hyperparameters nlml nlml likelihood likelihood

Lateral
side at
10 °C

[−1.27, 2.92, −1.41] 786.11 285.84 −1.78 −1.79

Medial
side at
10 °C

[−1.20, −0.86, 1.29] 747.63 352.61 −2.17 −2.21

Lateral
side at
25 °C

[−1.86, −1.37, −1.04] 538.43 323.78 −1.78 −1.80

Medial
side at
25 °C

[−1.35, −1.57, 1.06] 520.86 109.68 −1.96 −1.99

at the start and end of the experiment. However, the medial
residual limb skin temperature followed a steady profile, but the
temperature at the end of the experiment was 1 °C lower than the
start. At ambient temperature of 25 °C, both the lateral and me-
dial residual limb skin temperatures showed a steady increase in
the temperature throughout the experiment. After the end of the
experiment, the temperatures in both lateral and medial sides
were 2.1 °C higher than the starting. It can be seen from Figs.
2 and 5 that since the volume of the data set is big, the overall

Fig. 8. Predicted residual limb skin temperature from the time averaged Gaus-
sian process model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b), respectively, at ambient temperature of 10 °C.

trend of the temperature profile is difficult to gauge. Time aver-
aging of 5 s done on the recorded data helps in identifying the
trend better and improves the joint probability function with an
enhanced fit of the Gaussian to the data; so that more points are
more accurately predicted. The actual skin temperature obtained
by the Gaussian predictive model is shown in Figs. 8 and 9 for
two very different ambient temperatures of 10 °C and 25 °C,
respectively.

For both these experiments done at two different ambient
temperatures, our predictive model using Gaussian process pro-
vides a simple, effective, practical, and probabilistic approach to
determine the unknown skin temperature of the subject within
the prosthetic device from the actual liner measurements. The
predictive model we developed leads to results which are in
95% confidence interval which translates to an accuracy of
± 0.8 °C. However, this approach has certain limitations as
well. Although this study was conducted on one amputee sub-
ject over a number of times to verify the influence of ambient
temperatures on the in-socket temperatures, there is a need to
extend it on a greater population in order to define a generic be-
havior. Since the residual limb temperature profile varies with
changes in environmental temperatures, the Gaussian model has
to be trained with individual datasets corresponding to changes
in the ambient temperatures.

VII. CONCLUSION

The challenge of noninvasively monitoring the residual limb
skin temperature has been addressed in this study. This study
which was conducted on a subject performing various tasks in
an environmental chamber at different ambient temperatures
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Fig. 9. Predicted residual limb skin temperature from the time averaged Gaus-
sian process model is shown along with the actual skin temperature at lateral
and medial sides in (a) and (b), respectively, at ambient temperature of 25 °C.

clearly indicated that the residual limb skin temperature and
the liner temperature are majorly affected by both the ambient
temperature and the activity level of the subject. The obtained
data from the experimentation at ambient temperatures of 10 °C
and 25 °C were then used to develop a predictive model using
GPML. GPML is a nonparametric approach, which harnesses
the training data provided to determine the underlying function.
The Gaussian model was individually trained for each of the
ambient temperatures on which the tests were done. With 5 s
time averaging in order to suppress random fluctuations, the
developed model provides results which lie in the 95% confi-
dence interval when predicting subject skin temperature within
the prosthesis from the liner temperature measurements. Future
scope of the work includes comparing the prediction accuracy
of the Gaussian Process model with other mathematical models
like the adaptive network-based fuzzy inference system using
support vector regression.
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