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Abstract 12 

Microplastic represents a rising proportion of marine litter and is widely distributed throughout 13 

a range of marine habitats. Correspondingly, the number of reports of species containing 14 

microplastics increases annually. Nephrops norvegicus in the Firth of Clyde have previously been 15 

shown to retain large aggregations of microplastic fibres. The potential for N. norvegicus to retain 16 

plastic over an extended time period increases the likelihood of any associated negative impacts 17 

to the individual. This study represents the longest observation of the impacts of microplastic 18 

retention in invertebrates. We exposed N. norvegicus to plastic over eight months to determine 19 

the impacts of extended exposure. Over this period we compared the feeding rate, body 20 

mass, and nutritional state of plastic-fed N. norvegicus to that of fed and starved control 21 

groups. Following the experimental period, the plastic-fed langoustine contained microplastic 22 

aggregations comparable to those of small individuals from the Clyde Sea Area. Comparisons 23 

between fed, unfed and plastic-fed individuals indicated a reduction in feeding rate, body mass, 24 

and metabolic rate as well as catabolism of stored lipids in plastic contaminated animals. We 25 

conclude that N. norvegicus exposed to high levels of environmental microplastic pollution may 26 

experience reduced nutrient availability.  This can result in reduced population stability and may 27 

affect the viability of local fisheries. 28 

Capsule: Long term retention of microplastic aggregations reduces the nutritional state of 29 

langoustine.  30 
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Introduction 34 

Uptake of plastic debris has been recorded in numerous vertebrate taxa, including birds (Burger 35 

and Gochfeld, 2004; Ryan, 2008), fish (Lusher et al., 2013), and mammals (Baird and Hooker, 36 

2000). However, as this large plastic debris breaks down it forms microplastic (<5mm), which 37 

represents an increasing proportion of global marine litter (Barnes et al., 2009). This increase has 38 

resulted in a rise in the number of records of plastic uptake by wild-caught invertebrates 39 

(Devriese et al., 2015; Mathalon and Hill, 2014; Murray and Cowie, 2011; Welden and Cowie, 40 

2016). The uptake of microplastics may occur through a variety of routes, including active 41 

ingestion, a result of mistaking plastics for prey items; or passively, through contaminated prey 42 

and/or sediment. Both of these routes have been observed in laboratory experiments (Bern, 43 

1990; Besseling et al., 2012; Farrell and Nelson, 2013; Frias et al., 2014). Uptake has even been 44 

observed through the gills during respiration (Watts et al., 2014b).  45 

The Impacts of Plastic Ingestion 46 

The ingestion of plastic by marine vertebrates has been seen to have a range of effects on the 47 

organism. One of the most apparent impacts is mortality due to gut damage as observed in turtles 48 

(Lutz, 1990; Tomás et al., 2002) and porpoises (Baird and Hooker, 2000), or starvation as a result 49 

of plastic taking up the space of food in the stomach.  Damage to the gut may also result in reduced 50 

digestive efficiency and nutrient uptake, known as nutrient dilution (McCauley and Bjorndal, 51 

1999). In birds, this has been linked to reduced body condition as contaminated individuals utilise 52 

the body’s stores to bridge the energy gap (Connors and Smith, 1982; Pierce et al., 2004; Ryan, 53 

1988). Finally, animals may also be subject to the transfer of hydrophobic contaminants, as 54 

previously observed in seabirds (Ryan et al., 1988). This is particularly concerning in areas where 55 

plastics exposed to sea water containing hydrophobic contaminants may develop loads much 56 

higher than that of the surrounding water (Endo et al., 2005; Teuten et al., 2009). 57 

Microplastic and Invertebrates 58 

Despite the previous work examining the impacts of plastic debris on both wild and captive 59 

vertebrates, the effect of microplastic ingestion by invertebrates have yet to be determined. Of 60 

those studies that address these impacts, most deal with short-term effects. For example, 61 

microplastic consumption has been seen to reduce feeding in Arenicola marina (Besseling et al., 62 

2012; Wright et al., 2013) and shore crabs, Carcinus maenas, fed on chronic levels of plastic fibres 63 

over four week periods showed a dramatic reduction in both feeding and scope for growth (Watts 64 

et al., 2015). A. marina has also been seen to take up hydrophobic contaminants from plastics, 65 

which may result in harmful effects to the animal (Besseling et al., 2012). Responses have also 66 



been observed in terrestrial invertebrates. Examination of the impacts of polyethylene powder 67 

(< 400µm) on the worm, Lumbricus terrestris, indicated reduced growth rate at all microplastic 68 

concentrations and increased mortality at concentrations over 28% (Huerta Lwanga et al., 2016). 69 

A small number of species have demonstrated minimal or no effects as the result of plastic 70 

ingestion. The larvae of the sea urchin Tripneustes gratilla were seen to readily ingest 71 

polyethylene spheres; however, this ingestion was not seen to significantly increase mortality, 72 

despite a slight reduction in survivorship in the highest concentration (Kaposi et al., 2014). The 73 

marine isopod Idotea emarginata also did not discriminate against plastics, ingesting beads, 74 

fragments, and fibres. The isopods were able to pass ingested microplastic, with no significant 75 

level of accumulation observed; as a result, it was determined that microplastic ingestion had no 76 

negative impact on the health of the organism (Hämer et al., 2014). Such variation in the impact 77 

of microplastic ingestion between species is to be expected. Biotic factors, such as microplastic 78 

uptake rate, residence time of microplastic in the gut, and tolerance to low nutrient conditions 79 

each influence the cumulative impact of exposure.  80 

Microplastic Uptake and Retention by N. norvegicus 81 

Nephrops norvegicus are decapod crustaceans found in fine sediments at depths between 20 and 82 

800 meters across the Northeast Atlantic and in the Mediterranean. Their diet is mainly 83 

composed of bivalve molluscs, polychaetes, echinoderms, fish, and crustaceans including 84 

conspecifics (Aguzzi and Sardà, 2008). N. norvegicus recovered from the Clyde Sea Area have been 85 

seen to contain large aggregations of microplastic fibres (Murray and Cowie, 2011; Welden and 86 

Cowie, 2016), and may be at increased risk of the negative impacts of microplastic uptake. These 87 

large aggregations are believed to be the result of the complex gut morphology of N. norvegicus. 88 

The digestive system has three main portions, the foregut, mid gut and narrow hind gut, and a set 89 

of chitinous structures known as the gastric mill (Welden et al., 2015). Examination of wild caught 90 

N. norvegicus has shown microplastic aggregations directly anterior to the gastric mill and the 91 

narrowing at the entrance to the hind gut; it is though that these structures prevent some 92 

microplastics from leaving the digestive tract (Welden and Cowie, 2016).  93 

It has been seen that N. norvegicus may lose aggregated microplastic during moult, as the foregut 94 

lining is shed (Welden and Cowie, 2016). N. norvegicus moult occurs biannually in male and 95 

immature individuals, and annually in mature females. This extended period over which they may 96 

retain microplastics suggests that the species are at increased risk of the negative impacts of 97 

plastic ingestion. For N. norvegicus populations in areas of high environmental microplastic 98 

contamination individuals may develop large aggregations of plastic fibres in the fore-gut, which 99 

increases the likelihood and magnitude of these effects (Welden and Cowie, 2016).  100 



It is hypothesised that the level of microplastic contamination observed in N. norvegicus from the 101 

Clyde Sea Area may result in numerous impacts on the nutritional state of N. norvegicus, with the 102 

potential for false satiation and starvation in highly affected individuals. In this paper we aim to 103 

assess the impact of large fibre aggregations on nutritional health and mortality of this 104 

economically important population. In an eight month exposure trial, the impacts of long-term 105 

exposure to microplastics on food consumption and growth in male N. norvegicus was examined. 106 

Methods 107 

Male N. norvegicus were sampled from the Clyde Sea Area in early spring using 50 mm mesh otter 108 

trawls. Prior to the experiment, captured animals were kept in holding tanks (270 litres) supplied 109 

with recirculating sea water, and were fed on whole squid mantle that had been rinsed thoroughly 110 

with distilled water to remove any attached microplastic. After the group had moulted, 34 111 

individuals were sacrificed for gut content analysis to confirm that the animals were free from 112 

plastics, and 36 were transferred to lidded individual tanks (10 litres). Each tank contained rock 113 

shelters, and was maintained at ambient temperature with a 12 hour light/dark regime.  114 

A closed 68 litre header tank was used to circulate filtered seawater to prevent introduction of 115 

foreign microplastics. Water leaving tanks passed through a 0.2mm filter to prevent plastics from 116 

the treatment group being passed to control animals, and all water flowed through a secondary 117 

protein skimmer and filter before re-entering the header tank (Fig. 1). The system was reduced 118 

to 50% volume before being topped up with filtered seawater approximately every 2 weeks; more 119 

frequently during warmer weather. Water levels were monitored on a daily basis and ad hoc 120 

additions occasionally made to maintain constant volume. Air-stones and pumps were used to 121 

ensure sufficient oxygenation of the water and slate shelters were provided for cover. 122 

 123 



 124 

Fig. 1. Individual tank set up with model of sea water circulation system 125 

After a month-long acclimatisation period in the experimental tanks, the carapace length and 126 

body mass of each individual was recorded. The average carapace length at day 0 was 31.357 mm, 127 

and the average mass was 19.28 g. Total haemolymph protein was also determined using a 128 

Bradford assay, described in full below.  129 

The 36 individuals were then divided into three groups (12 individuals per group): the treatment 130 

group, fed a 1.5 g squid mantle seeded with five polypropylene fibres; the fed control group, fed 131 

with 1.5 g of squid mantle only; and the starved control group. Fibres were chosen for this 132 

experiment as they were the most abundant category of microplastic recovered in previous 133 

studies of ingestion by N. norvegicus. Similarly, they are the dominant microplastic category 134 

observed in environmental sampling.  135 

Polypropylene rope was chosen owing to its widespread use in the fishing industry and 136 

prevalence in previously studied N. norvegicus from the Clyde Sea Area (Welden and Cowie, 137 

2016). Fibres were removed from twisted split film polypropylene rope supplied by Gaelforce. 138 

Individual fibres measured between 3 mm and 5 mm in length and were approximately 0.2 mm 139 

in diameter.  N. norvegicus in the Clyde Sea Area are known to be subject to high aggregations of 140 

microplastic. Five fibres per feeding would expose the plastic-fed group to 360 fibres over the 141 

experimental period, although not all were expected to be ingested and it is uncertain what 142 

proportion of ingested plastic is retained in the foregut.  143 

Previous observations of nutritional state in N. norvegicus have indicated that animals can survive 144 

for long periods without food (Watts et al., 2014a). The starved control was used to provide a 145 

baseline for reduced nutritional health. Over the eight month experimental period the treatment 146 



group and fed control were fed every two days, and feeding rate in both groups was determined 147 

by weighing the un-eaten food. After eight months, a second haemolymph sample was taken from 148 

each animal, after which the animal was killed and immediately dissected; the stomach was 149 

removed and transferred directly into 80% ethanol, and the hepatopancreas removed, weighed, 150 

and frozen at -80˚C.  151 

Foregut Microplastics 152 

Microplastic retention was determined by examining the foregut of each individual under stereo 153 

microscope, as outlined in Murray and Cowie (2011) and Welden and Cowie (2016). Plastic 154 

recovered were visually examined to determine that they originated from the experimental 155 

condition rather than prior exposure. The weight of retained microplastic was recorded using a 156 

Mettler MX5 balance (Mettler-Toledo international Inc., Columbus, USA).  157 

Bradford Assay 158 

Changes in the composition of the haemolymph and the level of stored lipids were used as 159 

indicators of nutritional state. Reduction in haemolymph protein has been linked to metabolic 160 

depression (Watts et al., 2014a). The results of the Bradford assay obtained following the 161 

acclimatisation period were compared to a second assay carried out on haemolymph samples 162 

taken at the end of the experimental period. The method followed that outlined by Hagerman 163 

(1983), with 10 μl of haemolymph diluted with 990 μl of deionised water. 50 μl of the diluted 164 

sample was then added to 950 μl of coomassie blue. The absorbance of the resulting solution was 165 

determined at 562 nm using a spectrophotometer, calibrated using standardised solutions of 166 

bovine serum albumen (BSA)(Hagerman, 1983). 167 

Copper in the Hepatopancreas 168 

The breakdown of haemocyanin, the protein responsible for oxygen transport, results in an 169 

increase in copper levels in the hepatopancreas. To determine the level of copper in the 170 

hepatopancreas, dehydrated tissue samples were subjected to atomic absorption spectrometry 171 

(AAS). Hepatopancreas samples were freeze dried over five days and the dry weight recorded. 172 

100 mg of the dry tissue was pre-digested at 95˚C using 8 ml of nitric acid. The resulting material 173 

was allowed to cool for 10 minutes, following which 3 ml of hydrogen peroxide were added. After 174 

a minimum of 8 hours, the samples were made up to 10 ml with distilled water, and analysed 175 

using an AA Analyst400 (Perkin Elmer Ltd, Cambridge, UK). Results were compared to standards 176 

of copper nitrate (Sigma Aldrich) diluted to concentrations of 15, 10, 5, 2.5 and 1.25 ppm and a 177 

distilled water blank (Watts et al., 2014a). 178 



Mass and Lipid Content of the Hepatopancreas 179 

Reduction of energy stores is an indication that the level of starvation exceeds that which can be 180 

managed by metabolic depression alone. In N. norvegicus, the greatest concentration of stored 181 

lipids is found in the hepatopancreas; as these are catabolised they are replaced with water to 182 

maintain tissue volume. In a study of the nutritional value of pelleted and natural food sources 183 

carried out by Mente (2010), the starved control group exhibited a reduction in lipid 184 

concentration of 12.16% in over 8 months. Two  indices were used as indicators of catabolism of 185 

stored lipids. Hepatosomatic Index (HSI), which is the mass of the hepatopancreas in relation to 186 

overall body mass (Mayrand and Dutil, 2008), and the percentage of water in the hepatopancreas 187 

(% H20 HP). HSI was calculated using the mass of the hepatopancreas recorded at dissection and 188 

the final body weight of the animal. The percentage water of the hepatopancreas was calculated 189 

from the final weight of the hepatopancreas and the weight of the freeze dried hepatopancreas 190 

samples.   191 

Statistical Analysis 192 

Statistical analysis was carried out using Minitab15. Differences in food consumption between 193 

the plastic-fed treatment group and the fed control group were examined at each month using a 194 

Mann-Whitney U analysis. Comparisons of the aggregation of gut plastic, variation in body mass, 195 

and the various indices of nutritional state between the three treatment groups at month eight 196 

were conducted using a Kruskall-Wallis test. In the event of a significant result, the relationship 197 

was explored using post hoc Mann-Whitney tests to determine the treatment group responsible 198 

for the response. 199 

 200 

Results and Discussion 201 

Analysis of the gut content of plastic-fed individuals revealed aggregations weighing between 202 

0.41 – 3.49 mg, (average 1.5 mg). One of the control animals was also observed to have plastic in 203 

the foregut. This was a single pink fibre, distinctly different to those provided to the treatment 204 

group. Despite this, there remained a highly significant difference in the level of contamination 205 

between the three groups (H = 16.77, d.f. = 2, P < 0.001). The levels of plastic observed in the 206 

treatment group at the end of the exposure period are comparable to aggregations found in highly 207 

contaminated individuals from the Clyde Sea Area (Welden and Cowie, 2016). This comparable 208 

level of plastic retention indicates that the effects outlined below are representative of those 209 

experienced by animals in areas of high microplastic contamination. 210 



Survivorship varied between treatments groups, with the starved condition displaying the 211 

highest mortality (58.3%), followed by plastic fed (41.6%), and then fed individuals (33.2%). The 212 

mortality rate of plastic fed animals fell between the two control conditions, indicating that N. 213 

Norvegicus were weakened by the presence of plastic in the diet. Mortality in the fed control was 214 

higher than that which might be expected. It may be that N. norvegicus are less able to cope with 215 

starvation under ambient temperature conditions than under a lower temperature regime, or 216 

that the group were subject to an unidentified stressor, such as the presence of a pathogen.  217 

Ingestion of large plastic debris has previously been identified as a cause of increased mortality 218 

in both turtles (Lutz, 1990; Tomás et al., 2002) and cetaceans (Baird and Hooker, 2000), as a result 219 

of blockage of the gut.  Similarly, worms that were fed microplastics have also demonstrated an 220 

increased mortality rate (Huerta Lwanga et al., 2016). The increased mortality in the plastic-fed 221 

condition may be the result of starvation caused by reduced nutrient availability, or of direct 222 

damage to the organism. However, as part of its natural diet N. norvegicus regularly ingest items 223 

that are of irregular size and shape, which have equal potential to damage the animal’s digestive 224 

tract. As a result, reduced nutrient availability is considered the most likely factor influencing the 225 

observed increase in mortality of the plastic fed animals. 226 

The effect of microplastic ingestion on growth 227 

Over the eight month survey period significant differences were observed in the body mass of the 228 

three treatment groups, and statistical analysis revealed a significant difference between the 229 

conditions (H = 13.78, d.f. = 2, P < 0.001) (Fig. 2). The normally fed control exhibited a mean 230 

increase in body mass of 0.0795% per day, while starved individuals demonstrated a mean 231 

decrease in body mass of -0.0303% per day. Animals fed microplastics showed a decrease in mean 232 

body mass of -0.0189% per day, falling between the two control treatments.  233 

As scope for growth is determined by food availability it is assumed that the decrease in body 234 

mass of the plastic fed individuals is the result of lowered nutrient uptake. Reduction in the body 235 

mass of both the starved and plastic fed groups occur as a result of the body’s stores being 236 

metabolised in the absence of nutrition from food sources (Connors and Smith, 1982). The mean 237 

reduction in body mass recorded in plastic-fed individuals was not as marked as that in the 238 

starved control, suggesting that a proportion of the nutrients consumed by the treatment group 239 

were successfully absorbed. No significant correlation was found between the mass of plastic in 240 

the gut and the reduction in body mass, suggesting that there is not a direct relationship between 241 

the two; however, the sample size in this study is small, and a relationship may become apparent 242 

in a larger experiment using more N. norvegicus. 243 



 244 

Fig. 2. Mean change in body mass of animals from the three experimental groups observed at month eight 245 

(bars indicate standard error) 246 

 247 

Variation in Feeding Rate 248 

During the experimental period, the feeding rates of both the fed and the plastic fed groups were 249 

seen to vary on a monthly basis; however, the mass of food consumed by plastic-fed animals 250 

decreased in relation to that of the fed control. Over the 8-month experimental period, a decline 251 

in the mass of consumed food could be seen in the plastic-fed group (Fig. 3), indicating reduced 252 

feeding in plastic-fed individuals. However, this effect was not seen to be significant. (W= 44.0, P 253 

< 0.1824). 254 

These results support previous observations of reduced feeding in microplastic-fed C. maenas 255 

reported by Watts et al., (2015), and microsphere-fed A. marina (Besseling et al., 2012) and D. 256 

manga (Besseling et al., 2014). The reduction in feeding rate is believed to be the result of false 257 

satiation, as plastic aggregations take up an increasing volume in the stomach. This effect has 258 

been observed in a number of vertebrate species, particularly birds (Azzarello and Fleet, 1987; 259 

Connors and Smith, 1982; Pierce et al., 2004; Ryan and Jackson, 1987).  260 

Sustained reduction in feeding is known to result in reduced body condition (Watts et al., 2014a). 261 

However, it is not clear whether the reduced growth rate and increased mortality described 262 

above are solely the result of the decreased feeding rate or whether plastic in the gut also reduces 263 



nutrient uptake by the digestive tract. Damage to or irritation of the gut membrane may reduce 264 

the efficiency with which digested food is absorbed, reducing the nutritive value of the food that 265 

is ingested. 266 

For some species, microplastic ingestion may not result in false satiation. Organisms that 267 

regularly take in indigestible material may possess compensatory mechanisms. Oysters exposed 268 

to microspheres were seen to dramatically increase their food uptake, apparently in an attempt 269 

to compensate for the ingestion of plastic (Sussarellu et al., 2014). 270 

 271 

  272 

Fig. 3. Mean weight of squid mantle consumed by the treatment group and fed control over the 273 

experimental period (bars indicate standard error) 274 

 275 

Metabolic Depression 276 

Analysis of the measures of metabolic depression indicated differences between the plastic-fed, 277 

fed, and starved conditions. The level of protein in the haemolymph showed apparent variation 278 

between the three groups (Fig. 4); however, this was not found to be significant when analysed 279 

staistically (H = 4.96, d.f. = 2, P < 0.084). The minimal variation observed was predominantly 280 

driven by the fed and starved control groups as indicated by post hoc Mann-Whitney analysis (W 281 



= 21.0, P < 0.05), comparisons between the plastic-fed condition and the two control groups did 282 

not reveal significant variation.   283 

 284 

  285 

Fig. 4 Mean level of haemolymph protein of animals from the three experimental groups observed at month 286 

eight (bars indicate standard error) 287 

 288 

The breakdown of the main haemolymph protein, haemocyanin, releases two copper atoms 289 

which build-up in the hepatopancreas. Examination of the level of copper in the hepatopancreas 290 

revealed significant variation between the groups (H = 7.96, d.f. = 2, P < 0.019), although this was 291 

driven by extraordinarily high levels of copper in two plastic-containing individuals. Mann-292 

Whitney analysis revealed differences between plastic-fed individuals and both controls; 293 

however, these were only to 90 to 95% confidence (plastic-fed/starved: W = 42.0, P < 0.0128; 294 

plastic-fed/fed: W = 20.0, P < 0.0513).  295 

While the reduction in haemolymph protein in the plastic-fed individuals is not as marked as that 296 

in the starved condition, it is clear that there is reduced nutrient uptake in N. norvegicus 297 

contaminated with plastic, causing metabolic depression. A previous evaluation of starvation in 298 

N. norvegicus carried out by Watts et al. (2014a) revealed that copper levels above 350.19 μg g-1 299 

were indicative of starvation. The mean copper level in each group was above this threshold; 300 

however, those of the plastic-fed groups were markedly higher, indicating that N. norvegicus in 301 

the treatment group experienced metabolic depression. 302 



Use of Stored Lipids 303 

Metabolic depression is only effective for limited periods, prolonged episodes of insufficient 304 

nutrients force N. norvegicus to utilise energy stores; first glycogen, and then lipids. Prolonged 305 

starvation has previously been seen to result in a reduction in lipid in both the hepatopancreas 306 

and tail (Barden, 1994).  307 

All three treatment groups showed significant variation in nutritional state after eight months, 308 

with an obvious reduction in the body condition of individuals exposed to microplastic. The 309 

average water content of the hepatopancreas varied between the three conditions; 85.3% in the 310 

starved condition, 79.9% in the plastic-fed condition, and 71% the fed condition (Fig. 5). This 311 

variation was seen to be significant (H = 12.70, d.f. = 2, P < 0.002). Post hoc Mann-Whitney tests 312 

revealed significant differences of at least 95% confidence between the three groups. The 313 

relatively high water content in the  starved and plastic condition indicates that these animals 314 

have experienced a reduction in stored lipids which were then replaced by water.  315 

 316 

Fig. 5.  The mean level of water in the hepatopancreas (%) of animals from the three experimental groups 317 

as observed at month eight (bars indicate standard error) 318 

 319 

Correspondingly, the HSI of the plastic-fed condition was between that of the control groups. The 320 

hepatosomatic index was seen to vary significantly between the three groups, ranging from 0.8% 321 

in the starved condition to 4.5% in the fed condition (H = 10.98, d.f. = 2, P < 0.004) (Fig. 6). Post 322 

hoc Mann-Whitney tests revealed differences between individuals in the fed and starved controls 323 



(W = 76.0, P < 0.0043), and plastic-fed treatment and starved control (W= 86.0, P < 0.0128). The 324 

lower HSI in the starved and plastic-fed conditions indicate that these animals have experienced 325 

a reduction in available nutrients greater than that which could be mediated by metabolic 326 

depression.  327 

 328 

Fig. 6.  The mean hepatosomatic index of animals from the three experimental groups observed at month 329 

eight (bars indicate standard error) 330 

  331 

Further Impacts of Long Term Plastic Retention 332 

The results described above indicate that microplastic retention by N. norvegicus is linked to 333 

reduced nutritional state; however, the prolonged exposure period experienced by N. norvegicus 334 

may lead to secondary impacts of plastic ingestion beyond those of reduced feeding. The 335 

intermoult period of N. norvegicus varies between the sexes; occurring every six months in males 336 

and twelve months in ovigerous females (Farmer, 1973). As a result, females retain their 337 

aggregations for longer periods and are at increased risk of developing large microplastic 338 

aggregations as documented in Welden and Cowie (2016).  339 

In addition to the impacts of low nutrient availability on metabolism and lipid stores discussed 340 

above, starvation in crustaceans may cause reduced fecundity (Abellô and Sardá, 1982; Beyers 341 

and Goosen, 1987; Hines, 1991; Lizárraga-Cubedo et al., 2003), limiting egg production and, 342 

therefore, population growth. Such reduced fecundity has previously been observed in oysters 343 



exposed to polystyrene microspheres (Sussarellu et al., 2014). This potential effect should be of 344 

high concern in an economically important species such as N. norvegicus, landings of which are 345 

regularly in the UK’s top five highest grossing fisheries.  346 

Retention of microplastic for long periods will also influence the uptake of additives and adsorbed 347 

pollutants. Investigations of partitioning of hydrophobic contaminants have shown transfer 348 

between gut plastic and animal tissues (Farrell and Nelson, 2013). In many of these species the 349 

residence time of ingested plastics is believed to range from a number of hours (in marine 350 

worms), to a number of days (in birds). The ability of N. norvegicus to retain plastic for a number 351 

of months indicates an extended period over which hydrophobic contaminants may be 352 

transferred to the organism and potentially contribute to deleterious population effects.  353 

 354 

Conclusions 355 

The results presented above indicate that microplastic aggregations reduce the nutritional health 356 

of N. norvegicus. The reduction in mean body mass of the plastic-fed individuals indicates that 357 

retention of microplastic results in lower growth rates. In wild populations experiencing 358 

additional pressures, retention of microplastic may result in increased mortality and decreased 359 

fecundity. 360 

 361 
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