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 

Abstract— This paper reviews recent works in the literature on 

the use of systems based on Radar and RGB-Depth sensors for fall 

detection, and discusses outstanding research challenges and 

trends related to this research field. Systems to detect reliably fall 

events and promptly alert carers and first responders have gained 

significant interest in the past few years in order to address the 

societal issue of an increasing number of elderly people living 

alone, with the associated risk of them falling and the 

consequences in terms of health treatments, reduced well-being, 

and costs. The interest in radar and RGB-D sensors is related to 

their capability to enable contactless and non-intrusive 

monitoring, which is an advantage for practical deployment and 

users’ acceptance and compliance, compared with other sensor 

technologies such as video-cameras, or wearables. Furthermore, 

the possibility of combining and fusing information from 

heterogeneous types of sensors is expected to improve the overall 

performance of practical fall detection systems. Researchers from 

different fields can benefit from multidisciplinary knowledge and 

awareness of the latest developments in radar and RGB-D sensors 

that this paper is discussing.  

 
Keywords—Radar sensors, RGB-D sensors, micro-Doppler, fall 

detection, human movements analysis, ambient assisting living, 

feature extraction and classification. 

I. INTRODUCTION 

HE PROPORTION of people aged over 65 years is 

increasing worldwide, with different estimations for 

different countries projecting the percentage of over 65 to 30% 

in 2050 in the European Union and in China, and to 20.2% in 

2050 in the United States [1]. This aging population is pushing 

towards a different healthcare delivery model, evolving from 

the conventional hospital-centric approach where patients are 

diagnosed and treated for acute conditions in specialized 

hospitals, to a more home-centric model where care is delivered 

to the patient in his/her own home as long as possible, supported 

by the use of  new technologies [1]. This home-centric approach 

to long-term care improves the quality of life of the patients, 

who are able to live longer in a familiar environment without 

major changes to their habits, and also reduces the public costs 

for providing healthcare. In this context where many elderly 

people live alone at their home, the risk posed by fall events and 

subsequent injuries is an important issue to tackle. The World 
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Health Organization defines falls as ‘an event which results in 

a person coming to rest inadvertently on the ground or floor or 

other lower level, and estimates the proportion of people aged 

over 65 falling each year to be approximately 28-35%, and 32-

42% for people aged over 70 [2]. Fall events lead to immediate 

physical injuries such as cuts, abrasions, and fractures of bones, 

as well as to a psychological impact leading to the fear of falling 

again and, in general, to reduced confidence and diminished 

level of physical activity [3]. Furthermore, research also reports 

a reduction in life expectancy for those who experience a long-

lie period after the fall event, i.e. an involuntary rest on the 

ground for an hour or longer (it is for instance estimated in [4] 

that half of the elderly people who experienced a long-lie 

following a fall died within 6 months).   

To address this issue, in the past few years significant 

research activity focused on developing solutions for secure and 

reliable systems to monitor elderly people in their daily 

activities and promptly detect fall events. These systems would 

directly benefit elderly people by allowing them to continue 

having an independent lifestyle, without the need to move to 

institutionalized care, enabling timely and effective 

intervention in case of need, and ultimately reducing the 

emotional and financial burden for the elderly and their 

families. This has also a clear societal and economical effect by 

reducing the costs and resources needed to treat the 

consequences of fall events, especially in case of complications 

following the long-lie period on the floor.  

It should be also noted that reliable monitoring systems can 

be beneficial not only for fall detection, but also to evaluate the 

pattern of life of an individual. This includes for instance how 

active the person is, how often he/she moves in different parts 

of the house and what activities are performed, in particular 

fundamental activities (the so-called Activities of Daily Living 

– ADL) such as food intake and personal hygiene. Irregularities 

with respect to the normal pattern of life of a person can be used 

for early detection of deteriorating health conditions (for 

instance initial symptoms of dementia), providing the 

opportunity for timely and more effective treatment [5]. 

Many different technologies have been proposed in the 

literature for people monitoring and specifically for fall 

detection [6]–[8]. These include wearable devices such as 
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accelerometers, gyroscopes, and panic push buttons, inertial 

sensors such as those within smartphones, infrared, vibration, 

acoustic, magnetic sensors, video cameras, RGB-Depth (RGB-

D) sensors, and radar sensors, or a combination of these 

systems, whereby their information is used jointly and fused to 

optimize the overall performance.  

The choice of reviewing these two types of sensing 

technologies (radar and RGB-D) is related to the fact that 

similar reviews have been conducted for wearable sensors [9]–

[13], and video-camera based sensors [7], and so a critical 

review of alternative technologies can offer opportunities to 

compare and complement the available results in the literature. 

Additional reviews surveyed some of these different 

technologies for fall detection and proposed to classify them in 

several ways. The work in [14], published in 2012, classified 

the existing fall detection methods in three categories, namely 

wearables (tri-axial accelerometers mostly), ambient sensors 

(e.g. sensing pressure, vibrations, audio), and vision-based 

sensors (mostly cameras to detect posture and changes in body 

shape and activities). The 2015 survey on vision-based fall 

detection systems in [15] distinguished works that used single 

RGB cameras, multiple RGB cameras, and 3D methods using 

depth cameras, and mentioned three publicly available datasets 

recorded using Microsoft Kinect cameras (described later in 

section III of this manuscript). The work in [16], published in 

2015, proposed a slightly different classification of sensors for 

fall detection, distinguishing between sensors worn by the users 

and context-aware sensors (i.e. infrared, acoustic, pressure, 

vibration, camera-based sensors sensing the presence and the 

activities in a certain area). An important contribution of this 

paper is the list of works that operate by combining and fusing 

information from multiple sensors, either belonging to the same 

category (e.g. two different types of wearables or two different 

types of context-aware sensors), or mixing wearables with 

context-aware sensors. Another, more articulate classification 

of systems for fall detection and fall prevention is provided in 

the recent work in [17]. Here the different sensors and systems 

are classified in wearables (further divided into those worn on 

the body and those worn on feet or shoes), non-wearables 

(further divided into ambient sensors, vision sensors, and radio-

frequency sensors), and fusion or hybrid systems.  

None of the aforementioned works surveyed radar-based 

systems for fall detection and activity monitoring, apart from 

[17] which mentioned pulse-Doppler radar only, but without 

discussing existing works in this domain or alternative radar 

technologies (e.g. frequency modulated techniques as opposed 

to pulsed systems). Regarding systems based on depth cameras, 

only reference [15] discussed to some extent the works in the 

literature, whereas references [16]-[17] only mentioned a few 

of them and reference [14] only considered normal cameras. 

There is therefore scope to propose a joint survey of radar-

based and RGB-D sensors for fall detection and daily activities 

monitoring. These sensors provide attractive advantages 

compared with other technologies, particularly in terms of 

privacy preservation and non-cooperative monitoring 

capabilities. Ambient sensors, especially vision-based sensors, 

can raise sensitive issues in terms of the confidentiality of the 

data and privacy of the patients, which may not be an issue for 

wearable sensors [16]. Wearables sensors, however, require 

users’ cooperation and compliance to be worn or carried, which 

could be potentially problematic and uncomfortable as 

highlighted in the introduction of [15]. Radar and depth sensors 

can address these issues. For RGB-D sensors, if the data 

processing algorithm for fall detection relies on depth data only, 

no direct optical images of the monitored people are collected. 

RGB images could be used only in case of dangerous events, 

with the user’s agreement. For radar sensors, this is also true as 

no images of the monitored people are collected. Furthermore, 

there is also an element of non-stigmatizing the subjects to be 

monitored and their specific needs, as with these technologies 

there is no need to alter one’s usual behavior because of the 

introduction of the sensor at home, or to wear unusual devices. 

All these aspects can help address some of the key users’ 

acceptance issues highlighted for wearables, smartphones, and 

video-cameras [6], making radar and RGB-D interesting 

technologies to evaluate in the assisted living context. It has 

also been highlighted how radar systems are not affected by low 

or bad lighting conditions as opposed to video-cameras, and 

both radar and RGB-D systems are more resilient than acoustic 

systems to water flowing interference and degrading 

interference by multiple echoes [18]. This can be an advantage 

for practical deployment of fall detection systems in 

environments such as toilets and bathrooms, where the risk of 

falling may be significantly higher because of slippery wet 

surfaces and there are obvious privacy constraints to be taken 

into account.  

Finally, the review of the state-of-the-art for radar and RGB-

D sensors in the context of fall detection and human activity 

recognition is important to identify gaps and future research 

directions, in particular the possibility of having “multi-sensing 

systems” that combine these two technologies. It is believed 

this is a significant research direction, for example to develop 

systems where the radar part may provide longer detection 

ranges and insensitivity to light conditions, and the RGB-D part 

provides depth information useful when the Doppler 

information normally obtained from the radar is not sufficient 

for good classification. Additional discussion on gaps and 

complementarity of radar and RGB-D sensors is provided later 

on in this paper. Interesting examples of multi-sensing systems 

are provided in [16], [17], for example Kinect and 

accelerometers, or cameras with microphones plus 

accelerometers, but examples of radar and RGB-D systems are 

not mentioned in those review papers.  

The rest of the manuscript is organized as follows. Section II 

presents a review of works that used radar systems, whereas 

section III is focused on RGB-D systems. Section IV provides 

a discussion on advantages and disadvantages of the different 

solutions described in the previous sections, and proposes 

future research challenges and trends. Section V finally draws 

the conclusions of this paper.  

II. LITERATURE REVIEW ON RADAR SYSTEMS  

Radar systems have been proposed only recently to address 

the problem of fall detection, with preliminary works such as 



[19] starting to appear in the literature around 2011, and a 

growing trend of research works proposed from then up to now. 

The interest in this topic is demonstrated by two special issues 

published in February 2015 and March 2016, respectively the 

special issue on Application of Radar to Remote Patient 

Monitoring and Eldercare by IET Radar, Sonar & Navigation 

[20], and the special issue on Signal Processing for Assisted 

Living: Developments and Open Problems [21] by the IEEE 

Signal Processing Magazine. 

There are many ways in which a person can fall, for instance 

falling forward rather than backward or towards the side, falling 

after tripping on some items or obstacles ,or as a consequence 

of the loss of balance or consciousness, or falling while 

attempting to reach a chair or a sofa to sit on [18]. However, the 

research work in the literature identifies the common 

characteristic of fall events to be a quick and sudden 

acceleration during the actual fall followed by a slow 

deceleration while the person is lying on the floor [22]. The 

proposed techniques to detect fall events aim to identify this fast 

acceleration from the radar data and to develop robust 

classification algorithms to reject false alarms caused by other 

movements that may cause comparable fast accelerations, such 

as bending to pick up an object or sitting down on a chair or 

sofa. The majority of the work presented on radar sensors for 

fall detection exploits the analysis of micro-Doppler signatures 

of people performing different activities, in order to extract the 

information on the velocity (proportional to the Doppler shift), 

and then identify the specific signature of a fall event. Other 

works discuss the use of range information obtained by Ultra 

Wide Band (UWB) radar systems, as well as the information on 

target velocity/acceleration that can be extracted from the phase 

of the received signal.  

The general processing approach for fall detection is 

summarized in Figure 1. The starting point is always a dataset 

of experimental data, or data simulated with kinematics models 

in order to increase the amount of available samples to improve 

the classification performance. Then features have to be 

extracted from the data, i.e. numerical parameters that an 

algorithm implemented on a computer can understand. As 

mentioned before, these can be extracted from the data in the 

range domain, in the phase domain, or in the Doppler domain, 

with different approaches specific to each domain. In the case 

of micro-Doppler information, a suitable time-frequency 

transformation, such as the popular Short Time Fourier 

Transform (STFT) or Wavelet Transform (WT) and Extended 

Modified Beta Distribution (EMBD), is applied to the data 

before the feature extraction step in order to characterize the 

Time-Doppler pattern of the movement under test. The feature 

extraction step can be combined with a pre-screening step 

aimed at selecting the specific amount of data to be used for 

feature extraction in order to reject false alarms. For example, 

this step can identify the beginning and end of a potential fall 

looking at the velocity and acceleration, and only the amount of 

data between these two instants will be used for feature 

extraction. The final step is using the extracted feature samples 

as inputs to a classifier based on machine learning (ML) 

methods, where part of the data has been used to train the 

classifier, and the remainder is used for testing to assess the 

performance. Principal Component Analysis (PCA) can also be 

used to reduce the dimensionality of the available feature space, 

concentrating the relevant information for classification in a 

smaller number of features [23], and to automatize the feature 

extraction and selection procedure by reducing the influence of 

human operators’ choices [24]. Many different types of 

classifiers featuring different computational complexity have 

been suggested in the literature, such as simple heuristic 

thresholds on parameters, Naïve Bayes, Nearest Neighbor with 

k elements (kNN), Support Vector Machines (SVM), and 

random forests. Most of these classical ML methods are based 

on the assumption that the input feature samples are 

independent and identically distributed, but this is not always 

true for human behavior data, whereby the actions that someone 

is doing at some point depend on previous actions and influence 

future actions [8]. Other  ML approaches have been suggested 

to approach the case when the independent and identically 

distributed data assumption is not considered, such as Hidden 

Markov Models (HMMs), Conditional Random Fields (CRFs), 

and certain type of neural networks such as recurrent networks 

[8]. Methods to select a certain number of features for the 

classifier among those available can also be used at this stage, 

in particular wrapper methods that test all the possible feature 

combinations to find the optimal solution in terms of best 

classification performance, or filters methods that rank the 

available features according to a certain metric (e.g. the T-test 

or the mutual information) and then select the best N features 

[25]–[27]. It should be noted that similar processing steps are 

followed also for different types of sensors, such as wearable 

inertial measurement units (IMUs) as detailed in [13]. In the 

remainder of this section, details about the proposed techniques, 

their experimental validation, and their advantages and 

disadvantages will be discussed.  

Table 1 at the end of the section summarizes the different 

approaches proposed by the different papers in terms of feature 

extraction, i.e. where and how one can process the valuable 

information capable of discriminating fall events from other 

movements. The choice of highlighting the different feature 

extraction methods is justified, as the selection of a suitable set 

of features is expected to have a more significant effect on the 

overall performance than the choice of a specific type of 

classifier [22], [28]. Table 2 provides a summary of the different 

types of radar sensors used in the reviewed works to collect data 

for fall detection. Most of the sensors appear to operate in the 

range of frequencies including C-band and X-band, specifically 

around the 5.8 GHz Wi-Fi band and 8 GHz, as well as a few 

systems operating at higher frequency in K-band (24 GHz), to 

exploit the larger bandwidth and related range resolution 

achievable at that frequency. Only few systems are reported 

working at lower frequencies, probably because the antennas 

tend to become rather large and unfeasible for indoor 

monitoring scenarios, and because the micro-Doppler signature 

is less suitable for feature extraction and classification, as the 

Doppler shift is proportional to the carrier frequency of the 

signal. Sensors using higher frequencies in the W-band region, 

for example in the 77 GHz or 90 GHz region where automotive 



radar operate, were also not reported. This could be an 

interesting direction of research as very large bandwidth values 

are achievable at these frequencies enabling fine range 

resolution as well as large Doppler shifts, and the path loss 

suffered by the signal can still be suitable for indoor 

applications. 

The use of radar sensors may raise some questions on 

possible hazards posed by the electromagnetic radiations. The 

transmitted power levels of the systems listed in Table II are of 

the order of a few dBm (e.g. +3 dBm reported for the network 

analyzer output), or limited to below +20 dBm for the 

commercial sensors. These levels appear to be comparable with 

the power transmitted by conventional Wi-Fi routers and 

smartphones (e.g. transmitted power up to +20 dBm EIRP for 

Wi-Fi access points by Cisco and other manufacturers), and 

microwave signals at these frequencies do not pose any risk of 

ionizing radiations. Additionally, the perceived risks associated 

to the use of radar devices featuring the transmitted power 

levels discussed above, shall always be traded off with the 

advantages obtainable by the continuous monitoring of a 

subject affected by physical or cognitive impairments, or 

disabilities that could expose him/her to potentially life-

threatening conditions and dangers. 

For practical deployment of radar systems, the actual 

transmitted power could be carefully specified based on the 

operational conditions, given the carrier frequency of the 

waveform, the maximum detection range, and the minimum 

SNR for the radar receiver to work properly. The well-known 

radar equation can be used for this power budget [29]. If we 

assume for a rule of thumb calculation a transmitted power 

equal to 100 mW (20 dBm), each antenna gain equal to 10 dB, 

5.8 GHz carrier frequency (equal to a 5.2 cm wavelength), 

maximum range of 10 m for a fairly large room, and Radar 

Cross Section for an average human of 1 m2 [30], this yields 

approximately -58 dBm of received power. This result is well 

within the receiver sensitivity to operate with satisfactory 

Signal-to-Noise Ratio (SNR), also taking into account the 

additional gain at the radar receiver chain (e.g. low noise 

amplification stages). For example, the Vector Network 

Analyzer (VNA) used as Doppler radar in some works such as 

[4] has a dynamic range of between approximately 90 and 110 

dB depending on the frequency range. A precise calculation of 

the SNR of the radar signature will depend on the specific 

hardware used, on the transmitted power, and target reflectivity, 

but the above rule of thumb calculation and the works in the 

literature show that detection ranges of a few meters for indoor 

fall detection can be obtained with reasonable radar transmitted 

power levels. When considering detection and classification of 

actions through radar Doppler signatures, the contributions to 

the noise are given by clutter and thermal noise. The majority 

of the clutter is expected to be static clutter and can be filtered 

out with digital filters, whereas thermal noise can be 

represented by the noise figure of the specific radar receiver 

used in each case. 

A. Fall detection using micro-Doppler 

Micro-Doppler is defined as the additional frequency 

modulations added to the main Doppler shift of a moving target, 

and in the case of human signatures these modulations are 

related to the swinging movements of limbs, torso, and head of 

the person [31]–[33]. Human micro-Doppler signatures have 

been extensively investigated for a variety of applications, 

including the recognition of humans versus vehicles or animals 

such as dogs and horses [34]–[37], the discrimination between 

different activities performed by different people, such as 

walking, running, crawling, and carrying objects [23], [25], 

[38]–[45], and the identification of specific individuals based 

on their particular walking gait [28], [46]. As an example, 

Figure 2 shows micro-Doppler signatures for four actions 

performed by the same subject and recorded by an off-the-shelf 

C-band radar system at the University of Glasgow. The four 

actions were sitting and standing, bending to pick up an object 

from the floor and then standing up, pushing towards the radar 

(i.e. moving one arm and hand quickly towards the radar and 

slowly away from it), and pulling away from the radar (i.e. 

moving one arm and hand slowly towards the radar and then 

quickly away from it). 

 

 
Fig. 1 Block diagram for data processing in radar-based fall detection 

 

 
Fig. 2 Micro-Doppler signature of four actions performed by one subject: (a) 

sitting and standing, (b) bending to pick up an object and coming back up, (c) 

pushing towards the radar, and (d) pulling away from the radar 
 

The research on fall detection draws extensively from the 



aforementioned references, sometimes employing similar 

methods to characterize the time-frequency Doppler signature 

(e.g. STFT) and similar features to identify fall events (e.g. 

Mel-Frequency Cepstral Coefficients, MFCC), sometimes 

proposing specific features for the fall detection issue. 

The work in [19] was one of the first published examples on 

the use of a commercial off-the-shelf pulse-Doppler radar 

system at 5.8 GHz for fall detection. The experimental data 

considered examples of various types of fall (forward, 

backward, towards the sides) and non-fall movements (such as 

bending, walking, kneeling, tying shoes, sitting) which were 

performed by eight subjects, including a professional stunt actor 

who tried to mimic an elderly person. The movements were 

performed in a laboratory. The data processing consisted of the 

calculation of the spectrograms via STFT, followed by a pre-

screening step to identify the fall event looking at the energy 

burst curves (i.e. the time instant when significant acceleration 

is detected) and feature extraction using MFCCs coefficients. 

Simple kNN classifier with 3 neighbors and SVM classifier 

were used. The same data processing is applied in [47] to data 

collected in the realistic scenario of apartments specifically 

designed for assisted living and related to movements and 

actual falls of elderly people, as well as of stunt actors who 

helped provide fall data to train the classifiers. Besides this 

significant element of realism, this work is relevant to show the 

joint use of the radar system with a network of simple infrared 

motion detection sensors to reduce false alarms. The simple 

proposed fusion scheme assumes that a possible fall event 

recorded by the radar is likely to be a false alarm if a movement 

is detected by the infrared sensor shortly after it in the same 

room, which basically means that the subject is still able to walk 

and move around. A discussion on the suitable settings of the 

sensors and data processing parameters is provided, in order to 

achieve a good trade-off between rejecting false alarms but still 

being able to detect all the actual falls. The same group 

presented in [18] the use of the Wavelet Transform to extract 

suitable features for fall detection, and investigated different 

types of wavelet functions at dyadic scale to obtain the best 

classification accuracy. Three large datasets were analyzed, 

including both data collected in laboratory conditions and in 

actual apartments with elderly people living in them, and again 

professional stunt actors were also employed to try and perform 

the movements with the best realism as possible. The datasets 

are comprehensive of many different types of fall and non-fall 

movements, such as trip and fall, slip and fall, lose balance and 

fall, lose consciousness and fall, reach a chair or sofa and fall. 

The feature samples were processed by a simple NN classifier 

with a single threshold yielding good results. SVM classifier 

with linear and Gaussian kernel was also tested, but the results 

were not as good as for the NN classifier. 

A different type of Wavelet Transform was also used in [48], 

where the continuous Morlet wavelet function was employed to 

process the data, followed by the extraction of three features 

from the resulting Doppler vs time pattern, referred to as 

‘scalogram’. These features are the lowest scale or 

corresponding highest frequency component, the ratio of the 

energy, and the rate of change of scale, and the classification 

algorithm used a simple Mahalanobis distance metric between 

the feature vectors. This approach yielded good results, but was 

only preliminary tested in laboratory conditions on a small 

dataset, which included falling backward movements versus 

stand and sit movements performed by two subjects. The radar 

system was a Vector Network Analyser (VNA) operating as a 

Doppler radar at 8 GHz. 

The use of Fractional Fourier Transform (FrFT) and 

Fractional Short Time Fourier Transform (FrSTFT) was 

proposed in [49] to achieve higher signal energy concentration 

and improve classification results for scenarios with low signal-

to-noise ratio. The processing scheme assumed to use the FrFT 

on the data to compare the results with a threshold, and then 

initiate the classification routine based on the FrSTFT if this 

threshold is exceeded. Experimental data collected using an off-

the-shelf radar system operating at 5.8 GHz with 100 MHz 

bandwidth were used to validate the proposed idea. The data 

included fall movements and non-fall movements such as 

walking, running, and performing deep squats, as carried out by 

several subjects. The feature samples were processed using 

simple Bayesian classification.   

The work presented in [50] is also interesting for the 

combined use of two different Radio-Frequency (RF) sensors, 

namely a Doppler radar sensor operating at 24 GHz and a 

receiver array sensors operating at 800 MHz. These were 

previously investigated independently by the same authors in 

[51] and [52], respectively. The former system is expected to 

perform best in line-of-sight (LOS) conditions, whereas the 

latter can exploit multipath and non-line-of-sight (NLOS) 

propagation phenomena by looking at the signal subspace 

spanned by eigenvectors as a feature for movement 

classification. The features for the Doppler radar are MFCC 

coefficients, whereas those for the receiver array are the 

received signal strength, but also the correlation between the 

eigenvector under test and one collected when nobody was 

moving in the room, as well as a metric based on the eigenvalue. 

The feature samples for the two sensors are processed 

separately by two SVM classifiers based on radial basis 

functions kernel, and the results combined by a straightforward 

OR function to have a fall or non-fall decision. Promising 

results are shown also in NLOS scenarios thanks to the receiver 

array sensor, which can compensate for the non-optimal 

performance of the Doppler radar sensor in these scenarios. 

The work in [53] proposed three features extracted from the 

spectrograms of the radar data for fall detection. The first step 

of the processing consisted on calculating the STFT of the data 

and extracting power burst curves to identify a possible fall 

event based on a threshold, i.e. time bins in the spectrograms 

with a sudden increase in velocity, which could be related to 

fall events. This was followed by the application of 

segmentation and morphological processing (i.e. image 

processing methods) on the identified portion of spectrogram to 

obtain binary black-white images. Suitable features were then 

extracted from the images, namely the extreme frequency 

magnitude, the extreme frequency ratio, and the length of the 

event, and used as inputs for a classifier, and the Mahalanobis 

distance metric between the feature vectors was used for 



classification. The proposed method was validated with 

experimental data collected using a VNA triggered as Doppler 

radar at 8 GHz in laboratory conditions. The data included non-

fall movements (such as sitting and standing or bending and 

standing) performed at normal and fast speed, and falling 

forward and backward with and without waving arms during 

the movement. In [54] this feature extraction procedure was 

applied in conjunction with sparse Bayesian learning based on 

the Relevance Vector Machine (RVM), showing promising 

results.  

In [55] the same authors presented a hybrid approach 

combining compressive sensing and multi-window analysis 

based on Hermite and Slepian functions in order to restore time-

frequency signatures to be used for fall detection. The concept 

of multi-window spectrograms involves having the weighted 

sum of K spectrograms, each calculated with K different 

window functions, among which the authors considered Slepian 

and Hermite functions, but also an ad-hoc kernel functions 

developed to reduce cross-terms components in the final signal. 

The concept of sparsity involves the capability of 

reconstructing the time-frequency signature in case some time 

domain samples are randomly missing and the resulting 

spectrograms look noisy as a result of that. The authors tested 

three different methods for reconstruction, using single and 

multiple measurement vectors with and without multi-

windowing. In terms of feature extraction and classification, the 

authors used a similar approach to [53], by localizing the 

possible fall event using power burst curves and center of 

gravity metrics, and then extracting the extreme frequency 

magnitude. The classifier used was SVM, with data collected at 

8 GHz for two subjects performing five types of movements 

such as bending over, sitting and standing, falling backward and 

forward, as well as falling with a 45° aspect angle with respect 

to the line-of-sight of the radar.  

The work in [56] presented an interesting comparison of 

using different types of features on the same dataset. The data 

were collected using a commercial Doppler radar at 24 GHz and 

processed using SVM classifier with radial basis functions. The 

movements considered were falling, sitting, walking, and 

picking up an object, and involved four subjects who took part 

to the experiment. The different types of features were the three 

empirical features extracted by the spectrograms as in [53], the 

power burst curves used as a whole vector for classification, the 

energy between the start and the end of the fall event calculated 

on the result of Wavelet Transform as in [18], and MFCC 

coefficients as in [19]. The first set of features extracted from 

the spectrograms appeared to outperform the other features. 

Although not directly related to fall detection, the work 

presented in [57] is interesting to characterize the walking gait 

when walking assistive devices are used, for example a walking 

cane in this case. Any practical fall detection system needs to 

be able to differentiate between fall events and normal 

movements, but it is likely that actual elderly people will use 

walking devices such as canes or walkers in their daily 

activities, hence their effect on the overall human micro-

Doppler signature has to be characterized [58]. Another element 

of interest in [57] is the use of a different time-frequency 

distribution, the Extended Modified Beta Distribution (EMBD), 

as an alternative to the STFT to overcome the problem of the 

trade-off in frequency and time resolution. 

The recent work presented in [4], [59] introduced the use of 

deep learning algorithms and convolutional neural networks 

(CNN) to perform fall detection. The interest in this approach 

is that the feature extraction step is bypassed and the 

spectrograms and related class labels are directly provided as 

inputs to the CNN, after a pre-processing step to reduce the 

noise and apply a grey scale to the images. The task of 

identifying common patterns within a class and discriminant 

features between different classes is left to the CNN itself, 

reducing the possibility of discarding useful information when 

extracting features with procedures designed by human 

operators. CNNs will imply larger computational costs to be 

trained, but the technological trend of increasing computational 

power at reduce cost is likely to make this approach more and 

more common. The paper provided a preliminary validation of 

the idea, showing good classification results for four 

movements (falling, walking, sitting, and bending and getting 

up) and improved results with respect to the conventional 

method of using the features in [53] and SVM classifier. 

Finally, it should be pointed out the use of PCA in the context 

of radar-based fall detection [24], [60], and more in general for 

micro-Doppler based classification of human activities and 

movements [61], [62] and for automatic target classification 

[23], [63], [64]. PCA and its variant Robust PCA have been 

investigated in the literature as a way to reduce the 

dimensionality of the feature vectors in order to select the most 

relevant features, and ease the computational burden and the 

amount of training data needed for the classifier.   

B. Fall detection using range information 

The recent work presented in [65] introduced the idea of 

exploiting also range information generated by UWB radar 

systems to improve the classification performance for fall 

detection. The authors argued that fall events not only present a 

high velocity component and sudden acceleration in the 

Doppler domain, but also a larger spread in the range domain 

caused by the simultaneous and not-coordinated movement of 

the whole body while falling. The use of these range-based 

features together with more conventional Doppler features was 

preliminary demonstrated on data containing three actions 

(falling, sitting, and bending over) performed by four subjects 

and processed by SVM classifier. A UWB radar operating at 24 

GHz with 2 GHz bandwidth (corresponding to 7.5 cm range 

resolution) was employed to collect these data. The research 

question on how much range resolution and therefore waveform 

bandwidth is actually required to extract effective range-based 

features is still open. 

C. Fall detection using phase and velocity information 

The work in [66] showed a different approach for fall 

detection rather than using the micro-Doppler signatures. The 

authors proposed to use the phase information of the complex 

high resolution range profiles obtained from the inverse Fourier 

Transform of the response of a Stepped Frequency Continuous 



Wave (SFCW) radar. The velocity and the acceleration of the 

moving target were then extracted from these profiles. The 

proposed radar system had 1 GHz bandwidth between 2.5 and 

3.5 GHz, with a Pulse Repetition Frequency of 2 kHz. Although 

only preliminary results for sitting on a chair and falling down 

were shown, this type of features can be interesting to be 

explored as complementary information to improve micro-

Doppler based classification. 

A similar idea is proposed in [67], where the authors 

developed a radar system capable of generating a hybrid 

waveform which can alternate between a sinusoidal tone at 5.8 

GHz and a SFCW waveform sweeping between 6 and 7 GHz. 

It should be noted that this system was developed to be 

compliant with the Federal Communications Commission 

(FCC) UWB specifications, so its practical deployment 

together with other electronic systems would not incur 

electromagnetic compatibility issues. The data processing used 

the I and Q components generated by the radar to extract the 

velocity of the target, with the assumption that fall events 

present quickly increasing velocity followed by a sudden stop 

when the person touches the ground, whereas normal 

movements present more controlled transitions of the velocity. 

The speed signals were processed either using Fast Fourier 

Transform (FFT) with SVM classifier with linear or radial basis 

function kernel, or using STFT and SVM classifier with global 

alignment kernel. The authors also tested the use of the 

Dynamic Time Warping method for classification together with 

the Euclidean distance metric. They showed that SVM with 

global alignment kernel provided the best result. The data used 

to validate these methods and the proposed system contained 

falling and walking movements performed by two subjects in 

laboratory conditions, but trying to have furniture in the 

environment to mimic a realistic indoor room. In [67] the radar 

system was mounted on the wall at approximately 150 cm 

height, but in [68] the authors briefly discussed the possibility 

of having the sensor mounted on the ceiling and showed that 

the classification results can be improved by exploiting this 

different aspect angle to the person to monitor.  The system 

presented in [67] had an integrated microcontroller and a 

Zigbee module to enable communication with a base station in 

the perspective of realizing a complete monitoring system, 

beyond the sensor component. This idea was expanded in [69], 

where the authors considered a whole telemedicine system 

whereby the board with radar sensor and Zigbee 

communication module interacts with a base station performing 

on-line signal processing on the data. This base station had in 

memory a classifier model that was calculated off-line in 

MATLAB at the training step, and performed on-line testing on 

the incoming data to provide a fall or non-fall decision. The data 

processing was similar to [67], with the SVM classifier with 

global alignment kernel operating on the STFT of the velocity 

signals extracted from the I and Q radar data. The experimental 

validation used data from 3 subjects to train the classifier and 

data from 16 subjects for testing. Non-fall movements such as 

walking, dropping objects, sitting and standing, and performing 

daily actions such as eating, drinking, talking on a mobile phone 

were considered, as well as different types of falls either 

directly on the floor or with attempts of grabbing objects while 

falling. The results were promising, with reported accuracy 

close to 100% with no false positives and real-time operations. 

The authors highlighted also limitations of their approach, for 

instance the fact that the subject can be obstructed by furniture, 

outside of the radar antenna beam-width, or at an unfavorable 

aspect angle for the radar to detect the velocity signal. The use 

of multiple cooperating sensors was indicated as possible 

solution to address these issues. 

 
TABLE 1 SUMMARY OF DIFFERENT APPROACHES PROPOSED IN THE 

LITERATURE FOR FEATURE EXTRACTION AIMED AT FALL DETECTION 

References Approach for feature extraction 

[19], [47], 

[50], [56] 

[51] 

MFCC coefficients 

[53]–[56] 
Empirical features extracted from 

spectrograms after STFT 

[49] 
Features extracted from fractional FFT 

and STFT 

[18], [48], 

[56] 
Features from Wavelet Transform 

[57] Empirical features after EMBD 

[4][59] 
Feature extraction bypassed by using 

CNNs 

[65] 
Additional features extracted from range 

information 

[66] 
Velocity information from phase of 

radar range profiles 

[67]–[69] Velocity information from I-Q radar data 

[50], [52] 
Features from subspace decomposition 

of signals received at array 

 
 

TABLE 2 SUMMARY OF DIFFERENT RADAR SENSORS PROPOSED IN THE 

LITERATURE FOR FALL DETECTION  

References Type of radar sensor 

[18], [19], 

[47] 

Commercial pulse-Doppler radar operating at 

5.8 GHz 

[49] 

Commercial Frequency Modulated 

Continuous Wave (FMCW) radar operating at 

5.8 GHz (100 MHz bandwidth) 

[47], 

[52]–[55] 

Vector Network Analyser operating as a 

Doppler radar at 8 GHz (1 kHz sampling rate) 

[4] 
Vector Network Analyser operating as a 

Doppler radar at 6 GHz (1 kHz sampling rate) 

 

[50], [51] 

CW Doppler radar operating at 24 GHz (1024 

Hz sampling rate) or receiver array operating 

at 2.457 GHz 

Alternative is a combination of these two 

sensors, with the array operating at 800 MHz 

[56] 
Commercial CW Doppler radar operating at 

24 GHz (1 kHz sampling rate) 

[65] 
Ultra Wide Band radar with centre frequency 

at 24 GHz with 2 GHz bandwidth 



[67]–[69] 

Hybrid radar: Stepped Frequency Continuous 

Wave (SFCW) radar operating at 6-7 GHz 

plus CW radar with sinusoidal tone at 5.8 

GHz 

[66] 
SFCW radar operating at 2.5-3.5 GHz with 

Pulse Repetition Frequency equal to 2 kHz 

III. LITERATURE REVIEW ON RGB-D SYSTEMS 

The availability in the market of inexpensive RGB-D sensors 

fostered researchers working in the computer vision area to 

combine depth data and RGB images. The depth information, 

previously available using expensive Time-of-Flight (TOF) 

cameras or multiple calibrated cameras, has brought many 

advantages in the development of vision-based solutions. Depth 

data provide 3D information which can simplify many 

challenging tasks, such as people segmentation and tracking, 

body part recognition, or motion estimation [70]. These tasks 

are fundamental when the aim is to monitor people and detect 

dangerous events, such as falls. Microsoft Kinect allows also 

the extraction of skeleton joints, which provide a compact and 

informative representation of the human body [71], as shown in 

Figure 3. Two different versions of the Kinect sensor, namely 

v1 and v2, have been released in the past years, with different 

characteristics summarized in Table 3. Both versions provide 

RGB, depth, and IR raw data with different resolution, and 

audio. Microsoft SDK enables the extraction of these data and 

the evaluation of the skeleton joints of a human. The algorithms 

for depth sensing exploited by Kinect, i.e. structured light for 

Kinect v1 and TOF for Kinect v2, are based on IR signals. 

These algorithms may be affected by errors if the monitored 

area is characterized by a reflective surface [72], and this 

uncertainty in the evaluation of depth data can generate an error 

in the joint estimation process [73]. Even when some 

corrections may be required, depth data extracted from Kinect 

can be used to design algorithms with performance comparable 

to gold-standard systems, as discussed in [74]. 

TABLE 3 CHARACTERISTICS OF THE MOST USED RGB-D SENSORS: KINECT V1 

AND V2 

Feature Kinect v1 Kinect v2 

Depth 

sensing 

technology 

Structured light Time of flight 

RGB image 

resolution 

640x480 @ 15/30 

fps 

1280x960 @ 12 fps 

1920x1080 @ 30 

fps 

(15 fps with low 

light) 

IR image 

resolution 
640x480 @ 30 fps 512x424 @ 30 fps 

Depth 

sensing 

resolution 

640x480 @ 30 fps 

320x240 @ 30 fps 

80x60 @ 30 fps 

512x424 @ 30 fps 

Depth 

sensing range 
0.4-3 m (near mode) 0.5-4.5 m 

0.8-4 m (normal 

mode) 

Field of View 
57° horizontal,  43° 

vertical 

70° horizontal,  60° 

vertical 

Skeleton 

tracking 

Skeleton with 20 

joints 

Up to 2 subjects 

Skeleton with 25 

joints 

Up to 6 subjects 

Audio 
multi-array 

microphone 

multi-array 

microphone 

Many solutions based on depth data processing have been 

proposed to detect falls, with different setups of the RGB-D 

device and different types of data used as source of information. 

Similar to radar-based approaches, algorithms for fall detection 

exploiting vision-based devices process data acquired from a 

dataset including multiple repetitions of different classes, 

usually organized in fall or non-fall classes. As shown in Figure 

4, the first step consists in the computation of features from one 

or multiple types of data (RGB, depth, skeleton, or two of 

them). Then, the algorithms available in the literature may 

exploit a rule-based approach or a ML approach. In the former 

case, the algorithm does not need to be trained and some rules 

are derived empirically. Such rules can be often related to 

distances between the human and the floor plane, and/or to the 

trajectories of the skeleton joints. ML approaches can be also 

considered when a sufficiently large training dataset is 

available, including different fall and non-fall sequences. These 

techniques can be also adopted to discriminate between 

different actions (bending, lying, sitting, etc) considering each 

one as a different class. Classic ML algorithms such as kNN, 

AdaBoost, SVM, HMM have been tested with good results. 

 
Fig. 3 Point cloud and skeleton joints of a human extracted from Kinect depth 

data 
 

 



 
Fig. 4 Block diagram of a fall detection algorithm based on RGB-D data 

 

In this section, the different works are classified into two 

groups based on the data exploited for fall detection, namely 

approaches exploiting only depth data in the process of features 

computation, and approaches based on multiple information 

fusion. The availability of depth data is the main reason of using 

an RGB-D sensor, thus most of the approaches are using this 

type of information. The feature extraction process may apply 

background subtraction algorithms to extract the human 

silhouette, and the computation of some features from the shape 

of the silhouette. In addition to the identification of the person, 

many algorithms consider the automatic identification of the 

floor, which can be efficiently carried out by exploiting depth 

information. In addition to depth data, many algorithms 

exploited also the human skeleton provided by Kinect. The 

skeleton simplifies the process of features extraction, since the 

joint coordinates can be directly considered as features related 

to the position of the human body and its parts. Depth 

information is still processed to extract the floor plane, which is 

often considered when the classification is simply binary (fall 

or non-fall). All the reviewed methods are summarized in Table 

4. 

A. Fall detection using depth data 

Rougier et al. [75] proposed a solution which is robust 

against occlusions, exploiting two features, namely the human 

centroid height relative to the ground, and the body velocity. 

The former is a simple and efficient quantity to detect falls, 

whereas the latter helps overcome the problem of occlusions, 

allowing the detection of falls even when the subject is 

completely occluded behind furniture. They used the V-

disparity image method [76] to detect the ground plane, 

assuming that the floor is a large part of the scene. A threshold-

based approach with a background image is used to extract the 

foreground depth map, which is the person’s silhouette. The 

impact of occlusions can be limited by considering a different 

setup for the RGB-D sensor. Gasparrini et al. [77] proposed a 

system where the device is placed in a “on-ceiling” 

configuration, to provide a complete top view of the scene. The 

pre-processing and segmentation phase is exploited to extract 

the foreground depth map from a static background frame and 

to segment the objects on the scene. Some features extracted 

from object shapes allow to detect the presence of a person, and 

it is possible to track the movements and detect a fall 

considering the distance from the floor. The algorithm has been 

evaluated on a dataset recorded from 4 actors performing 20 

tests, 10 of which involve the presence of several subjects in the 

area. The same sensor configuration has been used by Liciotti 

et al. [78]. A background subtraction algorithm based on 

Gaussian Mixture Model returns a foreground image that 

contains the people and, possibly, moving objects. The 

segmentation algorithm exploits a set of parameters to 

distinguish people from objects, namely the height of each 

person, the size of each head and the head-shoulders distance. 

Falls are detected when the depth value of the head is close to 

the floor level. Other methods based on the shape of subjects 

have been proposed, exploiting for example a set of moment 

functions which approximate the human shape to an ellipse, 

whose coefficients are calculated to determine the direction and 

position of the individual [79]. In order to have a more accurate 

system, the centroid of human body and the angle between this 

and the floor plane have been calculated. Empirically calculated 

thresholds allow the fall event detection. A threshold-based 

method allows to obtain the human silhouette with background 

subtraction, while the floor detection is initially achieved by a 

V-disparity map with the adoption of least squares method for 

the estimation of the floor plane equation. Mastorakis and 

Makris [80] measured the velocity based on the contraction or 

expansion of a 3D bounding box enclosing the human 

silhouette. A training dataset is considered to optimize, using 

random search, the velocity thresholds for the height and the 

width–depth composite vector of the bounding box, and for the 

number of frames constituting a fall. The exceeding of some 

thresholds on height and width-depth of 3D bounding box 

detects the starting of a fall, while the final step is the 

monitoring of the subject for some time after the fall to detect 

any motion. This algorithm does not require the computation of 

the floor plane, and the human shape is extracted using features 

of OpenNI library [81]. A similar approach, using the 3D 

bounding box of the human, is adopted also in [82], where the 

y-coordinate of the top left vertex of the box is monitored to 

reduce false alarms. Nghiem et al. [83] proposed an algorithm 

to extract the human head position from depth information, and 

its application to fall detection. Specifically, the fall event is 

detected by considering the vertical speed of head and body 

centroid, together with their distance from the floor. A dataset 

consisting of 30 fall, 18 crouch, and 13 sit down actions has 

been used for evaluation, which resulted on the correct 

classification of 29 falls out of 30.  

Fall/non-fall decisions can be achieved also by using 

statistical methods, instead of using threshold-based 

approaches. A two-stage fall detection system, based on depth 

data, is presented in [84]. The first step is the characterization 

of the vertical state of a segmented 3-D object and the 

identification of the so-called “on-ground events”. The second 

stage extracts five features, including velocity and acceleration, 

from these events and computes a fall confidence index 

considering an ensemble of decision trees. The method 

proposed by Zhang et al. [85] processed the depth frame to 

extract the head region from the human body and the floor level. 

The system always considers an interval of frames, extracts five 

features, and makes a decision for the whole interval using the 



fall and non-fall distributions computed at training. The 

performance was evaluated on a dataset consisting of two view-

points including 12 real falls in scene 1 and 14 real falls in scene 

2, together with other fall-like activities (sitting down on the 

floor, picking up an object from the floor, etc). Kepski and 

Kwolek [86] extracted the ground plane automatically using the 

V-disparity images, Hough transform and the RANSAC 

algorithm. The human shape is detected using a depth reference 

image, which is periodically updated considering pixels from 

the current depth image. A virtual box surrounding the person 

is computed, and features based on shape and distance are 

extracted and used as input to different classifiers. Thirty-five 

young volunteers were involved in the recording of the dataset 

used to evaluate the system, collected considering two Kinect 

sensors. Bilski et al. [87] proposed the use of two synchronized 

Kinect sensors and an algorithm based on kNN to detect falls. 

The depth frame is initially transformed into the absolute 

representation based on global space coordinates. From the 

human silhouette, the x-y-z coordinates of its center of mass and 

its magnitude, which is the effective reflection area, are 

extracted for each frame, constituting a four-dimensional 

trajectory considering the whole sequence. A set of 

characteristic points, consisting in the minimum, maximum, 

and differences at some specific times in the sequence, has to 

be computed from each pattern and used for classification. The 

solution has been evaluated on a dataset of 18 fall scenarios and 

18 scenarios corresponding to other actions. All actions were 

performed by two actors and recorded by two Kinects. 

More complex algorithms are able to distinguish falls and 

other actions. Ma et al. [88] proposed an approach based on 

CSS features [89] computed from human silhouette which are 

invariant to human translation, rotation, scaling, and action 

length. The improved Extreme Learning Machine (ELM) 

algorithm is less sensitive to tuning parameters and allows the 

classification of five more actions in addition to falls: walking, 

sitting, squatting, bending, and lying, all included in the 

SDUFall dataset. Aslan et al. [90] proposed the use of Fisher 

Vector (FV) representation to build the vocabulary, instead of 

classical BoW (Bag of Words) approaches based on k-means 

for clustering.  Then, they used binary SVM to distinguish fall 

actions from other actions. The CSS features adopted in this 

work are obtained from the human silhouette extracted by using 

Canny edge detector after foreground segmentation on depth 

map. An accuracy classification of 89.84% was obtained on 

SDUFall dataset [88], considering five actions (bending, lying, 

sitting, squatting, and walking) out of six as non-fall activities. 

The method proposed in [91] is based on the real-time detection 

of the center of mass of any moving object. A dynamic 

background subtraction technique is adopted to extract, from 

each depth frame, the mobile points, that feature a different 

depth value if compared to the background. After the extraction 

of the center of mass for each person, a tracking procedure has 

been implemented, and the recognition process is performed 

considering a HMM with a number of states corresponding to 

the number of classes in the dataset. The system calculates the 

probability of being in one of the states and associates that 

probability to the corresponding action. Considering a dataset 

constituted by 8 activities, the system achieves a sensitivity of 

90% and a specificity of 100% for the falling events. A shape 

sequence descriptor, namely the Silhouette Orientation Volume 

(SOV), has been proposed in [92]. This descriptor has been 

associated to BoW models, for which the codebook has been 

built considering k-medoids clustering technique, and then 

Naïve Bayes classifier can be used to recognize fall related 

actions of the SDUFall dataset and also more general actions 

of the Weizmann dataset [93]. Following a static background 

subtraction process, morphological operations are used to 

remove the noise close to the segmented human shape. Edge 

detection is then adopted to obtain the edges of the silhouette. 

A SOV descriptor is a sequence of SOIs (Silhouette Orientation 

Images) or a volume of silhouette orientations. SOIs are robust 

to scale, planar rotations, and starting point, and can provide a 

global definition of the silhouette. Considering fall vs. non-fall 

classification, the proposed solution achieves a performance of 

91.89%. 

B. Fall detection using multiple information fusion 

Planinc and Kampel [94] proposed the computation of the 

major axis of a human shape using skeleton data obtained by 

Kinect. In particular, they exploit the 3D coordinates of the 

head, shoulder center, spine, hip and knees to extract the 

human’s axis, and process depth data to obtain the ground floor. 

A fall is detected when the person is parallel to the ground floor 

and the distance between spine joint and the ground floor is 

small. The evaluation has been carried out on 72 different 

sequences, with 40 falls and 32 non-falls performed by 2 actors 

twice. In [95], the same authors introduced a pose estimation 

algorithm based on fuzzy logic to define the similarity to the 

ground plane and the distance to this. A skeleton based 

algorithm has been proposed in [96], where a first evaluation is 

performed considering position and velocity of the user’s center 

of mass. A reduction of false alarms is then achieved by a 

postural recognition algorithm which analyses the relative 

positions of lower body joints. Kawatsu et al. [97] considered 

taking a fall/non-fall decision every frame. The distance 

between all the skeleton joints that are in the “tracked” state and 

the ground floor must be lower than a threshold to detect a fall. 

A more robust algorithm considers data from multiple frames 

to distinguish between falls and people lying on the floor. 

Finally, once a fall is detected, the event has to be confirmed by 

the user through a voice recognition system and the Kinect 

microphone array. A method exploiting depth shape analysis 

and RGB images is proposed in [98]. A threshold-based 

background subtraction is adopted to extract the objects, and the 

human is detected considering skin colored pixels. The human 

is tracked through the coordinates of its centroid and, if a large 

vertical motion event is revealed, another mechanism based on 

the orientation of the main axis of the human shape is adopted 

to discriminate between fall or squat event.  

Bian et al. [99] proposed a method with low computational 

cost to extract useful joints from depth maps. Specifically, an 

improved randomized decision tree (RDT) algorithm can 

extract head and hip joints. After the extraction of the floor 

plane, the trajectory of the distance between the joint and the 



floor is computed and considered as input feature vector to a 

SVM classifier. The performance has been evaluated 

considering the scenario proposed in [100], where 4 categories 

of falls and a set of non-fall actions are evaluated. Each scenario 

has been simulated in a real bedroom several times by 4 young 

people, having a total number of 380 samples classified with an 

accuracy of 97.6%. Amini et al. [101] proposed a comparison 

between heuristic and ML algorithms for fall detection with 

Kinect. The heuristic method is based on skeletal data, and the 

3D coordinates of head joint are tracked. A fall is detected by 

setting a threshold on the velocity and acceleration of head 

joint, together with a small distance between the head and the 

floor. The ML approach is based on an AdaBoost algorithm that 

combines a series of weighted weak classifiers to have a final 

boosted classifier. Only the velocity and the subject’s head 

distance to the floor have been considered for the ML approach. 

For both heuristic and ML algorithm, the dataset was captured 

considering 11 young subjects. Each subject performed six true 

positive and six false positive fall incidents, which included 

laying down or sitting on the floor. The rule-based approach 

reached an accuracy of 95.42% of falls detected, while the 

machine learning one is less accurate (88.33%) due to the 

limited number of subject’s samples. Dubey et al. [102] 

proposed to use RGB and depth data to extract the motion from 

the data using Three-Dimensional Motion History Images (3D-

MHIs) [103] and then to compute features, represented by 7 Hu 

moments [104], from the 3D-MHIs. The 3D-MHIs can detect 

change in motion in x-y-z direction, increasing the 

classification capability with respect to MHI [105]. The features 

considered for classification are the Hu moments for each of the 

3D-MHIs, which are then used to train a SVM to recognize 

between falls and non-falls. The method presented in [106] uses 

only the extracted skeleton data and is optimized to detect falls 

related to weight shifting problem. Features calculated from 

skeletons considers height, vertical speed of upper body, body 

orientation and its variations, projection of the center of mass 

on the ground. A linear SVM takes the extracted features and 

classifies fall events from non-fall events, where non-fall ADLs 

activities include walking standing, sitting and sleeping. 

Zhang et al. [107] proposed to use the joints of head and 

torso, which are correctly detected if a person is standing or 

sitting, and wrongly estimated if a person falls. They defined a 

kinematic feature vector considering the angles between 

couples of joints on different skeletons, and minimum and 

maximum values of the height of the person within a sequence 

of frames. They can detect 5 fall related actions exploiting also 

RGB information to extract the human shape if the skeleton is 

not available. Dai et al. [108] have chosen HMMs to model 

temporal sequences of postures which constitute an action. The 

60 dimensional vector with the coordinates of 20 skeleton joints 

are first reduced using Principal Component Analysis (PCA). 

All the sequences from 7 actions (6 ADLs and 1 fall) are 

partitioned into clusters to extract relevant postures. Finally, a 

HMM model is trained for each action, and the motion class 

corresponding to the model achieving the highest likelihood is 

the recognized class. Alazrai et al. [109] proposed a view-

invariant Motion-Pose Geometric Descriptor (MPGD) 

computed from skeleton joint positions, capable of capturing 

the motion and poses of human body-parts while preserving the 

temporal ordering of the moving body-parts. The fall detection 

framework consists of two classification layers. The first one is 

a set of SVMs which describes the state of the person on each 

frame. At the second layer the constraint dynamic time warping 

(cDTW) technique is used to classify the whole sequence of 

states into falling or non-falling events. This method achieved 

good results in the classification of four activities. 

C. RGB-D datasets for fall detection 

The growing interest on RGB-D data fostered some 

researchers to collect datasets and to provide them to the 

community. A fair comparison among different algorithms can 

be performed considering common data that are made available 

to the research community. In the past years, many researchers 

have recorded and shared several datasets containing RGB-D 

data, reviewed in [110] [111]. Only a few of these datasets are 

suitable for fall detection, and their characteristics are 

summarized in Table 5.  

The TST Fall Detection v2 [112] is the most recent dataset, 

recorded using Microsoft Kinect v2 and 2 accelerometers 

placed on the wrist and waist of the subjects. Each of them 

performed 4 different ADLs and 4 types of falls 3 times in 

laboratory environment, generating a total number of 264 

sequences. The ADLs are: Sit on a chair, Walk and pick up an 

object from the floor, Walk back and forth, Lie down on the 

mattress. The 4 types of falls are: Fall from the front ending up 

lying, Fall backward ending up lying, Fall to the side ending up 

lying, Fall backward ending up sitting.  

The UR Fall Detection [113] is the only other dataset 

providing acceleration samples. It has been collected from 5 

subjects and 2 cameras, one parallel to the floor and another one 

mounted on the ceiling. Some additional features, e.g. those 

characterizing the bounding box around the person, are also 

provided. The dataset consists of 70 images sequences with 40 

ADLs and 30 falls belonging to two categories, falls from 

standing position and falls from sitting on the chair.  

The SDUFall dataset [88] includes data captured from 20 

people performing 6 different actions, and is the largest 

available dataset, with each subject repeating each action 10 

times. The considered actions are falling down, bending, 

squatting, sitting, lying and walking, and they are different in 

each repetition as the actors may carry or not carry large objecst, 

turn the light on or off, change direction and position relative to 

the camera.  

The Falling Detection dataset [85] has been collected in a 

laboratory environment, with two Kinects mounted at two 

upper corners of the room. The actions performed by 6 subjects 

include 26 real falls and other fall-like actions, such as picking 

up something from floor, tying shoelaces, sleeping down on the 

bed, sitting on the floor, opening drawers close to the floor, 

jumping on the floor and sleeping down on the floor.  

The ACT42 dataset [114] mainly focuses on the ADLs, 

including 14 actions such as Collapse, Drink, Make Phone Call, 

Mop Floor, Pick Up, Put On, Read Book, Sit Down, Sit Up, 

Stumble, Take Off, Throw Away, Twist Open and Wipe Clean. 



Two categories of falls are considered, namely Collapse (fall 

due to internal factors) and Stumble (fall due to external 

obstacles). All the actions were performed multiple times by 24 

people.  

The Falling Event dataset [115] provides only skeleton data 

of 5 activities including falls and non-fall events, such as 

standing, fall from standing, fall from sitting, sit on a chair, and 

sit on floor. The dataset has been recorded considering actions 

performed by 5 people under two different environmental 

conditions, sufficient and insufficient illumination. The 

webpage was no longer available at the time of writing. 

The EDF dataset [15] was collected at the University of 

Texas, where a simulated apartment has been set up. Two 

Kinects have been installed to cover with different direction of 

falling. The falls are then repeated for each viewpoint, leading 

to a total number of 320 sequences. In addition to falls, a 

number of 100 sequences of 5 different actions that could be 

associated to falls are recorded. The additional actions are pick 

up an object, sit on the floor, lie down on the floor, tie shoelaces, 

and do plank exercise.  

The OCCU dataset [113], as the previous one, includes data 

from two Kinects placed at two corners of a simulated 

apartment. The main feature of this dataset is the presence of 

occluded falls for which the end of the action is completely 

occluded by an object. Five subjects simulated 12 falls, 6 for 

each viewpoint. Similarly to the EDF dataset, 80 sequences of 

actions that can be confused with falls are also provided. 

 
 

TABLE 4 SUMMARY OF ALGORITHMS FOR FALL DETECTION BASED ON RGB-D DATA. THE USAGE OF RGB, DEPTH DATA, AND SKELETON JOINTS IS INDICATED BY 

RGB, D AND S RESPECTIVELY (S* DENOTES THE USAGE OF A SKELETON MODEL ALTERNATIVE TO THE ONE PROVIDED BY KINECT) 

Algorithms Data Actions Features Classification 

Rougier et al. [75] D Fall/non-fall 
- Human centroid height relative to the ground 

- Body velocity 
Rule-based 

Gasparrini et al. 

[77] 
D Fall/non-fall Human centroid height relative to the ground Rule-based 

Liciotti et al. [78] D Fall/non-fall Head height relative to the ground Rule-based 

Yang et al. [79] D Fall/non-fall 
- Human centroid height relative to the ground 

- Orientation of human body relative to the ground 
Rule-based 

Mastorakis and 

Makris [80] 
D Fall/non-fall 

Velocity of contraction or expansion of a 3D 

bounding box enclosing the human silhouette 
Rule-based 

Bevilacqua et al. 

[82] 
D Fall/non-fall 

- Velocity of contraction or expansion of a 3D 

bounding box enclosing the human silhouette 

- Real world y-coordinate of 3D bounding box 

vertex 

Rule-based 

Nghiem et al. [83] D Fall/non-fall 
- Vertical speed of head and body centroid 

- Human centroid and head distance to the floor 
Rule-based 

Stone and Skubic 

[84] 
D Fall/non-fall 

- Identification of “on-ground” events using vertical 

state estimation time series 

- Velocity-based features to extract falls from “on-

ground” events 

Ensemble of 

decision trees 

Zhang et al. [85] D Fall/non-fall 
Features related to position/velocity of human head 

to the ground 

Gaussian model 

for falls 

Histogram model 

for non-falls 

Kepski and 

Kwolek [86] 
D Fall/non-fall 

- Shape features from 3D bounding box enclosing 

the human 

- Human centroid height relative to the ground 

KStar, AdaBoost, 

SVM, MLP, Naïve 

Bayes, kNN 

Bilski et al. [87] D Fall/non-fall 
Features from the four-dimensional trajectory of 

silhouette “mass center” and its magnitude 
kNN 

Ma et al. [88] D 
6 actions 

(SDUFall) 
CSS features from human silhouette VPSO-ELM 

Aslan et al. [90] D 
6 actions 

(SDUFall) 
CSS features from human silhouette FV-ELM 

Charpillet Dubois 

[91] 
D 8 actions Tracking of human center of mass HMM 



Akagunduz et al. 

[92] 
D 

6 actions 

(SDUFall) 

Silhouette Orientation Volume (SOV) from human 

silhouette 
Naïve Bayes 

Planinc and 

Kampel [94] 
D, S Fall/non-fall 

- Major orientation of the person 

- Spine distance to the ground 
Rule-based 

Planinc and 

Kampel [95] 
D, S Fall/non-fall 

- Major orientation of the person 

- Spine distance to the ground 
Fuzzy logic 

Lee and Lee [96] S Fall/non-fall 
- Position and velocity of human center of mass 

- Relative position of lower joints 
Rule-based 

Kawatsu et al. 

[97] 

D, S, 

Audio 
Fall/non-fall 

- Vertical velocity of skeleton joints 

- Voice recognition to validate the fall 
Rule-based 

Yang and Lin 

[98] 
D, RGB Fall/non-fall 

- Large vertical motion event of human centroid 

- Main axis orientation of the human shape 
Rule-based 

Bian et al. [99] D, S* Fall/non-fall 
Trajectory of distance between head/hip joints and 

the floor 
SVM 

Amini et al. [101] D, S Fall/non-fall 
- Velocity of head joint 

- Head distance to the floor 
AdaBoost 

Dubey et al. [102] D, RGB Fall/non-fall Hu moments for each of the 3D-MHIs SVM 

Zhang et al. 

[107][115] 

D, 

RGB, S 

(Falling 

Event) 

5 actions 

- Angles between couple of joints and min/max 

values of height of the human 

- RGB adopted if the skeleton is not available 

SVM 

Dai et al. [108] S 7 actions 3D skeleton coordinates HMM 

Alazrai et al. 

[109] 
S 4 actions 

Motion-Pose Geometric Descriptor (MPGD) 

computed from skeleton joint positions 
SVM + cDTW 

 
TABLE 5 RGB-D DATASETS FOR FALL DETECTION. IN THE COLUMN RELATED TO DATA EACH LABEL REPRESENTS THE AVAILABILITY OF A DIFFERENT TYPE OF 

DATA: RGB (R), DEPTH (D), SKELETON (S), ACCELERATION (A). 

Name Actions Actors Samples Data Cameras Year 

TST Fall Detection v2 [112] 

http://www.tlc.dii.univpm.it/blog/databases4kinect 
5 11 264 

D, S, 

A 
1 2015 

UR Fall Detection [113] 

http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html 
2 5 70 

R, 

D, A 
2 2014 

SDUFall [88] 

http://www.sucro.org/homepage/wanghaibo/SDUFall.html 
6 20 26400 

R, 

D, S 
1 2014 

Falling Detection [85] 

http://vlm1.uta.edu/~zhangzhong/fall_detection/ 
8 6 87 D 2 2012 

ACT42 [114] 

https://sites.google.com/site/qinleisite/Home/dataset   
14 24 6844 R, D 4 2012 

Falling Event [115] 5 5 150 S 1 2012 

EDF [15] 

https://sites.google.com/site/kinectfalldetection/  
6 10 420 

R, 

D, S 
2 2015 

OCCU [116] 

https://sites.google.com/site/occlusiondataset/  
5 5 110 

R, 

D, S 
2 2014 

IV. FURTHER DISCUSSION AND RESEARCH TRENDS 

A. Accuracy and error rates 

An important figure of merit to compare the different radar 

and RGB-D systems described in the previous sections is the 

rate of correct fall detection (i.e. how many fall events are 

actually detected out of all the events), and similarly the false 

alarm rate (how many non-fall events are mistakenly classified 

as falls). However, a fair comparison of the different methods 

proposed in different studies is not easy, as the methods are 

often evaluated on different datasets, acquired with different 

configurations of the sensors and involving different numbers 

of actions and subjects. 

The most common evaluation method for both radar sensors 

and RGB-D sensors consists in the acquisition of ad-hoc 

datasets representing some activities of daily living and one or 

different types of falls, followed by the subsequent analysis of 

http://www.tlc.dii.univpm.it/blog/databases4kinect
http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
http://www.sucro.org/homepage/wanghaibo/SDUFall.html
http://vlm1.uta.edu/~zhangzhong/fall_detection/
https://sites.google.com/site/qinleisite/Home/dataset
https://sites.google.com/site/kinectfalldetection/
https://sites.google.com/site/occlusiondataset/


fall vs non-fall classification. The performance reported by the 

authors is usually quite high, sometimes higher than 95% in 

terms of accuracy, but this is generally achieved over a limited 

number of subjects and activities considered. Activities often 

include sitting, lying, bending and picking up an object vs fall 

events. For RGB-D sensors, the number of subjects is generally 

around 5 people, but more subjects have been reported in [80] 

(8 people) and in [101] (11 people), and in particular in [86] (35 

people) and [91] (26 people).  Accuracy close to 100% is 

reported in [83], [85], and [87], where a limited amount of 

sequences, respectively 64, 87 and 36, have been tested. 

Regarding radar sensors, the reported accuracy rate can vary 

between approximately 80% up to a claimed 100%, and the 

corresponding false alarm rates can vary between 20% down to 

close to 0%. For example, in [59] accuracy and false alarm rates 

between 80-100% and 13-20% respectively are reported when 

using neural networks to perform the classification and 

different signal processing techniques to extract the micro-

Doppler signatures. In [56] the rates are 89-92% and 6-13% 

respectively when testing different feature extraction 

techniques on the same group of data, and the same authors 

propose an improvement in [65] with claimed accuracy up to 

95% with 0% false alarm rate by using range as well as Doppler 

information, but with validation performed on different data. In 

[67] the authors reported accuracy between 80 and 94% with 0-

15% false alarm rates, and then an improvement of their system 

in [69] with accuracy close to 100% and 0% false alarm rates 

(although the authors highlighted some limitation of their study, 

e.g. falls performed only with favorable aspect angles with 

respect of the radar beam and the use of young subjects rather 

than actual elderly people). In general, the validation approach 

on the ad-hoc datasets mentioned above makes it hard to 

compare between different works, even because some authors 

do not fully specify the details about actions and subjects used 

to validate their algorithms, or they do not provide an objective 

index of their performance, for example in terms of accuracy, 

or sensitivity and specificity.  

The public release of fall detection datasets allows 

researchers to work with already available data, reducing the 

time to develop and test algorithms, as the data collection work 

was already performed by someone else, and providing a 

common dataset for a fair comparison of different approaches. 

The largest RGB-D dataset for fall detection is the SDUFall, 

including six actions performed multiple times by 20 subjects. 

Two other works have used this dataset after Ma et al. [88], who 

originally collected the data. In particular, the accuracy 

originally obtained on this dataset was around 87%, and it has 

been improved to 89% in [90] and almost 92% in [92]. 

Regarding radar sensors, to authors’ best knowledge, openly 

accessible datasets of radar signatures for fall vs non-fall 

detection are at the moment not available to the research 

community. This is an important challenge to be addressed to 

improve the reliability of the proposed radar-based methods and 

allow fair comparisons of these methods among each other [22]. 

Finally, there is a small selection of studies which are closer 

to real world scenarios, as they involve long-term data 

acquisition in realistic living environments and hence a better 

evaluation of the performance.  Stone et al. [84] equipped 

homes for elderly residents with Kinect and acquired data for 

several days. The dataset includes activities of residents and 

some falls simulated by actors (a total number of 445). In 

addition to this data, 9 real falls also occurred and were 

captured, and 7 out of 9 have been correctly detected by their 

algorithm. These figures can give an idea of the effectiveness 

of their method, even if the authors state that it is possible that 

undetected falls exist in the data. For radar work, the studies 

presented in [18], [47] stand out for the use of data collected in 

residential care homes with actual elderly people, although 

some of the fall events were performed by professional stunt 

actors. A detailed analysis of the accuracy, sensitivity, and 

specificity of different classifiers using Wavelet and MFFCs is 

reported in [18], showing that the accuracy may change 

significantly between 68-93% with the different approaches, 

and that the use of Wavelet based classifiers can reduce false 

alarms for the same detection rate in comparison with MFCCs 

based classifiers. 

B. Outstanding challenges 

For both radar and RGB-D systems, open challenges remain 

to be addressed in order to deploy and employ these systems in 

practical scenarios. Specific issues related to the use of radar 

systems arise both from the deployment perspective and from 

the signal processing perspective [22]. These challenges 

include: 

 the presence of strong scatterers and clutter in indoor 

environments which may generate multipath and ghost 

targets, or simply obscure the person to be monitored from 

the sensor, which can also be a problem for RGB-D 

sensors; 

 the possibility of having pets or other people (e.g. visitors, 

multiple elderly) moving inside the monitored area, thus 

complicating the signature and generating false alarms. 

Again this could potentially be a problem for RGB-D 

sensors as well; 

 the compliance of the selected radar waveforms with 

directives from the telecommunication regulatory bodies, 

with potential constraints in terms of the achievable 

bandwidth and transmitted power, hence limiting the range 

resolution and the Signal to Noise Ratio (SNR); 

 the dependence of the micro-Doppler signature on the 

cosine of the aspect angle between the velocity vector of 

the movement and the line-of-sight of the radar, which in 

some cases can significantly attenuate the signatures and 

make them unsuitable for feature extraction aimed at fall 

detection. This is related to the issue of establishing the best 

location to deploy the radar sensor to avoid this attenuation 

of the radar Doppler signature, for instance on the ceiling 

rather than on the wall; 

 the possibility to reliably detect a fall, irrespective of the 

type of movement or activity performed before, and of the 

dynamics of the fall itself (falling forward or backward, 

tripping rather than losing balance or consciousness, falling 

while sitting or standing up from chairs or sofas). This 

would imply developing fall detection procedures that can 



take into account the actual dynamics of elderly people 

moving, for instance the effects on the radar signatures of 

using walking assistive devices [57], [58]. However, 

collecting data from actual elderly in their environments is 

challenging for practical and ethical reasons, and most of 

the studies in the literature are based on experiments with 

younger subjects, apart from references [18], [47]. The 

question on how far methods and results generated from 

data colleceted from younger subjects can be actually 

applied to elderly people remains open for further 

investigation, and the collection of more valuable data 

from true patients or elderly is definitely of great interest; 

 the difficulty of developing a well-performing general 

system, capable to take into account the specificity of the 

person under care and his/her context, such as any physical 

or cognitive impairment or any specific scenario constraint. 

This complicates the possibility of training effectively the 

classifier without using long observation times and large 

amount of data directly related to the specific person and 

environment, and makes the case for using unsupervised 

learning methods, which may provide an advantage at the 

expense of higher computational complexity. 

Other issues specific to the adoption of RGB-D sensors in 

fall detection applications are those listed below: 

 Coverage area and depth sensing range. Differently from 

wearable devices, vision-based sensors have a limited 

coverage area, and many sensors may be required to 

monitor the whole apartment, leading to higher costs of 

installation. Depth sensors have a limited range, which is 

usually around 4 meters. Some devices (among which 

Kinect) can provide data up to 8 meters, but they become 

quite unreliable beyond 4/5 meters and the skeleton 

information is not available. Again this may force to use 

many sensors in a big room or corridor, even if there are no 

issues directly related to the coverage area, but only 

because the depth information is not available for the areas 

located further away than a certain given threshold. 

Moreover, if RGB data can be obtained with the usage of 

omnidirectional cameras that can monitor a whole room 

[117], depth sensors usually have a limited field of view, 

which is for example 70° x 60° for Kinect v2; 

 Occlusions. Vision-based sensors suffer from occlusions, 

for example from pieces of furniture. The coverage area 

may be also limited by the presence of some occluding 

objects, which are temporarily interposed between the 

subject to be monitored and the sensor. If permanent 

occlusions can be overcome considering many devices, 

time-limited occlusions cannot be avoided in principle and 

this is a limiting factor for these sensors; 

 Skeleton data reliability. Many algorithms based on Kinect 

sensors rely on skeleton data, which can be used to extract 

the position and posture of the human. However, for the 

skeleton information to be correctly estimated, the person 

should be facing the sensor. Some errors may affect the 

estimation when the aspect angle is different. Moreover, 

the estimation algorithm can detect some spurious 

skeletons, that are actually objects. Some techniques to 

remove noisy skeleton data should be developed and 

included in the fall detection algorithm to design a reliable 

fall detection solution. 

Crucial for both radar and RGB-D sensors, and more in 

general for all the technologies investigated for fall detection, 

is the issue of users’ acceptance and compliance. One aspect to 

consider are privacy concerns [6], [8] as sensors providing the 

most informative data are usually perceived as very privacy-

invasive, with the case limit of video-cameras, which can 

obviously provide excellent recognition of human activities but 

are unacceptable in most rooms with high risk of falling, such 

as bathrooms or bedrooms. As in Figure 5 from [8], simpler 

sensors are not perceived as a risk for privacy and one could 

think of using many of them to generate more information up 

to comparable level with more informative sensors. However, 

this would increase the complexity and the cost of the 

installation and deployment of these sensors and make the 

whole system more complicated to maintain. Another aspect to 

consider is that elderly people may not be familiar with 

electronic devices or willing to engage with new technologies, 

perceived as a disruption of their normal habits and behaviour 

[6]. The design and development of solutions for fall detection 

will need to take this into account, and consider the inputs from 

social sciences, psychology, and primary care disciplines to 

inform more effective technical choices.    

Besides the selection and characterization of a particular type 

of sensor, another challenge is designing and implementing the 

overall monitoring system to provide fall detection capabilities. 

This should be integrated and interconnected with other devices 

in the indoor environments, e.g. landline phones, smartphones, 

computers, and various home appliances in an Internet of 

Things perspective, and offer capabilities for connection 

towards external entities (e.g. healthcare professionals and first 

responders in case of an actual fall) and from external entities 

(e.g. the possibility for relatives to connect to the system to 

check on the elderly person). A few examples of proposed 

architectures can be found in [1], [118], [119], and for example 

the work in [69] shows some effort in presenting the sensor 

(radar) in its wider application system.  

As mentioned in section IV-A, the different systems and 

algorithms have been often validated on data related to a 

relatively small number of young and healthy subjects, so a 

population sample which may be not representative of the final 

beneficiaries of these systems, and potentially not enough 

statistically significant. This is also a problem for the validation 

of other technologies. For example, the work in [9] has reported 

that only a minority of studies on wearable sensors for human 

motion analysis used more than 6-8 subjects, and a considerable 

amount of studies validated their findings only on one subject. 

Furthermore, the range of age of the subjects was often not 

reported, or limited within the 20-44 years range, most likely 

the average age of the researchers and academics themselves. 

Similar observations can be made for the works described in 

this paper, where the majority of the studies used a limited 

number of subjects, with rather limited details provided about 

their age. It is true that involving elderly people in experimental 

campaigns increases the complexity of the logistics and 



requires the necessary ethical approval, making even more 

difficult and time consuming the process of collecting large 

amount of experimental annotated data. A collective effort of 

the research community to create a large, shared database of 

signatures could help address this challenge, offer the 

possibility of thorough validation of proposed algorithms, and 

foster better collaborations between researchers with different 

and often complementary expertise [6], [9], [22]. The studies in 

[18], [19], [47] for radar and in [84] for RGB-D Kinect sensor 

are an exception, as they used data from actual elderly people, 

as well as data from professional stunt actors mimicking elderly 

people.  

 
Fig. 5 Perceived user privacy and richness in information for different types of 

sensors used for indoor monitoring and fall detection [8] 

C. Future trends 

Some of the open challenges mentioned above can be 

addressed and mitigated by the use of multiple cooperating 

sensors, and this is likely to be investigated as future research 

work. This could exploit the complementarity of one 

technology with another, or more simply to extend coverage or 

exploit multi-perspective views on the area of interest, 

compared with the use of a single sensor. For radar this 

approach could involve the use of multistatic systems where 

different nodes have spatially distributed transmitter and 

receiver capabilities and can illuminate the area of interest from 

different aspect angles. This has shown promising results for 

human micro-Doppler characterization in outdoor scenarios 

[28], [42]–[45], and it is expected to provide a useful 

contribution also in indoor scenarios for fall detection [51]. A 

simpler approach could just use a combination of independent 

radar sensors (i.e. multiple monostatic sensors rather than a 

network of multistatic sensors), and then develop algorithms to 

use their information jointly [51]. The generalization of this 

concept is the use of multiple heterogeneous sensors, some of 

them mentioned in the previous sections, such as radar system 

plus motion sensors [47], radar system plus an array sensor 

exploiting multipath and NLOS propagation [50], and RGB-D 

system plus wearable devices [112], [120]. When multiple 

sensors are used, it is important to make sure that the 

information generated by them is relevant and not redundant, 

and to characterize the algorithms to achieve information fusion 

[9], [51]. Referring back to Figure 1, this information fusion can 

happen for example at feature extraction level by using feature 

samples from all sensors at a centralized classifier, or at 

decision level by combining the decisions of separate, 

independent classifiers based on data from each sensor. The 

best approach to synchronize the behavior of different sensors 

and to fuse their heterogeneous information (e.g. micro-

Doppler radar signatures and skeleton joints from Kinect 

sensors) remains an open research question, as well as how to 

select the best type of sensor and its location for a specific 

scenario. This is also influenced by non-technical aspects 

regarding the user acceptance of these sensors as mentioned in 

section IV-B, hence it is somewhat expected that inputs from 

psychological and behavioral science will also inform more the 

engineering development and decision process in the future. 

The effectiveness of the solutions based on radar and RGB-

D sensors for fall detection has been discussed in section IV-A 

in terms of correct detection and false alarm rates. Besides 

investigating novel algorithms and data processing techniques 

to improve this effectiveness, it is also important to consider the 

easiness of extracting the required features and the related 

computational power required. These aspects are often not 

much discussed in the works examined in this paper, as most of 

the times the data are analyzed off-line, after their collection, 

and with general purpose platforms (desktop computers) and 

software (MATLAB or other high level processing software). 

An interesting exception is the work presented in [69], where 

the sensor can relay data wirelessly via Zigbee to a separated 

signal processing station, and the actual fall detection and 

classification can happen in real-time on this DSP platform 

(apart from the offline training of the classifier). Several open 

questions remain, for example how to transmit information 

from sensors to the processing station (wired or wireless, and 

what wireless protocol), whether the processing station is 

separated from the sensors but still co-located where the person 

to be monitored lives or remotely located on a cloud-platform 

with information exchanged over the Internet, and whether 

some pre-processing can be performed locally within each 

sensor to reduce the amount of data to be transferred at the price 

of increased complexity of the sensors. The current trends of 

increasing computational resources available in smaller and 

cheaper hardware are likely to offer different alternatives to 

address the aforementioned issues. Specifically for radar 

sensors, the innovations in the automotive radar industry can be 

rather significant, with the integration of more and more 

hardware blocks (including the whole analogue chain and 

digitization) and processing functionalities (including 

optimized FFTs to perform range and Doppler estimation for 

FMCW radar) in single chips, allowing smaller sensors but 

capable of providing more information. Furthermore, the 

development in the field of deep learning can deliver a step 

change in radar signal processing, with the possibility of using 

convolutional neural networks to bypass the feature extraction 

step (as shown in the very preliminary results in [4], [59]), and 

achieve systems capable of continuous learning and adaptation 

to changes in the operational scenario (e.g. changes of the 

person’s habits, new furniture position, moving in a different 



house or room). There is also ongoing research on efficient 

implementation of deep neural networks on relatively simple 

and inexpensive hardware, for example using binary networks 

or low precision weights and activation functions on FPGA 

boards rather than on computer clusters [121], [122]. The 

possiblity that such powerful classification tools can be simply 

implemented will contribute to better integration of the sensors 

and their data processing and to the development of improved 

fall detection and classification algorithms. 

V. CONCLUSION 

This paper presented a comprehensive review of recent 

works in the field of fall detection systems based on radar and 

RGB-D sensors. Fall detection has become a progressively 

relevant research topic in the past few years, as the number of 

elderly people living alone and at risk of falling is increasing, 

posing a significant societal issue with related health hazards 

and economic costs. Radar and RGB-D sensors offer the 

advantage of providing contactless and non-invasive 

monitoring capabilities, whereby the sensors may be simply 

deployed in the area to be monitored (e.g. in the corner of an 

indoor environment), with no need for the people to wear or 

carry any device, or change their normal habits and behavior, 

and no privacy concerns which could be raised by for example 

video based systems. These sensors will provide a significant 

contribution to the development of reliable fall detection 

systems, complementing other sensing technologies such as 

wearable devices to provide overall improved monitoring 

performance. 

Details on the different sensors’ configurations, algorithms, 

and performance evaluation have been provided in the previous 

sections, as well as the analysis of the outstanding challenges to 

be addressed for practical deployment and use of these systems 

in realistic environments. Bringing together multidisciplinary 

expertise is expected to be an important step to go beyond the 

proof of concept validation of the different methods and 

algorithms on a small set of subjects, in more or less controlled 

conditions. Expertise should include the designing and 

development of the different types of sensors, the integration of 

sensors with the wider home network of devices in an Internet 

of Things perspective, as well as with external stakeholders 

such as carers or first responders, the competence from medical 

professionals to infer health information from the activity 

patterns extracted from sensors information, and inputs from 

social sciences and psychology experts to address issues of 

users’ acceptance of fall detection systems and sensors. 

REFERENCES 

[1] Z. Pang, L. Zheng, J. Tian, S. Kao-Walter, E. Dubrova, and Q. Chen, 

“Design of a terminal solution for integration of in-home health care 
devices and services towards the Internet-of-Things,” Enterp. Inf. 

Syst., vol. 9, no. 1, pp. 86–116, Jan. 2015. 

[2] World Health Organisation, “WHO Global Report on Falls 
Prevention in Older Age.,” 2008. 

[3] M. Terroso, N. Rosa, A. Torres Marques, and R. Simoes, “Physical 

consequences of falls in the elderly: a literature review from 1995 to 
2010,” Eur. Rev. Aging Phys. Act., vol. 11, no. 1, pp. 51–59, 2014. 

[4] B. Jokanovic, M. Amin, and F. Ahmad, “Radar fall motion detection 

using deep learning,” 2016 IEEE Radar Conference (RadarConf). pp. 

1–6, 2016. 
[5] A. Koenig, C. F. Crispim Junior, A. Derreumaux, G. Bensadoun, P. 

D. Petit, F. Bremond, R. David, F. Verhey, P. Aalten, and P. Robert, 

“Validation of an Automatic Video Monitoring System for the 
Detection of Instrumental Activities of Daily Living in Dementia 

Patients,” J. Alzheimer’s Dis., vol. 44, no. 2, pp. 675–685, 2015. 

[6] R. Igual, C. Medrano, and I. Plaza, “Challenges, issues and trends in 
fall detection systems,” Biomed. Eng. Online, vol. 12, no. 1, pp. 1–

24, 2013. 

[7] F. Erden, S. Velipasalar, A. Z. Alkar, and A. E. Cetin, “Sensors in 
Assisted Living: A survey of signal and image processing methods,” 

IEEE Signal Processing Magazine, vol. 33, no. 2. pp. 36–44, 2016. 

[8] C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis, 
and A. Bauer, “Monitoring Activities of Daily Living in Smart 

Homes: Understanding human behavior,” IEEE Signal Processing 

Magazine, vol. 33, no. 2. pp. 81–94, 2016. 
[9] I. H. Lopez-Nava and M. M. Angelica, “Wearable Inertial Sensors 

for Human Motion Analysis: A review,” IEEE Sensors Journal, vol. 

PP, no. 99. p. 1, 2016. 
[10] S. C. Mukhopadhyay, “Wearable Sensors for Human Activity 

Monitoring: A Review,” IEEE Sensors Journal, vol. 15, no. 3. pp. 

1321–1330, 2015. 
[11] O. Aziz and S. N. Robinovitch, “An Analysis of the Accuracy of 

Wearable Sensors for Classifying the Causes of Falls in Humans,” 

IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, vol. 19, no. 6. pp. 670–676, 2011. 

[12] T. Shany, S. J. Redmond, M. R. Narayanan, and N. H. Lovell, 
“Sensors-Based Wearable Systems for Monitoring of Human 

Movement and Falls,” IEEE Sensors Journal, vol. 12, no. 3. pp. 658–

670, 2012. 
[13] T. R. Bennett, J. Wu, N. Kehtarnavaz, and R. Jafari, “Inertial 

Measurement Unit-Based Wearable Computers for Assisted Living 

Applications: A signal processing perspective,” IEEE Signal 
Processing Magazine, vol. 33, no. 2. pp. 28–35, 2016. 

[14] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection: 

Principles and approaches,” Neurocomputing, vol. 100, pp. 144–152, 
Jan. 2013. 

[15] Z. Zhang, C. Conly, and V. Athitsos, “A Survey on Vision-based Fall 

Detection,” in Proceedings of the 8th ACM International Conference 
on PErvasive Technologies Related to Assistive Environments, 2015, 

p. 46:1--46:7. 

[16] G. Koshmak, A. Loufti, and M. Linden, “Challenges and Issues in 
Multisensor Fusion Approach for Fall Detection: Review Paper,” 

Hindawi J. Sensors, vol. 2016, no. ID 6931789, p. 12, 2016. 

[17] K. Chaccour, R. Darazi, A. H. El Hassani, and E. Andrès, “From Fall 
Detection to Fall Prevention: A Generic Classification of Fall-Related 

Systems,” IEEE Sensors Journal, vol. 17, no. 3. pp. 812–822, 2017. 

[18] B. Y. Su, K. C. Ho, M. J. Rantz, and M. Skubic, “Doppler Radar Fall 
Activity Detection Using the Wavelet Transform,” IEEE 

Transactions on Biomedical Engineering, vol. 62, no. 3. pp. 865–875, 

2015. 
[19] L. Liu, M. Popescu, M. Skubic, M. Rantz, T. Yardibi, and P. Cuddihy, 

“Automatic fall detection based on Doppler radar motion signature,” 

2011 5th International Conference on Pervasive Computing 
Technologies for Healthcare (PervasiveHealth) and Workshops. pp. 

222–225, 2011. 

[20] F. Ahmad, R. Narayanan, and D. Schreurs, “Application of Radar to 
Remote Patient Monitoring and Eldercare,” IET radar, Sonar Navig., 

vol. 9, no. 2, p. 115, 2015. 

[21] F. Ahmad, A. E. Cetin, K. C. D. Ho, and J. Nelson, “Signal 
Processing for Assisted Living: Developments and Open Problems 

[From the Guest Editors],” IEEE Signal Processing Magazine, vol. 

33, no. 2. pp. 25–26, 2016. 
[22] M. G. Amin, Y. D. Zhang, F. Ahmad, and K. C. D. Ho, “Radar Signal 

Processing for Elderly Fall Detection: The future for in-home 

monitoring,” IEEE Signal Processing Magazine, vol. 33, no. 2. pp. 

71–80, 2016. 

[23] J. Zabalza, C. Clemente, G. Di Caterina, J. Ren, J. J. Soraghan, and 

S. Marshall, “Robust PCA micro-doppler classification using SVM 
on embedded systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, 

no. 3, pp. 2304–2312, 2014. 

[24] B. Jokanovic, M. Amin, F. Ahmad, and B. Boashash, “ Radar fall 
detection using principal component analysis ,” 2016, vol. 9829, pp. 

982916–982919. 

[25] S. Z. Gürbüz, B. Erol, B. Cağliyan, and B. Tekeli, “Operational 



assessment and adaptive selection of micro-Doppler features,” IET 
Radar, Sonar & Navigation, vol. 9, no. 9. pp. 1196–1204, 2015. 

[26] B. Tekeli, S. Z. Gurbuz, and M. Yuksel, “Information-Theoretic 

Feature Selection for Human Micro-Doppler Signature 
Classification,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 54, no. 5. pp. 2749–2762, 2016. 

[27] B. Frénay, G. Doquire, and M. Verleysen, “Theoretical and empirical 
study on the potential inadequacy of mutual information for feature 

selection in classification,” Neurocomputing, vol. 112, pp. 64–78, Jul. 

2013. 
[28] F. Fioranelli, M. Ritchie, and H. Griffiths, “Performance Analysis of 

Centroid and SVD Features for Personnel Recognition Using 

Multistatic Micro-Doppler,” IEEE Geoscience and Remote Sensing 
Letters, vol. 13, no. 5. pp. 725–729, 2016. 

[29] M. Skolnik, Radar Handbook, Third Edition. McGraw-Hill 

Education, 2008. 
[30] E. Piuzzi, P. D’Atanasio, S. Pisa, E. Pittella, and A. Zambotti, 

“Complex Radar Cross Section Measurements of the Human Body 

for Breath-Activity Monitoring Applications,” IEEE Transactions on 
Instrumentation and Measurement, vol. 64, no. 8. pp. 2247–2258, 

2015. 

[31] V. C. Chen, “Doppler signatures of radar backscattering from objects 
with micro-motions,” IET Signal Processing, vol. 2, no. 3. pp. 291–

300, 2008. 

[32] V. C. Chen, D. Tahmoush, and W. J. Miceli, Eds., Radar Micro-
Doppler Signatures: Processing and Applications. Institution of 

Engineering and Technology, 2014. 
[33] D. Tahmoush, “Review of micro-Doppler signatures,” IET Radar, 

Sonar & Navigation, vol. 9, no. 9. pp. 1140–1146, 2015. 

[34] Y. Kim and T. Moon, “Human Detection and Activity Classification 
Based on Micro-Doppler Signatures Using Deep Convolutional 

Neural Networks,” IEEE Geoscience and Remote Sensing Letters, 

vol. 13, no. 1. pp. 8–12, 2016. 
[35] D. Tahmoush and J. Silvious, “Remote detection of humans and 

animals,” 2009 IEEE Applied Imagery Pattern Recognition 

Workshop (AIPR 2009). pp. 1–8, 2009. 
[36] X. Shi, F. Zhou, L. Liu, B. Zhao, and Z. Zhang, “Textural feature 

extraction based on time-frequency spectrograms of humans and 

vehicles,” IET Radar, Sonar & Navigation, vol. 9, no. 9. pp. 1251–
1259, 2015. 

[37] Y. Kim, S. Ha, and J. Kwon, “Human Detection Using Doppler Radar 

Based on Physical Characteristics of Targets,” IEEE Geoscience and 
Remote Sensing Letters, vol. 12, no. 2. pp. 289–293, 2015. 

[38] Y. Kim and H. Ling, “Human Activity Classification Based on 

Micro-Doppler Signatures Using a Support Vector Machine,” IEEE 
Transactions on Geoscience and Remote Sensing, vol. 47, no. 5. pp. 

1328–1337, 2009. 

[39] R. M. Narayanan and M. Zenaldin, “Radar micro-Doppler signatures 
of various human activities,” IET Radar, Sonar & Navigation, vol. 9, 

no. 9. pp. 1205–1215, 2015. 

[40] D. P. Fairchild and R. M. Narayanan, “Multistatic micro-doppler 
radar for determining target orientation and activity classification,” 

IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 

1. pp. 512–521, 2016. 
[41] S. Björklund, H. Petersson, and G. Hendeby, “Features for micro-

Doppler based activity classification,” IET Radar, Sonar & 

Navigation, vol. 9, no. 9. pp. 1181–1187, 2015. 
[42] F. Fioranelli, M. Ritchie, and H. Griffiths, “Centroid features for 

classification of armed/unarmed multiple personnel using multistatic 

human micro-Doppler,” IET Radar, Sonar & Navigation. Apr-2016. 
[43] F. Fioranelli, M. Ritchie, and H. Griffiths, “Multistatic human micro-

Doppler classification of armed/unarmed personnel,” IET Radar, 

Sonar & Navigation, vol. 9, no. 7. pp. 857–865, 2015. 
[44] F. Fioranelli, M. Ritchie, and H. Griffiths, “Classification of 

Unarmed/Armed Personnel Using the NetRAD Multistatic Radar for 

Micro-Doppler and Singular Value Decomposition Features,” IEEE 
Geosci. Remote Sens. Lett., vol. 12, no. 9, pp. 1933–1937, 2015. 

[45] F. Fioranelli, M. Ritchie, and H. Griffiths, “Aspect angle dependence 

and multistatic data fusion for micro-Doppler classification of 
armed/unarmed personnel,” IET Radar, Sonar & Navigation, vol. 9, 

no. 9. Institution of Engineering and Technology, pp. 1231–1239, 

2015. 
[46] R. Ricci and A. Balleri, “Recognition of humans based on radar 

micro-Doppler shape spectrum features,” IET Radar, Sonar & 

Navigation, vol. 9, no. 9. pp. 1216–1223, 2015. 

[47] L. Liu, M. Popescu, M. Skubic, and M. Rantz, “An automatic fall 
detection framework using data fusion of Doppler radar and motion 

sensor network,” 2014 36th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society. pp. 5940–5943, 
2014. 

[48] A. Gadde, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Fall detection 

and classifications based on time-scale radar signal characteristics,” 
in Proc. SPIE 9077, radar Sensor Technology XVIII, 907712, 2014, 

vol. 9077, pp. 907712–907719. 

[49] S. Liu, Z. Zeng, Y. D. Zhang, T. Fan, T. Shan, and R. Tao, 
“Automatic human fall detection in fractional fourier domain for 

assisted living,” 2016 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP). pp. 799–803, 2016. 
[50] J. Hong, S. Tomii, and T. Ohtsuki, “Cooperative fall detection using 

Doppler radar and array sensor,” 2013 IEEE 24th Annual 

International Symposium on Personal, Indoor, and Mobile Radio 
Communications (PIMRC). pp. 3492–3496, 2013. 

[51] S. Tomii and T. Ohtsuki, “Falling detection using multiple Doppler 

sensors,” in 2012 IEEE 14th International Conference on e-Health 
Networking, Applications and Services, Healthcom 2012, 2012, pp. 

196–201. 

[52] J. Hong and T. Ohtsuki, “A state classification method based on 
space-time signal processing using SVM for wireless monitoring 

systems,” 2011 IEEE 22nd International Symposium on Personal, 

Indoor and Mobile Radio Communications. pp. 2229–2233, 2011. 
[53] L. R. Rivera, E. Ulmer, Y. D. Zhang, W. Tao, and M. G. Amin, 

“Radar-based fall detection exploiting time-frequency features,” 
Signal and Information Processing (ChinaSIP), 2014 IEEE China 

Summit & International Conference on. pp. 713–717, 2014. 

[54] Q. Wu, Y. D. Zhang, W. Tao, and M. G. Amin, “Radar-based fall 
detection based on Doppler time-frequency signatures for assisted 

living,” IET Radar, Sonar & Navigation, vol. 9, no. 2. pp. 164–172, 

2015. 
[55] B. Jokanovic, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Multi-

window time-frequency signature reconstruction from undersampled 

continuous-wave radar measurements for fall detection,” IET Radar, 
Sonar & Navigation, vol. 9, no. 2. pp. 173–183, 2015. 

[56] B. Erol, M. Amin, F. Ahmad, and B. Boashash, “ Radar fall detectors: 

a comparison ,” 2016, vol. 9829, pp. 982918–982919. 
[57] M. G. Amin, F. Ahmad, Y. D. Zhang, and B. Boashash, “Human gait 

recognition with cane assistive device using quadratic time-frequency 

distributions,” IET Radar, Sonar & Navigation, vol. 9, no. 9. pp. 
1224–1230, 2015. 

[58] S. Z. Gürbüz, C. Clemente, A. Balleri, and J. J. Soraghan, “Micro-

Doppler-based in-home aided and unaided walking recognition with 
multiple radar and sonar systems,” IET Radar, Sonar Navig., Jun. 

2016. 

[59] B. Jokanovic, M. G. Amin, and F. Ahmad, “Effect of data 
representations on deep learning in fall detection,” 2016 IEEE Sensor 

Array and Multichannel Signal Processing Workshop (SAM). pp. 1–

5, 2016. 
[60] M. Wu, X. Dai, Y. D. Zhang, B. Davidson, M. G. Amin, and J. Zhang, 

“Fall Detection Based on Sequential Modeling of Radar Signal Time-

Frequency Features,” 2013 IEEE International Conference on 
Healthcare Informatics. pp. 169–174, 2013. 

[61] B. G. Mobasseri and M. G. Amin, “A time-frequency classifier for 

human gait recognition,” 2009, vol. 7306, pp. 730628–730629. 
[62] Z. A. Khan and W. Sohn, “Feature extraction and dimensions 

reduction using R transform and Principal Component Analysis for 

abnormal human activity recognition,” 2010 6th International 
Conference on Advanced Information Management and Service 

(IMS). pp. 253–258, 2010. 

[63] C. Clemente, A. W. Miller, and J. J. Soraghan, “Robust principal 
component analysis for micro-doppler based automatic target 

recognition,” in 3rd IMA conference on Mathematics in Defence, 

2013. 

[64] A. G. Stove, “A Doppler-Based Target Classifier Using Linear 

Discriminants and Principal Components,” 2006 IET Seminar on 

High Resolution Imaging and Target Classification. pp. 107–125, 
2006. 

[65] B. Erol, M. Amin, Z. Zhou, and J. Zhang, “Range information for 

reducing fall false alarms in assisted living,” 2016 IEEE Radar 
Conference (RadarConf). pp. 1–6, 2016. 

[66] H. Wang, L. Ren, E. Mao, and A. E. Fathy, “Phase based motion 

characteristics measurement for fall detection by using stepped-



frequency continuous wave radar,” 2016 IEEE Topical Conference 
on Biomedical Wireless Technologies, Networks, and Sensing 

Systems (BioWireleSS). pp. 43–45, 2016. 

[67] M. Mercuri, P. J. Soh, G. Pandey, P. Karsmakers, G. A. E. 
Vandenbosch, P. Leroux, and D. Schreurs, “Analysis of an Indoor 

Biomedical Radar-Based System for Health Monitoring,” IEEE 

Transactions on Microwave Theory and Techniques, vol. 61, no. 5. 
pp. 2061–2068, 2013. 

[68] M. Mercuri, P. J. Soh, X. Zheng, P. Karsmakers, G. A. E. 

Vandenbosch, P. Leroux, and D. Schreurs, “Analysis of a fall 
detection radar placed on the ceiling and wall,” 2014 Asia-Pacific 

Microwave Conference. pp. 947–949, 2014. 

[69] C. Garripoli, M. Mercuri, P. Karsmakers, P. J. Soh, G. Crupi, G. A. 
E. Vandenbosch, C. Pace, P. Leroux, and D. Schreurs, “Embedded 

DSP-Based Telehealth Radar System for Remote In-Door Fall 

Detection,” IEEE Journal of Biomedical and Health Informatics, vol. 
19, no. 1. pp. 92–101, 2015. 

[70] T. D’Orazio, R. Marani, V. Renò, and G. Cicirelli, “Recent trends in 

gesture recognition: how depth data has improved classical 
approaches,” Image Vis. Comput., vol. 52, pp. 56–72, 2016. 

[71] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. 

Moore, A. Kipman, and A. Blake, “Real-time human pose 
recognition in parts from single depth images,” Stud. Comput. Intell., 

vol. 411, pp. 119–135, 2013. 

[72] A. Corti, S. Giancola, G. Mainetti, and R. Sala, “A metrological 
characterization of the Kinect V2 time-of-flight camera,” Rob. Auton. 

Syst., vol. 75, pp. 584–594, Jan. 2016. 
[73] E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, “Quality of 

Kinect Depth Information for Passive Posture Monitoring,” in 

Ambient Assisted Living: Italian Forum 2013, S. Longhi, P. Siciliano, 
M. Germani, and A. Monteriù, Eds. Cham: Springer International 

Publishing, 2014, pp. 107–116. 

[74] E. Cippitelli, S. Gasparrini, S. Spinsante, E. Gambi, F. Verdini, L. 
Burattini, F. Di Nardo, and S. Fioretti, “Validation of an optimized 

algorithm to use Kinect in a non-structured environment for Sit-to-

Stand analysis,” 2015 37th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC). pp. 

5078–5081, 2015. 

[75] C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, and J. Meunier, 
“Fall Detection from Depth Map Video Sequences,” in Toward 

Useful Services for Elderly and People with Disabilities: 9th 

International Conference on Smart Homes and Health Telematics, 
ICOST 2011, Montreal, Canada, June 20-22, 2011. Proceedings, B. 

Abdulrazak, S. Giroux, B. Bouchard, H. Pigot, and M. Mokhtari, Eds. 

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 121–128. 
[76] J. Zhao, J. Katupitiya, and J. Ward, “Global Correlation Based 

Ground Plane Estimation Using V-Disparity Image,” in Proceedings 

2007 IEEE International Conference on Robotics and Automation, 
2007, pp. 529–534. 

[77] S. Gasparrini, E. Cippitelli, S. Spinsante, and E. Gambi, “A depth-

based fall detection system using a Kinect® sensor,” Sensors 
(Switzerland), vol. 14, no. 2, 2014. 

[78] D. Liciotti, G. Massi, E. Frontoni, A. Mancini, and P. Zingaretti, 

“Human activity analysis for in-home fall risk assessment,” in 2015 
IEEE International Conference on Communication Workshop 

(ICCW), 2015, pp. 284–289. 

[79] L. Yang, Y. Ren, and W. Zhang, “3D Depth Image Analysis for 
Indoor Fall Detection of Elderly People,” Digit. Commun. Networks, 

vol. 2, no. 1, pp. 24–34, 2016. 

[80] G. Mastorakis and D. Makris, “Fall detection system using Kinect’s 
infrared sensor,” J. Real-Time Image Process., vol. 9, no. 4, pp. 635–

646, 2012. 

[81] “OpenNI.” http://structure.io/openni. 
[82] V. Bevilacqua, N. Nuzzolese, D. Barone, M. Pantaleo, M. Suma, D. 

D’Ambruoso, A. Volpe, C. Loconsole, and F. Stroppa, “Fall detection 

in indoor environment with kinect sensor,” in Innovations in 
Intelligent Systems and Applications (INISTA) Proceedings, 2014 

IEEE International Symposium on, 2014, pp. 319–324. 

[83] A. T. Nghiem, E. Auvinet, and J. Meunier, “Head detection using 
Kinect camera and its application to fall detection,” in Information 

Science, Signal Processing and their Applications (ISSPA), 2012 11th 

International Conference on, 2012, pp. 164–169. 
[84] E. E. Stone and M. Skubic, “Fall Detection in Homes of Older Adults 

Using the Microsoft Kinect,” IEEE J. Biomed. Heal. Informatics, vol. 

19, no. 1, pp. 290–301, 2015. 

[85] Z. Zhang, W. Liu, V. Metsis, and V. Athitsos, “A Viewpoint-
Independent Statistical Method for Fall Detection,” Int. Conf. Pattern 

Recognit., no. Icpr, pp. 3626–3630, 2012. 

[86] M. Kepski and B. Kwolek, “Unobtrusive Fall Detection at Home 
Using Kinect Sensor,” in Computer Analysis of Images and Patterns: 

15th International Conference, CAIP 2013, York, UK, August 27-29, 

2013, Proceedings, Part I, R. Wilson, E. Hancock, A. Bors, and W. 
Smith, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 

457–464. 

[87] P. Bilski, P. Mazurek, and J. Wagner, “Application of k Nearest 
Neighbors Approach to the fall detection of elderly people using 

depth-based sensors,” in Intelligent Data Acquisition and Advanced 

Computing Systems: Technology and Applications (IDAACS), 2015 
IEEE 8th International Conference on, 2015, vol. 2, pp. 733–739. 

[88] X. Ma, H. Wang, B. Xue, M. Zhou, B. Ji, and Y. Li, “Depth-based 

human fall detection via shape features and improved extreme 
learning machine,” IEEE J. Biomed. Heal. Informatics, vol. 18, no. 6, 

pp. 1915–1922, 2014. 

[89] F. Mokhtarian, “Silhouette-based isolated object recognition through 
curvature scale space,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 

17, no. 5, pp. 539–544, 1995. 

[90] M. Aslan, A. Sengur, Y. Xiao, H. Wang, M. C. Ince, and X. Ma, 
“Shape feature encoding via Fisher Vector for efficient fall detection 

in depth-videos,” Appl. Soft Comput., vol. 37, pp. 1023–1028, 2015. 

[91] A. Dubois and F. Charpillet, “Human activities recognition with 
RGB-Depth camera using HMM,” in 2013 35th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), 2013, pp. 4666–4669. 

[92] E. Akagunduz, M. Aslan, A. Sengur, H. Wang, and M. Ince, 

“Silhouette Orientation Volumes for Efficient Fall Detection in Depth 
Videos,” IEEE J. Biomed. Heal. Informatics, vol. PP, no. 99, p. 1, 

2016. 

[93] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, 
“Actions as Space-Time Shapes,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 29, no. 12, pp. 2247–2253, 2007. 

[94] R. Planinc and M. Kampel, “Introducing the use of depth data for fall 
detection,” Pers. Ubiquitous Comput., vol. 17, no. 6, pp. 1063–1072, 

2013. 

[95] R. Planinc and M. Kampel, “Robust Fall Detection by Combining 3D 
Data and Fuzzy Logic,” in Computer Vision - ACCV 2012 

Workshops: ACCV 2012 International Workshops, Daejeon, Korea, 

November 5-6, 2012, Revised Selected Papers, Part II, J.-I. Park and 
J. Kim, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, 

pp. 121–132. 

[96] C. K. Lee and V. Y. Lee, “Fall Detection System Based on Kinect 
Sensor Using Novel Detection and Posture Recognition Algorithm,” 

in Inclusive Society: Health and Wellbeing in the Community, and 

Care at Home: 11th International Conference on Smart Homes and 
Health Telematics, ICOST 2013, Singapore, June 19-21, 2013. 

Proceedings, J. Biswas, H. Kobayashi, L. Wong, B. Abdulrazak, and 

M. Mokhtari, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 
2013, pp. 238–244. 

[97] C. Kawatsu, J. Li, and C. J. Chung, “Development of a fall detection 

system with microsoft kinect,” Adv. Intell. Syst. Comput., vol. 208 
AISC, pp. 623–630, 2013. 

[98] S.-W. Yang and S.-K. Lin, “Fall detection for multiple pedestrians 

using depth image processing technique,” Comput. Methods 
Programs Biomed., vol. 114, no. 2, pp. 172–182, 2014. 

[99] Z.-P. Bian, J. Hou, L.-P. Chau, and N. Magnenat-Thalmann, “Fall 

detection based on body part tracking using a depth camera.,” IEEE 
J. Biomed. Heal. informatics, vol. 19, no. 2, pp. 430–9, 2015. 

[100] N. Noury, A. Fleury, P. Rumeau, A. K. Bourke, G. O. Laighin, V. 

Rialle, and J. E. Lundy, “Fall detection - Principles and Methods,” in 
2007 29th Annual International Conference of the IEEE Engineering 

in Medicine and Biology Society, 2007, pp. 1663–1666. 

[101] A. Amini, K. Banitsas, and J. Cosmas, “A comparison between 

heuristic and machine learning techniques in fall detection using 

Kinect v2,” in 2016 IEEE International Symposium on Medical 

Measurements and Applications (MeMeA), 2016, pp. 1–6. 
[102] R. Dubey, B. Ni, and P. Moulin, “A Depth Camera Based Fall 

Recognition System for the Elderly,” in Image Analysis and 

Recognition: 9th International Conference, ICIAR 2012, Aveiro, 
Portugal, June 25-27, 2012. Proceedings, Part II, A. Campilho and 

M. Kamel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 

2012, pp. 106–113. 



[103] B. Ni, G. Wang, and P. Moulin, “RGBD-HuDaAct: A color-depth 
video database for human daily activity recognition,” in Computer 

Vision Workshops (ICCV Workshops), 2011 IEEE International 

Conference on, 2011, pp. 1147–1153. 
[104] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE 

Trans. Inf. Theory, vol. 8, no. 2, pp. 179–187, 1962. 

[105] A. F. Bobick and J. W. Davis, “The recognition of human movement 
using temporal templates,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 23, no. 3, pp. 257–267, 2001. 

[106] A. Davari, T. Aydin, and T. Erdem, “Automatic fall detection for 
elderly by using features extracted from skeletal data,” in Electronics, 

Computer and Computation (ICECCO), 2013 International 

Conference on, 2013, pp. 127–130. 
[107] C. Zhang, Y. Tian, and E. Capezuti, “Privacy Preserving Automatic 

Fall Detection for Elderly Using RGBD Cameras,” Int. Conf. 

Comput. Help. People with Spec. Needs, pp. 625–633, 2012. 
[108] X. Dai, M. Wu, B. Davidson, M. Mahoor, and J. Zhang, “Image-

Based Fall Detection with Human Posture Sequence Modeling,” in 

Healthcare Informatics (ICHI), 2013 IEEE International Conference 
on, 2013, pp. 376–381. 

[109] R. Alazrai, A. Zmily, and Y. Mowafi, “Fall detection for elderly using 

anatomical-plane-based representation,” in 2014 36th Annual 
International Conference of the IEEE Engineering in Medicine and 

Biology Society, 2014, pp. 5916–5919. 

[110] M. Firman, “RGBD Datasets: Past, Present and Future,” CoRR, vol. 
abs/1604.0, 2016. 

[111] J. Zhang, W. Li, P. O. Ogunbona, P. Wang, and C. Tang, “RGB-D-
based action recognition datasets: A survey,” Pattern Recognit., vol. 

60, pp. 86–105, 2016. 

[112] S. Gasparrini, E. Cippitelli, E. Gambi, S. Spinsante, J. Wåhslén, I. 
Orhan, and T. Lindh, “Proposal and Experimental Evaluation of Fall 

Detection Solution Based on Wearable and Depth Data Fusion,” in 

ICT Innovations 2015 : Emerging Technologies for Better Living, 
vol. 399, S. Loshkovska and S. Koceski, Eds. Cham: Springer 

International Publishing, 2016, pp. 99–108. 

[113] B. Kwolek and M. Kepski, “Human fall detection on embedded 
platform using depth maps and wireless accelerometer,” Comput. 

Methods Programs Biomed., vol. 117, no. 3, pp. 489–501, 2014. 

[114] Z. Cheng, L. Qin, Y. Ye, Q. Huang, and Q. Tian, “Human Daily 
Action Analysis with Multi-view and Color-Depth Data,” in 

Computer Vision -- ECCV 2012. Workshops and Demonstrations: 

Florence, Italy, October 7-13, 2012, Proceedings, Part II, A. 
Fusiello, V. Murino, and R. Cucchiara, Eds. Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2012, pp. 52–61. 

[115] C. Zhang and Y. Tian, “RGB-D Camera-based Daily Living Activity 
Recognition,” J. Comput. Vis. Image Process., vol. 2, p. 12, 2012. 

[116] Z. Zhang, C. Conly, and V. Athitsos, “Evaluating Depth-Based 

Computer Vision Methods for Fall Detection under Occlusions,” in 
Advances in Visual Computing: 10th International Symposium, ISVC 

2014, Las Vegas, NV, USA, December 8-10, 2014, Proceedings, Part 

II, G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. McMahan, J. Jerald, 
H. Zhang, S. M. Drucker, C. Kambhamettu, M. El Choubassi, Z. 

Deng, and M. Carlson, Eds. Cham: Springer International Publishing, 

2014, pp. 196–207. 
[117] M. l. Wang, C. c. Huang, and H. y. Lin, “An Intelligent Surveillance 

System Based on an Omnidirectional Vision Sensor,” in 2006 IEEE 

Conference on Cybernetics and Intelligent Systems, 2006, pp. 1–6. 
[118] J. Andreu-Perez, C. C. Y. Poon, R. D. Merrifield, S. T. C. Wong, and 

G. Z. Yang, “Big Data for Health,” IEEE Journal of Biomedical and 

Health Informatics, vol. 19, no. 4. pp. 1193–1208, 2015. 
[119] C. Arvindkumar, N. Jaiswal, J. Tailor, Z. Liu, C. Parihar, J. Zhou, K. 

Holmes, S. Dean, and M. Islam, “Non-intrusive user-oriented 

interactive fall-detection system for seniors,” Humanitarian 
Technology Conference (IHTC2015), 2015 IEEE Canada 

International. pp. 1–4, 2015. 

[120] M. Kepski and B. Kwolek, “Fall detection using ceiling-mounted 3d 

depth camera,” Int. Conf. VISAPP, pages II, pp. 640–647, 2014. 

[121] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, 

“Quantized Neural Networks: Training Neural Networks with Low 
Precision Weights and Activations,” CoRR, vol. abs/1609.0, 2016. 

[122] G. Lacey, G. W. Taylor, and S. Areibi, “Deep Learning on FPGAs: 

Past, Present, and Future,” CoRR, vol. abs/1602.0, 2016. 

 


