
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

An Effective SMT Engine

for Formal Verification

Alberto Griggio

Advisor:

Prof. Roberto Sebastiani

DISI - University of Trento

Co-Advisor:

Dr. Alessandro Cimatti

FBK-IRST, Trento

December 2009





Abstract

Formal methods are becoming increasingly important for debugging and

verifying hardware and software systems, whose current complexity makes

the traditional approaches based on testing increasingly-less adequate. One

of the most promising research directions in formal verification is based

on the exploitation of Satisfiability Modulo Theories (SMT) solvers. In

this thesis, we present MathSAT, a modern, efficient SMT solver that

provides several important functionalities, and can be used as a workhorse

engine in formal verification. We develop novel algorithms for two func-

tionalities which are very important in verification – the extraction of un-

satisfiable cores and the generation of Craig interpolants in SMT – that

significantly advance the state of the art, taking full advantage of modern

SMT techniques. Moreover, in order to demonstrate the usefulness and

potential of SMT in verification, we develop a novel technique for software

model checking, that fully exploits the power and functionalities of the SMT

engine, showing that this leads to significant improvements in performance.

Keywords

[SMT, Formal Verification, Craig Interpolants, Unsatisfiable Cores, Soft-

ware Model Checking, Theorem Proving, Automated Deduction]





Contents

Introduction 1

I MathSAT: an Efficient SMT Solver 9

1 Background 13

1.1 The SMT problem . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 T -solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Modern Lazy SMT Solvers . . . . . . . . . . . . . . . . . . 18

1.3.1 The Online Lazy SMT Schema . . . . . . . . . . . 18

1.4 Some Relevant Theories in SMT . . . . . . . . . . . . . . . 22

1.4.1 Equality and Uninterpreted Functions . . . . . . . 22

1.4.2 Linear Arithmetic . . . . . . . . . . . . . . . . . . . 23

1.4.3 Difference logic . . . . . . . . . . . . . . . . . . . . 24

1.4.4 Unit-Two-Variable-Per-Inequality . . . . . . . . . . 25

1.4.5 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.6 Bit vectors . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 SMT for Combinations of Theories . . . . . . . . . . . . . 28

1.5.1 SMT(T1 ∪ T2) via Theory Combination . . . . . . . 28

1.5.2 SMT(EUF ∪ T ) via Ackermann’s Reduction . . . . 37

i



2 Details on MathSAT 39

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 The preprocessor . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Interaction between the DPLL engine and T -solvers . . . . 42

2.3.1 Adaptive Early Pruning . . . . . . . . . . . . . . . 42

2.4 The EUF -solver . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 The LA(Q)-solver . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.1 High-level view of the Dutertre-de Moura algorithm 48

2.5.2 Reducing the cost of pivoting operations . . . . . . 51

2.5.3 Reducing the number of pivoting steps . . . . . . . 52

2.5.4 Experimental evaluation . . . . . . . . . . . . . . . 54

2.6 The LA(Z)-solver . . . . . . . . . . . . . . . . . . . . . . . 57

2.6.1 The Diophantine equation handler . . . . . . . . . 58

2.6.2 The Branch and Bound module . . . . . . . . . . . 69

2.7 Other Theory Solvers . . . . . . . . . . . . . . . . . . . . . 71

2.7.1 The AR-solver . . . . . . . . . . . . . . . . . . . . 71

2.7.2 The DL-solver . . . . . . . . . . . . . . . . . . . . 71

2.7.3 The UT VPI-solver . . . . . . . . . . . . . . . . . . 72

2.8 Combination of Theories . . . . . . . . . . . . . . . . . . . 72

II Extended SMT Functionalities 75

3 Extraction of Unsatisfiable Cores 79

3.1 State of The Art . . . . . . . . . . . . . . . . . . . . . . . 80

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 80

3.1.2 Techniques for unsatisfiable-core extraction in SAT 81

3.1.3 Techniques for unsatisfiable-core extraction in SMT 83

3.2 A novel approach: Lemma-Lifting . . . . . . . . . . . . . . 86

3.2.1 The main ideas . . . . . . . . . . . . . . . . . . . . 86

ii



3.2.2 Extracting SMT cores by Lifting Theory Lemmas . 88

3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . 93

3.3.1 Unsat-core extraction with PicoSat . . . . . . . . 95

3.3.2 Using different Boolean unsat-core extractors . . . 98

4 Generation of Craig Interpolants 105

4.1 Background and State of the Art . . . . . . . . . . . . . . 108

4.2 From SMT(LA(Q)) solving to SMT(LA(Q)) interpolation 114

4.2.1 Interpolation with non-strict inequalities . . . . . . 115

4.2.2 Interpolation with strict inequalities and disequalities 120

4.2.3 Obtaining stronger interpolants . . . . . . . . . . . 124

4.3 From SMT(DL) solving to SMT(DL) interpolation . . . . 128

4.4 From SMT(UT VPI) solving to SMT(UT VPI) interpolation 131

4.4.1 Graph-based interpolation for UT VPI(Q) . . . . . 132

4.4.2 Graph-based interpolation for UT VPI(Z) . . . . . 136

4.5 Computing interpolants for combined theories via DTC . . 147

4.5.1 Background . . . . . . . . . . . . . . . . . . . . . . 147

4.5.2 From DTC solving to DTC Interpolation . . . . . . 153

4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 165

4.5.4 Generating multiple interpolants . . . . . . . . . . 167

4.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . 171

4.6.1 Description of the benchmark sets . . . . . . . . . . 171

4.6.2 Comparison with the state-of-the-art tools available 172

4.6.3 Graph-based interpolation vs. LA(Q) interpolation 176

III Exploiting SMT for Software Verification 179

5 Software Model Checking via Large-Block encoding 183

iii



5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.1.1 Programs and Control-Flow Automata . . . . . . . 186

5.1.2 Predicate Abstraction . . . . . . . . . . . . . . . . 187

5.1.3 ART-based Software Model Checking with SBE . . 189

5.2 Large-Block Encoding . . . . . . . . . . . . . . . . . . . . 191

5.2.1 Summarization of Control-Flow Automata . . . . . 191

5.2.2 LBE versus SBE for Software Model Checking . . . 197

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . 201

5.4.1 Description of the benchmark programs . . . . . . . 202

5.4.2 Comparison with Blast . . . . . . . . . . . . . . . 202

5.4.3 Discussion of results . . . . . . . . . . . . . . . . . 204

5.4.4 Comparison with SatAbs . . . . . . . . . . . . . . 211

6 Conclusions 215

Bibliography 217

iv



List of Tables

1.1 Axioms defining =. . . . . . . . . . . . . . . . . . . . . . 14

4.1 The conversion map from UT VPI(Q) to DL(Q). . . . . . 132

4.2 MathSAT vs other interpolating tools on Blast instances 172

5.1 CPAchecker (LBE and SBE) vs Blast, safe programs . 205

5.2 CPAchecker (LBE and SBE) vs Blast, unsafe programs 206

5.3 Detailed comparison between LBE and SBE . . . . . . . . 207

5.4 Detailed performance of Blast, safe programs . . . . . . . 208

5.5 Detailed performance of Blast, unsafe programs . . . . . 209

5.6 Blast +MathSAT vs Blast +CSIsat, unsafe programs 210

5.7 CPAchecker-LBE vs SatAbs . . . . . . . . . . . . . . . 212

v





List of Figures

1.1 An online schema of T -DPLL based on modern DPLL. . 19

1.2 Basic schema of SMT(T1 ∪ T2) via N.O. . . . . . . . . . . . 32

1.3 Basic schema of SMT(T1 ∪ T2) via DTC . . . . . . . . . . . 33

2.1 MathSAT architecture . . . . . . . . . . . . . . . . . . . 40

2.2 Benefits of the AEP strategy in MathSAT . . . . . . . . 44

2.3 Effects of optimizations on LA(Q)-solver performance . . . 55

2.4 (Continuation of Figure 2.3) . . . . . . . . . . . . . . . . . 56

2.5 Schema of the architecture of the LA(Z)-solver . . . . . . 57

2.6 Solving a system of linear Diophantine equations . . . . . . 60

3.1 Resolution proof for (3.1) found by MathSAT . . . . . . 84

3.2 Schema of the T -unsat-core procedure. . . . . . . . . . . . 89

3.3 Overhead of PicoSat wrt. MathSAT +PicoSat . . . . 95

3.4 Ratio between size of formulae and their unsatisfiable cores 96

3.5 Comparison between different SMT unsat core extractors . 97

3.6 Comparison between different Boolean unsat core extractors 99

3.7 (Continuation of Figure 3.6) . . . . . . . . . . . . . . . . . 100

3.8 MathSAT +Eureka vs. other SMT core extractors . . . 102

4.1 Interpolant generation for SMT(T ) . . . . . . . . . . . . . 109

4.2 Proof and interpolant for Example 4.2 . . . . . . . . . . . 111

4.3 LA(Q) proof rules . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Generating a DL-interpolant from a negative-weight cycle. 129

vii



4.5 The constraint graph of Example 4.17 . . . . . . . . . . . . 134

4.6 UT VPI(Z) interpolation, Case 1 . . . . . . . . . . . . . . 138

4.7 UT VPI(Z) interpolation, Case 2 . . . . . . . . . . . . . . 141

4.8 UT VPI(Z) interpolation, Case 3 . . . . . . . . . . . . . . 143

4.9 UT VPI(Z) interpolation, Case 4 . . . . . . . . . . . . . . 146

4.10 Resolution proofs with N.O. and DTC . . . . . . . . . . . 148

4.11 Rewriting of Πie subproofs . . . . . . . . . . . . . . . . . . 157

4.12 Simple strategy for generating ie -local proofs . . . . . . . . 162

4.13 MathSAT vs Foci on SMT-LIB instances . . . . . . . . . 172

4.14 MathSAT vs CLP-prover on LA(Q)-conjunctions . . . 173

4.15 MathSAT vs CSIsat on SMT-LIB instances . . . . . . . 174

4.16 MathSAT vs CLP-prover on LA(Q)-conjunctions . . . 174

4.17 Comparison between graph-based and LA(Q) interpolation

within MathSAT. . . . . . . . . . . . . . . . . . . . . . . 177

5.1 Example of CFA summarization . . . . . . . . . . . . . . . 193

5.2 Program and ARTs of Example 5.6 . . . . . . . . . . . . . 199

viii



Introduction

The progress in the fields of electronics and computer science has led to

the realization of extremely sophisticated hardware and software systems,

which are capable of performing very complex tasks. Nowadays, such sys-

tems are ubiquitous in human activities, and they are a fundamental com-

ponent of applications in a multitude of critical sectors. Therefore, it is

extremely important to ensure that they operate correctly.

The traditional approaches to assess the correctness of a hardware/software

system are mainly based on simulation and testing techniques: the system

(and its sub-components) is executed on a series of representative inputs,

in order to check that the behaviour is the expected one. The effectiveness

of such techniques is directly proportional to the degree of coverage that

they are able to ensure. With the increasing complexity of current systems,

however, ensuring a good coverage is becoming more and more difficult.

An increasingly-popular approach for tackling this problem is that of

complementing the traditional techniques with verification techniques based

on formal methods. Such techniques combine the rigor of mathematical

methods and the availability of efficient computer programs in order to

produce a demonstration of the correctness of a system with respect to a

specification written in some formal mathematical language. Examples of

formal verification techniques include model checking, equivalence check-

1



ing, symbolic simulation, static analysis, abstract interpretation. The last

twenty years have witnessed an impressive progress in such techniques,

which are nowadays routinely applied by companies such as Intel, IBM,

Microsoft.

The foundations of formal verification lie in mathematical logic. Logical

formulae are used to formally specify systems, their behaviours, and the

properties that they should satisfy. Therefore, computer programs and

algorithms that are able to manipulate logical formulae – such as theorem

provers, decision diagrams, quantifier elimination and Craig interpolation

procedures – are a key component of formal verification techniques.

Such tools and algorithms typically present a trade-off between the ex-

pressiveness of the logic that they can handle on the one hand, and the

efficiency, scalability and degree of automation that they can ensure on

the other hand. For such reason, the simple propositional logic is used ex-

tensively in formal verification, thanks to the availability of very efficient

decision procedures for it, such as binary decision diagrams (BDDs) and

SAT solvers. The latter in particular have seen tremendous improvements

in the last fifteen years, making verification techniques based on SAT very

successful, especially in the context of hardware systems. An important

factor for this success is that modern SAT solvers are not only capable

of proving efficiently the satisfiability of huge propositional formulae, but

they also provide several other functionalities, such as model generation

and enumeration, proof production, extraction of unsatisfiable cores, gen-

eration of (Craig) interpolants, that have been exploited successfully in a

number of verification techniques.

The formalism of plain propositional logic, however, is often not suitable

or expressive enough for representing many real-world problems, including

the verification of hardware designs at the Register Transfer Level (RTL), of

real-time and hybrid control systems, and the analysis of proof obligations

2



in software verification. Such problems are more naturally expressible as

satisfiability problems in decidable first-order theories. For example, RTL

designs can be formalized using a combination of the theory of bit-vectors

and the theory of equality and uninterpreted functions ; the theory of arith-

metic (both linear and non-linear) over the reals is often used for real-time

and hybrid systems verification; for software verification, combinations of

bit-vectors or linear arithmetic on the integers with uninterpreted func-

tions and theories for data structures (e.g. arrays, lists, sets) are usually

adopted. The need for a higher degree of expressiveness moved the atten-

tion of the scientific and industrial community towards a new generation of

theorem provers, that combine the efficiency of modern SAT solvers with

the ability of reasoning about decidable theories. This new paradigm is

known as Satisfiability Modulo Theories (SMT).

Thanks to the huge progress of the last few years, SMT is now becoming

a viable alternative to SAT for formal verification, promising to convey the

same high levels of automation, efficiency and scalability, while offering a

much higher expressive power. It is a widespread opinion in the verification

community that an effective exploiting of SMT will be a key factor in the

progress of formal verification.

SMT, however, is still a relatively new paradigm, and current SMT

solvers still suffer from some limitations. In particular, the research on

SMT has mainly focused on the problem of deciding the satisfiability of

formulae, and on developing efficient decision procedures for several the-

ories, reserving significantly less interest for other functionalities, such as

generation of proofs, simplification of formulae, extraction of small unsat-

isfiable cores, computation of interpolants, which are however extremely

useful in the context of formal verification.

In this thesis we address some of these limitations. We present Math-

SAT, a modern, efficient SMT solver, which is able to deal efficiently with

3



formulae expressed in combinations of several important theories. We de-

scribe the functionalities that MathSAT provides, focusing in particular

on the extraction of small unsatisfiable cores and the efficient generation

of interpolants. Moreover, we show how it is possible to significantly boost

one well-known technique for software model checking by fully exploiting

the power and the functionalities of a modern SMT solver like MathSAT.

In particular, we make the following contributions:

1. We present and discuss several procedures, techniques and implemen-

tation details of MathSAT, a state-of-the-art SMT solver. We focus

in particular on aspects that are often omitted from research papers

on SMT, but which can play a significant role in practice for perfor-

mance.

2. We address for the first time the problem of computing small unsatisfi-

able cores in SMT, by presenting a novel, SMT-specific approach to it,

which we call the Lemma-Lifting approach. An important feature of

this approach is that it allows for exploiting for free all the techniques

for the extraction of small unsatisfiable cores of propositional formu-

lae, a problem well-studied in the SAT community, for which several

very effective algorithms exist. We describe our algorithm, discuss its

features, and empirically evaluate it to show its effectiveness and its

efficiency.

3. We describe novel techniques for efficiently generating Craig inter-

polants for SMT problems, fully leveraging the algorithms used in a

state-of-the-art SMT solver. We show how to extend efficient SMT

solving techniques to SMT interpolation, for a wide class of important

theories and their combinations, without paying a substantial price in

performance. We give specialized algorithms for linear arithmetic over

the rationals, difference logic, and the theory of unit-two-variables-per-

4



inequality (UT VPI); moreover, we describe a general interpolation

algorithm for combinations of convex theories based on the Delayed

Theory Combination (DTC) technique. We present an interpolating

SMT solver that is able to produce interpolants for a much wider class

of problems than its competitors, and, on problems that can be dealt

with by other tools, shows dramatic improvements in performance,

often by orders of magnitude.

4. We propose a novel technique for software model checking in the con-

text of counterexample-guided-abstraction-refinement (CEGAR) with

lazy abstraction, which we call Large-Block Encoding (LBE). The tech-

nique is a generalization of a successful approach to software model

checking which we refer to as Single-Block Encoding (SBE). LBE was

specifically conceived to exploit better than SBE the power and func-

tionalities of modern SMT solvers. We evaluate LBE on a standard set

of benchmark C programs, and show that, by leveraging the efficiency

of state-of-the-art SMT techniques, it outperforms the traditional SBE

approach.

Structure of the thesis

This thesis is divided into three parts.

Part I is devoted to the description of the main components of a modern

SMT solver, and of MathSAT in particular. Chapter 1 reviews theoretical

results and algorithms at the basis of the lazy SMT approach. We give an

overview of the state of the art in SMT solving, covering the algorithm for

integrating a SAT solver with theory-specific decision procedures which

underlies lazy SMT solvers, its main optimizations, decision procedures for

the most frequently-used theories, and methods for theory combination. In

chapter 2, we present the MathSAT SMT solver in more detail. The aim

5



of this description is to provide details that are often omitted from research

papers on SMT, but which from our experience can play a significant role

in practice for performance. We describe its architecture and we discuss its

main design choices, implementation details and optimization techniques.

Where appropriate, we also present experimental results demonstrating the

usefulness of the optimization techniques described.

Part II is dedicated to the description of the extended functionalities

provided by MathSAT, that go beyond simply checking the satisfiability

of a formula. Chapter 3 deals with the extraction of unsatisfiable cores.

We first review the state of the art in unsatisfiable core extraction for SAT

and SMT formulae. We then introduce our novel Lemma-Lifting approach

and discuss its features. Finally, we present an extensive empirical evalua-

tion on a wide set of benchmarks, in order to compare the Lemma-Lifting

approach to previous algorithms. We also analyze the impact of differ-

ent configurations of our algorithm, in order to demonstrate its versatility.

Chapter 4 describes our novel techniques for the generation of Craig in-

terpolants in SMT. After reviewing the state of the art, we describe our

novel interpolation algorithms for linear arithmetic over the rationals, dif-

ference logic, the UT VPI theory and theory combination using the DTC

technique. We conclude the chapter with an experimental evaluation of

our techniques, in which we compare their implementation within Math-

SAT with the other available tools, showing significant improvements in

performance and scalability.

In part III we present an application of MathSAT to the formal verifi-

cation of software. We present our new Large-Block Encoding technique in

chapter 5, we compare it with the traditional Single-Block Encoding, and

we show significant performance improvements on a standard set of bench-

mark C programs. We also provide the needed background on software

model checking and discuss related work.

6



Finally, in chapter 6 we draw some conclusions and we outline possible

directions for future research.

Note. Although MathSAT fully supports the theory of bit-vectors (BV),

in this thesis we shall not deal with it. In fact, almost all the work on BV
in the current version of MathSAT was done by Anders Franzén, and a

detailed description of the techniques used can be found in his Ph.D. thesis.

7



8



Part I

MathSAT: an Efficient SMT Solver





Satisfiability Modulo Theories (SMT) is the problem of deciding the satis-

fiability of a first-order formula with respect to (a decidable fragment of)

some decidable first-order theory T . SMT has important applications in

several different domains, one of the most important being formal verifica-

tion of both hardware and software systems. In the last few years, SMT

has been exploited successfully for several verification tasks.

A key factor for the successful application of SMT is the availability

of efficient decision procedures for it, called SMT solvers, supporting sev-

eral expressive theories (e.g., bit-vectors, linear arithmetic, arrays) able to

represent problems which are either not expressible by Boolean logic or

which can be expressed to a much higher level of abstraction, and capable

of scaling to very large and complex problems. Most modern SMT solvers

are based on the lazy approach, in which a propositional SAT solver (based

on the DPLL algorithm) is combined with T -specific decision procedures

for conjunctions of constraints in the theory T .

In the first part of the thesis, we describe our tool MathSAT, one of the

most efficient lazy SMT solvers available. MathSAT implements many

of the state-of-the-art algorithms and techniques that have been proposed

in the SMT community over the last few years, and it supports several

important theories and combinations. Its efficiency is demonstrated by

11



the results of the last three editions of the annual SMT solvers competi-

tion SMT-COMP (http://smtcomp.org). In particular, it obtained the

following results:

• In 2007, MathSAT 4.0 competed in 7 divisions, obtaining 2 third

places;

• In 2008, MathSAT 4.2 competed in 9 divisions, obtaining 3 second

places and 4 third places;

• In 2009, MathSAT 4.3 competed in 12 divisions, obtaining 2 first

places, 7 second places and 1 third place.

In this part, we first review the state-of-the-art algorithms for quantifier-

free lazy SMT solving on which MathSAT is based (Ch. 1), and we then

describe the main aspects of its architecture and we provide details about

the implementation of its main components (Ch. 2).

12

http://smtcomp.org


Chapter 1

Background

This chapter introduces background concepts and terminology that shall be

used both in this part and in the rest of the thesis. The material presented

is standard in SMT, and is mostly taken from [BCF+08, CGS09b, Seb07].

1.1 The Satisfiability Modulo Theory Problem

Our setting is standard first-order logic.

In the following, let Σ be a first-order signature containing function

and predicate symbols with their arities, and V be a set of variables. A

0-ary function symbol c is called a constant. A 0-ary predicate symbol A

is called a Boolean atom. A Σ-term is either a variable in V or it is built

by applying function symbols in Σ to Σ-terms. If t1, . . . , tn are Σ-terms

and P is a predicate symbol, then P (t1, . . . , tn) is a Σ-atom. A Σ-formula

ϕ is built in the usual way out of the universal and existential quantifiers

∀,∃, the Boolean connectives ∧,¬, and Σ-atoms. We use the standard

Boolean abbreviations: “ϕ1 ∨ ϕ2” for “¬(¬ϕ1 ∧ ¬ϕ2)”, “ϕ1 → ϕ2” for

“¬(ϕ1 ∧ ¬ϕ2)”, “ϕ1 ↔ ϕ2” for “¬(ϕ1 ∧ ¬ϕ2) ∧ ¬(ϕ2 ∧ ¬ϕ1)”, “>” (resp.

“⊥”) for the true (resp. false) constant. A Σ-literal is either a Σ-atom (a

positive literal) or its negation (a negative literal). We call a Σ-formula

quantifier-free if it does not contain quantifiers. A quantifier-free formula

13



CHAPTER 1. BACKGROUND

Table 1.1: Axioms defining =.

∀x.(x = x) (reflexivity)

∀x, y.(x = y → y = x) (symmetry)

∀x, y, z.(x = y ∧ y = z → x = z) (transitivity)

∀x1, . . . , xn, y1, . . . , yn.(
∧
i xi = yi)→ f(x1, . . . , xn) = f(y1, . . . , yn)

∀x1, . . . , xn, y1, . . . , yn.(
∧
i xi = yi)→ (P (x1, . . . , xn)↔ P (y1, . . . , yn)) (congruence)

is in conjunctive normal form (CNF) if it is written as a conjunction of

disjunctions of literals. A disjunction of literals is called a clause.

We assume the usual first-order notions of interpretation, satisfiability,

validity, logical consequence, and theory, as given, e.g., in [End01]. We

write Γ |= ϕ to denote that the formula ϕ is a logical consequence of the

(possibly infinite) set Γ of formulae. A Σ-theory is a set of first-order sen-

tences with signature Σ. All the theories we consider are first-order theories

with equality, which means that the equality symbol = is a predefined pred-

icate and it is always interpreted as the identity on the underlying domain.

Consequently, = is interpreted as a relation which is reflexive, symmetric,

transitive, and it is also a congruence. Therefore, every theory contains

the axioms of Table 1.1, for every function symbol f and every predicate

symbol P .

A Σ-structure I is a model of a Σ-theory T if I satisfies every sentence

in T . A Σ-formula is satisfiable in T (or T -satisfiable) if it is satisfiable in

a model of T . A Σ-formula is valid in T (or T -valid) if it is satisfiable in

all models of T . We write Γ |=T ϕ to denote T ∪ Γ |= ϕ. Two Σ-formulae

ϕ and ψ are T -equisatisfiable if and only if ϕ is T -satisfiable if and only if

ψ is T -satisfiable.

A conjunction Γ of T -literals in a theory T is convex if and only if for

each disjunction
∨n
i=1 xi = yi we have that Γ |=T

∨n
i=1 xi = yi if and only if

Γ |=T xi = yi for some i ∈ {1, ..., n}; a theory T is convex if and only if all

the conjunctions of literals are convex in T . A theory T is stably-infinite

14



1.1. THE SMT PROBLEM

if and only if for each T -satisfiable formula ϕ, there exists a model of T
whose domain is infinite and which satisfies ϕ. Notice that any convex

theory whose models are non-trivial (i.e., the domains of the models have

all cardinality strictly greater than one) is stably-infinite (see [BDS02]).

We call Satisfiability Modulo (the) Theory T , SMT(T ), the problem of

establishing the T -satisfiability of Σ-formulae, for some background theory

T . The SMT(T ) problem is NP-hard, since it subsumes the problem of

checking the satisfiability of Boolean formulae.

In this thesis we restrict our attention to quantifier-free Σ-formulae on

some Σ-theory T .1 Therefore, unless otherwise specified, when speaking

of decidability of the satisfiability problem in some theory T , we in fact

mean decidability of the quantifier-free satisfiability problem in T .

1.1.1 Notation

Notationally, we use the Greek letters ϕ, ψ to represent T -formulae, the

capital letters Ai’s and Bi’s to represent Boolean atoms, and the Greek

letters α, β, γ to represent T -atoms in general, the letters li’s to represent

T -literals, the letters µ, η to represent sets of T -literals. If l is a negative

T -literal ¬β, then by “¬l” we conventionally mean β rather than ¬¬β.

In what follows, for simplicity and if not specified otherwise, we might

omit the prefix “Σ-” when it is clear from the context, and refer simply to

terms, atoms, literals, formulae. Moreover, with a little abuse of notation,

we might sometimes denote conjunctions of literals l1 ∧ . . . ∧ ln as sets

{l1, . . . , ln} and vice versa. If η is {l1, . . . , ln}, we might also write ¬η to

mean ¬l1 ∨ . . . ∨ ¬ln. Furthermore, following the standard terminology of

the SMT (and SAT) community, we shall refer to predicates of arity zero

as Boolean variables , and to uninterpreted constants as theory variables

1 Notice that in SMT(T ), the free variables are implicitly existentially quantified, and hence equivalent
to Skolem constants.

15



CHAPTER 1. BACKGROUND

(or T -variables).

Finally, we define the following functions. The function Atoms(ϕ) takes

a T -formula ϕ and returns the set of distinct atomic formulae (atoms)

occurring in the T -formula ϕ. The bijective function T 2B (“Theory-to-

Boolean”) and its inverse B2T def

= T 2B−1 (“Boolean-to-Theory”) are such

that T 2B maps Boolean atoms into themselves and non-Boolean T -atoms

into fresh Boolean atoms — so that two atom instances in ϕ are mapped

into the same Boolean atom if and only if they are syntactically identical —

and extend to T -formulae and sets of T -formulae in the obvious way — i.e.,

B2T (¬ϕ1)
def

= ¬B2T (ϕ1), B2T (ϕ1 ./ ϕ2)
def

= B2T (ϕ1) ./ B2T (ϕ2) for each

Boolean connective ./, B2T ({ϕi}i)
def

= {B2T (ϕi)}i. We might sometimes

use the superscript p to denote an application of T 2B: given a T -expression

e, we write ep to denote T 2B(e), and vice versa. (In the following, we refer

to ep as the Boolean skeleton of e.) If T 2B(µ) |= T 2B(ϕ), then we say that

µ propositionally satisfies ϕ, written µ |=p ϕ.

1.2 T -solvers

We call a theory solver for T (T -solver) any procedure establishing whether

any given finite conjunction of quantifier-free Σ-literals (or equivalently,

any given finite set of Σ-literals) is T -satisfiable (T -consistent) or not.

Besides deciding T -satisfiability, modern T -solvers support several other

features which are relevant to SMT(T ). In what follows, we shall recall

the most important ones.

Model Generation. When invoked on a T -satisfiable set of T -literals µ,

a model-generating T -solver has the capability of returning a T -model

I which can be used as a witness for the consistency of µ in T (i.e.

I |=T µ).

Conflict Set Generation. Given a T -unsatisfiable set of T -literals µ, a

16



1.2. T -SOLVERS

theory conflict set is a T -unsatisfiable subset η of µ. η is a minimal

theory conflict set if and only if all its strict subsets η′ ⊂ η are T -

satisfiable. As we shall see in §1.3, a crucial factor for the performance

of a T -solver in an SMT(T ) context is its capability of producing small

(ideally minimal) theory conflict sets.

Incrementality. Within an SMT(T ) context (see §1.3), it is often the case

that T -solvers are invoked sequentially on incremental assignments,

in a stack-based manner, like in the following trace (left column first,

then right):

T -solver (µ1) ⇒ sat Undo µ4, µ3, µ2

T -solver (µ1 ∪ µ2) ⇒ sat T -solver (µ1 ∪ µ′2) ⇒ sat

T -solver (µ1 ∪ µ2 ∪ µ3) ⇒ sat T -solver (µ1 ∪ µ′2 ∪ µ′3) ⇒ sat

T -solver (µ1 ∪ µ2 ∪ µ3 ∪ µ4) ⇒ unsat ...

Thus, a key efficiency issue of T -solvers is that of being incremental

and backtrackable. Incremental means that a T -solver “remembers”

its computation status from one call to the other, so that, whenever

it is given in input an assignment µ1 ∪ µ2 such that µ1 has just been

proved T -satisfiable, it avoids restarting the computation from scratch

by restarting the computation from the previous status. Backtrackable

means that it is possible to undo steps and return to a previous status

on the stack in an efficient manner.

Deduction of Unassigned Literals. Given a set of T -literals µ′, and

a T -satisfiable subset µ of µ′, a T -solver is said to have deduction

capabilities if, when invoked on µ, it is able to discover one (or more)

deductions in the form {l1, . . . , ln} |=T l, such that {l1, . . . , ln} ⊆ µ

and l ∈ µ′ \ µ. We say that a T -solver is deduction-complete if it can

perform all possible such deductions, or say that no such deduction

can be performed.

17



CHAPTER 1. BACKGROUND

1.3 Modern Lazy SMT Solvers

The currently most popular approach for solving the SMT(T ) problem

is the so-called “lazy” approach [Seb07, BSST09] (also frequently called

“DPLL(T )” [NOT06]).

The lazy approach works by combining a propositional SAT solver based

on the DPLL algorithm [DLL62] with a T -solver. Essentially, DPLL is

used as an enumerator of truth assignments µpi propositionally satisfiying

the Boolean skeleton ϕp of the input formula ϕ, and the T -solver is used

for checking the T -satisfiability of each µi
def

= B2T (µpi ): if the current µi

is T -satisfiable, then ϕ is T -satisfiable; otherwise, if none of the µi’s are

T -satisfiable, then ϕ is T -unsatisfiable.

1.3.1 The Online Lazy SMT Schema

Figure 1.1 represents the schema of a modern lazy SMT solver based

on a DPLL engine (see e.g. [ZM02]). It is an abstraction of the algorithm

implemented in most state-of-the-art lazy SMT solvers, including Barce-

Logic [BNO+08a], CVC3 [BT07], DPT [GKF08], OpenSMT [BPST09],

Yices [DdM06a], Z3 [dMB08c] and MathSAT.

The input ϕ and µ are a T -formula and a reference to an (initially

empty) set of T -literals respectively. The DPLL solver embedded in T -

DPLL reasons on and updates ϕp and µp, and T -DPLL maintains some

data structure encoding the bijective mapping T 2B/B2T on atoms.

T -preprocess simplifies ϕ into a simpler formula, and updates µ if it is the

case, so that to preserve the T -satisfiability of ϕ ∧ µ. If this process

produces some conflict, then T -DPLL returns unsat. T -preprocess

may combine most or all the Boolean preprocessing steps available

from SAT literature with theory-dependent rewriting steps on the T -

literals of ϕ. This step involves also the conversion to CNF of the

18



1.3. MODERN LAZY SMT SOLVERS

SatValue T -DPLL (T -formula ϕ, reference T -assignment µ)

1. if T -preprocess (ϕ, µ) == conflict then
2. return unsat

3. end if
4. ϕp = T 2B (ϕ)
5. µp = T 2B (µ)
6. loop
7. T -decide-next-branch (ϕp, µp)
8. loop
9. status = T -deduce (ϕp, µp)
10. if status == sat then
11. µ = B2T (µp)
12. return sat

13. else if status == conflict then
14. blevel = T -analyze-conflict (ϕp, µp)
15. if blevel == 0 then
16. return unsat

17. else
18. T -backtrack (blevel, ϕp, µp)
19. end if
20. else
21. break
22. end if
23. end loop
24. end loop

Figure 1.1: An online schema of T -DPLL based on modern DPLL.

input formula, if required.

T -decide-next-branch selects some literal lp and adds it to µp. It plays the

same role as the standard literal selection heuristic decide-next-branch

in DPLL [ZM02], but it may take into consideration also the semantics

in T of the literals to select. (This operation is called decision, lp is

called decision literal and the number of decision literals in µ after

this operation is called the decision level of lp.)

T -deduce, in its simplest version, behaves similarly to deduce in DPLL

[ZM02]: it iteratively deduces Boolean literals lp which derive propo-

sitionally from the current assignment (i.e., s.t. ϕp ∧ µp |= lp) and

19



CHAPTER 1. BACKGROUND

updates ϕp and µp accordingly. (The iterative application of unit-

propagation performed by deduce and T -deduce is often called Boolean

Constraint Propagation, BCP.) This step is repeated until one of the

following facts happens:

(i) µp propositionally violates ϕp (µp ∧ ϕp |= ⊥). If so, T -deduce

behaves like deduce in DPLL, returning conflict.

(ii) µp satisfies ϕp (µp |= ϕp). If so, T -deduce invokes T -solver on B2T
(µp): if T -solver returns sat, then T -deduce returns sat; otherwise,

T -deduce returns conflict.

(iii) no more literals can be deduced. If so, T -deduce returns unknown.

A slightly more elaborated version of T -deduce can invoke T -solver

on B2T (µp) also if µp does not yet satisfy ϕp: if T -solver returns

unsat, then T -deduce returns conflict. (This enhancement is called

Early Pruning, EP.)

Moreover, during EP calls, if T -solver is able to perform deductions

in the form η |=T l s.t. η ⊆ µ and lp
def

= T 2B(l) is an unassigned literal

in ϕp, then T -deduce can append lp to µp and propagate it. (This

enhancement is called T -propagation.)

T -analyze-conflict is an extension of analyze-conflict of DPLL [ZM02]: if

the conflict produced by T -deduce is caused by a Boolean failure (case

(i) above), then T -analyze-conflict produces a Boolean conflict set ηp

and the corresponding value blevel of the decision level where to back-

track; if instead the conflict is caused by a T -inconsistency revealed

by T -solver, then T -analyze-conflict produces the Boolean skeleton

ηp
def

= T 2B(η) of the T -conflict set η produced by T -solver. As already

mentioned in §1.2, it is important for performance that T -solver gen-

erates “good” (short, ideally minimal) T -conflict sets, because they

20



1.3. MODERN LAZY SMT SOLVERS

can make DPLL prune a larger portion of the search space.

T -backtrack behaves analogously to backtrack in DPLL [ZM02]: once the

conflict set ηp and blevel have been computed, it adds the clause ¬ηp

to ϕp, either temporarily or permanently, and backtracks up to blevel.

(These features are called T -learning and T -backjumping.)

An important improvement of T -deduce is the following: when T -solver

is invoked on EP calls and performs a deduction η |=T l (step (iii) above),

then the clause T 2B(¬η ∨ l) (called deduction clause) can be added to ϕp,

either temporarily or permanently. The deduction clause will be used for

the future Boolean search, with benefits analogous to those of T -learning.

To this extent, notice that T -propagation can be seen as a unit-propagation

on a deduction clause. (As both T -conflict clauses and deduction clauses

are T -valid, they are also called T -lemmas.)

A further enhancement of T -deduce is to use a technique called layer-

ing [ABC+02, BBC+05, BCF+07], which consists of using a collection of

T -solvers S1, . . . , SN organized in a layered hierarchy of increasing expres-

sivity and complexity. Each solver Si is able to decide a theory Ti which is

a subtheory of Ti+1, and which is less expensive to handle than Ti+1. The

solver SN is the only one that can decide the full theory T . If the solver

Si detects an inconsistency, then there is no need of invoking the more

expensive solvers Si+1, . . . , SN , and unsat can be returned immediately.

Another important improvement of T -analyze-conflict and T -backtrack

[NOT06] is that of building from ¬ηp also a “mixed Boolean+theory con-

flict clause”, by recursively removing non-decision literals lp from the clause

¬ηp (in this case called conflicting clause) by resolving the latter with the

clause Clp which caused the unit-propagation of lp (called the antecedent

clause of lp); if lp was propagated by T -propagation, then the deduction

clause is used as antecedent clause. This is done until the conflict clause

21



CHAPTER 1. BACKGROUND

contains no non-decision literal which has been assigned after the last deci-

sion (last-UIP strategy) or at most one such non-decision literal (first-UIP

strategy).2

On the whole, T -DPLL differs from the DPLL schema of [ZM02] because

it exploits:

• an extended notion of deduction and propagation of literals: not only

unit propagation (µp∧ϕp |= lp), but also T -propagation (B2T (µp) |=T
B2T (lp));

• an extended notion of conflict: not only Boolean conflict (µp ∧ ϕp |=
⊥), but also theory conflict (B2T (µp) |=T ⊥), or even mixed Boolean+theory

conflict (B2T (µp ∧ ϕp) |=T ⊥).

1.4 Some Relevant Theories in SMT

We give an overview of some of the theories of interest in SMT, supported

by most state-of-the-art SMT solvers.

1.4.1 Equality and Uninterpreted Functions

The theory of Equality and Uninterpreted Functions (EUF) 3 is the F.O.

theory with equality with no restrictions on Σ. EUF is stably-infinite and

convex. The EUF -satisfiability of sets of quantifier-free literals is decidable

and polynomial [Ack54].

An EUF -solver can be implemented on top of data structures and algo-

rithms for computing the congruence closure of a set of terms. Intuitively,

a congruence-closure based EUF -solver can be described as follows. Given

a set of equalities E and a set of disequalities D between terms in a set S,

it partitions S into disjoint subsets, called congruence classes, such that

2 These are standard techniques for SAT solvers to build the Boolean conflict clauses [ZMMM01].
3Simply called “the theory of equality” by some authors.

22



1.4. SOME RELEVANT THEORIES IN SMT

two terms ti and tj are in the same class if and only if (ti = tj) follows from

the equality axioms of Table 1.1. The set E ∪D is then EUF -inconsistent

if and only if there exists a disequality ¬(ti = tj) in D such that ti and tj

belong to the same congruence class.

Congruence closure can be implemented efficiently on top of the stan-

dard Union-Find algorithm (see, e.g., [NO07]), providing important fea-

tures such as incrementality, efficient backtracking, conflict-set genera-

tion and deduction of unassigned equalities and disequalities (see, e.g.,

[DNS05, NO07]). The algorithm in [NO07] extends EUF with offset val-

ues (that is, it can represent expressions like (t1 = t2 + k), t1, t2 being

EUF terms and k being a constant integer value).

1.4.2 Linear Arithmetic

The theory of Linear Arithmetic (LA) on the rationals (LA(Q)) and on the

integers (LA(Z)) is the F.O. theory with equality whose atoms are written

in the form (a1 · x1 + ...+ an · xn ./ a0), s.t. ./ ∈ {≤, <, 6=,=,≥, >}, where

the ai’s are (interpreted) constant symbols, each labeling one value in Q
and Z respectively. The atomic expressions are interpreted according to

the standard semantics of linear arithmetic on Q and Z respectively. (See,

e.g., [MZ03] for a more formal definition of LA(Q) and LA(Z). Informally,

we consider LA(Q) as the theory consisting of all formulae with atoms in

the form above which are true in the standard model of rational numbers,

and similarly for LA(Z).)

LA(Q) is stably-infinite and convex. The LA(Q)-satisfiability of sets of

quantifier-free literals is decidable and polynomial [Kha79]. The main al-

gorithms used are variants of the well-known Simplex and Fourier-Motzkin

algorithms. Efficient incremental and backtrackable algorithms for LA(Q)-

solvers have been conceived, which can efficiently perform conflict-set gen-

eration and deduction of unassigned literals (see, e.g., [DNS05, RS04,

23



CHAPTER 1. BACKGROUND

DdM06a]).

LA(Z) is stably-infinite and non-convex. The LA(Z)-satisfiability of

sets of quantifier-free literals is decidable and NP-complete [Pap81]. A

popular algorithm among current SMT solvers for deciding LA(Z) is to

combine a Simplex-based solver for LA(Q) with some forms of branch-and-

bound [Sch86], often combined with the Gomory’s cutting planes method

[DdM06b]. An alternative is to use the Omega test [Pug91], an extension

of the Fourier-Motzkin algorithm for the integers, which has however the

disadvantage of requiring huge amounts of memory in general. Recently,

a novel algorithm that generalizes branch-and-bound has been proposed

[DDA09], showing significant improvements over previous approaches used

in SMT.

There are two main relevant sub-theories of LA: the theory of difference

logic and the Unit-Two-Variable-Per-Inequality theory.

1.4.3 Difference logic

The theory of difference logic (DL) on the rationals (DL(Q)) and the

integers (DL(Z)) is the sub-theory of LA(Q) (resp. LA(Z)) whose atoms

are written in the form (0 ./ x2−x1 +a), such that ./ ∈ {≤, <, 6=,=,≥, >},
and the a is an (interpreted) constant symbol labeling one value in Q and

Z respectively. 4

All DL literals can be rewritten in terms of positive difference inequal-

ities (0 ≤ y − x+ a) only (see e.g. [Seb07].) 5

DL(Q) is stably-infinite and convex. The DL(Q)-satisfiability problem

4 Notice that also in DL(Q) we can assume w.l.o.g. that all constant symbols a occurring in the
formula are in Z because, if this is not so, then we can rewrite the whole formula into an equivalently-
satisfiable one by multiplying all constant symbols occurring in the formula by their greatest common
denominator.

5 Notice that in DL(Z) this process require splitting disequalities into the disjunction of two difference
inequalities. In DL(Q), this is not necessary [Seb07].

24



1.4. SOME RELEVANT THEORIES IN SMT

of sets of quantifier-free difference inequalities is decidable and polynomial;

The main algorithms encode theDL(Q)-satisfiability of sets of difference

inequalities into the problem of finding negative cycles into a weighted

oriented graph, called constraint graph. Intuitively, a set S of DL(Q)

atoms induces a graph whose vertexes are the variables of the atoms, and

there exists an edge x
a−→ y for every (0 ≤ y− x+ a) ∈ S. S is inconsistent

if and only if the induced graph has a cycle of negative weight.

Efficient graph-based incremental algorithms for DL(Q)-solvers have

been conceived, which can efficiently perform minimal conflict-set genera-

tion and T -deduction of unassigned literals [CM06, NO05].

DL(Z) is stably-infinite and non-convex. As with DL(Q), the DL(Z)-

satisfiability of sets of quantifier-free difference inequalities is decidable and

polynomial; as before, adding equalities does not affect the complexity of

the problem. Instead, and due to the non-convexity of DL(Z), the DL(Z)-

satisfiability of sets of quantifier-free difference inequalities, equalities and

disequalities is NP-complete [LM05]. Once the problem is rewritten as a

set of difference inequalities, the algorithms used for DL(Z)-solvers are the

same as for DL(Q) [CM06, NO05].

1.4.4 Unit-Two-Variable-Per-Inequality

The Unit-Two-Variable-Per-Inequality (UT VPI) theory is a subcase of

LA whose atoms can be written in the form (0 ≤ ±x2 ± x1 + a). Notice

that DL is a sub-theory of UT VPI. UT VPI is stably-infinite, and it is

convex over the rationals (UT VPI(Q)) and non-convex over the integers

(UT VPI(Z)). The currently most efficient algorithms for UT VPI (both

over the rationals and over the integers) are based on negative cycle detec-

tion on an extended constraint graph [Min01, LM05]. Intuitively, the set of

UT VPI constraints is encoded into a set of DL constraints by introducing

two variables x+ and x− for each original variable x, representing x and −x

25



CHAPTER 1. BACKGROUND

respectively, and encoding each constraint with a pair of DL(Z) constraint

(e.g., (0 ≤ x+− y−+ a) and (0 ≤ y+− x−+ a) for (0 ≤ x+ y+ a)). In the

case of UT VPI(Q), it is then enough to check for negative-weight cycles

in the DL(Q)-constraint graph [Min01]. In the case of UT VPI(Z), also

some particular zero-weight cycles must be detected [LM05].

1.4.5 Arrays

The theory of arrays (AR) aims at modeling the behavior of arrays/memories.

The signature consists in the two interpreted function symbols store and

select, such that store(a, i, e) represents (the state of) the array resulting

from storing an element e into the location of address i of an array a, and

select(a, i) represents the element contained in the array a at location i.

AR is formally characterized by the following axioms (see [MZ03]):

∀a.∀i.∀e. (select(store(a, i, e), i) = e), (1.1)

∀a.∀i.∀j.∀e. ((i 6= j)→ select(store(a, i, e), j) = select(a, j)), (1.2)

∀a.∀b. (∀i.(select(a, i) = select(b, i))→ (a = b)). (1.3)

(1.1) and (1.2), called McCarthy’s axioms, characterize the intended mean-

ing of store and select, whilst (1.3), called the extensionality axiom, requires

that, if two arrays contain the same values in all locations, than they must

be the same array. The theory of arrays is called extensional if it includes

(1.3), non-extensional otherwise.

The AR-satisfiability of sets of quantifier-free literals is decidable and

NP-complete [SBDL01]. The most common approach for dealing with AR
is to use a reduction to EUF by means of axiom instantiation: a sufficient

number of instances of the AR-axioms (1.1)–(1.3) (obtained by replacing

the universally-quantified variables with with appropriate ground terms

occurring in the input formula) are added to the formula, so that the

original formula is AR-unsatisfiable if and only if the augmented formula

26



1.4. SOME RELEVANT THEORIES IN SMT

is EUF -unsatisfiable [KZ05]. This is typically done lazily during search,

using a “lemmas-on-demand” approach [dMRS02], in order to minimize

the number of axiom instances needed [DNS05, SBDL01, GD07, GKF08,

BB09a]. A notable exception to the axiom-instantiation approach is the

AR-solver of [BNO+08b]. Finally, the works in [BMS06, GNRZ07] discuss

decision procedures for extensions of the AR theory beyond the select and

store operations.

1.4.6 Bit vectors

The theory of fixed-width bit vectors (BV) is a F.O. theory with equality

which aims at representing Register Transfer Level (RTL) hardware cir-

cuits, so that components such as data paths or arithmetical sub-circuits

are considered as entities as a whole, rather than being encoded into purely

propositional sub-formulae. BV can also be used to encode software veri-

fication problems (see e.g. [GD07]).

In BV terms indicate fixed-width bit vectors, and are built from variables

(e.g., x[32] indicates a bit vector x of 32 bits) and constants (e.g., 0[16]

denotes a vector of 16 0’s) by means of interpreted functions representing

standard RTL operators: word concatenation (e.g., 0[16] :: z[16]), sub-word

selection (e.g., (x[32][20 : 5])[16]), modulo-n sum and multiplication (e.g.,

x[32]+32 y[32] and x[16]·16 y[16]), bitwise-operators andn , orn, xorn, notn

(e.g., x[16]and16 y[16]), left and right shift <<n, >>n (e.g., x[32]<<4). Atomic

expressions can be built from terms by applying interpreted predicates like

≤n, <n (e.g., 0[32] ≤32 x[32]) and equality.

BV is non-convex and non-stably infinite. The BV-satisfiability of sets

of quantifier-free literals is decidable and NP-complete. Several different

approaches for BV-satisfiability have been proposed, e.g. [BDL98, BD02,

BBC+06a, BCF+07, GD07, BKO+09]. The currently most efficient al-

gorithms are based on word-level preprocessing followed by encoding the

27



CHAPTER 1. BACKGROUND

result into pure SAT (“bit blasting”) [MSV07, WFG+07, BB09b, JLS09].

1.5 SMT for Combinations of Theories

In many practical applications of SMT, the theory T under consideration

can be expressed as a combination of two (or more) simpler theories T1 and

T2, SMT(T1∪T2). For instance, an atom of the form f(x+4y) = g(2x−y),

that combines uninterpreted function symbols (from EUF) with arithmetic

functions (from LA(Z), see §1.4), could be used to naturally model in a

uniform setting the abstraction of some functional blocks in an arithmetic

circuit (see e.g. [BD02, BBC+06a]). In order to deal with SMT(T1 ∪ T2)

formulae, current lazy SMT solvers adopt two different approaches:

• Use some theory combination mechanism between the two T -solvers

for T1 and T2; or

• If one of the two theories is that of equality and uninterpreted func-

tions EUF , an SMT(EUF ∪ T ) problem can be reduced to an equi-

satisfiable SMT(T ) one by applying Ackermann’s reduction [Ack54].

1.5.1 SMT(T1 ∪ T2) via Theory Combination

The work on combining T -solvers for distinct theories was pioneered by

Nelson and Oppen [NO79, Opp80] and Shostak [Sho84]. 6 In particu-

lar, Nelson and Oppen established the theoretical foundations onto which

most current combined procedures are still based on (hereafter Nelson-

Oppen (N.O.) logical framework). They also proposed a general-purpose

procedure for integrating Ti-solvers into one combined T -solver (hereafter

6 Nowadays there seems to be a general consensus on the fact that Shostak’s procedure should not be
considered as an independent combination method, rather as a collection of ideas on how to implement
Nelson-Oppen’s combination method efficiently [BDS02, DNS05].

28



1.5. SMT FOR COMBINATIONS OF THEORIES

Nelson-Oppen (N.O.) procedure), based on the deduction and exchange of

(disjunctions of) equalities between shared variables (interface equalities).

Up to a few years ago, the standard approach to SMT(T1∪T2) was thus

to integrate the SAT solver with one combined T1 ∪ T2-solver, obtained

from two distinct Ti-solvers by means of the N.O. combination procedure.

Variants and improvements of the N.O. procedure were implemented in the

CVC/CVCLite [BB04], ICS [dMOR+04], Simplify [DNS05], Verifun

[FJOS03], Zapato [BCLZ04] lazy SMT tools.

More recently Bozzano et al. [BBC+06b] proposed Delayed Theory

Combination (DTC), a novel combination procedure in which each Ti-solver

interacts directly and only with the SAT solver, in such a way that part

or all of the (possibly very expensive) reasoning effort on interface equali-

ties is delegated to the SAT solver itself. Variants and improvements of the

DTC procedure are currently implemented in the CVC3 [BT07, BNOT06],

DPT [KG07], 7 Yices [DdM06c], Z3 [dMB08a] and MathSAT lazy SMT

tools; in particular, Yices [DdM06c] and Z3 [dMB08a] introduced many

important improvements on the DTC schema (e.g., that of generating in-

terface equalities on-demand, and important “model-based” heuristics to

drive the Boolean search on the interface equalities); CVC3 [BT07] com-

bines the main ideas from DTC with that of splitting-on-demand [BNOT06],

which pushes even further the idea of delegating to the DPLL engine part

of the reasoning effort previously due to the Ti-solvers.

Definitions and Theoretical Background

Consider two theories T1 and T2 with equality and whose signatures Σ1 and

Σ2 are disjoint. A Σ1 ∪ Σ2-term t is an i-term if and only if either it is a

variable or it has the form f(t1, . . . , tn), where f is in Σi. Notice that a

7Notice that, although [KG07] speak of “Nelson-Oppen with DPLL”, their formalism implements and
further improves the key ideas of DTC.

29



CHAPTER 1. BACKGROUND

variable is both a 1-term and a 2-term. A non-variable subterm s of an

i-term t is alien if s is a j-term, and all superterms of s in t are i-terms,

where i, j ∈ {1, 2} and i 6= j. An i-term is i-pure if it does not contain alien

subterms. An atom (or a literal) is i-pure if it contains only i-pure terms

and its predicate symbol is either equality or in Σi. A T1 ∪T2-formula ϕ is

said to be pure if every atom occurring in the formula is i-pure for some

i ∈ {1, 2}. (Intuitively, ϕ is pure if each atom can can be seen as belonging

to one theory Ti only.) Every non-pure T1∪T2 formula ϕ can be converted

into an equisatisfiable pure formula ϕ′ by recursively labeling each alien

subterm t with a fresh variable vt, and by adding the atom (vt = t). E.g.:

(f(x+ 3y) = g(2x− y)) =⇒

(f(vx+3y) = g(v2x−y)) ∧ (vx+3y = x+ 3y) ∧ (v2x−y = 2x− y).

This process is called purification, and is linear in the size of the input

formula. Thus, henceforth we assume w.l.o.g. that all input formulae

ϕ ∈ T1 ∪ T2 are pure. 8

If ϕ is a pure T1 ∪ T2 formula, then v is an interface variable for ϕ if

and only if it occurs in both 1-pure and 2-pure atoms of ϕ. An equality

(vi = vj) is an interface equality for ϕ if and only if vi, vj are interface

variables for ϕ. We assume a unique representation for (vi = vj) and

(vj = vi). (Henceforth, we denote the interface equality (vi = vj) by “eij”.)

Given a set of literals µ, we say that a T -solver is eij-deduction complete

if and only if the T -solver is able to detect all the possible deductions in

the form µ |=T e (if T is convex) or in the form µ |=T
∨
j ej (if T is not

convex), where e, ej are interface equalities between variables occurring in

µ.

8 Notice that in fact this assumption is not strictly necessary for the theory combination methods that
are described here, thanks to some techiques described in [BDS02]. However, for ease of exposition we
shall still assume that purification is performed.

30



1.5. SMT FOR COMBINATIONS OF THEORIES

Nelson-Oppen Combination

Consider two stably-infinite theories with equality T1 and T2 and dis-

joint signatures Σ1 and Σ2 (often called Nelson-Oppen theories) whose

quantifier-free satisfiability problem is decidable, and consider a pure con-

junction of T1 ∪ T2-literals µ
def

= µT1
∧ µT2

such that µTi
is i-pure for each i.

Nelson and Oppen’s key observation [NO79] is that µ is T1 ∪ T2-satisfiable

if and only if it is possible to find two satisfying interpretations I1 and I2

such that I1 |=T1
µT1

and I2 |=T2
µT2

which agree on all equalities on the

shared variables.

Overall, Nelson-Oppen results reduce the T1∪T2-satisfiability problem of

a set of pure literals µ to that of finding (the arrangement of) an equivalence

relation on the shared variables (µe) which is consistent with both pure

parts of µ. The condition of having only pure conjunctions as input allows

to partition the problem into two independent Ti-satisfiability problems

µTi
∧ µe, whose Ti-satisfiability can be checked separately. The condition

of having stably-infinite theories is sufficient to guarantee enough values in

the domain to allow the satisfiability of every possible set of disequalities

one may encounter.

A basic architectural schema of SMT(T1 ∪ T2) via N.O. is described in

Figure 1.2. (Here we provide only a high-level description; the reader may

refer, e.g., to [NO79, Sho79, FORS01, BDS02, SR02, DNS05] for more

details.) We assume that all Ti’s are N.O. theories and their Ti-solvers are

eij-deduction complete. 9

We consider first the case in which both theories are convex. The com-

bined T1 ∪T2-solver receives from DPLL a pure set of literals µ, and parti-

tions it into µT1
∪µT2

, s.t. µTi
is i-pure, and feeds each µTi

to the respective

9Notice that, theoretically speaking, the condition of eij-deduction completeness is not strictly needed.
However, it is needed in practice, in order to be able to implement a deterministic version of the N.O.
procedure (see e.g. [BBC+06b, BCF+08] for an extensive discussion about this issue.)

31



CHAPTER 1. BACKGROUND

BOOLEAN MODEL

Atoms

µ1 ∪ µ2sat/unsat

∨
eij

T1-solver

T1-deduce

T1-solve

T2-solve

T2-deduce

T2-solver

ENUMERATOR (DPLL)

T1 ∪ T2-solver

Figure 1.2: A basic architectural schema of SMT(T1 ∪ T2) via the N.O. procedure.

Ti-solver. Each Ti-solver, in turn:

(i) checks the Ti-satisfiability of µTi
,

(ii) deduces all the interface equalities deriving from µTi
,

(iii) passes them to the other T -solver, which adds it to his own set of

literals.

This process is repeated until either one Ti-solver detects inconsistency

(µ1∪µ2 is T1∪T2-unsatisfiable), or no more eij-deduction is possible (µ1∪µ2

is T1 ∪ T2-satisfiable).

In the case in which at least one theory is non-convex, the N.O. proce-

dure becomes more complicated, because the two solvers need to exchange

arbitrary disjunctions of interface equalities. As each Ti-solver can handle

only conjunctions of literals, the disjunctions must be managed by means

of case splitting and of backtrack search. Thus, in order to check the con-

sistency of a set of literals, the combined T1 ∪ T2-solver must internally

32



1.5. SMT FOR COMBINATIONS OF THEORIES

[µ′T1
→

∨
eij] [µ′T2

→
∨
eij]

[T1-deduce] [T2-deduce]

BOOLEAN MODEL

µe µT2
sat/unsatsat/unsat

Atoms ∪ {eij}ij

T1-solve T2-solve

T1-solver T2-solver

ENUMERATOR (DPLL)

µT1

Figure 1.3: A basic architectural schema of SMT(T1 ∪ T2) via the DTC procedure.

explore a number of branches which depends on how many disjunctions

of equalities are exchanged at each step: if the current set of literals is µ,

and one of the Ti-solvers sends the disjunction
∨n
k=1(eij)k to the other, the

latter must further investigate up to n branches to check the consistency

of each of the µ ∪ {(eij)k} sets separately.

Delayed Theory Combination

Delayed Theory Combination (DTC) is a more recent general-purpose pro-

cedure for tackling the problem of theory combination directly in the con-

text of lazy SMT [BBC+06b, BCF+08]. DTC works by performing Boolean

reasoning on interface equalities, possibly combined with T -propagation,

with the help of the embedded DPLL solver. As with N.O. procedure,

DTC is based on the N.O. logical framework, and thus considers signature-

disjoint stably-infinite theories with their respective Ti-solvers, and pure

33



CHAPTER 1. BACKGROUND

input formulae (although the consideration on releasing purity — see foot-

note 8 at page 30 — holds for DTC as well). Importantly, no assumption

is made about the eij-deduction capabilities of the Ti-solvers: for each

Ti-solver, every intermediate situation from complete eij-deduction to no

eij-deduction capabilities is admitted.

A basic architectural schema of DTC is described in Figure 1.3. In DTC,

each of the two Ti-solvers interacts directly and only with the Boolean

enumerator (DPLL), so that there is no direct exchange of information

between the Ti-solvers. The Boolean enumerator is instructed to assign

truth values not only to the atoms in Atoms, but also to the interface

equalities eij’s. Consequently, each assignment µp enumerated by DPLL

is partitioned into three components µpT1
, µpT2

and µpe, such that each µTi
is

the set of i-pure literals and µe is the set of interface (dis)equalities in µ,

so that each µTi
∪ µe is passed to the respective Ti-solver.

An implementation of DTC [BBC+06b] is based on the online schema of

Figure 1.1 in §1.3.1, exploiting early pruning, T -propagation, T -backjumping

and T -learning. Each of the two Ti-solvers interacts with the DPLL en-

gine by exchanging literals via the assignment µ in a stack-based manner.

The T -DPLL algorithm of Figure 1.1 in §1.3.1 is modified to the following

extents:

1. T -DPLL is instructed to assign truth values not only to the atoms in

ϕ, but also to the interface equalities not occurring in ϕ. B2T and

T 2B are modified accordingly.

2. T -decide-next-branch is modified to select also interface equalities eij’s

not occurring in the formula yet.10

3. T -deduce is modified to work as follows: instead of feeding the whole

10Notice that an interface equality occurs in the formula after a clause containing it is learned, see
point 4.

34



1.5. SMT FOR COMBINATIONS OF THEORIES

µ to a (combined) T -solver, for each Ti, µTi
∪µe is fed to the respective

Ti-solver. If both return sat, then T -deduce returns sat, otherwise it

returns conflict.

4. T -analyze-conflict and T -backtrack are modified so that to use the con-

flict set returned by one Ti-solver for T -backjumping and T -learning.

Importantly, such conflict sets may contain interface (dis)equalities.

5. Early-pruning and T -propagation are performed. If one Ti-solver per-

forms the eij-deduction µ∗ |=Ti

∨k
j=1 ej such that µ∗ ⊆ µTi

∪ µe and

each ej is an interface equality, then the deduction clause T 2B(µ∗ →∨k
j=1 ej) is learned.

6. [If and only if both Ti-solvers are eij-deduction complete.] If

an assignment µ which propositionally satisfies ϕ is found Ti-satisfiable

for both Ti’s, and neither Ti-solver performs any eij-deduction from µ,

then T -DPLL stops returning sat. 11

In order to achieve efficiency, other heuristics and strategies have been

further suggested in [BBC+06b, BCF+08], and more recently in [BNOT06,

DdM06c, dMB08a].

In short, in DTC the embedded DPLL engine not only enumerates truth

assignments for the atoms of the input formula, but it also assigns truth

values for the interface equalities that the T -solvers are not capable of

inferring, and handles the case splits induced by the entailment of dis-

junctions of interface equalities in non-convex theories. The rationale is

to exploit the full power of a modern DPLL engine and to delegate to it

part of the heavy reasoning effort on interface equalities previously due to

the Ti-solvers. Overall, DTC is simpler to implement than N.O., while at

the same time offering several advantages over N.O. in terms of versatility,

11This is identical to the T1 ∪ T2-satisfiability termination condition of N.O. procedure.

35



CHAPTER 1. BACKGROUND

efficiency, and restrictions imposed to T -solvers (see [BCF+08] for a com-

prehensive comparison of N.O. and DTC), and thus it is the combination

method of choice for many state-of-the-art SMT solvers, including CVC3

[BT07, BNOT06], DPT [KG07], Yices [DdM06c], Z3 [dMB08c, dMB08a]

and MathSAT.

Model-Based Theory Combination

Model-Based theory combination [dMB08a] is a recent evolution of the

DTC idea that was shown to lead to significant improvements in perfor-

mance. Similarly to DTC, it works by augmenting the Boolean search

space with up to all the possible interface equalities. The difference is

that the models produced by the single theories Ti are used to guess the

right value for each interface equality, and the DPLL solver is used only

if the individual models do not agree on some equality. This approach is

based on the observation that in practice inter-theory conflicts are much

less frequent than intra-theory conflicts, and therefore on many cases the

models for the individual theories Ti disagree only on a small subset of all

the possible interface equalities. With model-based theory combination,

only such mismatches cause extra Boolean search.

More specifically, model-based theory combination works as follows.

When given an SMT(T1 ∪ T2) problem as input, no interface equality is

generated, and the Ti-solvers work completely independently. When a com-

plete truth-assignment µ is generated that is consisent in the two individual

theories Ti, the models Mi generated by the two Ti-solvers are checked to

discover the implied interface equalities. For each pair of interface vari-

ables u and v, only ifMi(u) =Mi(v), then the interface equality u = v is

generated; moreover, the DPLL engine is instrumented to branch on the

true value first. If the number of inter-theory conflicts is small, on most

cases this will not cause an inconsistency in the other theory, so no extra

36



1.5. SMT FOR COMBINATIONS OF THEORIES

Boolean search will be performed. If this instead leads to a conflict, then

DPLL will backjump, flip some literals, and continue searching exactly like

in the original DTC. For more details on model-based theory combination

and related optimizations, we refer the reader to [dMB08a].

1.5.2 SMT(EUF ∪ T ) via Ackermann’s Reduction

When one of the theories Ti is EUF , one further approach to the SMT(T1∪
T2) problem is to eliminate uninterpreted function symbols by means of

Ackermann’s reduction [Ack54] 12 so that to obtain an SMT(T ) problem

with only one theory. The method works by replacing every function ap-

plication occurring in the input formula ϕ with a fresh variable and then

adding to ϕ all the needed functional congruence constraints. The new for-

mula ϕ′ obtained is equisatisfiable with ϕ, and contains no uninterpreted

function symbols.

First, each distinct function application f(t1, . . . , tn) is replaced by a

fresh variable vf(t1,...,tn). Then, for every pair of distinct applications of the

same function, f(t1, . . . , tn) and f(u1, . . . , un), a congruence constraint

arity(f)∧
i=1

(ack(ti) = ack(ui))→ (vf(t1,...,tn) = vf(u1,...,un)), (1.4)

is added, where ack is a function that maps each function application

g(w1, . . . , wn) into the corresponding variable vg(w1,...,wn), each variable into

itself and is homomorphic wrt. the interpreted symbols. The atom (ack(ti) =

ack(ui)) is not added if the two sides of the equality are syntactically iden-

tical; if so, the corresponding implication in (1.4) is dropped.

12often called also Ackermann’s expansion.

37



CHAPTER 1. BACKGROUND

38



Chapter 2

Details on MathSAT

This chapter is devoted to the engineering aspects of the development

of MathSAT, providing details about the implementation of its main

components.

Contributions

We provide a detailed description of the main components of MathSAT.

In particular, we discuss design choices, heuristics and implementation

details that are often omitted from research papers on SMT, but which

from our experience can play a significant role in practice for performance.

Some of the techniques described are, to the best of our knowledge, peculiar

to MathSAT, some of them are instead well-known among developers of

SMT solvers. However, most of them have not been previously described

in the literature on SMT, and they might not be so obvious to non-experts.

2.1 Overview

Figure 2.1 shows a high-level view of the main components of MathSAT

and their interactions.

Preprocessor. Interaction with MathSAT happens either via file, with

a variety of input formats supported, or via a rich API. After the

39



CHAPTER 2. DETAILS ON MATHSAT

T -solver n

T -solver 1

DPLL Engine

Truth assignment

Model generator

Model

FOCIMSAT C API

Interpolant

Problem clauses

SMT-LIB

SAT/

UNSAT

Preprocessor

Input Formats

Unsat Core

Proof Engine

ProofsModel values

T -lemmas
New atoms

Boolean CNF
Formulae

Figure 2.1: Basic schema of MathSAT architecture.

input formula ϕ is parsed (or generated through the API), a prepro-

cessing step is performed, in order to simplify the input problem and

to convert it to CNF. The main components of the preprocessor are

described in §2.2.

DPLL Engine. The core of the solver is the DPLL Engine. It receives

as input the CNF conversion of the original problem, and drives the

search by enumerating its propositional models and invoking the T -

solver(s) to check them for consistency, until either a model is found or

all of them are found inconsistent. In §2.3 we describe one particular

technique that MathSAT uses for optimizing the interaction of DPLL

and T -solvers.

40



2.2. THE PREPROCESSOR

Theory solvers. In MathSAT the T -solvers are organized as a layered

hierarchy of solvers of increasing expressivity and complexity (§1.3.1):

if a higher-level solver finds a conflict, then this conflict is used to

prune the search at the Boolean level; if it does not, the lower level

solvers are activated. These T -solvers implement state-of-the-art pro-

cedures for the theories of EUF [DNS05, NO07], AR [GKF08], DL [CM06],

UT VPI [LM05], LA(Q) [DdM06a], LA(Z) and their combinations.1

They are described in §§2.4–2.8.

2.2 The preprocessor

The preprocessing phase of MathSAT can be divided into three parts.

The first part consists of a series of satisfiability-preserving simplifica-

tion steps of the input formula. By default, MathSAT performs only basic

simplifications, like the encoding of equivalent T -atoms into a unique rep-

resentation (e.g. the atom 2x+y−x+2 ≤ 5 is converted to x+y ≤ 3) or the

propagation of top-level information (e.g. the formula x = 5 ∧ f(x) < 3 is

rewritten into f(5) < 3). The recent work in [KSJ09] and [Bru09] proposed

two more advanced preprocessing techniques, showing that they can have

a great positive impact on performance. We are currently investigating

such techniques, their limitations, and the possibility of integrating them

efficiently into MathSAT.

The second step is the conversion of the input formula into CNF. This

is done using an improved version of the standard algorithm proposed by

Tseitin [Tse68]. More sophisticated algorithms have been proposed in the

SAT community (e.g. [JS05, MV07]), leading to significant improvements

in execution times of SAT solvers. However, when we experimented with

1MathSAT supports also the theory of BV. However, as already mentioned in the Introduction, the
support for BV in MathSAT was implemented by Anders Franzén, and therefore we shall not describe
it in this thesis.

41



CHAPTER 2. DETAILS ON MATHSAT

such algorithms, the results we obtained for SMT problems were contro-

versial, showing no clear winner. Therefore, we opted for simplicity and

kept the original Tseitin algorithm.

The final preprocessing step is static learning [BBC+05, YM06]. Static

learning consists in adding to the formula small clauses representing T -

valid lemmas (e.g. transitivity constraints) before starting the search. The

added lemmas may significantly help to prune the search space in the

Boolean level, thus avoiding some calls to the more expensive T -solvers.

2.3 Interaction between the DPLL engine and T -solvers

An efficient interaction between the core DPLL engine and the T -solvers

is crucial for the performance of a modern lazy SMT solver. The online

schema of Figure 1.1 is however very generic, and it allows for several

different strategies and optimizations (see [Seb07] for a survey). Here we

describe a specific technique implemented in MathSAT, which to the best

of our knowledge has not been described elsewhere, and discuss its impact

on the performance of the system.

2.3.1 Adaptive Early Pruning

Early Pruning (EP, §1.3.1 on page 20) is one of the most important opti-

mizations in the interaction between DPLL and the T -solvers. In particu-

lar, EP is effective for two reasons:

(i) it allows to stop exploring branches of the search space which are

already T -inconsistent, potentially avoiding the enumeration of an

up-to-exponential number of truth assignments; and

(ii) it enables the use of T -propagation (§1.3.1 on page 20), another cru-

cial technique for performance, which further reduces the number of

truth assignments to enumerate in DPLL.

42



2.3. INTERACTION BETWEEN THE DPLL ENGINE AND T -SOLVERS

The drawback of EP is that T -solvers are called much more frequently,

and this can have a substantial cost, especially for some hard theories like

LA(Z). In all the cases in which no T -conflict and no T -deduction are

detected, the EP call gives no benefit, and its cost is pure overhead.

A standard solution for this problem, adopted by several SMT solvers,

is to use incomplete but fast T -solvers for EP calls, performing the com-

plete but potentially-expensive check only when absolutely necessary (i.e.

when a truth assignment which propositionally satisfies the input formula

is found). This technique is usually called Weak (or Approximate) Early

Pruning .

In MathSAT, we have experimented also with a different approach,

which we call Adaptive Early Pruning (AEP). The main idea of AEP is

that of controlling the frequency of EP calls, by adapting the rate at which

T -solvers are invoked according to some measure of the usefulness of EP:

the more EP calls contribute to pruning the search by detecting T -conflicts

or T -deductions, the more frequently T -solvers are invoked.

The current implementation is rather simple, and it works as follows.

We keep a counter tsolvers call interval, initially set to 1, which con-

trols the frequency of EP calls with respect to the number of decisions

performed by DPLL; after every T -decide-next-branch call (see Figure 1.1

on page 19) we increment another counter num branches by one; at the

end of T -deduce, if the value of num branches is equal to the value of

tsolvers call interval, we perform an EP call and reset num branches.

We then adjust the value of tsolvers call interval, according to the re-

sult of the EP call:

• If the EP call detected a T -conflict, we reset it to 1;

• If the EP call detected some T -deductions, we half its value 2;

2making sure it is at least 1, of course.

43



CHAPTER 2. DETAILS ON MATHSAT

Satisfiable problems Unsatisfiable problems

#
of

in
st

an
ce

s

 200

 300

 400

 500

 600

 700

 800

 1  10  100  1000

 

 

 

AEP
w/o AEP

 200

 300

 400

 500

 600

 700

 800

 900

 1  10  100  1000  10000

 

 

 

AEP
w/o AEP

Total CPU time Total CPU time

Satisfiable problems
# of solved Total CPU time
instances AEP w/o AEP Ratio

300 8.00 8.25 0.97
500 39.82 46.18 0.86
700 255.23 320.89 0.79
850 4481.65 5719.96 0.78

Unsatisfiable problems
# of solved Total CPU time
instances AEP w/o AEP Ratio

300 4.27 4.30 0.99
500 22.49 24.21 0.93
700 121.72 137.36 0.88
974 13613.65 16082.67 0.84
978 17127.89 — —

Figure 2.2: Comparison between MathSAT with and without AEP, on instances used

for SMT-COMP’09. The plots show the accumulated time (on the x axis) to solve a given

number of instances (on the y axis), for satisfiable (left) and unsatisfiable (right) problems

respectively.

44



2.4. THE EUF-SOLVER

• If the current and the previous EP calls detected neither a T -conflict

nor some T -deductions, we double its value;

• Otherwise, we leave it unchanged.

This strategy is rather simple, and it can definitely be improved. De-

spite this, however, it already gives some interesting performance improve-

ments. In order to demonstrate this, we have performed a comparison

between MathSAT with the AEP strategy and MathSAT with “stan-

dard” EP, on the benchmark instances used in the SMT-COMP’09 SMT

solvers competition. The results, which are reported in Figure 2.2, show

not only that AEP allows MathSAT to solve 4 more unsatisfiable in-

stances within the timeout (set to 900 seconds, as in SMT-COMP’09), but

also that AEP leads to a reduction of the total execution of up to 20%,

both on satisfiable and unsatisfiable instances. We think that this shows

the potential of adaptive techniques, making them worth investigating fur-

ther, by developing more sophisticated heuristics. We also observe that a

similar direction of research is being explored by the SAT community, in

which adaptive techniques for controlling the frequency of search restarts

in DPLL [Bie08a, SI09] have been recently proposed.

2.4 The EUF-solver

Like in all current SMT solvers, the EUF -solver of MathSAT is based

on congruence closure (§1.4.1). In particular, the implementation bears

substantial similarities with the one of the Simplify theorem prover as

described in [DNS05], which provides very detailed information about all

the data structures used. 3 The main difference is that the EUF -solver of

MathSAT is capable of generating EUF -lemmas (that is, explanations for

conflicts and implications), a fundamental feature for its use in a lazy SMT

3In [DNS05], the EUF-solver is called E-graph.

45



CHAPTER 2. DETAILS ON MATHSAT

approach. This is done by adapting in a straightforward way the technique

of [NO07] to the data structures used in MathSAT. 4 With a simple

modification, this technique can also be used to generate detailed proof

trees for EUF -lemmas in terms of applications of the axioms of equality

(see Table 1.1 on page 14).

Due to its efficiency — both theoretical (the time complexity of comput-

ing the congruence closure of a set of n constraints is O(n log n) [NO07])

and practical — the EUF -solver is used not only when dealing with purely-

equational problems, but also when dealing with other theories T , as a

first, incomplete but cheap, procedure in a layered approach [ABC+02,

BBC+05]: before invoking the T -solver, consistency is checked with the

EUF -solver by simply treating all the T -specific functions and predicates

as uninterpreted. In this setting, we have found beneficial to augment the

power of the EUF -solver in detecting simple arithmetic conflicts, by making

it aware of the semantics of numbers and (in part) of arithmetic relations

between them. In particular, the solver knows that two different numeric

constants can never belong to the same congruence class, and therefore

it can detect conflicts like (x = 0) ∧ (y = 1) ∧ (x = y). Moreover, the

solver knows that some arithmetic predicates imply the disequality of their

arguments: for example, whenever constraints like (x < y) or ¬(x ≤ y)

are asserted, the solver knows that x and y can not belong to the same

congruence class. Such features are trivial to implement and cause no over-

head to the solver, but at the same time they are helpful in improving the

effectiveness of layering. Therefore, they are always active in MathSAT.

We remark that such techniques are different from the handling of integer

offsets described in [NO07]: the techniques described here are not com-

4In particular, in [NO07] it is assumed that terms are flat and curryfied, whereas in MathSAT, like in
Simplify, we work with terms represented as nested cons-cells [DNS05]. However, this poses no difficulty
for the generation of explanations.

46



2.5. THE LA(Q)-SOLVER

plete, but rather they are just heuristics for improving the effectiveness

of EUF -layering, whereas the algorithm of [NO07] is a complete decision

procedure for EUF augmented with integer offsets.

From the point of view of the implementation, the EUF -solver of Math-

SAT is relatively straightforward, and it follows closely the very detailed

description of the Simplify E-graph provided in [DNS05]. The only detail

that deserves a mention is the management of memory. During execution,

the EUF -solver allocates a lot of small objects and makes a heavy use of

pointers. Therefore, it is worth using custom memory allocation functions

that ensure that objects that are frequently accessed together are stored

contiguously (or at least close to each other) in the system RAM, in order

to make a more effective use of the system cache memory. In our measure-

ments, the use of a specialized memory allocator instead of the default one

lead to a significant improvement in the performance of the EUF -solver.

2.5 The LA(Q)-solver

Traditionally, SMT solvers used some kind of incremental simplex algo-

rithm [Van01] as T -solver for the LA(Q) theory. Recently, Dutertre and

de Moura [DdM06a] have proposed a new simplex-based algorithm, specif-

ically designed for integration in a lazy SMT solver. The algorithm is

extremely suitable for SMT, and SMT solvers embedding it were shown to

significantly outperform (often by orders of magnitude) the ones based on

other simplex variants. This algorithm, which was originally implemented

within the Yices SMT solver, is also the one implemented in MathSAT.

Differently from the case of EUF , for which there exist publications

that provide sufficient details for implementing an efficient solver (see §2.4

above), the description of the algorithm of Dutertre and de Moura in

[DdM06a] is somewhat high-level, and it leaves room for several different

47



CHAPTER 2. DETAILS ON MATHSAT

implementation choices that can have a very big impact on performance. 5

Its current implementation in MathSAT is the result of several months of

careful profiling, tuning, and experimentation with different design choices,

data structures and heuristics. In this section, we describe such choices in

detail and provide experimental evidence of their positive impact on per-

formance.

2.5.1 High-level view of the Dutertre-de Moura algorithm

One of the most important reasons of the efficiency of the Dutertre and de

Moura algorithm is its excellent support for incrementality and backtrack-

ability (see §1.2), which allows for adding and removing constraints during

search with a very low computational cost. These features are achieved

by imposing some restrictions on the form of the constraints it receives as

input. In particular, it requires that the variables xi are partitioned a pri-

ori in two sets, hereafter denoted as B̂ (“initially basic” or “dependent”)

and N̂ (“initially non-basic” or “independent”), and that the algorithm

receives as input only two kinds of constraints: 6

• a set of equations eqi, one for each xi ∈ B̂, of the form
∑

xj∈N̂ âijxj +

âiixi = 0 such that all âij’s are numerical constants;

• elementary atoms of the form xj ≥ lj or xj ≤ uj such that xj ∈ B̂∪N̂
and lj, uj are numerical constants. 7

Moreover, it assumes that the set of equations eqi does not change

during search: the equations are communicated to the LA(Q)-solver before

5This was recently observed also in [Mon09].
6Notationally, we use the hat symbol ˆ to denote the initial value of the generic symbol.
7In fact, the inequalities in elementary atoms can also be strict (i.e. xj < lj or xj > uj). However,

the presence of strict inequalities has no impact on the optimizations discussed in this section. Therefore,
for ease of exposition, here we shall assume to deal only with problems involving no strict inequality. We
shall return to this issue in §4.2.2, in the context of interpolant generation.

48



2.5. THE LA(Q)-SOLVER

starting the Boolean search, and never removed from it. Only elementary

atoms can be added and removed during the Boolean search.

As shown in [DdM06a], it is always possible to apply a satisfiability-

preserving preprocessing step upfront, before invoking the algorithm, in

order to transform every problem into the above form and to ensure that

the condition that only elementary atoms need to be added and removed

during search is met.

The algorithm is initialized by using the equations eqi to build a tableau

T :

{xi =
∑

xj∈N aijxj | xi ∈ B}, (2.1)

where B (“basic” or “dependent”), N (“non-basic” or “independent”) and

aij are such that initially B ≡ B̂, N ≡ N̂ and aij ≡ −âij/âii.
In order to decide the satisfiability of the input problem, the algorithm

performs manipulations of the tableau that move variables from B to N
and vice versa and change the values of the coefficients aij, always keeping

the tableau T in (2.1) equivalent to its initial version.

In particular, the algorithm maintains a mapping β : B ∪ N 7−→ Q
representing a candidate model which, at every step, satisfies the following

invariants:

∀xj ∈ N , lj ≤ β(xj) ≤ uj, ∀xi ∈ B, β(xi) =
∑

j∈N aijβ(xj).

(2.2)

The algorithm tries to adjust the values of β and the sets B and N , and

hence the coefficients aij of the tableau, such that li ≤ β(xi) ≤ ui holds

also for all the xi’s in B. Inconsistency is detected when this is not possible

without violating any constraint in (2.2).

Like in all variants of the simplex, the central operation in the Dutertre-

de Moura algorithm is pivoting: given an equation

xi =
∑

xj∈N\{xk} aijxj + aikxk (2.3)

49



CHAPTER 2. DETAILS ON MATHSAT

of T such that aik 6= 0, a pivoting operation

(i) replaces (2.3) in T with

xk =
∑

xj∈N\{xk}
aij

−aik
xj + 1

−aik
xi (2.4)

(ii) replaces all the equations

xh =
∑

xj∈N\{xk} ahjxj + ahkxk

of T such that ahk 6= 0 with

xh =
∑

xj∈N\{xk} ahjxj + ahk · (
∑

xj∈N\{xk}
aij

−aik
xj + 1

−aik
xi) (2.5)

(iii) moves xi from B to N and xk from N to B.

A pivoting step is performed whenever there exists a variable xi ∈ B
such that the current value of β(xi) is not in the range [li, ui] (where li

and ui are the currently-active lower and upper bounds for xi). When this

happens, a variable xj is selected from the i-th row of the tableau, such

that it is possible to perform a pivoting of xi and xj and to change β in

order to make both β(xi) and β(xj) satisfy their bounds [DdM06a].

Pivoting steps are the most expensive operations of the algorithm, and

they constitute its main performance bottleneck. Therefore, it is crucial to

avoid them whenever possible, and to use data structures and procedures

that make them as efficient as possible. As a matter of fact, the reason why

the operations of incrementally adding constraints and of backtracking to

a previous consistent state are very efficient is exactly that, thanks to the

fact that only elementary atoms are involved, they require no pivoting step

at all [DdM06a]. 8

8Notice that here, when speaking about adding a constraint, we only refer to the operation of ensuring
that the constraint is taken into account in the next consistency checks, and not to the operation of
actually checking the consistency of the augmented set of constraints, which does in general require
pivoting steps.

50



2.5. THE LA(Q)-SOLVER

2.5.2 Reducing the cost of pivoting operations

Representation of numbers. An essential requirement for T -solvers is

that they must be correct : a T -solver call can return unsat only if the in-

put set of constraints is inconsistent. 9 An immediate consequence of this

is that the arithmetic operations performed by the LA(Q)-solver must be

done in exact arithmetic, using infinite-precision rational numbers, in order

to ensure the absence of errors due to rounding and/or overflows. How-

ever, the use of such numbers causes in general a very significant overhead,

which sometimes can be avoided. In particular, for problems in which the

coefficients of the variables have small (in absolute value) numerators and

denominators, the use of infinite-precision numbers may not be required.

In our current implementation, we use a custom library for rational arith-

metic, which uses native integers whenever possible, for which arithmetic

operations are very fast, and uses the slower infinite-precision numbers

(through the GMP library [GMP]) only when overflow is detected. The

same technique has been described also by other authors (see e.g. [Mon09]

and [DDA09]), and is currently used by several SMT solvers, including

Yices (which, as far as we know, was the first SMT solver to use it),

BarceLogic, OpenSMT and Z3. In our experiments, we have seen that

on many practical problems the use of infinite-precision is not needed at

all, and using GMP numbers instead of integers results in a significant

degradation of performance, as we will show in §2.5.4.

Representation of the tableau. From the conceptual point of view,

the tableau of equations can be seen as a matrix of rational coefficients, in

which each row represents an equation. An obvious representation for it

would therefore be a two-dimensional array of rational numbers. However,

9For complete calls, also the converse must hold, whereas this is not necessary for approximate calls
performed during early pruning (see §1.3.1 and §2.3.1).

51



CHAPTER 2. DETAILS ON MATHSAT

problems arising from applications in formal verification are typically very

sparse: each constraint involves only a small subset of the variables, and

therefore most of the entries of the tableau matrix are zero. In such cases, a

sparse matrix representation, in which zero entries are not stored explicitly,

is much more efficient (both in memory consumption and in execution time)

than the array-based one described above. A simple way of implementing

it is to represent each equation with a hash table, mapping each variable to

its coefficient in the equation, and storing only non-zero entries. Another

alternative that we have explored is to represent equations using arrays

of pairs 〈variable, coefficient〉, sorted by variable (and storing only non-

zero coefficients). This representation has the disadvantage of requiring

logarithmic time for retrieving an arbitrary coefficient aij of the tableau

matrix, whereas this requires (amortized) constant time when using hash

tables. However, using arrays of pairs results in a better memory layout

with respect to cache usage (since all elements are stored contiguously).

Moreover, iterating over arrays is faster than iterating over hash tables,

and this makes the implementation of the pivoting steps described by (2.4)

and (2.5) faster. In our experiments, we have seen that overall using arrays

of pairs gives a performance advantage.

2.5.3 Reducing the number of pivoting steps

As we have seen in §2.5.1, in the Dutertre-de Moura algorithm a pivoting

step is performed whenever there exist a variable xi ∈ B and a variable

xj ∈ N such that (i) the current value of β(xi) violates one of the bounds

for xi, and (ii) it is possible to perform a pivoting of xi and xj and to

change β in order to make both β(xi) and β(xj) satisfy their bounds. In

general, the choice of xi and xj is not unique: first, there might be several

basic variables whose bounds are violated by the current β; second, once

xi has been selected, there might be several nonbasic variables which can

52



2.5. THE LA(Q)-SOLVER

become basic. Although in the worst case the number of pivoting steps

required for consistency checking is exponential in the number of variables

[Van01], it is well-known that in practice the strategy used for selecting the

variables to pivot has a very big impact on the performance of simplex-

based algorithms [Van01]. In [DdM06a], it is shown that the algorithm

terminates if the Bland’s rule for selecting the variables to pivot is used,

which always picks the smallest variable (according to a fixed ordering)

among the candidate ones, since this rule is sufficient to guarantee that

there are no cycles in the sequence of pivoting steps. However, the Bland’s

rule typically performs rather poorly, and several alternative strategies have

been proposed in order to reduce the number of pivoting steps [Van01]. In

MathSAT, we have adopted the following greedy strategy, whose idea is

to try to minimize the number of changes required to the tableau T and

to β in order to satisfy all the active bounds on the variables:

• when selecting which variable xi ∈ B to pivot, we pick the one for

which β(xi) is closest to the violated bound (that is, the one for which

the value li − β(xi) or β(xi) − ui, depending on which of the two

bounds is violated, is the smallest). When there are two or more basic

variables at the same distance from the violated bound, we pick the

one whose row in T contains fewer nonbasic variables with non-zero

coefficient.

• once xi has been selected, we pick the nonbasic variable xj (among

those which can be pivoted) which occurs (with non-zero coefficient)

in the smallest number of rows, in order to minimize the number of

updates (2.5) performed during pivoting.

In our experiments, the use of this strategy gave a substantial perfor-

mance boost compared to the use of the Bland’s rule. However, it might

lead to cycles in the sequence of pivoting steps, causing the non-termination

53



CHAPTER 2. DETAILS ON MATHSAT

of the algorithm in some cases. In order to avoid this, we apply the greedy

strategy only until a given threshold value on the number of pivoting steps

is reached, and then revert to the Bland’s rule. Currently, we use the

number of variables in the input problem as threshold.

2.5.4 Experimental evaluation

In order to evaluate the usefulness of the optimizations described above, we

have performed several experiments using benchmarks from the QF LRA

division (that is, quantifier-free LA(Q)-instances) of the SMT-LIB [RT06],

the library of SMT benchmarks which is used in the annual SMT solvers

competition SMT-COMP [SMT]. We have compared the current version

of MathSAT against four other versions, the first three of which were

obtained by disabling each of the optimizations individually, whereas the

fourth was obtained by disabling all the optimizations. We ran all the

experiments on 2.66 Ghz Intel Xeon machines with 6MB of cache, using

2Gb of memory limit and a timeout of 1200 seconds.

The results are reported in Figures 2.3 and 2.4, which show scatter

plots of individual comparisons between each configuration with one of the

optimizations disabled and the default one, a scatter plot comparing the

“naive” configuration with all optimizations disabled with the default one,

an “accumulated time” plot showing the total execution time for solving

a given number of instances, and a table with statistics about the ratio

between the execution time of each tested configuration and the default

one. The results clearly show that each of the described optimizations has a

significant positive impact on performance, and that their cumulative effect

is extremely visible: when all the optimizations are disabled, MathSAT

takes on average 8 times more time to solve problems in the QF LRA

division, failing to solve 21 instances more than the default configuration

within the timeout. This is even more impressive if we consider that the

54



2.5. THE LA(Q)-SOLVER

No custom numbers Equations with hash tables

10-2

10-1

1

10

102

103

T.O.

10-2 10-1 1 10 102 103 T.O.

2x
10x

unsat
sat

10-2

10-1

1

10

102

103

T.O.

10-2 10-1 1 10 102 103 T.O.

2x
10x

unsat
sat

Bland’s rule No optimization

10-2

10-1

1

10

102

103

T.O.

10-2 10-1 1 10 102 103 T.O.

2x
10x

unsat
sat

10-2

10-1

1

10

102

103

T.O.

10-2 10-1 1 10 102 103 T.O.

2x
10x

unsat
sat

Figure 2.3: Effects of optimizations on LA(Q)-solver performance. The default config-

uration is always on the x axis, and points on the border of the plot indicate timeouts.

55



CHAPTER 2. DETAILS ON MATHSAT

Accumulated time

#
of

so
lv

ed
in

st
an

ce
s

 0

 100

 200

 300

 400

 500

 0.01  0.1  1  10  100  1000  10000

Default
No custom numbers
Eqs. with hash table

Bland rule
No optimization

Execution time ratio

Configuration 1st perc. median mean 9th perc.

No custom numbers 1.00 2.50 2.38 3.71
Eqs. with hash tables 0.95 1.20 1.30 1.75
Bland’s rule 0.94 1.42 2.77 6.67
No optimization 1.10 4.48 8.26 17.56

Figure 2.4: Effects of optimizations on LA(Q)-solver performance (continued). The “Ac-

cumulated time” plot shows on the y axis the number of instances solved within the

timeout, and on the x axis the total execution time. The table shows the most signif-

icant percentiles and the mean value of the ratio between the execution time of each

configuration and the default one.

56



2.6. THE LA(Z)-SOLVER

Branch and
Bound

DPLL

LA(Z)-solver

Diophantine
equations handler

LA(Q)-solver

no conflict

3

1

2

3 2

4

4

1

no conflict

equality elimination

conflict

no conflict

LA(Z)-conflict

conflict

Branch and Bound-clause

no new clause

sat

Figure 2.5: Schema of the architecture of the LA(Z)-solver. The numbers in the circles

indicate the order of invocation of the various sub-modules.

LA(Q)-solver is only one of the factors that affect the performance of SMT

solvers on SMT-LIB instances.

2.6 The LA(Z)-solver

The LA(Z)-solver of MathSAT is one of the most complex parts of the

system. Its architecture, outlined in Figure 2.5, is heavily based on layering

[ABC+02, BBC+05]: the solver is organized as a hierarchy of sub-modules,

with cheaper (but less powerful) ones invoked earlier and more often. In

order to check the consistency of a set of LA(Z)-constraints, MathSAT

uses the following strategy.

1. First, the real relaxation of the problem is checked, using the LA(Q)-

solver described in the previous section. If no conflict is detected, the

model returned by the LA(Q)-solver is examined to check whether

all variables are assigned to an integer value. If this happens, the

LA(Q)-model is also a LA(Z)-model, and the solver can return sat.

57



CHAPTER 2. DETAILS ON MATHSAT

2. Otherwise, the specialized module for handling linear Diophantine

equations is invoked. This module is similar to the first part of the

Omega test described in [Pug91]: it takes all the equations in the in-

put problem, and tries to eliminate them by computing a parametric

solution of the system and then substituting each variable in the in-

equalities with its parametric expression. If the system of equations is

infeasible in itself, this module is also able to detect the inconsistency.

3. Otherwise, the inequalities obtained by substituting the variables with

their parametric expressions are normalized, tightened and then sent

to the LA(Q)-solver, in order to check the LA(Q)-consistency of the

new set of constraints.

4. If no conflict is detected, the Branch and Bound module is invoked,

which tries to find a LA(Z)-solution via branch and bound [Sch86].

This is done in cooperation with the DPLL engine, using the “splitting

on-demand” approach of [BNOT06]: each time the branch and bound

algorithm needs to perform a case split, a new clause is generated and

sent to the DPLL engine, so that the exploration of the LA(Z) search

space is performed at the Boolean level, thus benefiting for free of all

the pruning techniques available in the DPLL engine.

In the rest of the section, we describe in detail the modules for handling

Diophantine equations and for performing branch and bound, and discuss

their interaction with the LA(Q)-solver and the DPLL engine.

2.6.1 The Diophantine equation handler

The module for handling systems of LA(Z) equations (commonly called

Diophantine equations) implements a procedure that closely resembles the

equality elimination step of the Omega test [Pug91].

58



2.6. THE LA(Z)-SOLVER

Given a system E of m equations over n variables

E
def

=

{
n∑
i=1

ajixi + cj = 0

}m

j=1

(2.6)

it tries to solve it by performing a sequence of variable elimination steps

using the procedure described in Algorithm 2.6.

Theorem 2.1. Algorithm 2.6 always terminates. Moreover, it returns un-

sat if and only if the input system of Diophantine equations is inconsistent.

Proof. (Sketch) For correctness, we can observe that:

(i) The rewriting of eh into (2.8) performed in Step 7 is justified by the

fact that ahk is the coefficient with the smallest absolute value in eh.

(ii) At every iteration of the loop 2–7, the initial system E is equisatisfi-

able with the system F ∪ S.

(iii) S is always consistent, since all its equations are of the form

ej
def

= −xj +
∑
i6=j

aijxi + cj = 0 (2.9)

where xj does not occur in any equation that was added to S after ej

(and therefore it can be easily put in triangular form).

Termination can be established by observing that, after the substitution

of xk with
∑

i6=k−a
q
hixi − c

q
h + xt performed in Step 7, the equation eh of

(2.8) becomes

ahkxt +
∑
i 6=k

arhixi + crh. (2.10)

Since the arhi’s are the remainders of the division of the ahi’s by ahk, each

|arhi| is strictly smaller than the corresponding |ahi|. Therefore, after a

finite number of applications of Step 7, the equation eh will contain a

59



CHAPTER 2. DETAILS ON MATHSAT

Algorithm 2.6: Solving a system of linear Diophantine equations

1. Let F = E, S = ∅.

2. If F is empty, the system is consistent; return sat with S as a solution.

3. Rewrite all equations eh
def
=

∑
i ahixi + ch = 0 in F such that the GCD g of

ah1, . . . , ahn, ch is greater than 1 into e′h
def
=

∑
i
ahi

g
xi + ch

g
= 0.

4. If there exists an equation eh
def
=

∑
i ahixi + ch = 0 in F such that the GCD of the

ahi’s does not divide ch, then F is inconsistent (see, e.g., [Pug91]); return unsat.

5. Otherwise, let eh
def
=

∑
i ahixi + ch = 0 be an equation, and let ahk be the non-zero

coefficient with the smallest absolute value in eh.

6. If |ahk| = 1, then eh can be rewritten as

−xk +
∑
i 6=k

−sign(ahk)ahixi − sign(ahk)ch,

where sign(ahk)
def
=

ahk
|ahk|

. Then, remove eh from F , add it to S, and replace xh with∑
i 6=k−sign(ahk)ahixi − sign(ahk)ch in all the other equations of F .

7. If |ahk| > 1, then rewrite eh as

ahkxk +
∑
i 6=k

(ahka
q
hi + arhi)xi + (ahkc

q
h + crh) ≡ (2.7)

ahk · (xk +
∑
i 6=k

aqhixi + cqh) + (
∑
i 6=k

arhixi + crh). (2.8)

where aqhi and arhi are respectively the quotient and the remainder of the division of

ahi by ahk (and similarly for cqh and crh). Create a fresh variable xt, and add to S

the equation

−xk +
∑
i 6=k

−aqhixi − c
q
h + xt = 0.

Then, replace xk with
∑

i 6=k−a
q
hixi − c

q
h + xt in all the equations of F .

8. Go to Step 2.

60



2.6. THE LA(Z)-SOLVER

variable whose coefficient has an absolute value of 1, and therefore it will

be eliminated from F by an application of Step 6 [Pug91]. �

Example 2.2. Consider the following system of Diophantine equations

E
def

=

{
e1

def

= 3x1 + 3x2 + 14x3 − 7 = 0

e2
def

= 7x1 + 12x2 + 31x3 − 17 = 0

In order to prove its unsatisfiability, a run of Algorithm 2.6 can proceed as

follows:

1. e1 is processed. Since there are no variables with coefficient 1 or -1,

Step 7 is applied. x1 is selected, e1 is rewritten as

3(x1 + x2 + 4x3 − 2) + (2x3 − 1) = 0,

a fresh variable x4 is created, the equation

−x1 − x2 − 4x3 + 2 + x4 = 0

is added to S, and x1 is substituted with −x2− 4x3 + 2 +x4 in all the

equations in F , thus obtaining:

S =
{
−x1 − x2 − 4x3 + 2 + x4 = 0

F =

{
e′1

def

= 3x4 + 2x3 − 1 = 0

e′2
def

= 5x2 + 3x3 + 7x4 − 3 = 0

2. e′1 is processed. As before, Step 7 is applied, this time selecting x3,

since it is the variable with the smallest coefficient in absolute value.

Then, e′1 is rewritten as

2(x3 + x4) + (x4 − 1) = 0,

a fresh variable x5 is created, the equation

−x3 − x4 + x5 = 0

61



CHAPTER 2. DETAILS ON MATHSAT

is added to S, and x3 is substituted with −x4 +x5 in all the equations

in F , thus obtaining:

S =

{
−x1 − x2 − 4x3 + 2 + x4 = 0

−x3 − x4 + x5 = 0

F =

{
e′′1

def

= 2x5 + x4 − 1 = 0

e′′2
def

= 5x2 + 4x4 + 3x5 − 3 = 0

3. e′′1 is processed. This time, since x4 has coefficient 1, Step 6 is applied,

e′′1 is moved to S and x4 is substituted with −2x5 + 1 in e′′2, thus

obtaining:

S =


−x1 − x2 − 4x3 + 2 + x4 = 0

−x3 − x4 + x5 = 0

−x4 − 2x5 + 1 = 0

F =
{
e′′′2

def

= 5x2 − 5x5 + 1 = 0

4. Since the GCD of the coefficients of the variables in e′′′2 does not divide

the constant value of e′′′2 , the equation in inconsistent, so the algorithm

returns unsat. ♦

If Algorithm 2.6 returns unsat, the LA(Z)-solver can return unsat. If it

returns sat, instead, S can be used to eliminate all the equalities from the

problem, using each equation ej (2.9) as a substitution

xj 7→
∑
i6=j

aijxi + cj.

This elimination is important because it might make possible to tighten

some of the new inequalities generated. Given an inequality∑
i

aixi ≤ c (2.11)

62



2.6. THE LA(Z)-SOLVER

such that the GCD g of the ai’s does not divide the constant c, a tightening

step [Pug91] consists in rewriting (2.11) into∑
i

ai
g
xi ≤ b

c

g
c. (2.12)

Tightening might allow the LA(Q)-solver to detect more conflicts, as shown

in the following example.

Example 2.3. Consider the following sets of LA(Z)-constraints:

E
def

=

{
2x1 − 5x3 = 0

x2 − 3x4 = 0
I

def

=

{
−2x1 − x2 − x3 ≤ −7

2x1 + x2 + x3 ≤ 8

E ∪ I is satisfiable over the rationals, but unsatisfiable over the integers.

Therefore, the LA(Q)-solver alone can not detect the inconsistency. Thus,

E is given to Algorithm 2.6, which returns the following solution:

S =


−x1 + 2x3 + x5 = 0

−x2 + 3x4 = 0

−x3 + 2x5 = 0,

where x5 is a fresh variable. Using S, we can eliminate the equalities by

substituting x1, x2 and x3 into the inequalities in I, thus obtaining:

I ′ =

{
−3x4 − 12x5 ≤ −7

3x4 + 12x5 ≤ 8

On the integers, the two inequalities in I can be tightened by dividing the

constant by the GCD of the coefficients, and then taking the floor of the

result:

I ′′ =

{
−3

3x4 − 12
3 x5 ≤ b−7

3c which becomes −x4 − 4x5 ≤ −3
3
3x4 + 12

3 x5 ≤ b8
3c which becomes x4 + 4x5 ≤ 2

After this, the LA(Q)-solver can immediately detect the inconsistency of

I ′′. ♦

63



CHAPTER 2. DETAILS ON MATHSAT

Generating explanations for conflicts and substitutions

An important capability of the Diophantine equations handler is its ability

to produce explanations for conflicts, expressed in terms of a subset of the

input equations. This is needed not only when an inconsistency is detected

by Algorithm 2.6 directly (in order to return to DPLL the corresponding

LA(Z)-conflict clause), but also when an inconsistency is detected by the

LA(Q)-solver after the elimination of the equalities and the tightening of

the inequalities. In this case, in fact, the explanation returned by the

LA(Q)-solver can not be used directly to generate a conflict clause to give

back to DPLL, since it might contain some inequalities that were generated

by the equality elimination and tightening step. When this happens, each

of such inequalities must be replaced with the original inequality and the

set of equations that were used to obtain it. Therefore, the Diophantine

equations handler must be able to identify the set of input equations that

were used for generating a substitution in the returned solution S.

In order to describe how explanations are generated and to prove that

the procedure is correct, we introduce an abstract transition system whose

inference rules mirror the basic steps performed by Algorithm 2.6. We then

show how the states and the transitions of such system can be annotated

with additional information used to produce explanations. Finally, we give

a proof of the correctness of the generated explanations.

The basic steps performed by Algorithm 2.6 can be described as manip-

ulations of a set of equations E according to the following rules:

Scaling of an equation

E ∪ {
∑

i aixi + c = 0} →
E ∪ {(

∑
i aixi + c = 0), (

∑
i
ai

g xi + c
g = 0)}

if g = GCD(ai, . . . , an, c) and g > 1

(2.13)

64



2.6. THE LA(Z)-SOLVER

Combination of two equations

E ∪ {(
∑

i a1ixi + c1 = 0), (
∑

i a2ixi + c2 = 0)} →
E ∪ {(

∑
i a1ixi + c1 = 0), (

∑
i a2ixi + c2 = 0)}∪

{(
∑

i(k1a1i + k2a2i)xi + (k1c1 + k2c2) = 0},
k1, k2 ∈ Z

(2.14)

Decomposition of an equation

E ∪ {
∑

i aixi + c = 0} → E ∪ {
∑

i aixi + c = 0}∪
{(

∑
i 6=k a

q
ixi + xk − xt + cq = 0), (akxt +

∑
i6=k a

r
ixi + cr = 0)}

if ak = argmini{|ai| : ai 6= 0}, xt is fresh,

ai = aqiak + ari for all i, and c = cqak + cr

(2.15)

It is easy to see that Algorithm 2.6 implements a specific strategy of

application of the above rules, namely:

• Step 3 corresponds to repeated applications of (2.13);

• Step 6 is an application of (2.14) multiple times; and

• Step 7 corresponds to an application of (2.15) followed by multiple

applications of (2.14).

In order to generate explanations, we annotate each state of the above

transition system with some additional information. In particular, let X

be a set of variables containing all the variables in the initial equations and

all the variables introduced by an application of (2.15), let L be a set of

variables disjoint from X, and let λ be a mapping from variables in L to

linear combinations of variables in X and of integer constants. Moreover,

let σ be a partial mapping from variables in X to linear combinations of

variables in X and of integer constants. An annotated state is a triple

〈E ′, λ, σ〉, where E ′ is a set of pairs 〈e, `〉 in which e is an equation and `

65



CHAPTER 2. DETAILS ON MATHSAT

is a linear combination of variables from L. The initial state of the system

is built as follows:

• E ′ = {〈ei, li〉 : ei ∈ E and li ∈ L is fresh};

• For all 〈ei, li〉 in E ′, set λ(li) 7→ ei;

• σ is initially empty.

We define inference rules for annotated states, corresponding to the rules

(2.13)–(2.15):

Scaling of an equation

〈E ′ ∪ {〈
∑

i aixi + c = 0, `〉}, λ, σ〉 →
〈E ′ ∪ {〈

∑
i aixi + c = 0, `〉, 〈

∑
i
ai

g xi + c
g = 0, 1

g`〉}, λ, σ〉
if g = GCD(ai, . . . , an, c) and g > 1

(2.16)

Combination of two equations

〈E ′ ∪ {〈
∑

i a1ixi + c1 = 0, `1〉, 〈
∑

i a2ixi + c2 = 0, `2〉}, λ, σ〉 →
〈E ′ ∪ {〈

∑
i a1ixi + c1 = 0, `1〉, 〈

∑
i a2ixi + c2 = 0, `2〉}∪

{〈
∑

i(k1a1i + k2a2i)xi + (k1c1 + k2c2) = 0, k1`1 + k2`2〉}, λ, σ〉
k1, k2 ∈ Z

(2.17)

Decomposition of an equation

〈E ′ ∪ {〈
∑

i aixi + c = 0, `〉}, λ, σ〉 → 〈E ′ ∪ {〈
∑

i aixi + c = 0, `〉}∪
{〈

∑
i6=k a

q
ixi + xk − xt + cq = 0, 0`〉,

〈akxt +
∑

i 6=k a
r
ixi + cr = 0, `〉}, λ, σ′〉

if ak = argmini{|ai| : ai 6= 0}, xt is fresh,

ai = aqiak + ari for all i, c = cqak + cr

and σ′(x) =

{ ∑
i6=k a

q
ixi + xk + cq if x = xt

σ(x) otherwise

(2.18)

66



2.6. THE LA(Z)-SOLVER

The purpose of the variables in L and of the mapping λ is to give a name

to each of the original equations. We observe in fact that at the beginning

each equation is associated to a unique li ∈ L through λ, and that none

of the above rules modifies λ. Intuitively, each expression ` in a pair 〈e, `〉
of E ′ encodes the linear combination of input equations from which e was

generated. When e is inconsistent, therefore, ` identifies exactly the subset

of input equations responsible for the inconsistency. Analogously, when

Algorithm 2.6 returns a solution S, each `i associated to an equation ei in

S identifies the subset of input equations which were used to generate the

substitution encoded by ei. This argument is formalized by the following

theorem.

Theorem 2.4. Let 〈E ′, λ, σ〉 be an annotated state. Let σ∗ be the function

that takes a linear combination and recursively replaces each fresh variable

xt introduced by (2.18) with σ(xt), until no more fresh variables are left.

Finally, let λ∗ be the function that takes a linear combination ` of variables

from L and replaces each l with λ(l). Then, for every element 〈e, `〉 of E ′,

the following holds:

λ∗(`) = σ∗(e) (2.19)

Proof. First, observe that (2.19) holds for the initial state of the system,

since each element of E ′ is in the form 〈ei, li〉 such that λ(li) = ei. We now

show that any application of the rules (2.16)–(2.18) preserves (2.19).

In order to show that this is the case for (2.16) and (2.17), it is enough

to observe that, for any linear combinations e1 and e2 and coefficients k1

and k2, k1σ
∗(e1) + k2σ

∗(e2) = σ∗(k1e1 + k2e2), and similarly for λ∗.

As regards (2.18), let e
def

= 〈
∑

i aixi + c = 0, `〉 be the element that

triggers the application of the rule, and suppose that (2.19) holds for it.

67



CHAPTER 2. DETAILS ON MATHSAT

Let

〈e′ def

=
∑
i6=k

aqixi + xk − xt + cq = 0, 0`〉 and (2.20)

〈e′′ def

= akxt +
∑
i6=k

arixi + cr = 0, `〉 (2.21)

be the results of the decomposition, where xt is fresh. Since (2.18) updates

σ by setting σ(xt) 7→
∑

i 6=k a
q
ixi + xk + cq, by the definition of σ∗ we have

that:

(i)

σ∗(e′) = σ∗(
∑
i6=k

aqixi + xk + cq − σ(xt)) = σ∗(0) = 0,

which is clearly equal to λ∗(0`) = 0, and thus (2.19) holds for (2.20);

and

(ii)

σ∗(e′′) = σ∗(akσ(xt) +
∑
i6=k

arixi + cr) =

σ∗(ak(
∑
i6=k

aqixi + xk + cq) +
∑
i6=k

arixi + cr) = σ∗(e),

which is equal to λ∗(`) by hypothesis. Therefore, (2.19) holds also for

(2.21). �

Corollary 2.5. Let 〈e, ` def

=
∑

i aili〉 be an element of E ′, and let EL be

the set of equations ei = 0 such that λ(li) = ei for each li in `. If e is

inconsistent, then EL is inconsistent.

Corollary 2.6. Let S be a solution returned by Algorithm 2.6, let S ′
def

=

{〈ei, `i
def

=
∑

j aijlj〉 | ei ∈ S} be its “annotated version”, and let EL be the

set of equations ej = 0 such that λ(lj) = ej for each lj in {`i}i. Let I

68



2.6. THE LA(Z)-SOLVER

be a set of inequalities, and let I ′ be the set of inequalities obtained from

I after applying the substitutions in S and tightening the results. If I ′ is

inconsistent, then I ∪ EL is inconsistent.

The two corollaries above give us a way of producing explanations with

the Diophantine equation handler. Using Corollary 2.5, we can generate

an explanation for an inconsistency detected directly by Algorithm 2.6 by

taking the conjunction of all the input equations whose labels occur in the

linear combination
∑

i aili associated to the inconsistent equation e. Using

Corollary 2.6, instead, we can identify, for each inequality generated by

the equality elimination and tightening step, the set of equations used to

generate it, by looking at the labels in the linear combinations
∑

j aijlj

associated to each substitution ei used. Thanks to this, we can generate

an explanation for an inconsistency detected by the LA(Q)-solver by first

generating a LA(Q)-explanation containing fresh inequalities generated

by the elimination and tightening step, and then by replacing each of such

fresh inequalities with the original inequality and the set of equations used

to generate it.

2.6.2 The Branch and Bound module

When the equality elimination and tightening step does not lead to an

inconsistency, the Branch and Bound module is activated. This module

works by scanning the model produced by the LA(Q)-solver in order to

find integer variables that were assigned to a rational non-integer constant.

If no such variable is found, then the LA(Q)-model is also a LA(Z)-model,

and the solver returns sat. Otherwise, let xk be an integer value to which

the LA(Q)-solver has assigned a non-integer value qk. Then, the Branch

and Bound module creates the LA(Z)-lemma (xk ≤ bqkc)∨(xk ≥ dqke), and

sends it back to the DPLL engine, which learns it and continues searching.

Therefore, the LA(Z)-solver does not always detect conflicts by itself, but

69



CHAPTER 2. DETAILS ON MATHSAT

it delegates part of the work to the DPLL engine, following the “splitting

on-demand” approach introduced in [BNOT06]. This not only makes the

implementation much easier, since there is no need of implementing sup-

port for disjunctive reasoning within the LA(Z)-solver, but it also allows

to take advantage for free of all the advanced techniques (e.g. conflict-

driven backjumping, learning, . . . ) for search-space pruning implemented

in modern DPLL engines.

An important point to highlight is that the branch and bound technique

implemented in MathSAT is not complete, in the sense that it might not

terminate (continuing to generate new branch-and-bound-lemmas) if the

input problem contains some unbounded variable. Although theoretically

it is possible to statically determine bounds for all unbounded variables

and thus to make branch and bound complete [Sch86], such theoretical

bounds would be so large to have no practical value [DdM06b].

In order to overcome this limitation, we have recently extended the

Branch and Bound module with the implementation of the algorithm de-

scribed in [DDA09], which we refer to for the details. Here, we only mention

the fact that this algorithm is based on the computation of proofs of un-

satisfiability of systems of Diophantine equations. For this, in [DDA09]

the authors use Hermite Normal Forms, whereas in our implementation

we can reuse the module for handling Diophantine equations, thanks to its

proof-production capability (see Theorem 2.4). Despite the fact that also

this method is incomplete unless bounds for all variables are determined a

priori, in [DDA09] it was shown to be much more effective than standard

branch and bound in practice. However, our implementation is still very

recent and basic, and more tuning and experimentation with it is necessary

in order to evaluate its benefits.

70



2.7. OTHER THEORY SOLVERS

2.7 Other Theory Solvers

2.7.1 The AR-solver

In order to deal with the theory of arrays, MathSAT adopts an approach

based on lazy axiom instantiation (see §1.4.5), implemented on top of the

EUF -solver following the algorithm given in [GKF08]. The behaviour of

the algorithm can be summarized as follows. Initially, array operations

are treated as uninterpreted functions, and a standard congruence closure

is used to detect conflicts arising from the violation of equality axioms

only. From time to time, an AR-consistency check is performed, in order

to detect violations of the AR-axioms (1.1)–(1.3). When a violation is

detected, the AR-solver builds a clause corresponding to an instantiation

of the violated axiom, and sends it back to the DPLL engine, in order to

forbid that specific violation in the future.

The description of the algorithm given in [GKF08] is in terms of a set

of inference rules, which leaves a lot of room for exploring several different

strategies for deciding when and in which order to apply them. The strat-

egy that we have adopted – since it was the one which gave the best results

in our experiments – consists of deferring the application of the rules until

an EUF -consistent complete truth assignment is found, and then to always

prefer axioms for (1.1) and (1.2) (read-over-write axioms) over those for

(1.3) (extensionality axioms). In other words, we generate extensionality

axioms only if no read-over-write axiom is left.

2.7.2 The DL-solver

For Difference Logic, MathSAT implements the algorithm of [CM06], an

efficient, incremental, backtrackable, and T -deduction-capable procedure

based on detection of negative-weight cycles in a graph-representation of

the DL-constraints (see §1.4.3).

71



CHAPTER 2. DETAILS ON MATHSAT

As for the case of LA(Q), in our experiments we have found that the

representation of numbers used can have a significant impact on the per-

formance of the solver. Therefore, we adopt the same solution described in

§2.5.2: we use native integers by default, and switch to infinite-precision

numbers only if needed. In fact, it should be noted that in DL, when using

algorithms based on negative-cycle detection in a graph-representation of

the constraints, it is possible to determine statically, before starting search,

whether infinite precision is required or not, by simply summing the abso-

lute values of all the coefficients c of the atoms (x − y ≤ c) occurring in

the input formula, and checking whether this leads to an overflow.

2.7.3 The UT VPI-solver

Also the solver for UT VPI constraints is based on the algorithm of [CM06].

For UT VPI(Q), we simply use the encoding into DL(Q) given in [Min01]

(see §1.4.4 and also §4.4.1) and then use the DL-solver. For UT VPI(Z),

however, this is not enough. Therefore, if the DL-solver returns sat, we

use the algorithm of [LM05] for checking consistency over the integers (see

also §4.4.2). Since this algorithm is not incremental, we use it only when a

complete UT VPI(Q)-consistent truth assignment has been found, whereas

during EP calls we only check consistency over the rationals.

2.8 Combination of Theories

MathSAT supports the combination of EUF (possibly also with AR– see

§2.7.1) with any other theory T , either using the Delayed Theory Combi-

nation (DTC) method (§1.5.1) or by applying Ackermann’s reduction to

eliminate uninterpreted functions and predicates (§1.5.2).10

Compared to the original DTC algorithm described in [BBC+06b], the

10In this case, this is not possible when AR is involved.

72



2.8. COMBINATION OF THEORIES

implementation in MathSAT is significantly improved. In particular, in-

terface equalities are not introduced upfront in the input formula, but only

when a truth assignment that is T -consistent in each individual theory is

found. Moreover, we use a strategy similar to that described in [BCF+08]

for handling case splits on interface equalities, in order to minimize the

amount of extra Boolean search induced by the interface equalities. Basi-

cally, interface equalities are never selected for case splitting if there is some

other unassigned atom, and they are always assigned to false first. How-

ever, we do allow T -solvers to T -deduce interface equalities at any time.

Finally, we have also implemented a mixed strategy, combining DTC with

Ackermann’s reduction, based on the Dynamic Ackermannization tech-

nique described in [dMB08a]. On several benchmarks of the SMT-LIB,

this gives a significant performance improvement.

The support for theory combination could however be still improved.

In particular, a promising direction for improvement is the incorpora-

tion of ideas from the “Model-Based” combination approach introduced

in [dMB08a], which can be seen as an evolution of DTC, and was shown

to outperform other combination methods.

73



CHAPTER 2. DETAILS ON MATHSAT

74



Part II

Extended SMT Functionalities





Many important applications of SMT require functionalities that go be-

yond simply checking the safisfiability of an SMT formula. Examples of

such extended functionalities include the ability of producing witnesses for

the satisfiability of problems (a model for a satisfiable formula, or a proof

of unsatisfiability for an unsatisfiable one), the support for the extraction

of unsatisfiable cores and the computation of Craig interpolants, the ca-

pability of working incrementally, the enumeration of all the T -consistent

truth assignments of a formula (All-SMT), the support for simplifications

of formulae and for quantifier elimination.

In particular, in the context of formal verification, such extended func-

tionalities can be very useful for a number of different techniques, among

which:

• Models for satisfiable problems can be used for counterexample recon-

struction in Bounded Model Checking (BMC) (e.g., [AMP09]), but

also for abstraction refinement (e.g., [BH07]).

• Proofs of unsatisfiability and unsatisfiable cores can be used for debug-

ging, for integration with other tools, and for abstraction refinement

(e.g., [ABM07, MA03]).

• Craig interpolants can be used for unbounded SAT and SMT based

77



model checking (e.g., [McM03]), automatic predicate discovery in ab-

straction refinement (e.g., [HJMM04]), automatic invariant generation

(e.g., [McM08]), or simplification of formulae (e.g., [SDPK09]).

• All-SMT capabilities can be used for computing predicate abstractions

(e.g. [LNO06, CCF+07]).

MathSAT implements many of the above functionalities: model and

proof generation, extraction of unsatisfiable cores, computation of Craig

interpolants, All-SMT, and an incremental interface. In particular, Math-

SAT is (as far as we know) the only modern SMT solver that supports

interpolation, and it currently represents the state of the art in interpolant-

generation for several important theories. Moreover, it implements a novel

procedure for unsatisfiable core extraction, that allows for exploiting for

free all the techniques for the extraction of small unsatisfiable cores of

propositional formulae, for which several very effective algorithms exist.

In this part, we describe in full detail such two distinguishing features of

MathSAT. We deal with extraction of unsatisfiable cores in Ch. 3, and

with the generation of Craig interpolants in Ch. 4.

78



Chapter 3

Extraction of Unsatisfiable Cores

Note. The material presented in this chapter has already been presented

in [CGS07] and [CGS09a].

The concept of unsatisfiable core —i.e., an unsatisfiable subset of an

unsatisfiable set of clauses— plays a relevant role in SAT-based formal

verification, thanks to its many important applications. Examples of such

applications include use of SAT instead of BDDs for unbounded symbolic

model checking [McM02], automatic predicate discovery in abstraction

refinement frameworks [MA03, WKG07], decision procedures [BKO+09],

under-approximation and refinement in the context of bounded model

checking of multi-threaded systems [GLST05], debugging of design er-

rors in circuits [SFBD08]. For this reason, the problem of finding small

unsat cores in SAT has been addressed by many authors in the recent

years [LMS04, MLA+05, ZM03, OMA+04, Hua05, DHN06, Bie08b, GKS08,

ZLS06, vMW08, ANORC08].

Surprisingly however, the problem of finding unsatisfiable cores in SMT

has received virtually no attention in the literature. Although some SMT

tools do compute unsat cores, this is done either as a byproduct of the more

general task of producing proofs, or by modifying the embedded DPLL

solver so that to apply basic propositional techniques to produce an unsat

79



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

core. In particular, we are not aware of any work aiming at producing

small unsat cores in SMT.

Contributions

We address the problem of computing small unsatisfiable cores in SMT,

by presenting a novel, SMT-specific approach to unsat core computation,

which we call the Lemma-Lifting approach. The main idea is to combine an

SMT solver with an external propositional core extractor. The SMT solver

stores and returns the theory lemmas it had to prove in order to refute the

input formula; the external core extractor is then called on the Boolean

skeleton of the original SMT problem and of the theory lemmas. The

resulting Boolean unsatisfiable core is cleaned from (the Boolean skeleton

of) all theory lemmas, and it is refined back into a subset of the original

clauses. The result is an unsatisfiable core of the original SMT problem.

We evaluate our approach by an extensive empirical test on SMT-LIB

benchmarks, in terms of both effectiveness (reduction in size of the cores)

and efficiency (execution time). The results confirm the validity and ver-

satility of this approach.

As a byproduct, we also produce an extensive and insightful evaluation

of the main Boolean unsat-core-generation tools currently available.

3.1 State of The Art

3.1.1 Definitions

Without loss of generality, in the following we consider only formulae in

CNF. Given an unsatisfiable CNF formula ϕ, we say that an unsatisfiable

CNF formula ψ is an unsatisfiable core (UC) of ϕ if and only if ϕ = ψ ∧ψ′

for some (possibly empty) CNF formula ψ′. Intuitively, ψ is a subset of

the clauses in ϕ causing the unsatisfiability of ϕ. An unsatisfiable core ψ is

80



3.1. STATE OF THE ART

minimal if and only if the formula obtained by removing any of the clauses

of ψ is satisfiable. A minimum unsat core is a minimal unsat core with the

smallest possible cardinality.

The concept of unsatisfiable core is strictly related to that of proof of

unsatisfiability.

Definition 3.1 (Resolution proof). Given a set of clauses S
def

= {C1, . . . , Cn}
and a clause C, we call a resolution proof of the deduction

∧
iCi |=T C a

DAG P such that:

1. C is the root of P;

2. the leaves of P are either elements of S or T -lemmas;

3. each non-leaf node C ′ has two premises Cp1
and Cp2

such that Cp1

def

=

p ∨ φ1, Cp2

def

= ¬p ∨ φ2, and C ′
def

= φ1 ∨ φ2. The atom p is called the

pivot of Cp1
and Cp2

.

If C is the empty clause (denoted with ⊥), then P is a resolution proof of

(T -)unsatisfiability1 for
∧
iCi.

3.1.2 Techniques for unsatisfiable-core extraction in SAT

In the last few years, several algorithms for computing small, minimal or

minimum unsatisfiable cores of propositional formulae have been proposed.

Several techniques work by extracting unsatisfiable cores from resolution

refutations generated by a DPLL-based solver (see [ANORC08] for an in-

depth discussion and comparison of such approaches). The production of

a resolution proof with DPLL can be achieved easily, with very little im-

plementation effort, by exploiting the information and the data structures

maintained by DPLL for performing conflict analysis and conflict-driven

1often called also resolution refutation.

81



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

backjumping (such data structures are commonly referred to as implica-

tion graph [ZM02]; we refer to [vG07] for a concise and clear description

of proof-generation with DPLL). In [ZM03], the computed unsat core is

simply the collection of all the original clauses that the DPLL solver used

to derive the empty clause by resolution. The returned core is not min-

imal in general, but it can be reduced by iterating the algorithm until a

fixpoint, using as input of each iteration the core computed at the previous

one. The algorithm of [GKS08], instead, manipulates the resolution proof

so that to shrink the size of the core, using also a fixpoint iteration as in

[ZM03] to further enhance the quality of the results. In [OMA+04], an

algorithm to compute minimal unsat cores is presented. The technique is

based on modifications of a standard DPLL engine, and works by adding

some extra variables (selectors) to the original clauses, and then perform-

ing a branch-and-bound algorithm on the modified formula. The procedure

presented in [Hua05] extracts minimal cores using BDD manipulation tech-

niques, removing one clause at a time until the remaining core is minimal.

The construction of a minimal core in [DHN06] also uses resolution proofs,

and it works by iteratively removing from the proof one input clause at a

time, until it is no longer possible to prove inconsistency. When a clause

is removed, the resolution proof is modified to prevent future use of that

clause.

As far as the the computation of minimum unsatisfiable cores is con-

cerned, the algorithm of [LMS04] searches all the unsat cores of the in-

put problem; this is done by introducing selector variables for the original

clauses, and by increasing the search space of the DPLL solver to include

also such variables; then, (one of) the unsatisfiable subformulae with the

smallest number of selectors assigned to true is returned. The approach

described in [MLA+05] instead is based on a branch-and-bound algorithm

that exploits the relation between maximal satisfiability and minimum un-

82



3.1. STATE OF THE ART

satisfiability. The same relation is used also by the procedure in [ZLS06],

which is instead based on a genetic algorithm.

3.1.3 Techniques for unsatisfiable-core extraction in SMT

To the best of our knowledge, there is no literature on the computation

of unsatisfiable cores in SMT. However, at least four SMT solvers (i.e.

CVC3 [BT07], Yices [DdM06a], Z3 [dMB08c] and MathSAT) support

unsat core generation 2. In the following, we describe the underlying ap-

proaches, that generalize techniques for propositional UC extraction. We

preliminarily remark that none of these solvers aims at producing minimal

or minimum unsat cores, nor does anything to reduce their size.

Proof-based UC extraction

CVC3 and MathSAT can run in proof-producing mode, and compute

unsatisfiable cores as a byproduct of the generation of proofs. Similarly to

the approach in [ZM03], the idea is to analyze the proof of unsatisfiability

backwards, and to return an unsatisfiable core that is a collection of the

assumptions (i.e. the clauses of the original problem) that are used in the

proof to derive contradiction.

Example 3.2. In order to show how the described approaches work, consider

this small unsatisfiable SMT(T ) formula, where T is LA(Z):

(x = 0∨¬(x = 1)∨A1)∧ (x = 0∨x = 1∨A2)∧ (¬(x = 0)∨x = 1∨A2)∧

(¬A2 ∨ y = 1) ∧ (¬A1 ∨ x+ y > 3) ∧ (y < 0) ∧ (A2 ∨ x− y = 4)∧

(y = 2 ∨ ¬A1) ∧ (x ≥ 0), (3.1)

where x and y are integer variables and A1 and A2 are Booleans.

2The information reported here on the computation of unsat cores in CVC3, Yices and Z3 comes
from private communications from the authors and from the user manual of CVC3.

83



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

(x = 1 ∨ x = 0 ∨ A2)

(x = 0 ∨ A1 ∨ A2)

(x = 0 ∨ ¬(x = 1) ∨ A1)

(y = 2 ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LA(Z)

(A2 ∨ ¬(y < 0)) (¬A2 ∨ y = 1)

(¬(y = 0) ∨ y = 1)

(A1 ∨ A2)(¬A1 ∨ y = 2)

(¬(y = 1) ∨ ¬(y < 0))LA(Z)

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LA(Z)

(¬(x = 0) ∨ A2)

(x = 1 ∨ ¬(x = 0) ∨ A2)

Figure 3.1: Resolution proof for the SMT formula (3.1) found by MathSAT. Boxed

clauses correspond to the unsatisfiable core.

In the proof-based approach, a resolution proof of unsatisfiability is

built during the search. E.g., Figure 3.1 shows the proof tree found by

MathSAT. The leaves of the tree are either original clauses (boxed in the

Figure) or LA(Z)-lemmas (denoted with the LA(Z) suffix). The unsatis-

fiable core is built by collecting all the original clauses appearing as leaves

in the proof. In this case, this is:

{(x = 0 ∨ ¬(x = 1) ∨A1), (x = 0 ∨ x = 1 ∨A2), (¬(x = 0) ∨ x = 1 ∨A2),

(¬A2 ∨ y = 1), (y < 0), (y = 2 ∨ ¬A1)}. (3.2)

In this case, the unsat core is minimal. ♦

Assumption-based UC extraction

The approach used by Yices [DdM06a] and Z3 [dMB08c] is an adaptation

of the method from [LMS04]: for each clause Ci in the problem, a new

Boolean “selector” variable Si is created; then, each Ci is replaced by

(Si → Ci); finally, before starting the search each Si is forced to true.

84



3.1. STATE OF THE ART

In this way, when a conflict at decision level zero is found by the DPLL

solver, the conflict clause contains only selector variables, and the unsat

core returned is the union of the clauses whose selectors appear in such

conflict clause.

Example 3.3. Consider again the formula (3.1) of Example 3.2. In the

assumption-based approach, each of the 9 input clauses is augmented with

an extra variable Si, which is asserted to true at the beginning of the search.

The formula therefore becomes:∧
i

Si ∧

(S1 → (x = 0 ∨ ¬(x = 1) ∨ A1)) ∧ (S2 → (x = 0 ∨ x = 1 ∨ A2)) ∧

(S3 → (¬(x = 0) ∨ x = 1 ∨ A2)) ∧ (S4 → (¬A2 ∨ y = 1)) ∧

(S5 → (¬A1 ∨ x+ y > 3)) ∧ (S6 → y < 0) ∧

(S7 → (A2 ∨ x− y = 4)) ∧ (S8 → (y = 2 ∨ ¬A1)) ∧ (S9 → x ≥ 0)

(3.3)

The final conflict clause generated by conflict analysis [ZMMM01] is: 3

¬S1 ∨ ¬S2 ∨ ¬S3 ∨ ¬S4 ∨ ¬S6 ∨ ¬S7 ∨ ¬S8, (3.4)

corresponding to the following unsat core:

{(x = 0 ∨ ¬(x = 1) ∨A1), (x = 0 ∨ x = 1 ∨A2), (¬(x = 0) ∨ x = 1 ∨A2),

(¬A2 ∨ y = 1), (y < 0), (A2 ∨ x− y = 4), (y = 2 ∨ ¬A1)}. (3.5)

Notice that this is not minimal, because of the presence of the redundant

clause (A2 ∨ x − y = 4), corresponding to ¬S7 in the final conflict clause

(3.4). ♦

Remark 3.4. The idea behind the two techniques just illustrated is substan-

tially the same. Both exploit the implication graph built by DPLL during
3using Yices.

85



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

conflict analysis to detect the subset of the input clauses that were used

to decide unsatisfiability. The main difference is that in the proof-based

approach this is done by explicitly constructing the proof tree, while in the

activation-based one this can be done “implicitly” by “labeling” each of the

original clauses. However, this difference has no impact on the final result.

In particular, given the same search strategy, the two techniques will return

the same unsat core. The fact that the unsatisfiable cores of Examples 3.2

and 3.3 are different is therefore just a consequence of different Boolean

search steps performed by MathSAT and Yices for that particular for-

mula. For a deeper comparison between these two approaches (and some

variants of them), we refer the reader to [ANORC08].

3.2 A novel approach: Lemma-Lifting

We present a novel approach, called the Lemma-Lifting approach, in which

the unsatisfiable core is computed a posteriori w.r.t. the execution of the

SMT solver, and only if the formula has been found T -unsatisfiable. This

is done by means of an external (and possibly optimized) propositional

unsat-core extractor.

3.2.1 The main ideas

In the following, we assume that a lazy SMT(T ) procedure has been

run over a T -unsatisfiable set of SMT(T ) clauses ϕ
def

= {C1, . . . , Cn}, and

that D1, . . . , Dk denote all the T -lemmas, both theory-conflict and theory-

deduction clauses, which have been returned by the T -solver during the

run. In case of mixed Boolean+theory-conflict clauses [NOT06] (see §1.3.1

on page 21), the T -lemmas are those which have been used to compute the

mixed Boolean+theory-conflict clause, including the initial theory-conflict

clause and the theory-deduction clauses corresponding to the theory-propagation

86



3.2. A NOVEL APPROACH: LEMMA-LIFTING

steps performed. Under the above assumptions, two simple facts hold.

(i) Since the T -lemmas Di are valid in T , they do not affect the T -

satisfiability of a formula: (ψ ∧Di) |=T ⊥ ⇐⇒ ψ |=T ⊥.

(ii) The conjunction of ϕ with all the T -lemmas D1, . . . , Dk is proposi-

tionally unsatisfiable: T 2B(ϕ ∧
∧n
i=1Di) |= ⊥.

Fact (i) is self-evident. Fact (ii) is the termination condition of all lazy SMT

tools when the input formula is T -unsatisfiable (lines 15–17 of Figure 1.1

on page 19 4).

Example 3.5. Consider again formula (3.1) of Example 3.2. In order to

decide its unsatisfiability, MathSAT generates the following set of LA(Z)-

lemmas:

{(¬(x = 1) ∨ ¬(x = 0)), (¬(y = 2) ∨ ¬(y < 0)), (¬(y = 1) ∨ ¬(y < 0))}.
(3.6)

Notice that they are all LA(Z)-valid (fact (i)). Then, the Boolean skeleton

of (3.1) is conjoined with the Boolean skeleton of these LA(Z)-lemmas,

resulting in the following propositional formula:

(B0 ∨ ¬B1 ∨ A1) ∧ (B0 ∨B1 ∨ A2) ∧ (¬B0 ∨B1 ∨ A2) ∧ (¬A2 ∨B2)∧

(¬A1 ∨B3) ∧B4 ∧ (A2 ∨B5) ∧ (B6 ∨ ¬A1) ∧B7∧

(¬B1 ∨ ¬B0) ∧ (¬B6 ∨ ¬B4) ∧ (¬B2 ∨ ¬B4), (3.7)

where:

B0
def

= T 2B(x = 0) B4
def

= T 2B(y < 0)

B1
def

= T 2B(x = 1) B5
def

= T 2B(x− y = 4)

B2
def

= T 2B(y = 1) B6
def

= T 2B(y = 2)

B3
def

= T 2B(x+ y > 3) B7
def

= T 2B(x ≥ 0).

4This can be seen by noticing that T -backjumping on a theory-conflict clauseDi produces an analogous
effect as re-invoking DPLL on ϕp ∧T 2B(Di), whilst theory propagation on a deduction {l1, . . . , lk} |=T l
can be seen as a form on unit propagation on the theory-deduction clause T 2B(

∨
i ¬li ∨ l).

87



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

It is easy to see that (3.7) is unsatisfiable (fact (ii)). ♦

Fact (ii) holds also for those SMT tools which learn mixed Boolean+theory-

clauses F1, . . . , Fn (instead of T -lemmas), obtained from the T -lemmas

D1, . . . , Dn by backward traversal of the implication graph. In fact, in this

case, T 2B(ϕ ∧
∧n
i=1 Fi) |= ⊥ holds. Since ϕ ∧

∧n
i=1Di |=

∧n
i=1 Fi, because

of the way the Fi’s are built, 5 Fact (ii) holds.

Some SMT tools implement theory-propagation in a slightly different

way (e.g. BarceLogic [BNO+08a]). If l1, . . . , ln |=T l, instead of learning

the T -lemma ¬l1 ∨ . . . ∨ ¬ln ∨ l and unit-propagating l on it, they sim-

ply propagate the value of l, without learning any clause. Only if such

propagation leads to a conflict later in the search, the theory-deduction

clause is learned and used for conflict-analysis. The validity of fact (ii) is

not affected by this optimization, because only the T -lemmas used during

conflict analysis are needed for it to hold [NOT06].

Overall, in all variants of the on-line lazy SMT schema (§1.3.1 on page

18), the embedded DPLL engine builds –either explicitly or implicitly–

a resolution refutation of the Boolean skeleton of the conjunction of the

original clauses and the T -lemmas returned by the T -solver. Thus fact (ii)

holds.

3.2.2 Extracting SMT cores by Lifting Theory Lemmas

Facts (i) and (ii) discussed in §3.2.1 suggest a new approach to the gen-

eration of unsatisfiable cores for SMT. The main idea is that if the theory

lemmas used during the SMT search are lifted into Boolean clauses, then

the unsat core can be extracted by a purely propositional core extractor.

Therefore, we call this technique the Lemma-Lifting approach.

5Each clause T 2B(Fi) is obtained by resolving the clause T 2B(Di) with clauses in T 2B(ϕ∧
∧i−1

j=1 Fj),
so that T 2B(ϕ ∧

∧i−1
j=1 Fj ∧Di) |= T 2B(Fi). Thus, by induction, T 2B(ϕ ∧

∧n
i=1Di) |= T 2B(

∧n
i=1 Fi), so

that ϕ ∧
∧n

i=1Di |=
∧n

i=1 Fi.

88



3.2. A NOVEL APPROACH: LEMMA-LIFTING

〈SatValue, ClauseSet〉 T -unsat-core (ClauseSet ϕ)

1. // ϕ is {C1, . . . , Cn}
2. if lazy-smt-solver (ϕ) == sat then

3. return 〈sat, ∅〉
4. else

5. // D1, . . . , Dk are the T -lemmas stored by lazy-smt-solver

6. ψp = boolean-unsat-core(T 2B({C1, . . . , Cn, D1, . . . , Dk}))
7. // ψp is T 2B({C ′1, . . . , C ′m, D′1, . . . , D′j})
8. return 〈unsat, {C ′1, . . . , C ′m}〉
9. end if

Figure 3.2: Schema of the T -unsat-core procedure.

The algorithm is presented in Figure 3.2. The procedure T -unsat-core

receives as input a set of clauses ϕ
def

= {C1, . . . , Cn} and it invokes on it a lazy

SMT(T ) tool lazy-smt-solver, which is instructed to store somewhere the

T -lemmas returned by the T -solver, namely D1, . . . , Dk. If lazy-smt-solver

returns sat, then the whole procedure returns sat. Otherwise, the Boolean

abstraction of {C1, . . . , Cn, D1, . . . , Dk}, which is inconsistent because of

fact (ii), is fed to an external tool boolean-unsat-core, which is able to

return the Boolean unsat core ψp of the input. By construction, ψp is

the Boolean skeleton of a clause set {C ′1, . . . , C ′m, D′1, . . . , D′j} such that

{C ′1, . . . , C ′m} ⊆ {C1, . . . , Cn} and {D′1, . . . , D′j} ⊆ {D1, . . . , Dk}. As ψp

is unsatisfiable, then {C ′1, . . . , C ′m, D′1, . . . , D′j} is T -unsatisfiable. By fact

(i), the T -valid clauses D′1, . . . , D
′
j have no role in the T -unsatisfiability

of {C ′1, . . . , C ′m, D′1, . . . , D′j}, so that they can be thrown away, and the

procedure returns unsat and the T -unsatisfiable core {C ′1, . . . , C ′m}.
Notice that the resulting T -unsatisfiable core is not guaranteed to be

minimal, even if boolean-unsat-core returns minimal Boolean unsatisfiable

cores. In fact, it might be the case that {C ′1, . . . , C ′m}\{C ′i} is T -unsatisfiable

for some C ′i even though T 2B({C ′1, . . . , C ′m} \ {C ′i}) is satisfiable, because

all truth assignments µp satisfying the latter are such that B2T (µp) is

89



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

T -unsatisfiable.

Example 3.6. Consider the unsatisfiable SMT formula ϕ on LA(Z):

ϕ ≡ (x = 0 ∨ x = 1) ∧ (¬(x = 0) ∨ x = 1) ∧ (x = 0 ∨ ¬(x = 1))∧

(¬(x = 0) ∨ ¬(x = 1))

and its Boolean skeleton T 2B(ϕ):

T 2B(ϕ) ≡ (B0 ∨B1) ∧ (¬B0 ∨B1) ∧ (B0 ∨ ¬B1) ∧ (¬B0 ∨ ¬B1).

Then, T 2B(ϕ) is a minimal Boolean unsatisfiable core of itself, but ϕ is

not a minimal core in LA(Z), since the last clause is valid in this theory,

and hence it can be safely dropped. ♦

The procedure can be implemented very simply by modifying the SMT

solver so that to store the T -lemmas and by interfacing it with some state-

of-the-art Boolean unsat-core extractor used as an external black-box de-

vice. Moreover, if the SMT solver can provide the set of all T -lemmas as

output, then the whole procedure may reduce to a control device interfac-

ing with both the SMT solver and the Boolean core extractor as black-box

external devices.

Remark 3.7. Notice that here storing the T -lemmas does not mean learn-

ing them, that is, the SMT solver is not required to add the T -lemmas to the

formula during the search. Instead, it is for instance sufficient to store them

in some ad-hoc data structure, or even to dump them to a file. This causes

no overhead to the Boolean search in the SMT solver, and imposes no con-

straint on the lazy strategy adopted (e.g., permanent/temporary learning,

usage of mixed Boolean+theory conflict clauses, etc.).

Example 3.8. Once again, consider formula (3.1) of Example 3.2, and the

corresponding formula (3.7) of Example 3.5, which is the Boolean skeleton

90



3.2. A NOVEL APPROACH: LEMMA-LIFTING

of (3.1) and the LA(Z)-lemmas (3.6) found by MathSAT during search.

In the Lemma-Lifting approach, (3.7) is given as input to an external

Boolean unsat-core device. The resulting propositional unsatisfiable core

is:

{(B0 ∨ ¬B1 ∨ A1), (B0 ∨B1 ∨ A2), (¬B0 ∨B1 ∨ A2), (¬A2 ∨B2), B4,

(B6 ∨ ¬A1), (¬B1 ∨ ¬B0), (¬B6 ∨ ¬B4), (¬B2 ∨ ¬B4)},

which corresponds (via B2T ) to:

{(x = 0 ∨ ¬(x = 1) ∨ A1), (x = 0 ∨ x = 1 ∨ A2), (¬(x = 0) ∨ x = 1 ∨ A2),

(¬A2 ∨ y = 1), B4, (y = 2 ∨ ¬A1),

(¬(x = 1) ∨ ¬(x = 0)), (¬(y = 2) ∨ ¬(y < 0)), (¬(y = 1) ∨ ¬(y < 0))}.

Since the last three clauses are included in the LA(Z)-lemmas, and thus

are LA(Z)-valid, they are eliminated. The resulting core only consists of

the first 6 clauses. In this case, the core turns out to be minimal, and is

identical modulo reordering to that computed by MathSAT with proof-

tracing (see Example 3.2). ♦

As observed at the end of the previous section, our technique works

also if the SMT tool learns mixed Boolean+theory clauses (provided that

the original T -lemmas are stored), or uses the lazy theory deduction of

[NOT06]. Moreover, it works also if T -lemmas contain new atoms (i.e.

atoms that do not appear in ϕ), as in [FJOS03, BNOT06], since both

Facts (ii) and (i) hold also in that case.

As a side observation, we remark that the technique works also for the

per-constraint-encoding eager SMT approach of [GSZ+98, SSB02]. In the

eager SMT approach, the input T -formula ϕ is translated into an equi-

satisfiable Boolean formula, and a SAT solver is used to check its satis-

fiability. With per-constraint-encoding of [GSZ+98, SSB02], the resulting

Boolean formula is the conjunction of the Boolean skeleton ϕp of ϕ and

91



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

a formula ϕT which is the Boolean skeleton of the conjunction of some

T -valid clauses. Therefore, ϕT plays the role of the T -lemmas of the lazy

approach, and our approach still works. This idea falls out of the scope of

this thesis, and is not expanded further.

3.2.3 Discussion

Despite its simplicity, the proposed approach is appealing for several rea-

sons.

First, it is extremely simple to implement. The building of unsat cores is

demanded to an external device, which is fully decoupled from the internal

DPLL-based enumerator. Therefore, there is no need of implementing

any internal unsat-core constructor nor to modify the embedded Boolean

device. Every possible external device can be interfaced in a plug-and-play

manner by simply exchanging a couple of DIMACS files 6.

Second, the approach is fully compatible with optimizations carried out

by the core extractor at the Boolean level: every original clause which

the Boolean unsat-core device is able to drop, is also dropped in the fi-

nal formula. Notably, this involves also Boolean unsat-core techniques

which could be very difficult to adapt to the SMT setting (and to imple-

ment within an SMT solver), such as the ones based on genetic algorithms

[ZLS06].

Third, it benefits for free from the research on propositional unsat-core

extraction, since it is trivial to update: once some novel, more efficient

or more effective Boolean unsat-core device is available, it can be used in

a plug-and-play way. This does not require modifying the DPLL engine

embedded in the SMT solver.

One may remark that, in principle, if the number of T -lemmas gener-

ated by the T -solver were huge, the storing of all T -lemmas might cause

6DIMACS is a standard format for representing Boolean CNF formulae.

92



3.3. EMPIRICAL EVALUATION

memory-exhaustion problems or the generation of Boolean formulae which

are too big to be handled by the Boolean unsat-core extractor. In practice,

however, this is not a real problem. In fact, even the hardest SMT formu-

lae at the reach of current lazy SMT solvers rarely need generating more

than 105 T -lemmas, which require reasonable amount of memory to store,

and are well at the reach of current Boolean unsat-core extractors (which

can handle formulae in the order of 106−107 clauses.) For instance, notice

that the default choice in MathSAT is to learn all T -lemmas permanently

anyway, and we have never encountered problems due to this fact. Intu-

itively, unlike with plain SAT, in lazy SMT the computational effort is

typically dominated by the search in the theory T , so that the number of

clauses that can be stored with a reasonable amount of memory, or which

can be fed to a SAT solver, is typically much bigger than the number of

calls to the T -solver which can overall be accomplished within a reasonable

amount of time.

Like with the other SMT unsat-core techniques adopted by current SMT

solvers, also with our novel approach the resulting T -unsatisfiable core is

not guaranteed to be minimal, even if boolean-unsat-core returns minimal

Boolean unsatisfiable cores. However, with the Lemma-Lifting technique

it is possible to perform all the reductions that can be done by considering

only the Boolean skeleton of the formula. Although this is in general not

enough to guarantee minimality, it is still a very significant gain, as we

shall show in the next section.

3.3 Empirical Evaluation

We carried out an extensive experimental evaluation of the the Lemma-

Lifting approach. We implemented the approach within MathSAT, which

has been extended with an interface for external Boolean unsatisfiable core

93



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

extractors (UCE) to exchange Boolean formulae and relative cores in form

of files in DIMACS format.

We have tried eight different external UCEs, namely Amuse [OMA+04],

PicoSat [Bie08b], Eureka [DHN06], Munsat [vMW08], MUP [Hua05],

Trimmer [GKS08], ZChaff [ZM03], and the tool presented in [ZLS06]

(called Genetic here). All these tools explicitly target core size reduction

(or minimality), with the exception of PicoSat, which was conceived for

speeding up core generation, with no claims of minimality. In fact, Pi-

coSat turned out to be both the fastest and the least effective in reducing

the size of the cores. Therefore, we adopted it as our baseline choice, as

it is the ideal starting point for evaluating the trade-off between efficiency

(in execution time) and effectiveness (in core size reduction).

All the experiments have been performed on a subset of the SMT-LIB

[RT06] benchmarks. We used a total of 561 T -unsatisfiable problems,

taken from the QF UF (126), QF IDL (89), QF RDL (91), QF LIA (135)

and QF LRA (120) divisions, selected using the same criteria used in the

annual SMT competition. In particular, the benchmarks are selected ran-

domly from the available instances in the SMT-LIB, but giving a higher

probability to real-world instances, as opposed to randomly generated or

handcrafted ones. (See http://www.smtcomp.org/ for additional details.)

We used a preprocessor to convert the instances into CNF (when re-

quired), and in some cases we had to translate them from the SMT lan-

guage to the native language of a particular SMT solver. 7

All the tests were performed on 2.66 GHz Intel Xeon machines with 16

GB of RAM running Linux. For each tested instance, the timeout was set

to 600 seconds, and the memory limit to 2 GB. For all the Boolean UCEs,

we have used the default configurations.

7In particular, CVC3 and Yices can compute unsatisfiable cores only if the problems are given in
their own native format.

94

http://www.smtcomp.org/


3.3. EMPIRICAL EVALUATION

P
ic

o
S
a
t

ti
m

e

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

P
ic

o
S
a
t

ti
m

e

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Total time MathSAT time

Figure 3.3: Overhead of PicoSat wrt. the total execution time of MathSAT +PicoSat

(left) and wrt. the execution time of MathSAT (right).

3.3.1 Costs and effectiveness of unsat-core extraction using Pi-

coSat

The two scatter plots in Figure 3.3 give a first insight on the price that

the Lemma-Lifting approach has to pay for running the external UCE.

The plot on the left compares the execution time of PicoSat with the

total time of MathSAT +PicoSat, whilst the plot on the right shows

the comparison of the time of PicoSat against that of MathSAT solving

time only. From the two figures, it can be clearly seen that, except for few

cases, the time required by PicoSat is much lower or even negligible wrt.

MathSAT solving time. We recall that this price is payed only in the case

of unsatisfiable benchmarks.

We now analyze our Lemma-Lifting approach with respect to the size

of the unsat cores returned. We compare the baseline implementation of

our Lemma-Lifting approach, MathSAT +PicoSat , against CVCLite

[BT07], 8 Yices and MathSAT +ProofBasedUC (i.e. MathSAT

8We tried to use the newer CVC3, but we had some difficulties in the extraction of unsatisfiable cores

95



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

MathSAT +PicoSat MathSAT +ProofBasedUC

C
or

e/
P

ro
bl

em
si

ze
ra

ti
o

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000
1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

Size of the problem (# of clauses) Size of the problem (# of clauses)

Yices CVCLite

C
or

e/
P

ro
bl

em
si

ze
ra

ti
o

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000
1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

Size of the problem (# of clauses) Size of the problem (# of clauses)

Figure 3.4: Ratio between the size of the original formula and that of the unsat core

computed by the various solvers.

96



3.3. EMPIRICAL EVALUATION

CVCLite w.u.c.
MathSAT +PicoSat

MathSAT +ProofBasedUC

MathSAT +PicoSat

Yices w.u.c.
MathSAT +PicoSat

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000

core size ratio 1st quartile median mean 3rd quartile

CVCLite w.u.c.

MathSAT +PicoSat
1.00 1.16 1.33 1.36

MathSAT +ProofBasedUC

MathSAT +PicoSat
1.00 1.03 1.09 1.10

Yices w.u.c.

MathSAT +PicoSat
0.97 1.03 1.08 1.09

Figure 3.5: Comparison of the size of the unsat cores computed by MathSAT +PicoSat

against those of CVCLite, MathSAT +ProofBasedUC and Yices with unsat cores,

with statistics on unsat-core ratios.

Points above the middle line and values greater than 1.00 mean better core quality for

MathSAT +PicoSat , and vice versa.

with proof tracing). 9 (Notice that we do not present any comparison in

time between the different tools because it is not significant for determining

the relative cost of unsat-core computation, since for all tools the time is

completely dominated by the solving time, which varies a lot from solver to

solver; even within MathSAT, proof production requires setting ad-hoc

options, which may result into significantly-different solving times since a

different search space is explored.)

Figure 3.4 shows the absolute reduction in size performed by the differ-

with it. Therefore, we reverted to the older CVCLite for the experiments.
9 CVCLite version 20061231 and Yices version 1.0.19.

97



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

ent solvers: the x-axis displays the size (number of clauses) of the problem,

whilst the y-axis displays the ratio between the size of the unsat core and

the size of the problem. For instance, a point with y value of 1/10 means

that the unsatisfiability is due to only 10% of the problem clauses.

Figure 3.5(top) shows relative comparisons of the data of Figure 3.4.

Each plot compares MathSAT +PicoSat with each of the other solvers.

Such plots, which we shall call “core-ratio” plots, have the following mean-

ing: the x-axis displays the size (number of clauses) of the problem, whilst

the y-axis displays the ratio between the size of the unsat core computed

by CVCLite, Yices or MathSAT +ProofBasedUC and that com-

puted by MathSAT +PicoSat . For instance, a point with y value of

1/2 means that the unsat core computed by the current solver is half the

size of that computed by MathSAT +PicoSat ; values above 1 mean a

smaller core for MathSAT +PicoSat .

In each core-ratio plot, we only consider the instances for which both

solvers terminated successfully, since here we are only interested in the size

of the cores computed, and not in the execution times. Figure 3.5(bottom)

reports statistics about the ratios of the unsat core sizes computed by two

different solvers.

The results presented show that, even when using as Boolean UCE

PicoSat, which is the least effective in reducing the size of the cores,

the effectiveness of the baseline version of our Lemma-Lifting approach is

slightly better than those of the other (Proof-Based or Assumption-Based)

tools.

3.3.2 Impact on costs and effectiveness using different Boolean

unsat-core extractors

In this second part of our experimental evaluation we compare the results

obtained using different UCE’s in terms of costs and effectiveness in reduc-

98



3.3. EMPIRICAL EVALUATION

core size
further reduction

wrt. baseline
execution time

A
m
u
se

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000
 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

G
e
n
e
t
ic

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000
 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

E
u
r
e
k
a

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000
 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Figure 3.6: Comparison of the core sizes (left), core ratios (middle) and run times (right)

using different propositional unsat core extractors. In the core-ratio plots (2nd column),

the X-axis represents the size of the problem, and the Y-axis represents the ratio between

the size of the cores computed by the two systems: a point above the middle line means

better quality for the baseline system. In the scatter plots (3rd column), the baseline

system (MathSAT +PicoSat ) is always on the X-axis.

99



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

core size
further reduction

wrt. baseline
execution time

M
u
n
sa

t

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000
 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

T
r
im

m
e
r

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000
 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Z
C

h
a
f
f

1/1000

1/100

1/10

1/5

1/2

     1

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000
 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

Figure 3.7: Comparison of the core sizes (left), core ratios (middle) and run times (right)

using different propositional unsat core extractors (continued).

100



3.3. EMPIRICAL EVALUATION

ing the size of the core. We show that, depending on the UCE used, it is

possible to reduce significantly the size of cores, and to trade core quality

for speed of execution (and vice versa), with no implementation effort. We

compare our baseline configuration MathSAT +PicoSat , against six

other configurations, each calling a different propositional UCE.

The results are collected in Figures 3.6-3.7. The first column shows

the absolute reduction in size performed by each tool (as in Figure 3.4).

The second column shows core-ratio plots comparing each configuration

against the baseline one using PicoSat (as in Figure 3.5, with points

below 1.00 meaning a better performance of the current configuration).

Finally, the scatter plots in the third column compare the execution times

(with PicoSat always on the X-axis). We evaluated the six configurations

which use, respectively, Amuse [OMA+04], Genetic [ZLS06], Eureka

[DHN06], Munsat [vMW08], Trimmer [GKS08], and ZChaff [ZM03],

against the baseline configuration, using PicoSat. We also compared

with MUP [Hua05], but we had to stop the experiments because of mem-

ory exhaustion problems. Looking at the second column, we notice that

Eureka, followed by Munsat and ZChaff, seems to be the most effec-

tive in reducing the size of the final unsat cores, up to 1/3 the size of those

obtained with plain PicoSat. Looking at the third column, we notice

that with Genetic, Amuse, Munsat, ZChaff and Eureka, efficiency

degrades drastically, and many problems cannot be solved within the time-

out. With Trimmer the performance gap is not that dramatic, but still

up to an order magnitude slower than the baseline version.

Finally, in Figure 3.8 we compare the effectiveness of MathSAT +Eureka,

the most effective extractor in Figures 3.6-3.7, directly with that of the

other three solvers, CVCLite, MathSAT +ProofBasedUC and Yices.

(Also compare the results with those in Figure 3.5.) The gain in core re-

duction wrt. previous state-of-the-art SMT core-extraction techniques is

101



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

CVCLite w.u.c.
MathSAT + Eureka

MathSAT +ProofBasedUC

MathSAT + Eureka

Yices w.u.c.
MathSAT + Eureka

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000

1/3

1/2

2/3

     1

3/2

2

3

 10  100  1000  10000  100000

core size ratio 1st quartile median mean 3rd quartile

CVCLite w.u.c.

MathSAT + Eureka
1.03 1.32 1.55 1.73

MathSAT +ProofBasedUC

MathSAT + Eureka
1.03 1.17 1.27 1.35

Yices w.u.c.

MathSAT + Eureka
1.00 1.16 1.28 1.34

Figure 3.8: Ratios of the unsat-core sizes computed by MathSAT +Eureka against

those of CVCLite, MathSAT +ProofBasedUC and Yices.

Points above the middle line and values greater than 1.00 mean better core quality for

MathSAT +Eureka, and vice versa.

evident.

It is important to notice that, due to our limited know-how, we used

the Boolean UCE’s in their default configurations. Therefore, we believe

that even better results, in terms of both effectiveness and efficiency, could

be obtained by means of a more accurate tuning of the parameters of the

core extractors.

As a side remark, we notice that the results in Figures 3.6-3.7 have pro-

duced as a byproduct an insightful evaluation of the main Boolean unsat-

core-generation tools currently available. To this extent, we notice that the

performances of MUP [Hua05] and Genetic [ZLS06] seem rather poor;

PicoSat [Bie08b] is definitely the fastest tool, though the least effective in

102



3.3. EMPIRICAL EVALUATION

reducing the size of the final core; on the opposite side, Eureka [DHN06]

is the most effective in this task, but pays a fee in terms of CPU time;

Trimmer [GKS08] represents a good compromise between effectiveness

and efficiency.

103



CHAPTER 3. EXTRACTION OF UNSATISFIABLE CORES

104



Chapter 4

Generation of Craig Interpolants

Note. The material presented in this chapter has already been presented

in [CGS08, CGS09c] and [CGS09b].

Since the seminal paper of McMillan [McM03], the application of (Craig)

interpolation is one of the most promising research directions in formal ver-

ification. Interpolants have been exploited successfully in the verification of

both Boolean/finite-state systems [McM03, CMNQ06, LS06, MS07] as well

as infinite-state systems [HJMM04, JM05, JM06, EKS06, McM06, JMX07,

JM07, McM08]. As a consequence, in the last few years there has been a

lot of research on interpolation procedures and tools, in particular for SMT

formulae over several important theories and their combinations [McM05,

YM05, SS08, RSS07, KW07, KMZ06, BZM08, JCG08, FGG+09, GKT09].

Quite surprisingly, however, the research on interpolation for SMT has

not kept the pace of SMT solving. In fact, most of the approaches to pro-

ducing interpolants for fragments of first order theories proposed in the last

few years [McM05, YM05, RSS07, KW07, KMZ06, JCG08] suffer from a

number of problems. Some of the approaches are severely limited in terms

of their expressiveness. For instance, the tool described in [JCG08] can

only deal with conjunctions of literals, whilst the recent work described

in [KW07] can not deal with many useful theories. Furthermore, very few

105



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

tools are available [RSS07, McM05, BZM08], and these tools do not seem to

scale particularly well. More than to näıve implementation, this appears to

be due to the underlying algorithms, that substantially deviate from or ig-

nore choices common in state-of-the-art SMT. For instance, in the domain

of linear arithmetic over the rationals (LA(Q)), strict inequalities are en-

coded in [McM05] as the conjunction of a weak inequality and a disequality;

although sound, this choice destroys the structure of the constraints, forces

reasoning in the combination of theories LA(Q)∪EUF , requires additional

splitting, and ultimately results in a larger search space. Similarly, the frag-

ments of DL(Q) and UT VPI(Q) are dealt with by means of a general-

purpose algorithm for full LA(Q), rather than one of the well-known and

much faster specialized algorithms. An even more fundamental example is

the fact that state-of-the-art SMT reasoners use dedicated algorithms for

LA(Q) [DdM06a], which outperform (sometimes by orders of magnitude)

the LA(Q)-decision procedures used in the interpolant-generating tools

currently available. Finally, the algorithms proposed in [McM05, YM05]

require to use the traditional Nelson-Oppen (N.O.) method [NO79] for

computing interpolants in a combination T1 ∪T2 of theories, whereas most

current state-of-the-art SMT solvers adopt variants and evolution of the

more recent and more flexible Delayed Theory Combination (DTC) ap-

proach for theory combination [BBC+06b, BCF+08].

The problem of efficient generation of interpolants in SMT has been

addressed only recently. Our work in [CGS08] was the first (to the best

of our knowledge) to go in this direction, with the introduction of efficient

SMT-based interpolation algorithms for LA(Q), DL, and combinations

of convex theories. Our following work in [CGS09c] covered interpolation

for UT VPI(Q) and UT VPI(Z). An efficient interpolation algorithm for

EUF was given in [FGG+09]. Finally, another SMT-based method for

interpolation in combined theories was recently proposed in [GKT09].

106



Contributions

We tackle the problem of generating interpolants for SMT problems, fully

leveraging the algorithms used in a state of the art SMT solver. In partic-

ular, our main contributions are:

1. An interpolation algorithm for LA(Q) that exploits a variant of the

algorithm presented in [DdM06a] (see §2.5), and that is capable of

handling the full LA(Q) – including strict inequalities and disequali-

ties – without the need of theory combination;

2. An algorithm for computing interpolants in DL – both over the ratio-

nals and over the integers – that builds on top of the efficient graph-

based decision algorithms given in [CM06, NO05], that ensures that

the generated interpolants are still in the DL fragment of linear arith-

metic, and that allows for computing stronger interpolants than the

existing algorithms for the full linear arithmetic;

3. An algorithm for computing interpolants in UT VPI – both over the

rationals and over the integers – that builds on an encoding of UT VPI
into DL. The algorithm ensures that the generated interpolants are

still in the UT VPI fragment of linear arithmetic, and allows for com-

puting stronger interpolants than the existing algorithms for the full

LA;

4. An algorithm for computing interpolants in a combination T1 ∪ T2 of

theories based on the Delayed Theory Combination (DTC) method

[BBC+06b, BCF+08] (as an alternative to the traditional Nelson-

Oppen method), which does not require ad-hoc interpolant combina-

tion methods, but exploits the propositional interpolation algorithm

for performing the combination of theories;

107



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

5. An efficient implementation of all the proposed techniques within

MathSAT, and an extensive experimental evaluation on a wide range

of benchmarks.

This comprehensive approach advances the state of the art in two main

directions: on one side, we show how to extend efficient SMT solving tech-

niques to SMT interpolation, for a wide class of important theories, without

paying a substantial price in performance; on the other side, we present an

interpolating SMT solver that is able to produce interpolants for a much

wider class of problems than its competitors, and, on problems that can be

dealt with by other tools, shows dramatic improvements in performance,

often by orders of magnitude.

4.1 Background and State of the Art

In the rest of the chapter, we shall use the following notation. If C is a

clause and φ is a formula, we denote with C ↓ φ the clause obtained by

removing from C all the literals whose atoms do not occur in φ, and with

C \ φ that obtained by removing from C all the literals whose atoms do

occur in φ. If φ and ψ are two T -formulae, with φ � ψ we denote that all

uninterpreted (in T ) symbols of φ occur in ψ.

Definition 4.1 (Craig Interpolant). Given an ordered pair (A,B) of for-

mulae such that A ∧ B |=T ⊥, a Craig interpolant (simply “interpolant”

hereafter) is a formula I such that:

(i) A |=T I,

(ii) I ∧B |=T ⊥,

(iii) I � A and I � B.

108



4.1. BACKGROUND AND STATE OF THE ART

Algorithm 4.1: Interpolant generation for SMT(T )

1. Generate a resolution proof of unsatisfiability P for A ∧B.

2. For every T -lemma ¬η occurring in P , generate an interpolant I¬η for (η \B, η ↓ B).

3. For every input clause C in P , set IC
def
= C ↓ B if C ∈ A, and IC

def
= > if C ∈ B.

4. For every inner node C of P obtained by resolution from C1
def
= p ∨ φ1 and C2

def
=

¬p ∨ φ2, set IC to IC1 ∨ IC2 if p does not occur in B, and to IC1 ∧ IC2 otherwise.

5. Output I⊥ as an interpolant for (A,B).

The use of interpolation in formal verification has been introduced by

McMillan in [McM03] for purely-propositional formulae, and it was subse-

quently extended to handle SMT (EUF ∪ LA(Q)) formulae in [McM05].

The technique is based on earlier work by Pudlák [Pud97], where two

interpolant-generation algorithms are described: one for computing inter-

polants for propositional formulae from resolution proofs of unsatisfiabil-

ity, and one for generating interpolants for conjunctions of (weak) linear

inequalities in LA(Q). An interpolant for a pair (A,B) of CNF formulae

is constructed from a resolution proof of unsatisfiability of A∧B (see Def-

inition 3.1 on page 81). The algorithm works by computing a formula IC

for each clause in the resolution refutation, such that the formula I⊥ asso-

ciated to the empty root clause is the computed interpolant. The schema

of the algorithm is shown in Algorithm 4.1.

Example 4.2. Consider the following two formulae in LA(Q):

A
def

= (p ∨ (0 ≤ x1 − 3x2 + 1)) ∧ (0 ≤ x1 + x2) ∧ (¬q ∨ ¬(0 ≤ x1 + x2))

B
def

= (¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)) ∧ (¬p ∨ q) ∧

(p ∨ (0 ≤ x3 − 2x1 − 3))

109



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

The uninterpreted symbols in A are {p, q, x1, x2}, and those in B are

{p, q, x1, x3}. Therefore, the only uninterpreted symbols that can occur

in an interpolant for (A,B) are p, q and x1.

Figure 4.2(a) shows a resolution proof of unsatisfiability for A ∧ B, in

which the clauses from A have been underlined. The proof contains the

following LA(Q)-lemma (displayed in boldface):

¬(0 ≤ x1−3x2 +1)∨¬(0 ≤ x1 +x2)∨¬(0 ≤ x3−2x1−3)∨¬(0 ≤ 1−2x3).

Figure 4.2(b) shows, for each clause Θi in the proof, the formula IΘi
gen-

erated by Algorithm 4.1. For the LA(Q)-lemma, it is easy to see that

(0 ≤ 4x1 + 1) is an interpolant for ((0 ≤ x1− 3x2 + 1)∧ (0 ≤ x1 + x2), (0 ≤
x3 − 2x1 − 3) ∧ (0 ≤ 1 − 2x3)) as required by Step 2 of the algorithm.

(We will show how to obtain this interpolant in Example 4.3.) Therefore,

I⊥
def

= (p ∨ (0 ≤ 4x1 + 1)) ∧ ¬q is an interpolant for (A,B). ♦

Algorithm 4.1 can be applied also when A and B are not in CNF. In

this case, it suffices to pre-convert them into CNF by using disjoint sets of

auxiliary Boolean atoms in the usual way [McM05].

Notice that Step 2. of the algorithm is the only part which depends on

the theory T , so that the problem of interpolant generation in SMT(T )

reduces to that of finding interpolants for T -lemmas. To this extent, in

[McM05] McMillan gives a set of rules for constructing interpolants for T -

lemmas in the theory of EUF , that of weak linear inequalities (0 ≤ t) in

LA(Q), and their combination. Linear equalities (0 = t) can be reduced to

conjunctions (0 ≤ t)∧ (0 ≤ −t) of inequalities. Thanks to the combination

of theories, also strict linear inequalities (0 < t) can be handled in EUF ∪
LA(Q) by replacing them with the conjunction (0 ≤ t)∧ (0 6= t),1 but this

solution can be very inefficient.
1The details are not given in [McM05]. One possible way of doing this is to rewrite (0 6= t) as

(y = t) ∧ (z = 0) ∧ (z 6= y), z and y being fresh variables.

110



4.1. BACKGROUND AND STATE OF THE ART

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨
¬(0 ≤ x3 − 2x1 − 3) ∨ ¬(0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2) ∨ p

p ∨ (0 ≤ x1 − 3x2 + 1)

¬p ∨ q

¬(0 ≤ x1 + x2) ∨ q

¬(0 ≤ x1 + x2)(0 ≤ x1 + x2)

⊥

¬(0 ≤ x1 + x2) ∨ p

¬(0 ≤ x3 − 2x1 − 3) ∨ (0 ≤ 1− 2x3)

¬(0 ≤ x1 − 3x2 + 1) ∨ ¬(0 ≤ x1 + x2)∨

¬q ∨ ¬(0 ≤ x1 + x2)

¬(0 ≤ x3 − 2x1 − 3) p ∨ (0 ≤ x3 − 2x1 − 3)

(0 ≤ 4x1 + 1)

>

>

p ∨ (0 ≤ 4x1 + 1)

(p ∨ (0 ≤ 4x1 + 1)) ∧ ¬q⊥

(p ∨ (0 ≤ 4x1 + 1)) ∧ ¬q

p ∨ (0 ≤ 4x1 + 1)

>

(0 ≤ 4x1 + 1)

(0 ≤ 4x1 + 1)

¬q

p

(a) (b)

Figure 4.2: Resolution proof of unsatisfiability (a) and interpolant (b) for the pair (A,B)

of formulae of Example 4.2. In the tree on the left, T -lemmas are displayed in boldface,

and clauses from A are underlined.

An alternative algorithm for computing interpolants in EUF , built on

top of the congruence closure algorithm typically used by efficient EUF -

solvers in SMT (see §2.4), was recently described in [FGG+09].

The combination EUF∪LA(Q) can also be used to compute interpolants

for other theories, such as those of lists, arrays, sets and multisets [KMZ06].

In [McM05], interpolants in the combined theory EUF ∪ LA(Q) are

obtained by means of ad-hoc combination rules. The work in [YM05],

instead, presents a method for generating interpolants for T1∪T2 using the

interpolant-generation procedures of T1 and T2 as black-boxes, using the

N.O. approach (see §1.5.1 on page 31).

Also the method of [RSS07] allows for computing interpolants in EUF ∪
LA(Q). Its peculiarity is that it is not based on unsatisfiability proofs. In-

stead, it generates interpolants in LA(Q) by solving a system of constraints

111



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

using an off-the-shelf Linear Programming (LP) solver. The method allows

both weak and strict inequalities. Extension to uninterpreted functions is

achieved by means of reduction to LA(Q) using a hierarchical calculus

[SS08]. The algorithm works only with conjunctions of atoms, although in

principle it could be integrated in Algorithm 4.1 to generate interpolants

for T -lemmas in LA(Q). As an alternative, the authors show in [RSS07]

how to generate interpolants for formulae that are in Disjunctive Normal

Form (DNF).

Another different approach is explored in [KW07]. There, the authors

use the eager SMT approach to encode the original SMT problem into

an equisatisfiable propositional problem, for which a propositional proof

of unsatisfiability is generated. This proof is later “lifted” to the original

theory, and used to generate an interpolant in a way similar to Algorithm

4.1. At the moment, the approach is however limited to the theory of

equality only (without uninterpreted functions).

When moving from LA(Q) to LA(Z), interpolation becomes signifi-

cantly harder. The only known algorithm for computing interpolants in

the full LA(Z) is based on quantifier elimination [KMZ06], which is typi-

cally prohibitively expensive. More efficient algorithms for the fragments

of LA(Z) consisting of conjunctions of linear Diophantine equations and

disequations and of conjunctions of linear modular equations have been

described in [JCG08].

All the above techniques construct one interpolant for (A,B). In gen-

eral, however, interpolants are not unique. In particular, some of them

can be better than others, depending on the particular application do-

main. In [JM05], it is shown how to manipulate proofs in order to obtain

stronger interpolants. In [JM06, JM07], instead, a technique to restrict

the language used in interpolants is presented and shown to be useful in

preventing divergence of techniques based on predicate abstraction.

112



4.1. BACKGROUND AND STATE OF THE ART

LeqEq
0 = t

0 ≤ t
Comb

0 ≤ t1 0 ≤ t2
0 ≤ c1t1 + c2t2

c1, c2 > 0

Figure 4.3: LA(Q)-proof rules for a conjunction Γ of equalities and weak inequalities.

One of the most important applications of interpolation in Formal Ver-

ification is abstraction refinement [HJMM04, McM06]. In such setting, ev-

ery input problem φ has the form φ
def

= φ1 ∧ . . . ∧ φn, and the interpolating

solver is asked to compute several interpolants I1, . . . , In−1 corresponding

to different partitions of φ into Ai and Bi, such that

∀i, Ai
def

= φ1 ∧ . . . ∧ φi, and Bi
def

= φi+1 ∧ . . . ∧ φn. (4.1)

Moreover, I1, . . . , In−1 should be related by the following:

Ii ∧ φi+1 |= Ii+1 (4.2)

A sufficient condition for (4.2) to hold is that all the Ii’s are computed

from the same proof of unsatisfiability Π for φ [HJMM04].

Interpolants for conjunctions of LA(Q)-literals

We recall the algorithm of [McM05] for computing interpolants from LA(Q)-

proofs of unsatisfiability, for conjunctions of equalities and weak inequali-

ties in LA(Q).

An LA(Q)-proof rule R for a conjunction Γ of equalities and weak in-

equalities is either an element of Γ, or it has the form
P

φ
, where φ is an

equality or a weak inequality and P is a sequence of proof rules, called

the premises of R. An LA(Q)-proof of unsatisfiability for a conjunction of

equalities and weak inequalities Γ is simply a rule in which φ ≡ 0 ≤ c and

where c is a negative numerical constant.2

2In the following, we sometimes write ⊥ as a synonym of an atom “0 ≤ c” when c is a negative
numerical constant.

113



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

Similarly to [McM05], we use the proof rules of Figure 4.3: LeqEq

for deriving inequalities from equalities, and Comb for performing linear

combinations.3

Given an LA(Q)-proof of unsatisfiability P for a conjunction Γ of equal-

ities and weak inequalities partitioned into (A,B), an interpolant I can be

computed simply by replacing every atom 0 ≤ t (resp. 0 = t) occurring in

B with 0 ≤ 0 (resp. 0 = 0) in each leaf sub-rule of P , and propagating the

results: the interpolant is then the single weak inequality 0 ≤ t at the root

of P [McM05].

Example 4.3. Consider the following sets of LA(Q) atoms:

A
def

= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2)}

B
def

= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3)}.

An LA(Q)-proof of unsatisfiability P for A ∧B is the following:

1 · (0 ≤ x1 − 3x2 + 1) 4 · (0 ≤ x1 + x2)
1 · (0 ≤ 4x1 + 1)

2 · (0 ≤ x3 − 2x1 − 3) 1 · (0 ≤ 1− 2x3)
1 · (0 ≤ −4x1 − 5)

(0 ≤ −4)

By replacing inequalities in B with (0 ≤ 0), we obtain the proof P ′:

1 · (0 ≤ x1 − 3x2 + 1) 4 · (0 ≤ x1 + x2)
1 · (0 ≤ 4x1 + 1)

2 · (0 ≤ 0) 1 · (0 ≤ 0)
1 · (0 ≤ 0)

(0 ≤ 4x1 + 1)

Thus, the interpolant obtained is (0 ≤ 4x1 + 1). ♦

4.2 From SMT(LA(Q)) solving to SMT(LA(Q)) inter-

polation

In this section, we show how to exploit the Dutertre-de Moura algorithm,

which represents the state of the art in LA(Q)-decision procedures for SMT
3In [McM05] the LeqEq rule is not used in LA(Q), because the input is assumed to consist only of

inequalities.

114



4.2. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

(see §2.5), to efficiently generate interpolants for sets of LA(Q) constraints.

Interpolation for SMT (LA(Q)) formulae is then obtained by “plugging”

this algorithm into Algorithm 4.1. In §4.2.1 we begin by considering the

case in which the input atoms are only equalities and non-strict inequalities.

In this case, we only need to show how to generate a proof of unsatisfiability,

since then we can use the interpolation rules defined in [McM05]. Then, in

§4.2.2 we show how to generate interpolants for problems containing also

strict inequalities and disequalities.

4.2.1 Interpolation with non-strict inequalities

In its original formulation, the Dutertre-de Moura algorithm is not imme-

diately suitable for producing interpolants, because in case of inconsistency

it does not provide enough information for constructing a detailed proof

of unsatisfiability using the rules of Figure 4.3. In particular, referring to

its description given in §2.5.1 (page 48 and following), we recall that the

algorithm detects an inconsistency when it is not possible to adjust the

values of the candidate model β and of the sets B and N , in order to make

β satisfy the bounds on the variables in B, without violating the invariants

in (2.2). In such cases, as the bounds on the variables in N are always

satisfied by β, then there is a variable xi ∈ B such that the inconsistency

is caused either by the elementary atom xi ≥ li or by the atom xi ≤ ui

[DdM06a]; in the first case, 4 a conflict set η is generated as follows:

η = {xj ≤ uj|xj ∈ N+} ∪ {xj ≥ lj|xj ∈ N−} ∪ {xi ≥ li}, (4.3)

where (xi =
∑

xj∈N aijxj) is the row of the current version of the tableau T

(2.1) corresponding to xi, N+ is {xj ∈ N|aij > 0} andN− is {xj ∈ N|aij <
0}. However, η is a conflict set only in the sense that it is made inconsistent

by (some of) the equations in the tableau T (2.1), i.e. T ∪η |=LA(Q) ⊥, but

4Here we do not consider the second case xi ≤ ui as it is analogous to the first one.

115



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

in general η 6|=LA(Q) ⊥. Therefore, η alone is not enough for producing a

proof of unsatisfiability.

In order to overcome this limitation and to make the algorithm suitable

for interpolant generation, we have conceived the following variant of it.

We take as input an arbitrary set of inequalities lk ≤
∑

h âkh yh or

uk ≥
∑

h âkh yh, and apply an internal preprocessing step to obtain a set

of equations and a set of elementary atoms as in §2.5.1. In particular, we

introduce a “slack” variable sk for each distinct term
∑

h âkh yh occurring in

the input inequalities. Then, we replace such term with sk (thus obtaining

lk ≤ sk or uk ≥ sk) and add an equation sk =
∑

h âkh yh. Notice that

we introduce a slack variable even for “elementary” inequalities (lk ≤ yk).

With this transformation, the initial tableau T (2.1) is:

{sk =
∑

h âkh yh}k, (4.4)

such that B̂ is made of all the slack variables sk’s, N̂ is made of all the orig-

inal variables yh’s, and the elementary atoms contain only slack variables

sk’s.

Then the algorithm proceeds as described in §2.5.1, producing a set η

(4.3) in case of inconsistency. In our variant of the algorithm, we can use

η to generate a conflict set η′, thanks to the following theorem.

Theorem 4.4. In the set η of (4.3), xi and all the xj’s are slack variables

introduced by our preprocessing step. Moreover, the set η′
def

= ηN+ ∪ηN− ∪ηi
is a conflict set, where

ηN+
def

= {uk ≥
∑

h âkh yh|sk ≡ xj and xj ∈ N+},

ηN−
def

= {lk ≤
∑

h âkh yh|sk ≡ xj and xj ∈ N−},

ηi
def

= {lk ≤
∑

h âkh yh|sk ≡ xi}.

Proof. We consider the case in which η (4.3) is generated from a row

xi =
∑

xj∈N aij xj in the tableau T (2.1) such that β(xi) < li. In [DdM06a]

116



4.2. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

it is shown that in this case the following facts hold:

∀xj ∈ N+, β(xj) = uj, and ∀xj ∈ N−, β(xj) = lj. (4.5)

(We recall that N+ = {xj ∈ N|aij > 0} and N− = {xj ∈ N|aij < 0}.)
The bounds uj and lj can be introduced only by elementary atoms. Since

in our variant the elementary atoms contain only slack variables, each xj

must be a slack variable (namely sk). The same holds for xi (since its value

is bounded by li).

Now consider η again. In [DdM06a] it is shown that when a conflict is

detected because β(xi) < li, then the following fact holds:

β(xi) =
∑

xj∈N+ aijuj +
∑

xj∈N− aijlj. (4.6)

From the i-th row of the tableau T (2.1) we can derive

0 ≤
∑

xj∈N aij xj − xi. (4.7)

If we take each inequality 0 ≤ uj − xj multiplied by the coefficient aij

for all xj ∈ N+, each inequality 0 ≤ xj − lj multiplied by coefficient −aij
for all xj ∈ N−, and the inequality (0 ≤ xi − li) multiplied by 1, and we

add them to (4.7), then we obtain

0 ≤
∑
N+ aij uj +

∑
N− aij lj − li, (4.8)

which by (4.6) is equivalent to 0 ≤ β(xi) − li. Thus we have obtained

0 ≤ c with c ≡ β(xi) − li, which is strictly lower than zero. Therefore,

η is inconsistent under the definitions in T . Since we know that xi and

all the xj’s in η are slack variables, we can replace every xj (i.e., every

sk) with its corresponding term
∑

h âkh yh, thus obtaining η′, which is thus

inconsistent. �

When our variant of the algorithm detects an inconsistency, we construct

a proof of unsatisfiability as follows. From the set η of (4.3) we build a con-

flict set η′ by replacing each elementary atom in it with the corresponding

117



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

original atom, as shown in Theorem 4.4. We then combine all the atoms

in ηN+ with repeated applications of the Comb rule: if uk ≥
∑

h âkh yh is

the atom corresponding to sk, we use as coefficient for the Comb the aij

(in the i-th row of the current tableau) such that sk ≡ xj. Then, we add

each of the atoms in ηN− to the previous combination, again using Comb.

In this case, the coefficient to use is −aij. Finally, we add the atom in ηi

to the combination with coefficient 1.

Corollary 4.5. The result of the linear combination described above is the

atom 0 ≤ c, such that c is a numerical constant strictly lower than zero.

Proof. Follows immediately by the proof of Theorem 4.4. �

Besides the case just described (and its dual when the inconsistency is due

to an elementary atom xi ≤ ui), another case in which an inconsistency can

be detected is when two contradictory atoms are asserted: lk ≤
∑

h âkh yh

and uk ≥
∑

h âkh yh, with lk > uk. In this case, the proof is simply the

combination of the two atoms with coefficient 1.

The extension for handling also equalities like bk =
∑

h âkh yh is straight-

forward: we simply introduce two elementary atoms bk ≤ sk and bk ≥ sk

and, in the construction of the proof, we use the LeqEq rule to introduce

the proper inequality.

Finally, notice that the current implementation in MathSAT is slightly

different from what presented here, and significantly more efficient. In

practice, η, η′ are not constructed in sequence; rather, they are built si-

multaneously. Moreover, some optimizations are applied to eliminate some

slack variables when they are not needed (see also [dMB08b] for more de-

118



4.2. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

tails about this last point).

Example 4.6. Consider again the two sets of LA(Q) atoms of Example 4.3:

A
def

= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x1 + x2}

B
def

= {(0 ≤ x3 − 2x1 − 3), (0 ≤ 1− 2x3)}.

With our variant of the Dutertre-de Moura algorithm, four “slack” vari-

ables are introduced, resulting in the following tableau and elementary

constraints:

T
def

=


s1 = x1 − 3x2 −1 ≤ s1

s2 = x1 + x2 0 ≤ s2

s3 = x3 − 2x1 3 ≤ s3

s4 = −2x3 −1 ≤ s4

To detect the inconsistency, the algorithm performs some pivoting steps,

resulting in the final tableau T ′:

T ′
def

=


x2 = − 1

12s4 − 1
6s3 − 1

3s1

s2 = −1
3s4 − 2

3s3 − 1
3s1

x1 = −1
4s4 − 1

2s3

x3 = −1
2s4

The final values of β are as follows:

β(x1) = 7
4 β(x2) = − 1

12 β(x3) = 1
2

β(s1) = −1 β(s2) = −4
3 β(s3) = 3 β(s4) = −1

Therefore, the bound (0 ≤ s2) is violated. From the second row of T ′, the

set η and the conflict set η′ are computed:

η
def

= ∅ ∪ {(−1 ≤ s4), (3 ≤ s3), (−1 ≤ s1)} ∪ {(0 ≤ s2)}

η′
def

= ∅ ∪ {(0 ≤ 1− 2x3), (0 ≤ x3 − 2x1 − 3), (0 ≤ x1 − 3x2 + 1)} ∪

{(0 ≤ x1 + x2)}

119



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

The generated proof of unsatisfiability P is:

1
3 · (0 ≤ 1− 2x3) 2

3 · (0 ≤ x3 − 2x1 − 3)

1 · (0 ≤ −4
3x1 − 5

3) 1
3 · (0 ≤ x1 − 3x2 + 1)

1 · (0 ≤ −x1 − x2 − 4
3) 1 · (0 ≤ x1 + x2)

(0 ≤ −4
3)

After replacing the inequalities of B with (0 ≤ 0) in P , the new proof P ′

is:
1
3 · (0 ≤ 0) 2

3 · (0 ≤ 0)
1 · (0 ≤ 0) 1

3 · (0 ≤ x1 − 3x2 + 1)

1 · (0 ≤ 1
3x1 − x2 + 1

3) 1 · (0 ≤ x1 + x2)

(0 ≤ 4
3x1 + 1

3)

Thus the computed interpolant is (0 ≤ 4
3x1 + 1

3) (which is equivalent to

that of Example 4.3). ♦

4.2.2 Interpolation with strict inequalities and disequalities

Another benefit of the Dutertre-de Moura algorithm is that it can handle

strict inequalities directly. Its method is based on the following lemma.

Lemma 4.7 (Lemma 1 in [DdM06a]). A set of linear arithmetic atoms Γ

containing strict inequalities S
def

= {0 < t1, . . . , 0 < tn} is satisfiable if and

only if there exists a rational number ε > 0 such that Γε
def

= (Γ ∪ Sε) \ S is

satisfiable, where Sε
def

= {ε ≤ t1, . . . , ε ≤ tn}.

The idea of [DdM06a] is that of treating the infinitesimal parameter

ε symbolically instead of explicitly computing its value. Strict bounds

(x < b) are replaced with weak ones (x ≤ b − ε), and the operations on

bounds are adjusted to take ε into account.

We extend the same idea to the computation of interpolants. We trans-

form every atom (0 < ti) occurring in the proof of unsatisfiability into

(0 ≤ ti − ε). Then we compute an interpolant Iε in the usual way. As

a consequence of the rules of [McM05], Iε is always a single atom. As

120



4.2. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

shown by the following lemma, if Iε contains ε, then it must be in the form

(0 ≤ t− c ε) with c > 0, and we can rewrite Iε into (0 < t).

Theorem 4.8 (Interpolation with strict inequalities). Let Γ, S, Γε and

Sε be defined as in Lemma 4.7. Let Γ be partitioned into A and B, and

let Aε and Bε be obtained from A and B by replacing atoms in S with the

corresponding ones in Sε. Let Iε be an interpolant for (Aε, Bε). Then:

• If ε 6� Iε, then Iε is an interpolant for (A,B).

• If ε � Iε, then Iε ≡ (0 ≤ t − c ε) for some c > 0, and I
def

= (0 < t) is

an interpolant for (A,B).

Proof. Since the side condition of the Comb rule ensures that equations

are combined only using positive coefficients, and since the atoms intro-

duced in the proof either do not contain ε or contain it with a negative

coefficient, if ε appears in Iε, it must have a negative coefficient.

If ε does not appear in Iε, then Iε has been obtained from atoms ap-

pearing in A or B, so that Iε is an interpolant for (A,B).

If ε appears in Iε, since its value has not been explicitly computed, it can

be arbitrarily small, so thanks to Lemma 4.7 we have that Bε∧Iε |=LA(Q) ⊥
implies B ∧ I |=LA(Q) ⊥.

We can prove that A |=LA(Q) I as follows. We consider some interpreta-

tion µ which is a model for A. Since ε does not occur in A, we can extend

µ by setting µ(ε) = δ for some δ > 0 such that µ is a model also for Aε.

As Aε |=LA(Q) Iε, µ is also a model for Iε, and hence µ is also a model for

I. Thus, we have that A |=LA(Q) I. �

Notice that Theorem 4.8 can be extended straightforwardly to the case

in which the interpolant is a conjunction of inequalities.

Thus, in case of strict inequalities, Theorem 4.8 gives us a way for

constructing interpolants with no need of expensive theory combination

121



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

(as instead was the case in [McM05]). Moreover, thanks to it we can

handle also negated equalities (0 6= t) directly. Suppose our set S of input

atoms (partitioned into A and B) is the union of a set S ′ of equalities

and inequalities (both weak and strict) and a set S 6= of disequalities, and

suppose that S ′ is consistent. (If not so, an interpolant can be computed

from S ′.) Since LA(Q) is convex, S is inconsistent if and only if exists

(0 6= t) ∈ S 6= such that S ′ ∪ {(0 6= t)} is inconsistent, that is, such that

both S ′ ∪ {(0 < t)} and S ′ ∪ {(0 > t)} are inconsistent.

Therefore, we pick one element (0 6= t) of S 6= at a time, and check the

satisfiability of S ′ ∪ {(0 < t)} and S ′ ∪ {(0 > t)}. If both are inconsistent,

from the two proofs we can generate two interpolants I− and I+. We

combine I+ and I− to obtain an interpolant I for (A,B): if (0 6= t) ∈ A,

then I is I+ ∨ I−; if (0 6= t) ∈ B, then I is I+ ∧ I−, as shown by the

following Theorem.

Theorem 4.9 (Interpolation for negated equalities). Let A and B two

conjunctions of LA(Q) atoms, and let n
def

= (0 6= t) be one such atom. Let

g
def

= (0 < t) and l
def

= (0 > t).

If n ∈ A, then let A+ def

= A \ {n} ∪ {g}, A− def

= A \ {n} ∪ {l}, and B+ def

=

B−
def

= B.

If n ∈ B, then let A+ def

= A−
def

= A, B+ def

= B \ {n} ∪ {g}, and B−
def

=

B \ {n} ∪ {l}.
Assume that A+ ∧ B+ |=LA(Q) ⊥ and that A− ∧ B− |=LA(Q) ⊥, and let I+

and I− be two interpolants for (A+, B+) and (A−, B−) respectively, and let

I
def

=

{
I+ ∨ I− if n ∈ A
I+ ∧ I− if n ∈ B.

Then I is an interpolant for (A,B).

Proof. We have to prove that:

(i) A |=LA(Q) I

122



4.2. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

(ii) B ∧ I |=LA(Q) ⊥

(iii) I � A and I � B.

(i) If n ∈ A, thenA |=LA(Q) g∨l. By hypothesis, we know that A+ |=LA(Q)

I+ and A− |=LA(Q) I
−. Then trivially A ∪ {g} |=LA(Q) I

+ and A ∪
{l} |=LA(Q) I

−. Therefore A∪{g} |=LA(Q) I
+∨ I− and A∪{l} |=LA(Q)

I− ∨ I+, so that A |=LA(Q) I.

If n ∈ B, then A+ ≡ A− ≡ A. By hypothesis A |=LA(Q) I
+ and

A |=LA(Q) I
−, so that A |=LA(Q) I.

(ii) If n ∈ A, then B+ ≡ B− ≡ B. By hypothesis B ∧ I+ |=LA(Q) ⊥ and

B ∧ I− |=LA(Q) ⊥, so that B ∧ I |=LA(Q) ⊥.

If n ∈ B, then B |=LA(Q) g ∨ l, so that either B → g or B → l must

hold. By hypothesis we have B+ ∧ I+ |=LA(Q) ⊥, so that B ∪ {g} ∧
I+ |=LA(Q) ⊥. If B → g holds, then B ∧ I+ |=LA(Q) ⊥, and hence

B ∧ I |=LA(Q) ⊥. Similarly, if B → l holds, then B ∧ I− |=LA(Q) ⊥,

and so again B ∧ I |=LA(Q) ⊥.

(iii) By the hypothesis, both I+ and I− contain only symbols common to

A and B, so that I � A and I � B.

�

Example 4.10. Consider the following sets of LA(Q) atoms:

A
def

= {(0 6= x1 − 3x2 + 1), (0 = x1 + x2)}

B
def

= {(0 = x3 − 2x1 − 1), (0 = 1− 2x3)}.

In order to compute an interpolant for (A,B), we first split n
def

= (0 6=
x1 − 3x2 + 1) into g

def

= (0 < x1 − 3x2 + 1) and l
def

= (0 < −x1 + 3x2 − 1),

thus obtaining A+ and A− defined as in Theorem 4.9. We then generate

123



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

two LA(Q)-proofs of unsatisfiability P+ for A+ ∧ B and P− for A− ∧ B,

and replace g in P+ with gε
def

= (0 ≤ x1 − 3x2 + 1 − ε) and l in P− with

lε
def

= (0 ≤ −x1 + 3x2 − 1− ε), obtaining P+
ε and P−ε :

P+
ε

def=

(0 ≤ x1 − 3x2 + 1− ε)
(0 = x1 + x2)
(0 ≤ x1 + x2)

(0 ≤ 4x1 + 1− ε)

(0 = x3 − 2x1 − 1)
(0 ≤ x3 − 2x1 − 1)

(0 = 1− 2x3)
(0 ≤ 1− 2x3)

(0 ≤ −4x1 − 1)
(0 ≤ −ε)

P−ε
def=

(0 ≤ −x1 + 3x2 − 1− ε)
(0 = x1 + x2)

(0 ≤ −x1 − x2)
(0 ≤ −4x1 − 1− ε)

(0 = x3 − 2x1 − 1)
(0 ≤ −x3 + 2x1 + 1)

(0 = 1− 2x3)
(0 ≤ −1 + 2x3)

(0 ≤ +4x1 + 1)
(0 ≤ −ε)

We then compute the two interpolants I+
ε from P+

ε and I−ε from P−ε :

I+
ε

def

= (0 ≤ 4x1 + 1− ε) I−ε
def

= (0 ≤ −4x1 − 1− ε).

Therefore, according to Theorem 4.8 the two interpolants I+ for (A+, B)

and I− for (A−, B) are:

I+ def

= (0 < 4x1 + 1) I−
def

= (0 < −4x1 − 1).

Finally, since n ∈ B, according to Theorem 4.9, the interpolant I for (A,B)

is

I
def

= I+ ∨ I− ≡ (0 < 4x1 + 1) ∨ (0 < −4x1 − 1).

♦

4.2.3 Obtaining stronger interpolants

We conclude this section by illustrating a simple technique for improving

the strength of interpolants in LA(Q). The technique is orthogonal to

our proof-generation algorithm described in §4.2.1, and it is therefore of

124



4.2. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

independent interest. It is an improvement of the general algorithm of

[McM05] (and outlined in §4.1) for generating interpolants from LA(Q)-

proofs of unsatisfiability.

Definition 4.11. Given two interpolants I1 and I2 for the same pair (A,B)

of conjunctions of LA(Q)-literals, we say that I1 is stronger than I2 if and

only if I1 |=LA(Q) I2 but I2 6|=LA(Q) I1.

Our technique is based on the simple observation that the only purpose

of the summations performed during the traversal of proof trees 5 for com-

puting the interpolant (as described in §4.1) is that of eliminating A-local

variables. In fact, it is easy to see that the conjunction of the constraints

of A occurring as leaves in an LA(Q)-proof of unsatisfiability satisfies the

first two points of the definition of interpolant (Definition 4.1): if such

constraints do not contain A-local variables, therefore, their conjunction is

already an interpolant; if not, it suffices to perform only the summations

of constraints of A that are necessary to eliminate A-local variables. More-

over, such interpolant is stronger than that obtained by performing all the

summations in the proof tree, since for any set of constraints {s1, . . . , sn}
and any set of positive coefficients {c1, . . . , cn}, s1∧. . .∧sn |=LA(Q)

∑n
i=1 ci·si

holds.

According to this observation, our proposal can be described as: per-

form only those summations which are necessary for eliminating A-local

variables.

Example 4.12. Consider the following sets of LA(Q)-atoms:

A
def

= {(0 ≤ x1 − 3x2 + 1), (0 ≤ x2 −
1

3
x3), (0 ≤ x4 −

3

2
x5 − 1)}

B
def

= {(0 ≤ 3x5 − x1), (0 ≤ x3 − 2x4)}

5corresponding to applications of the Comb rule.

125



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

and the following LA(Q)-proof of unsatisfiability of A ∧B:

(0 ≤ x1 − 3x2 + 1) 3 · (0 ≤ x2 − 1
3x3)

(0 ≤ x1 − x3 + 1) 2 · (0 ≤ x4 − 3
2x5 − 1)

(0 ≤ x1 − x3 + 2x4 − 3x5 − 1) (0 ≤ 3x5 − x1)
(0 ≤ −x3 + 2x4 − 1) (0 ≤ x3 − 2x4)

(0 ≤ −1)

Here, the variable x2 is A-local, whereas all the others are AB-common.

The interpolant computed with the algorithm of §4.1 is

(0 ≤ x1 − x3 + 2x4 − 3x5 − 1),

which is the result of the linear combination of all the atoms of A in the

proof. However, in order to eliminate the A-local variable x2, it is enough

to combine (0 ≤ x1− 3x2 + 1) (with coefficient 1) and (0 ≤ x2− 1
3x3) (with

coefficient 3), obtaining (0 ≤ x1−x3 +1). Therefore, a stronger interpolant

is

(0 ≤ x1 − x3 + 1) ∧ (0 ≤ x4 −
3

2
x5 − 1).

♦

The technique can be implemented with a small modification of the

proof-based algorithm described in §4.1. We associate with each node

in the proof P ′ (which is obtained from the original proof P by replacing

inequalities from B with (0 ≤ 0)) a list of pairs 〈coefficient, inequality〉. For

a leaf, this list is a singleton in which the coefficient is 1 and the inequality

is the atom in the leaf itself. For an inner node (which corresponds to an

application of the Comb rule), the list l is generated from the two lists l1

and l2 of the premises as follows:

1. Set l as the concatenation of l1 and l2;

2. Let c1 and c2 be the coefficients used in the Comb rule. Multiply each

coefficient c′i occurring in a pair 〈c′i, 0 ≤ ti〉 of l by c1 if the pair comes

from l1, and by c2 otherwise;

126



4.2. FROM SMT(LA(Q)) SOLVING TO SMT(LA(Q)) INTERPOLATION

3. While there is an A-local variable x occurring in more than one pair

〈c′, 0 ≤ t〉 of l:6

(a) Collect all the pairs 〈c′i, 0 ≤ ti〉 in which x occurs;

(b) Generate a new pair p
def

= 〈1, 0 ≤
∑

i c
′
i · ti〉;

(c) Add p to l, and remove all the pairs 〈c′i, 0 ≤ ti〉.

After having applied the above algorithm, we can take the conjunction of

the inequalities in the list associated with the root of P ′ as an interpolant.

Theorem 4.13. Let P be a LA(Q)-proof of unsatisfiability for a conjunc-

tion A ∧ B of inequalities, and P ′ be obtained from P by replacing each

inequality of B with (0 ≤ 0). Let l
def

= 〈c1, 0 ≤ t1〉, . . . , 〈cn, 0 ≤ tn〉 be

the list associated with the root of P ′, computed as described above. Then

I
def

=
∧n
i=1(0 ≤ ti) is an interpolant for (A,B). Moreover, I is always

stronger than or equal to the interpolant obtained with the algorithm of

§4.1 for the same proof P ′.

Proof. By induction on the structure of P ′, it is easy to prove that, for each

constraint (0 ≤ t) in P ′ with its associated list l
def

= 〈c1, 0 ≤ t1〉, . . . , 〈cn, 0 ≤
tn〉:

1. A |=
∧n
i=1(0 ≤ ti); and

2. (0 ≤ t) ≡ (0 ≤
∑n

i=1 ci · ti)

Since the root of P ′ is an interpolant for (A,B), this immediately proves

the theorem. �

6That is, x occurs in t.

127



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

4.3 From SMT(DL) solving to SMT(DL) interpola-

tion

Several interesting verification problems can be encoded using only the

Difference Logic (DL) subset of LA, either over the rationals (DL(Q)) or

over the integers (DL(Z)). As we have seen in §1.4.3, DL is much simpler

than LA, and many SMT solvers use dedicated, graph-based algorithms

for checking the consistency of a set of DL(Q) atoms [CM06, NO05], by

detecting the presence of negative-weight cycles in a graph-representation

of the input set S of DL constraints, in which there is a vertex for each DL
variable, and there exists an edge x

c−→ y for every (0 ≤ y − x+ c) ∈ S. 7

In this section we present a specialized technique for computing inter-

polants in DL which exploits such state-of-the-art decision procedures, by

extending the graph-based approach to generate interpolants. Since a set

of weak inequalities in DL is consistent over the rationals if and only if

it is consistent over the integers, our algorithm is applicable without any

modifications to both DL(Q) and DL(Z) (see e.g. [NO05]).

Consider the interpolation problem (A,B) where A and B are sets of

inequalities in the form (0 ≤ y− x+ c), and let C be (the set of atoms in)

a negative cycle in the graph corresponding to A ∪B.

If C ⊆ A, then A is inconsistent, in which case the interpolant is ⊥.

Similarly, when C ⊆ B, the interpolant is >. If neither of these occurs,

then the edges in the cycle can be partitioned in subsets of A and B. We

call maximal A-path of C a path x1
c1−→ . . .

cn−1−−→ xn such that

(i) xi
ci−→ xi+1 ∈ A for i ∈ [1, n− 1], and

(ii) C contains x′
c′−→ x1 and xn

c′′−→ x′′ that are in B.

7Recall from §1.4.3 that we can assume w.l.o.g. that all constraints in S are in the form (0 ≤ y−x+c),
where c is an integer constant.

128



4.3. FROM SMT(DL) SOLVING TO SMT(DL) INTERPOLATION

A

B

xi

xn
xk+1

xk

xj+1

xi+1

x1

cn

ck

ci

j∑
m=i

cm

xj

cj

n∑
m=k

cm

Figure 4.4: Generating a DL-interpolant from a negative-weight cycle.

Clearly, the end-point variables x1, xn of the maximal A-path are such

x1, xn � A and x1, xn � B. Let the summary constraint of a maximal

A-path x1
c1−→ . . .

cn−1−−→ xn be the inequality 0 ≤ xn − x1 +
∑n−1

i=1 ci.

Theorem 4.14. The conjunction of summary constraints of the A-paths

of C is an interpolant for (A,B).

Proof. Using the rules for LA(Q) of Figure 4.3, we build a deduction of

the summary constraint of a maximal A-path from the conjunction of its

corresponding set of constraints
∧n−1
i=1 (0 ≤ xi+1 − xi + ci):

(0 ≤ x2 − x1 + c1) (0 ≤ x3 − x2 + c2)
(0 ≤ x3 − x1 + c1 + c2) (0 ≤ x4 − x3 + c3)

. . . . . . (0 ≤ xn − xn−1 + cn−1)

(0 ≤ xn − x1 +
∑n−1

i=1 ci).

Hence, A entails the conjunction of the summary constraints of all maximal

A-paths. Then, we notice that the conjunction of the summary constraints

is inconsistent with B. In fact, the weight of a maximal A-path and the

129



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

weight of its summary constraint are the same. Thus the cycle obtained

from C by replacing each maximal A-path with the corresponding summary

constraint is also a negative cycle. Finally, we notice that every variable

x occurring in the conjunction of the summary constraints is an end-point

variable, and thus x � A and x � B. �

A final remark is in order. In principle, in order to generate a proof

of unsatisfiability for a conjunction of DL(Q) atoms A ∧ B, the same

rules used for LA(Q) [McM05] could be used. For instance, it is easy to

build a proof which repeatedly applies the Comb rule with c1 = c2 =

1. In general, however, the interpolants generated from such proofs are

not DL(Q) formulae anymore and, if computed starting from the same

inconsistent set C, they are either identical or weaker than those generated

with our method. In fact, it is easy to see that, unless our technique of

§4.2.3 is adopted, such interpolants are in the form (0 ≤
∑

i ti) such that∧
i(0 ≤ ti) is the corresponding interpolant generated with our graph-based

method.

Example 4.15. Consider the following sets of DL(Q) atoms:

A
def

= {(0 ≤ x1 − x2 + 1), (0 ≤ x2 − x3),

(0 ≤ x4 − x5 − 1)}

B
def

= {(0 ≤ x5 − x1), (0 ≤ x3 − x4 − 1)}. A
B

x1

x2
x4

x5

x3

-1
1

1

0

0

-1

corresponding to the negative cycle on the right. It is straightforward to

see from the graph that the resulting interpolant is (0 ≤ x1−x3 +1)∧ (0 ≤
x4 − x5 − 1), because the first conjunct is the summary constraint of the

first two conjuncts in A.

130



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

Applying instead the rules of Figure 4.3 with coefficients 1, the proof of

unsatisfiability is:

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)
(0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ x5 − x1)
(0 ≤ −x3 + x4) (0 ≤ x3 − x4 − 1)

(0 ≤ −1)

By using the interpolation rules for LA(Q), the interpolant we obtain is

(0 ≤ x1 − x3 + x4 − x5), which is not in DL(Q), and is weaker than that

computed above:

(0 ≤ x1 − x2 + 1) (0 ≤ x2 − x3)
(0 ≤ x1 − x3 + 1) (0 ≤ x4 − x5 − 1)

(0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)
(0 ≤ x1 − x3 + x4 − x5) (0 ≤ 0)

(0 ≤ x1 − x3 + x4 − x5)

Notice that, if instead we apply our technique of §4.2.3, then the LA(Q)-

interpolant generated from the above proof is identical to the DL(Q) one

above. ♦

4.4 From SMT(UT VPI) solving to SMT(UT VPI) in-

terpolation

Another important subset of LA is given by the UT VPI theory (see

§1.4.4), in which all constraints are in the form (0 ≤ ±x1 ± x2 + k), where

k is an integer constant and variables xi, x2 range either over the rationals

(UT VPI(Q)) or over the integers (UT VPI(Z)).

As for DL, UT VPI can be treated more efficiently than the full LA,

and several specialized algorithms for UT VPI have been proposed in the

131



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

Table 4.1: The conversion map from UT VPI(Q) to DL(Q).

UT VPI(Q) constraints DL(Q) constraints

(0 ≤ x1 − x2 + k) (0 ≤ x+
1 − x+

2 + k), (0 ≤ x−2 − x−1 + k)

(0 ≤ −x1 − x2 + k) (0 ≤ x−1 − x+
2 + k), (0 ≤ x−2 − x+

1 + k)

(0 ≤ x1 + x2 + k) (0 ≤ x+
1 − x−2 + k), (0 ≤ x+

2 − x−1 + k)

(0 ≤ −x1 + k) (0 ≤ x−1 − x+
1 + 2 · k)

(0 ≤ x1 + k) (0 ≤ x+
1 − x−1 + 2 · k)

literature. Traditional techniques are based on the iterative computation

of the transitive closure of the constraints [HS97, JMSY94]; more recently

[LM05] proposed a novel technique based on a reduction to DL, so that

graph-based techniques can be exploited, resulting into an asymptotically-

faster algorithm. We adopt the latter approach and show how the graph-

based interpolation technique of §4.3 can be extended to UT VPI, for both

the rationals (§4.4.1) and the integers (§4.4.2).

4.4.1 Graph-based interpolation for UT VPI on the Rationals

We analyze first the simpler case of UT VPI(Q). Miné [Min01] showed that

it is possible to encode a set of UT VPI(Q) constraints into a DL(Q) one

in a satisfiability-preserving way. The encoding works as follows. We use

xi to denote variables in the UT VPI(Q) domain and u, v for variables in

the DL(Q) domain. For every variable xi in UT VPI(Q), we introduce two

distinct variables x+
i and x−i in DL(Q). We introduce a mapping Υ from

DL(Q) variables to UT VPI(Q) signed variables, such that Υ(x+
i ) = xi and

Υ(x−i ) = −xi. Υ extends to (sets of) constraints in the natural way: Υ(0 ≤
ax1+bx2+k)

def

= (0 ≤ aΥ(x1)+bΥ(x2)+c), and Υ({ci}i)
def

= {Υ(ci)}i. We say

that (x+
i )− = x−i and (x−i )− = x+

i . We say that the constraints (0 ≤ u− v)

and (0 ≤ (v)−− (u)−) such that u, v ∈ {x+
i , x

−
i }i are dual . We encode each

UT VPI constraint into the conjunction of two dual DL(Q) constraints,

132



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

as represented in Table 4.1. For each DL(Q) constraint (0 ≤ v − u + k),

(0 ≤ Υ(v)−Υ(u) +k) is the corresponding UT VPI(Q) constraint. Notice

that the two dual DL(Q) constraints in the right column of Table 4.1 are

just different representations of the original UT VPI(Q) constraint. (The

two dual constraints encoding a single-variable constraint are identical, so

that their conjunction is collapsed into one constraint only.) The resulting

set of constraints is satisfiable in DL(Q) if and only if the original one is

satisfiable in UT VPI(Q) [Min01, LM05].

Consider the pair (A,B) where A and B are sets of UT VPI(Q) con-

straints. We apply the map of Table 4.1 and we encode (A,B) into aDL(Q)

pair (A′, B′), and build the constraint graph G(A′ ∧B′). If G(A′ ∧B′) has

no negative cycle, we can conclude that A′ ∧ B′ is DL(Q)-consistent, and

hence that A ∧ B is UT VPI(Q)-consistent; otherwise, A′ ∧ B′ is DL(Q)-

inconsistent, and hence A ∧B is UT VPI(Q)-inconsistent [Min01, LM05].

In fact, it is straightforward to observe that for any set of DL(Q) con-

straints {C1, . . . , Cn, C} resulting from the encoding of some UT VPI(Q)

constraints, if
∧n
i=1Ci |=DL(Q) C then

∧n
i=1 Υ(Ci) |=UT VPI(Q) Υ(C).

When A∧B is inconsistent, we can generate an UT VPI(Q)-interpolant

by extending the graph-based approach used for DL(Q).

Theorem 4.16. Let A∧B be an inconsistent conjunction of UT VPI(Q)-

constraints, and let G(A′ ∧ B′) be the corresponding graph of DL(Q)-

constraints. Let I ′ be a DL(Q)-interpolant built from G(A′ ∧ B′) with the

technique described in §4.3. Then I
def

= Υ(I ′) is an interpolant for (A,B).

Proof.

(i) I ′ is a conjunction of summary constraints, so it is in the form
∧
iCi.

Therefore A′ |=DL(Q) Ci for all i, and so by the observation above

A |=UT VPI(Q) Υ(Ci). Hence, A |=UT VPI(Q) I.

133



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

A

B

negative cycle

maximal A−paths

−5

−2

1 1 4 4

−6 133 −1

−6 133 −1

x−1 x+
2 x−3 x+

4 x−5 x−6

x+
6x+

5x−4x+
3x−2x+

1

Figure 4.5: The constraint graph of Example 4.17. (We represent only one negative cycle

with its corresponding A-paths, because the other is dual.)

(ii) From the DL(Q)-inconsistency of I ′ ∧B′ we immediately derive that

I ∧B is UT VPI(Q)-inconsistent.

(iii) I � A and I � B derive from I ′ � A′ and I ′ � B′ by the definitions

of Υ and the map of Table 4.1.

�

As with the DL(Q) case, in principle, it is possible to generate a proof of

unsatisfiability for a conjunction of UT VPI(Q) atoms A∧B by repeatedly

applying the Comb rule for LA(Q) [McM05] with c1 = c2 = 1. As with

DL(Q), however, the interpolants generated from such proofs may not be

UT VPI(Q) formulae anymore. Moreover, if computed starting from the

same inconsistent set C and unless our technique of §4.2.3 is adopted, they

are either identical or weaker than those generated with our graph-based

method, since they are in the form (0 ≤
∑

i ti) such that
∧
i(0 ≤ ti) is the

interpolant generated with our method.

Example 4.17. Consider the following sets of UT VPI(Q) constraints:

134



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

A = {(0 ≤ −x2 − x1 + 3), (0 ≤ x1 + x3 + 1),

(0 ≤ −x3 − x4 − 6), (0 ≤ x5 + x4 + 1)}

B = {(0 ≤ x2 + x3 + 3), (0 ≤ x6 − x5 − 1), (0 ≤ x4 − x6 + 4)}

By the map of Table 4.1, they are converted into the following sets of

DL(Q) constraints:

A′ = {(0 ≤ x−1 − x+
2 + 3), (0 ≤ x−2 − x+

1 + 3),

(0 ≤ x+
3 − x−1 + 1), (0 ≤ x+

1 − x−3 + 1),

(0 ≤ x−4 − x+
3 − 6), (0 ≤ x−3 − x+

4 − 6),

(0 ≤ x+
4 − x−5 + 1), (0 ≤ x+

5 − x−4 + 1)}

B′ = {(0 ≤ x+
3 − x−2 + 3), (0 ≤ x+

2 − x−3 + 3),

(0 ≤ x+
6 − x+

5 − 1), (0 ≤ x−5 − x−6 − 1),

(0 ≤ x+
4 − x+

6 + 4), (0 ≤ x−6 − x−4 + 4)}
whose conjunction corresponds to the constraint graph of Figure 4.5. This

graph has a negative cycle

C ′
def

= x+
2

3−→ x−1
1−→ x+

3
−6−→ x−4

4−→ x−6
−1−→ x−5

1−→ x+
4
−6−→ x−3

3−→ x+
2 .

Thus, A ∧ B is inconsistent in UT VPI(Q). From the negative cycle C ′

we can extract the set of A′-paths {x+
2
−2−→ x−4 , x

−
5
−5−→ x−3 }, corresponding

to the formula I ′
def

= (0 ≤ x−4 − x+
2 − 2) ∧ (0 ≤ x−3 − x−5 − 5), which is an

interpolant for (A′, B′). I ′ is thus mapped back into I
def

= Υ(I ′)
def

= (0 ≤
−x2 − x4 − 2) ∧ (0 ≤ x5 − x3 − 5), which is an interpolant for (A,B).

Applying instead the LA(Q) interpolation technique of [McM05], we

find the interpolant (0 ≤ −x2−x4+x5−x3−7), which is not in UT VPI(Q)

and is strictly weaker than that computed with our method. ♦

135



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

4.4.2 Graph-based interpolation for UT VPI on the Integers

In order to deal with the more complex case of UT VPI(Z), we adopt a lay-

ered approach (see §1.3.1). First, we check the consistency in UT VPI(Q)

using the technique of [Min01]. If this results in an inconsistency, we com-

pute an UT VPI(Q)-interpolant as described in §4.4.1. Clearly, this is also

an interpolant in UT VPI(Z): condition (iii) is obvious, and conditions

(i) and (ii) follow immediately from the fact that if an UT VPI-formula is

inconsistent over the rationals then it is inconsistent also over the integers.

If the UT VPI(Q)-procedure does not detect an inconsistency, we check

the consistency in UT VPI(Z) using the algorithm proposed by Lahiri and

Musuvathi in [LM05], which extends the ideas of [Min01] to the integer do-

main. In particular, it gives necessary and sufficient conditions to decide

unsatisfiability by detecting particular kinds of zero-weight cycles in the

induced DL constraint graph. This procedure works in O(n ·m) time and

O(n + m) space, m and n being the number of constraints and variables

respectively, which improves the previous O(n2 ·m) time and O(n2) space

complexity of the previous procedure of [JMSY94].

We build on top of this algorithm and we extend the graph-based ap-

proach of §4.4.1 for producing interpolants also in UT VPI(Z). In partic-

ular, we use the following reformulation of a result of [LM05].

Theorem 4.18. Let φ be a conjunction of UT VPI(Z) constraints such

that φ is satisfiable in UT VPI(Q). Then φ is unsatisfiable in UT VPI(Z)

if and only if the constraint graph G(φ) generated from φ has a cycle C

of weight 0 containing two vertices x+
i and x−i such that the weight of the

path x−i ; x+
i along C is odd.

Proof. The “only if” part is a corollary of lemmas 1, 2 and 4 in [LM05].

The “if” comes straightforwardly from the analysis done in [LM05], whose

main intuitions we recall in what follows. Assume the constraint graph

136



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

G(φ) generated from φ has one cycle C of weight 0 containing two vertices

x+
i and x−i such that the weight of the path x−i ; x+

i along C is 2k+ 1 for

some integer value k. Since C has weight 0, the weight of the other path

x+
i ; x−i along C is −2k − 1. Then, the paths x−i ; x+

i and x+
i ; x−i

contain at least two constraints, because otherwise their weight would be

even (see the last two rows of Table 4.1). Then, x−i ; x+
i is in the form

x−i ; v
n−→ x+

i , for some v and n. From x−i ; v, we can derive the

summary constraint (0 ≤ v− x−i + (2k+ 1−n)), which corresponds to the

UT VPI(Z) constraint (0 ≤ Υ(v)+xi+(2k+1−n)). (This corresponds to

l − 2 applications of the Transitive rule of [LM05], l being the number

of constraints in x−i ; x+
i .) Then, by observing that the UT VPI(Z)

constraint corresponding to v
n−→ x+

i is (0 ≤ xi − Υ(v) + n), we can apply

the Tightening rule of [LM05] to obtain (0 ≤ xi + b(2k+ 1−n+n)/2c),
which is equivalent to (0 ≤ xi+k). Similarly, from x+

i ; x−i we can obtain

(0 ≤ −xi − k − 1), and thus an inconsistency using the Contradiction

rule of [LM05]. �

Consider a pair (A,B) of sets of UT VPI(Z)-constraints such that A∧B
is consistent in UT VPI(Q) but inconsistent in UT VPI(Z). By Theorem

4.18, the constraint graph G(A′ ∧B′) has a cycle C of weight 0 containing

two vertices x+
i and x−i such that the weight of the paths x−i ; x+

i and

x+
i ; x−i along C are 2k+1 and −2k−1 respectively, for some value k ∈ Z.

Our algorithm computes an interpolant for (A,B) from the cycle C. Let

CA and CB be the subsets of the edges in C corresponding to constraints

in A′ and B′ respectively. We have to distinguish four distinct sub-cases.

Case 1: xi occurs in B but not in A. Consequently, x+
i and x−i occur in

B′ but not in A′, and hence they occur in CB but not in CA. Let I ′ be the

conjunction of the summary constraints of the maximal CA-paths, and let

I be the conjunction of the corresponding UT VPI(Z) constraints. The

137



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

A′

B′

x+
1

x−2x−6

x+
3x+

2

4 2

0

0

-4

30
x+

5

-5

x+
4

Figure 4.6: UT VPI(Z) interpolation, Case 1.

following theorem shows that I is an interpolant for (A,B).

Theorem 4.19. Let (A,B) be a pair of sets of UT VPI(Z)-constraints

such that A ∧ B |=UT VPI(Z) ⊥, let xi be a variable that occurs in B but

not in A, let G(A′ ∧ B′) be the graph of the DL-encoding of A ∧ B, and

let C be a zero-weight cycle in the graph such that the weight of the paths

x−i ; x+
i and x+

i ; x−i along it are odd. Let I ′ be the conjunction of the

summary constraints of the maximal CA-paths, and let I be the conjunction

of the corresponding UT VPI(Z)-constraints. Then I is an interpolant for

(A,B).

Proof.

(i) By construction, A |=UT VPI(Z) I, as in §4.4.1.

(ii) The constraints in I ′ and CB form a cycle matching the hypotheses

of Theorem 4.18, from which I ∧B is UT VPI(Z)-inconsistent.

(iii) We notice that every variable x+
j , x

−
j occurring in the conjunction of

the summary constraints is an end-point variable, so that I ′ � CA

and I ′ � CB, and thus I � A and I � B. �

138



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

Example 4.20. Consider the following set of constraints:

S = {(0 ≤ x1 − x2 + 4), (0 ≤ −x2 − x3 − 5), (0 ≤ x2 + x6 − 4),

(0 ≤ x5 + x2 + 3), (0 ≤ −x1 + x3 + 2), (0 ≤ −x6 − x4), (0 ≤ x4 − x5)},

partitioned into A and B as follows:

A =


(0 ≤ x3 − x1 + 2)

(0 ≤ −x6 − x4)

(0 ≤ x4 − x5)

B =


(0 ≤ x1 − x2 + 4)

(0 ≤ −x2 − x3 − 5)

(0 ≤ x2 + x6 − 4)

(0 ≤ x5 + x2 + 3)

Figure 4.6 shows a zero-weight cycle C in G(A′∧B′) such that the paths

x−2 ; x+
2 and x+

2 ; x−2 have an odd weight (−1 and 1 resp.) Therefore,

by Theorem 4.18 A ∧ B is UT VPI(Z)-inconsistent. The two summary

constraints of the maximal CA paths are (0 ≤ x−6 − x+
5 ) and (0 ≤ x+

3 −
x+

1 + 2). It is easy to see that I = (0 ≤ −x6− x5)∧ (0 ≤ x3− x1 + 2) is an

UT VPI(Z)-interpolant for (A,B). ♦

Case 2: xi occurs in both A and B. Consequently, x+
i and x−i occur in

both A′ and B′. If neither x+
i nor x−i is such that both the incoming and

outgoing edges belong to CA, then the cycle obtained by replacing each

maximal CA-path with its summary constraint still contains both x+
i and

x−i , so we can apply the same process of Case 1. Otherwise, if both the

incoming and outgoing edges of x+
i belong to CA, then we split the maximal

CA-path u1
c1−→ . . .

ck−→ x+
i

ck+1−−→ . . .
cn−→ un containing x+

i into the two parts

which are separated by x+
i : u1

c1−→ . . .
ck−→ x+

i and x+
i

ck+1−−→ . . .
cn−→ un. We

do the same for x−i . Let I ′ be the conjunction of the resulting summary

constraints, and let I be corresponding set of UT VPI(Z) constraints. The

following theorem shows that I is an interpolant for (A,B).

Theorem 4.21. Let (A,B) be a pair of sets of UT VPI(Z)-constraints

such that A∧B |=UT VPI(Z) ⊥, let xi be a variable that occurs in both A and

139



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

B, let G(A′ ∧ B′) be the graph of the DL-encoding of A ∧ B, and let C be

a zero-weight cycle in the graph such that the weight of the paths x−i ; x+
i

and x+
i ; x−i along it are odd, and such that both the incoming and outgo-

ing edges of x+
i in C belong to CA. Let u1

c1−→ . . .
ck−→ x+

i

ck+1−−→ . . .
cn−→ un be

the maximal CA-patch containing x+
i , and let s1 and s2 be respectively the

summary constraints of the two parts of the above path which are separated

by x+
i . Let I ′ be the conjunction of s1, s2 and the summary constraints

of the other maximal CA-paths, and let I be the conjunction of the corre-

sponding UT VPI(Z)-constraints. Then I is an interpolant for (A,B).

Proof.

(i) As with Case 1, again, A |=UT VPI(Z) I.

(ii) Since we split the maximal CA paths as described above, the con-

straints in I ′ and CB form a cycle matching the hypotheses of Theo-

rem 4.18, from which I ∧B is UT VPI(Z)-inconsistent.

(iii) x+
i , x

−
i occur in both A′ and B′ by hypothesis, and every other variable

x+
j , x

−
j occurring in the conjunction of the summary constraints is an

end-point variable, so that I ′ � CA and I ′ � CB, and thus I � A and

I � B. �

Example 4.22. Consider again the set of constraints S of Example 4.20,

partitioned into A and B as follows:

A =


(0 ≤ x3 − x1 + 2)

(0 ≤ −x6 − x4)

(0 ≤ x2 + x6 − 4)

(0 ≤ x1 − x2 + 4)

B =


(0 ≤ −x2 − x3 − 5)

(0 ≤ x5 + x2 + 3)

(0 ≤ x4 − x5)

and the zero-weight cycle C of G(A′ ∧ B′) shown in Figure 4.7. As in

the previous example, there is a path x−2 ; x+
2 of weight −1 and a path

140



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

A′

B′

x+
1

x−2x−6

x+
3x+

2

24

0

-4

30

x+
4

x+
5

-5

-4

6

Figure 4.7: UT VPI(Z) interpolation, Case 2.

x+
2 ; x−2 of weight 1. In this case there is only one maximal CA path,

namely x+
4 ; x+

3 . Since the cycle obtained by replacing it with its summary

constraint (0 ≤ x+
3 − x+

4 + 2) does not contain x+
2 , we split x+

4 ; x+
3

into two paths, x+
4 ; x+

2 and x+
2 ; x+

3 , whose summary constraints are

(0 ≤ x+
2 −x+

4 −4) and (0 ≤ x+
3 −x+

2 +6) respectively. By replacing the two

paths above with the two summary constraints, we get a zero-weight cycle

which still contains the two odd paths x−2 ; x+
2 and x+

2 ; x−2 . Therefore,

I
def

= (0 ≤ x2 − x4 − 4) ∧ (0 ≤ x3 − x2 + 6) is an interpolant for (A,B).

Notice that the UT VPI(Z)-formula J
def

= (0 ≤ x3−x4+2) corresponding

to the summary constraint of the maximal CA path x+
4 ; x+

3 is not an

interpolant, since J ∧ B is not UT VPI(Z)-inconsistent. In fact, if we

replace the maximal CA path x+
4 ; x+

3 with the summary constraint x+
4

2−→
x+

3 , the cycle we obtain has still weight zero, but it contains no odd path

between two variables x+
i and x−i . ♦

Case 3: xi occurs in A but not in B, and one of the paths x+
i ; x−i

or x−i ; x+
i in C contains only constraints of CA. In this case, x+

i and

x−i occur in A′ but not in B′. Suppose that x−i ; x+
i consists only of

constraints of CA (the case x+
i ; x−i is analogous).

141



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

Let 2k+ 1 be the weight of the path x−i ; x+
i (which is odd by hypoth-

esis), and let C be the cycle obtained by replacing such path with the edge

x−i
2k−→ x+

i in C. In the following, we call such a replacement tightening

summarization. Since C has weight zero, C has negative weight. Let CP

be the set of DL-constraints in the path x−i ; x+
i . Let I ′ be the DL-

interpolant computed from C for (CA \ CP ∪ {(0 ≤ x+
i − x−i + 2k)}, CB),

and let I be the corresponding UT VPI(Z)-formula. The following theorem

shows that I is an interpolant for (A,B).

Theorem 4.23. Let (A,B) be a pair of sets of UT VPI(Z)-constraints

such that A∧B |=UT VPI(Z) ⊥, let xi be a variable that occurs in A but not

in B, let G(A′∧B′) be the graph of the DL-encoding of A∧B, and let C be a

zero-weight cycle in the graph such that the weight of the paths x−i ; x+
i and

x+
i ; x−i along it are odd, and such that all the constraints in the path x−i ;

x+
i belong to CA. Let C be the cycle obtained by replacing the path x−i ; x+

i

with the edge x−i
2k−→ x+

i in C, where 2k+1 is the weight of the replaced path.

Let CP be the set of DL-constraints in the path x−i ; x+
i . Let I ′ be the DL-

interpolant computed from C for (CA\CP ∪{(0 ≤ x+
i −x−i +2k)}, CB), and

let I be the corresponding UT VPI(Z)-formula. Then I is an interpolant

for (A,B).

Proof.

(i) Let P be the set of UT VPI(Z) constraints in the path x−i ; x+
i .

Since the weight 2k+1 of such path is odd, we have that P |=UT VPI(Z)

(0 ≤ xi+k) (see page 136). Since P ⊆ A, therefore, A |=UT VPI(Z) (0 ≤
xi + k). By observing that (0 ≤ x+

i − x−i + 2k) is the DL-constraint

corresponding to (0 ≤ xi + k) we conclude that CA \ CP ∪ (0 ≤
x+
i − x−i + 2k) |=DL I ′ implies that A \ P ∪ (0 ≤ xi + k) |=UT VPI(Z) I,

and so that A |=UT VPI(Z) I.

142



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

A′

B′

x+
1

x−2x−6

x+
3x+

2

24

0

-4

30

x+
4

x+
5

-5
0

-1

Figure 4.8: UT VPI(Z) interpolation, Case 3.

(ii) Since all the constraints in CB occur in C, we have that B ∧ I is

UT VPI(Z)-inconsistent.

(iii) Since by hypothesis all the constraints in the path x−i ; x+
i occur

in CA, from I ′ � (CA \ CP ∪ {(0 ≤ x+
i − x−i + 2k)}) we have that

I � A. Finally, since all the constraints in CB occur in C, we have

that I � B. �

Example 4.24. Consider again the set S of constraints of Example 4.20,

this time partitioned into A and B as follows:

A =



(0 ≤ x1 − x2 + 4)

(0 ≤ x3 − x1 + 2)

(0 ≤ −x2 − x3 − 5)

(0 ≤ x2 + x6 − 4)

(0 ≤ x5 + x2 + 3)

B =

{
(0 ≤ −x6 − x4)

(0 ≤ x4 − x5)

Figure 4.8 shows a zero-weight cycle C of G(A′∧B′). The only maximal

CA path is x−6 ; x+
5 . Since the path x+

2 ; x−2 has weight 1, we can add

the tightening edge x+
2

1−1−−→ x−2 to G(A′ ∧ B′) (shown in dots and dashes

in Figure 4.8), corresponding to the constraint (0 ≤ x−2 − x+
2 ). Since all

143



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

constraints in the path x+
2 ; x−2 belong to A′, A′ |= (0 ≤ x−2 − x+

2 ).

Moreover, the cycle obtained by replacing the path x+
2 ; x−2 with the

tightening edge x+
2

0−→ x−2 has a negative weight (−1). Therefore, we can

generate a DL-interpolant I ′
def

= (0 ≤ x−2 − x−6 − 4) from such cycle, which

corresponds to the UT VPI(Z)-interpolant I
def

= (0 ≤ −x2 + x6 − 4).

Notice that, similarly to Example 4.22, also in this case we cannot obtain

an interpolant from the summary constraint (0 ≤ x+
5 −x−6 ) of the maximal

CA path x−6 ; x+
5 , as (0 ≤ x5 + x6)∧B is not UT VPI(Z)-inconsistent. ♦

Case 4: xi occurs in A but not in B, and neither the path x+
i ; x−i

nor the path x−i ; x+
i in C consists only of constraints of CA. As in the

previous case, x+
i and x−i occur in A′ but not in B′, and hence they occur

in CA but not in CB. In this case, however, we can apply a tightening

summarization neither to x+
i ; x−i nor to x−i ; x+

i , since none of the

two paths consists only of constraints of CA. We can, however, perform

a conditional tightening summarization as follows. Let CP
A and CP

B be

the sets of constraints of CA and CB respectively occurring in the path

x−i ; x+
i , and let C

P
A and C

P
B be the sets of summary constraints of

maximal paths in CP
A and CP

B . From C
P
A ∪ C

P
B, we can derive x−i

2k−→ x+
i

(see Case 3), where 2k + 1 is the weight of the path x−i ; x+
i . Therefore,

C
P
A ∪C

P
B |= (0 ≤ x+

i −x−i + 2k), and thus C
P
A |= C

P
B → (0 ≤ x+

i −x−i + 2k).

We say that (0 ≤ x+
i − x−i + 2k) is the summary constraint for x−i ; x+

i

conditioned to C
P
B.

Using conditional tightening summarization, we generate an interpolant

as follows. By replacing the path x−i ; x+
i with x−i

2k−→ x+
i , we obtain

a negative-weight cycle C, as in Case 3. Let I ′ be the DL-interpolant

computed from C for (CA \ CP
A ∪ {(0 ≤ x+

i − x−i + 2k)}, CB \ CP
B ), and

let I be the corresponding UT VPI(Z) formula. Finally, let PB be the

conjunction of UT VPI(Z) constraints corresponding to C
P
B. The following

144



4.4. FROM SMT(UT VPI) SOLVING TO SMT(UT VPI) INTERPOLATION

theorem show that (PB → I) is an interpolant for (A,B).

Theorem 4.25. Let (A,B) be a pair of sets of UT VPI(Z)-constraints

such that A ∧ B |=UT VPI(Z) ⊥, let xi be a variable that occurs in A but

not in B, let G(A′ ∧ B′) be the graph of the DL-encoding of A ∧ B, and

let C be a zero-weight cycle in the graph such that the weight of the paths

x−i ; x+
i and x+

i ; x−i along it are odd, and such that none of such two

paths consists only of constraints from CA. Let CP
A and CP

B be the sets of

constraints of CA and CB respectively occurring in the path x−i ; x+
i , and

let C
P
A and C

P
B be the sets of summary constraints of maximal paths in CP

A

and CP
B . Let C be the cycle obtained by replacing the path x−i ; x+

i with

the edge x−i
2k−→ x+

i in C, where 2k + 1 is the weight of the replaced path.

Let I ′ be the DL-interpolant computed from C for (CA \ CP
A ∪ {(0 ≤ x+

i −
x−i + 2k)}, CB \ CP

B ), and let I be the corresponding UT VPI(Z)-formula.

Let PB be the conjunction of UT VPI(Z) constraints corresponding to C
P
B.

Then (PB → I) is an interpolant for (A,B).

Proof.

(i) We know that CA \ CP
A ∪ {(0 ≤ x+

i − x−i + 2k)} |= I ′, because I ′ is a

DL-interpolant. Moreover, C
P
A ∪ C

P
B |= (0 ≤ x+

i − x−i + 2k), and so

CP
A ∪ C

P
B |= (0 ≤ x+

i − x−i + 2k). Therefore, CA ∪ C
P
B |= I ′, and thus

A ∪ PB |=UT VPI(Z) I, from which A |=UT VPI(Z) (PB → I).

(ii) Since I ′ is a DL-interpolant for (CA \CP
A ∪{(0 ≤ x+

i −x−i +2k)}, CB \
CP
B ), I ′∧(CB \CP

B ) is DL-inconsistent, and thus I∧B is UT VPI(Z)-

inconsistent. Since by construction B |=UT VPI(Z) PB, (PB → I) ∧ B
is UT VPI(Z)-inconsistent.

(iii) From I ′ � CB\CP
B we have that I � B, and from I ′ � CA\CP

A∪{(0 ≤
x+
i − x−i + 2k)} that I � A. Moreover, all the variables occurring in

the constraints in C
P
B are end-point variables, so that C

P
B � CA and

145



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

A′

B′

x+
1

x−2x−6

x+
3x+

2

24

0

-4

30

x+
4

x+
5

-5

0

-2

-3

Figure 4.9: UT VPI(Z) interpolation, Case 4.

C
P
B � CB, and thus PB � A and PB � B. Therefore, (PB → I) � A

and (PB → I) � B. �

Example 4.26. We partition the set S of constraints of Example 4.20 into

A and B as follows:

A =


(0 ≤ x1 − x2 + 4)

(0 ≤ −x2 − x3 − 5)

(0 ≤ x5 + x2 + 3)

(0 ≤ x2 + x6 − 4)

B =


(0 ≤ x3 − x1 + 2)

(0 ≤ −x6 − x4)

(0 ≤ x4 − x5)

Consider the zero-weight cycle C of G(A′ ∧ B′) shown in Figure 4.9. In

this case, neither the path x+
2 ; x−2 nor the path x−2 ; x+

2 consists only of

constraints of A′, and thus we cannot use any of the two tightening edges

x+
2

1−1−−→ x−2 and x−2
−1−1−−−→ x+

2 directly for computing an interpolant. How-

ever, we can compute the summary x−2
−2−→ x+

2 for x−2 ; x+
2 conditioned to

x+
5

0−→ x−6 , which is the summary constraint of the B-path x+
5 ; x−6 , and

whose corresponding UT VPI(Z) constraint is (0 ≤ −x6 − x5). By replac-

ing the path x−2 ; x+
2 with such summary, we obtain a negative-weight

cycle C, from which we generate the DL-interpolant (0 ≤ x+
1 − x+

3 − 3),

146



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

corresponding to the UT VPI(Z) formula (0 ≤ x1−x3−3). Therefore, the

generated UT VPI(Z)-interpolant is (0 ≤ −x6 − x5)→ (0 ≤ x1 − x3 − 3).

As in Example 4.24, notice that we cannot generate an interpolant from

the conjunction of summary constraints of maximal CA paths, since the

formula we obtain (i.e. (0 ≤ x1 +x6)∧ (0 ≤ x5−x3−2)) is not inconsistent

with B. ♦

4.5 Computing interpolants for combined theories via

DTC

In this section, we consider the problem of generating interpolants for a

pair of T1∪T2-formulae (A,B), and propose a method based on the Delayed

Theory Combination (DTC) approach [BBC+06b, BCF+08] (see §1.5.1).

First, in §4.5.1 we provide some background on proof-generation in the

N.O. and DTC combination methods, and recall from [YM05] the basics

of interpolation for combined theories using N.O.; then, we present our

novel technique for computing interpolants using DTC (§4.5.2); in §4.5.3

we discuss the advantages of the novel method; finally, in §4.5.4, we show

how our novel technique can be used to generate multiple interpolants from

the same proof.

4.5.1 Background

Resolution proofs with N.O. vs. resolution proofs with DTC

With an N.O.-based SMT solver (see §1.5.1), resolution proofs for formulae

in a combination T1 ∪ T2 of theories have the same structure as those for

formulae in a single theory T . The only difference is that theory lemmas in

this case are the result of the N.O.-combination of T1 and T2 (i.e., they are

T1∪T2-lemmas) (Figure 4.10 left). From the point of view of interpolation,

147



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

⊥

T1 ∪ T2-lemma

T1 ∪ T2-lemma T1 ∪ T2-lemma

T2-lemmaT1-lemma

T1-lemma

T1-lemma
T1-lemma

T1-lemma

T2-lemma

T2-lemma T1-lemma

⊥

(NO) (DTC)

Figure 4.10: Different structures of resolution proofs of unsatisfiability for T1∪T2-formulae,

using N.O. (left) and DTC (right).

the difference with respect to the case of a single theory T is that the T1∪T2-

interpolants for the negations of the T1∪T2-lemmas can be computed with

the combination method of [YM05] whenever it applies.

With DTC, resolution proofs are quite different from those obtained

with N.O.. There is no T1 ∪T2-lemma anymore, because the two Ti-solvers

don’t communicate directly. Instead, the proofs contain both T1-lemmas

and T2-lemmas (Figure 4.10 right), and – importantly – they contain also

interface equalities. (Notice that Ti-lemmas derive either from Ti-conflicts

or from Ti-propagation steps.) In this case, the combination of theories is

encoded directly in the proofs (thanks to the presence of interface equali-

ties), and not “hidden” in the T1 ∪ T2-lemmas as with N.O.. This observa-

tion is at the heart of our DTC-based interpolant combination method.

Example 4.27. Consider the following formula φ:

φ
def

= (a1 = f(a2)) ∧ (b1 = f(b2))∧

(y − a2 = 1) ∧ (y − b2 = 1) ∧ (a1 + y = 0) ∧ (b1 + y = 1).

φ is expressed over the combined theory EUF∪LA(Q): the first two atoms

belong to EUF , while the last four belong to LA(Q).

148



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

Using the N.O. combination method, φ can be proved unsatisfiable as

follows:

1. From the conjunction (y − a2 = 1) ∧ (y − b2 = 1), the LA(Q)-solver

deduces the interface equality (a2 = b2), which is sent to the EUF -

solver;

2. From (a2 = b2) and the conjunction (a1 = f(a2)) ∧ (b1 = f(b2)) the

EUF -solver deduces the interface equality (a1 = b1), which is sent to

the LA(Q)-solver;

3. Together with the conjunction (a1 + y = 0) ∧ (b1 + y = 1), (a1 = b1)

causes an inconsistency in the LA(Q)-solver;

4. The EUF ∪ LA(Q) conflict-set generated is {(y − a2 = 1), (y − b2 =

1), (a1 = f(a2)), (b1 = f(b2)), (a1+y = 0), (b1+y = 1)}, corresponding

to the EUF∪LA(Q)-lemma C
def

= ¬(y−a2 = 1)∨¬(y−b2 = 1)∨¬(a1 =

f(a2)) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1).

The corresponding N.O. proof of unsatisfiability for φ is thus:

C (b1 + y = 1)
· · · (a1 + y = 0)

· · · (y − b2 = 1)
· · · (y − a2 = 1)

· · · (b1 = f(b2))
· · · (a1 = f(a2))

⊥

With DTC, the Boolean search space is augmented with the set of all

possible interface equalities Eq
def

= {(a1 = a2), (a1 = b1), (a1 = b2), (a2 =

b1), (a2 = b2), (b1 = b2)}, so that the DPLL engine can branch on them. If

we suppose that the negative branch is explored first (and we assume for

simplicity that the T -solvers do not perform deductions), using the DTC

combination method φ can be proved unsatisfiable as follows:

149



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

1. Assigning (a2 = b2) to false causes an inconsistency in the LA(Q)-

solver, which generates the LA(Q)-lemma C1
def

= ¬(y−a2 = 1)∨¬(y−
b2 = 1) ∨ (a2 = b2). C1 is used by the DPLL engine to backjump and

unit-propagate (a2 = b2);

2. After such propagation, assigning (a1 = b1) to false causes an incon-

sistency in the EUF -solver, which generates the EUF -lemma C2
def

=

¬(a1 = f(a2)) ∨ ¬(b1 = f(b2)) ∨ ¬(a2 = b2) ∨ (a1 = b1). C2 is used by

the DPLL engine to backjump and unit-propagate (a1 = b1);

3. This propagation causes an inconsistency in the LA(Q)-solver, which

generates the LA(Q)-lemma C3
def

= ¬(y − a2 = 1) ∨ ¬(y − b2 = 1) ∨
¬(a1 = b1);

4. After learning C3, the DPLL engine detects the unsatisfiability of φ.

The corresponding DTC proof of unsatisfiability for φ is thus:

C1 (y − a2 = 1)
· · · (y − b2 = 1)

· · · C2

· · · (b1 = f(b2))
· · · C3

· · · (b1 + y = 1)
· · · (a1 + y = 0)

· · · (a1 = f(a2))
⊥

♦

An important remark is in order. It is relatively easy to implement

DTC in such a way that, if both T1 and T2 are convex, then all T -lemmas

generated contain at most one positive interface equality. This is due to

the fact that for convex theories T it is possible to implement efficient T -

solvers which generate conflict sets containing at most one negated equality

150



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

between variables [BBC+05]. 8 (E.g., this is true for all the Ti-solvers on

convex theories implemented in MathSAT.) Thus, since we restrict to

convex theories, in the rest of this section we can assume without loss of

generality that every T -lemma occurring as leaf in a resolution proof Π of

unsatisfiability deriving from DTC contains at most one positive interface

equality.

Interpolation with Nelson-Oppen

The work in [YM05] gives a method for generating an interpolant for a

pair (A,B) of T1 ∪ T2-formulae such that A ∧B |=T1∪T2
⊥ by means of the

N.O. schema. As in [YM05], we assume that A and B have been purified

using disjoint sets of auxiliary variables. 9 We recall from [YM05] a couple

of definitions.

Definition 4.28 (AB-mixed equality). An equality between variables (a =

b) is an AB-mixed equality if and only if a 6� B and b 6� A (or vice versa).

Definition 4.29 (Equality-interpolating theory). A theory T is said to

be equality-interpolating if and only if, for all A and B in T and for all

AB-mixed equalities (a = b) such that A ∧ B |=T (a = b), there exists a

term t such that A ∧B |=T (a = t) ∧ (t = b) and t � A and t � B.

The work in [YM05] describes procedures for computing the term t from an

AB-mixed interface equality (a = b) for some convex theories of interest,

including EUF , LA(Q), and the theory of lists.

Notationally, with the letters x, xi, y, yi, z we denote generic variables,

whilst with the letters a, ai, and b, bi we denote variables such that ai 6� B

and bi 6� A; hence, with the letters ei we denote generic AB-mixed interface

8We recall that, if T is convex, then µ ∧
∧

i ¬li |=T ⊥ if and only if µ ∧ ¬li |=T ⊥ for some i, where
the li’s are positive literals.

9We recall from §1.5.1 that purification is not strictly necessary.

151



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

equalities in the form (ai = bi); with the letters η, ηi we denote conjunctions

of literals where noAB-mixed interface equality occurs, and with the letters

µ, µi we denote conjunctions of literals where AB-mixed interface equalities

may occur. If µi (respectively ηi) is
∧
i li, we write ¬µi (respectively ¬ηi)

for the clause
∨
i ¬li.

Let A ∧B be a T1 ∪ T2-inconsistent conjunction of T1 ∪ T2-literals, such

that A
def

= A1 ∧ A2 and B
def

= B1 ∧ B2 where each Ai and Bi is Ti-pure.

The N.O.-based method of [YM05] computes an interpolant for (A,B)

by combining Ti-specific interpolants for subsets of A, B and the set of

entailed interface equalities {ej}j that are exchanged between the Ti-solvers

for deciding the unsatisfiability of A ∧ B. In particular, let Eq
def

= {ej}j
be the set of entailed interface equalities. Due to the fact that both T1

and T2 are equality-interpolating, it is possible to assume without loss of

generality that Eq does not contain AB-mixed equalities, because instead

of deducing an AB-mixed interface equality (a = b), a T -solver can always

deduce the two corresponding equalities (a = t) ∧ (t = b). (Notice that

the other T -solver treats the term t as if it were a variable [YM05].) Let

A′
def

= A ∪ (Eq ↓ A) and B′
def

= B ∪ (Eq ↓ B). Then, Ti-specific partial

interpolants are combined according to the following inductive definition:

IA,B(e)
def

=


⊥ if e ∈ A
> if e ∈ B
(I iA′,B′(e) ∨

∨
ea∈A′ IA,B(ea)) ∧

∧
eb∈B′ IA,B(eb) otherwise,

(4.9)

where e is either an entailed interface equality or ⊥, and I iA′,B′(e) is a Ti-
interpolant for (A′ ∪ ¬e, B′) if e � A, and for (A′, B′ ∪ ¬e) otherwise (if

e � B). The computed interpolant for (A,B) is then IA,B(⊥). We refer

the reader to [YM05] for more details.

152



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

4.5.2 From DTC solving to DTC Interpolation

We now discuss how to extend the DTC method to interpolation. As with

[YM05], we can handle the case that T1 and T2 are convex and equality-

interpolating. The approach to generating interpolants for combined the-

ories starts from the proof generated by DTC. Let Eq be the set of all

interface equalities occurring in a DTC refutation proof for a T1 ∪ T2-

unsatisfiable formula φ
def

= A ∧B.

In the case Eq does not contain AB-mixed equalities, that is, Eq can

be partitioned into two sets (Eq \ B)
def

= {(x = y)|(x = y) � A and (x =

y) 6� B} and (Eq ↓ B)
def

= {(x = y)|(x = y) � B}, no interpolant-

combination method is needed : the combination is already encoded in the

proof of unsatisfiability, and a direct application of Algorithm 4.1 to such

proof yields an interpolant for the combined theory T1 ∪ T2. Notice that

this fact holds despite the fact that the interface equalities in Eq occur

neither in A nor in B, but might be introduced in the resolution proof Π

by T -lemmas. In fact, as observed in [McM05], as long as for an atom

p either p � A or p � B holds, it is possible to consider it part of A

(respectively of B) simply by assuming the tautology clause p ∨ ¬p to

be part of A (respectively of B). Therefore, we can treat the interface

equalities in (Eq \ B) as if they appeared in A, and those in (Eq ↓ B) as

if they appeared in B.

When Eq contains AB-mixed equalities, instead, a proof-rewriting step

is performed in order to obtain a proof which is free from AB-mixed equal-

ities, that is amenable for interpolation as described above. The idea is

similar to that used in [YM05] in the case of N.O.: using the fact that

T1 and T2 are equality-interpolating, we reduce this case to the previous

one by “splitting” every AB-mixed interface equality (ai = bi) into the

conjunction of two parts (ai = ti) ∧ (ti = bi), such that (ai = ti) � A and

153



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

(ti = bi) � B. The main difference is that we do this a posteriori, after

the construction of the resolution proof of unsatisfiability Π. In order to

do this, we traverse Π and split each AB-mixed equality, performing also

the necessary manipulations to ensure that the result is still a resolution

proof of unsatisfiability.

We describe this process in two steps. In §4.5.2 we introduce a particular

kind of resolution proofs of unsatisfiability, called ie -local, and show how

to eliminate AB-mixed interface equalities from ie -local proofs; in §4.5.2

we show how to implement a variant of DTC so that to generate ie -local

proofs.

Eliminating AB-mixed equalities by exploiting ie-locality

Definition 4.30 (ie -local proof). A resolution proof of unsatisfiability Π is

local with respect to interface equalities (ie -local) if and only if the interface

equalities occur only in subproofs Πie
i of Π, such that within each Πie

i :

(i) all leaves are also T -lemma leaves of Π;

(ii) all the pivots are interface equalities;

(iii) the root contains no interface equality;

(iv) every right premise of an inner node is a leaf T -lemma containing

exactly one positive interface equality. 10

As a consequence of this definition, we also have that, within each Πie
i in

Π:

(v) all nodes are T1 ∪ T2-valid; (Proof sketch: they result from Boolean

resolution steps from T1-valid and T2-valid clauses, hence they are

T1 ∪ T2-valid.)
10 We have adopted the graphical convention that at each resolution step in a Πie

i subproof, if (ai = bi)
is the pivot, then the premises containing ¬(ai = bi) and (ai = bi) are the left and right premises
respectively.

154



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

(vi) the only leaf T -lemma which is a left premise contains no positive

interface equality. (Proof sketch: we notice that, in a resolution step
C1 C2

C3
, if C3 contains no positive interface equality, at least one between

C1 and C2 contains no positive interface equality; since by (iv) the

right premise contains one positive interface equality, only the left

premise contains no positive interface equality. Thus the leftmost

leaf T -lemma of Πie
i contains no positive interface equality.)

(vii) if an interface equality ej occurs negatively in some T -lemma Cj, then

ej occurs positively in a leaf T -lemma Ck which is the right premise

of a resolution step whose left premise derives from Cj and other T -

lemmas. (Proof sketch: suppose that ¬ej occurs in Cj but ej does not

occur in any such Ck. Then ej can not be a pivot, hence ¬ej occurs

in the root of Πie
i , thus violating (iii).)

Intuitively, in ie -local proofs of unsatisfiability all the reasoning on in-

terface equalities is circumscribed within Πie
i subproofs, which are linear

sub-proofs involving only T -lemmas as leaves, starting from the one con-

taining no positive interface equality, each time eliminating one negative

interface equality by resolving it against the only positive one occurring in

another leaf T -lemma.

Example 4.31. Consider the EUF∪LA(Q) formula φ of Example 4.27, and

the T -lemmas C1, C2 and C3 introduced by DTC to prove its unsatisfiabil-

ity. The proof Π of Example 4.27 is not ie -local, because resolution steps

involving interface equalities are interleaved with resolution steps involving

other atoms. The following proof Π′, instead, is ie -local: all the interface

equalities are used as pivots in the Πie subproof:

155



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

C3 C2

. . .
[pivot (a1 = b1)]

C1

. . .
[pivot (a2 = b2)]

Πie

(a2 + z = 1)
. . . (a1 + z = 0)

. . . (z − x2 = 1)
. . . (a1 = f(x1))

. . . (a2 = f(x2))
. . . (z − x1 = 1)

⊥
C1

def= (a2 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)
C2

def= (a1 = b1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = b2)
C3

def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(a1 = b1).

♦

If Π is an ie -local proof containing AB-mixed interface equalities, then

it is possible to eliminate all of them from Π by applying Algorithm 4.11

to every Πie
i subproof of Π. In a nutshell, each Πie

i subproof is explored

bottom-up, starting from the right premise of the root, each time expanding

the rightmost side T -lemma in the form Ci
def

= (ai = bi) ∨ ¬ηi, such that

(ai = bi) is AB-mixed, into the (implicit) conjunction of two novel T -

lemmas C ′i
def

= (ai = ti) ∨ ¬ηi and C ′′i
def

= (ti = bi) ∨ ¬ηi (step (4)), where

ti is the AB-pure term computed from Ci as described in §4.5.1. Then

the resolution step against Ci is substituted with the concatenation of two

resolution steps against C ′i and C ′′i (step (5)) and then the substitution

¬(ai = bi) 7−→ ¬(ai = ti) ∨ ¬(ti = bi) is propagated bottom-up along

the left subproof Π. Notice that C ′i and C ′′i are still Ti-valid because Ti is

Equality-interpolating and ηi does not contain other AB-mixed interfaced

equalities.

Example 4.32. Consider the formula φ of Example 4.27 and its ie -local

proof of unsatisfiability of Example 4.31. Suppose that φ is partitioned as

156



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

Algorithm 4.11: Rewriting of Πie subproofs

1. Let σ be a mapping from negative AB-mixed interface equalities to a disjunction of

two negative interface equalities, such that σ[¬(ai = bi)] 7→ ¬(ai = ti) ∨ ¬(ti = bi)

and ti is an AB-pure term as described in §4.5.1. Initially, σ is empty.

2. Let Ci
def
= (ai = bi) ∨ ¬µi be the right premise T -lemma of the root of the Πie

subproof.

3. Replace each ¬(aj = bj) in Ci with σ[¬(aj = bj)], to obtain C∗i
def
= (ai = bi) ∨ ¬ηi. If

(ai = bi) is not AB-mixed, then let Π be the subproof rooted in the left premise,

and go to step (7).

4. Split C∗i into C ′i
def
= (ai = ti) ∨ ¬ηi and C ′′i

def
= (ti = bi) ∨ ¬ηi.

5. Rewrite the subproof

...
¬(ai = bi) ∨ ¬µk Ci

¬µk ∨ ¬µi
into

...
¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬µk

Π

C ′i

¬(ti = bi) ∨ ¬ηk ∨ ¬ηi C ′′i
¬ηk ∨ ¬ηi

where ¬ηk is obtained by ¬µk by substituting each negative AB-mixed interface

equality ¬(aj = bj) with σ[¬(aj = bj)].

6. Update σ by setting σ[¬(ai = bi)] to ¬(ai = ti) ∨ ¬(ti = bi).

7. If Π is of the form

... Cj
· · ·

, set Ci to Cj and go to step (3).

8. Otherwise, Π is the leaf ¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬µk. In this case, replace each

¬(aj = bj) in ¬µk with σ[¬(aj = bj)], and then exit.

follows:

φ
def

= A ∧B

A
def

= (a1 = f(a2)) ∧ (y − a2 = 1) ∧ (a1 + y = 0)

B
def

= (b1 = f(b2)) ∧ (y − b2 = 1) ∧ (b1 + y = 1)

157



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

In this case, both interface equalities (a1 = b1) and (a2 = b2) are AB-mixed.

Consider the Πie subproof of Example 4.31:

C1
def= (a2 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

C2
def= (a1 = b1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = b2)

C3
def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(a1 = b1)

C3 C2

Θ1 C1

Θ2

Πie

Θ1
def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = b2)

Θ2
def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1).

The first T -lemma processed by Algorithm 4.11 is C1. Using the tech-

nique of [YM05], (a2 = b2) is split into (a2 = y − 1) ∧ (y − 1 = b2) (step

(4)), thus obtaining C ′1, C
′′
1 and the new proof (in step (5)):

C ′1
def= (a2 = y − 1) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

C ′′1
def= (y − 1 = b2) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1)

Θ′2
def= ¬(y − 1 = b2) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2))∨
¬(a1 = f(a2)) ∨ ¬(y − a2 = 1) ∨ ¬(y − b2 = 1).

C3 C2

Θ1 C ′1
Θ′2 C ′′1

Θ2

Then, σ[¬(a2 = b2)] is set to ¬(a2 = y − 1) ∨ ¬(y − 1 = b2) (step (6)),

and a new iteration of the loop (3)-(7) is performed, this time processing

C2. First, ¬(a2 = b2) is replaced by ¬(a2 = y − 1) ∨ ¬(y − 1 = b2) (step

(3)). Then, (a1 = b1) can be split into (a1 = f(y − 1)) ∧ (f(y − 1) = b1)

(step (4)). After the rewriting of step (5), the proof is:

C ′2
def= (a1 = f(y − 1)) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = y − 1)∨
¬(y − 1 = b2)

C ′′2
def= (f(y − 1) = b1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2)) ∨ ¬(a2 = y − 1)∨
¬(y − 1 = b2)

Θ′1
def= ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2)) ∨ ¬(a1 = f(a2))∨
¬(a2 = y − 1) ∨ ¬(y − 1 = b2)

Θ′′1
def= ¬(a1 = f(y − 1)) ∨ ¬(a1 + y = 0) ∨ ¬(b1 + y = 1) ∨ ¬(b1 = f(b2))∨
¬(a1 = f(a2)) ∨ ¬(a2 = b2)

C3 C ′2
Θ′′1 C ′′2

Θ′1 C ′1
Θ′2 C ′′1

Θ2

Finally, C3 is processed in step (8), ¬(a1 = b1) is replaced with ¬(a1 =

158



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

f(y−1))∨¬(f(y−1) = b1), and the following final proof Π′ie is generated:

C ′3 C ′2
Θ′′1 C ′′2

Θ′1 C ′1
Θ′2 C ′′1

Θ2

such that C ′3
def

= C3[¬(a1 = b1) 7→ ¬(a1 = f(y − 1)) ∨ ¬(f(y − 1) = b1)]. ♦

The following theorem states that Algorithm 4.11 is correct.

Theorem 4.33. Let Π be a Πie subproof, and let Π′ be the result of applying

Algorithm 4.11 to Π. Then:

(a) Π′ does not contain any AB-mixed interface equality; and

(b) Π′ is a valid subproof with the same root as Π.

Proof.

(a) Consider the T -lemma Ci of Step (3). By item (vii) of Definition 4.30,

all negative interface equalities occurring in Ci occur positively in leaf

T -lemmas that are closer to the root of Π. For the same reason, the

first T -lemma Ci analyzed in step (2) contains no negative AB-mixed

interface equalities. Therefore, it follows by induction that all negative

AB-mixed interface equalities in Ci must have been split in Step (4)

of a previous iteration of the loop (3)-(7) of Algorithm 4.11, and thus

they occur in σ. The same argument can be used to show also that at

steps (5) and (8) every negative AB-mixed interface equality in ¬µk
occurs in σ.

(b) We show that:

159



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

(i) Every substep
Θ′ Θ′′

Θ′′′
of Π′ is a valid resolution step;

(ii) every leaf of Π′ is a T -lemma; and

(iii) the root of Π′ is the same as that of Π.

(i) The only problematic case is the resolution step

¬(ai = ti) ∨ ¬(ti = bi) ∨ ¬µk C ′i
¬(ti = bi) ∨ ¬ηk ∨ ¬ηi

introduced in step (5) of Algorithm 4.11. In this case, we have to

show that at the end of the algorithm, all the negative AB-mixed

interface equalities in ¬µk have been replaced such that the result

is identical to ¬ηk. We already know that all negative AB-mixed

equalities in ¬µk occur in σ, thus we only have to show that

σ[¬ej] cannot change between the time when ¬ej was rewritten

to obtain ¬ηk and the time in which it is rewritten in ¬µk. The

negative equality ¬ej is replaced in ¬µk at the next iteration of

the algorithm (in step (5) for inner nodes, and in step (8) for the

final leaf). In the meantime, the only update to σ is performed

in step (6), but it involves the negative equality ¬(ai = bi), which

does not occur in ¬µk.

(ii) Let Ci be a T -lemma in Π. First, we observe that if Ci ≡ ¬(ai =

bi) ∨ ¬µi, then for any ti also the clause C∗i
def

= ¬(ai = ti) ∨ ¬(ti =

bi) ∨ ¬µi is a T -lemma, since (ai = ti) ∧ (ti = bi) |=T (ai = bi) by

transitivity. Therefore, it follows by induction on the number of

substitutions that the clauses obtained in steps (3) and (8) of Al-

gorithm 4.11 are still T -lemmas. Finally, since we are considering

equality-interpolating theories, after step (4) of Algorithm 4.11

both C ′i and C ′′i are T -lemmas.

160



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

(iii) Since the root of Π does not contain any interface equality (item

(iii) of Definition 4.30), in step (5) ¬ηi ≡ ¬µi and ¬ηk ≡ ¬µk,
and therefore the root does not change.

�

Clearly, Algorithm 4.11 operates in linear time on the number of T -

lemmas, and thus of AB-mixed interface equalities. Moreover, every time

an interface equality is split, only two new nodes are added to the proof (a

right leaf and an inner node), and therefore the size of Π′ is linear in that

of Π.

The advantage of having ie -local proofs is that they ease significantly

the process of eliminating AB-mixed interface equalities. First, since all

the reasoning involving interface equalities is confined in Πie subproofs,

only such subproofs – which typically constitute only a small fraction of

the whole proof – need to be traversed and manipulated. Second, the

simple structure of Πie subproofs allows for an efficient application of the

rewriting process of steps (5) and (3), preventing any explosion in size of

the proof. In fact, e.g., if in step (5) the right premise of the last step were

instead the root of some subproof Πi with Ci as a leaf, then two copies of

Π′i and Π′′i would be produced, in which each instance of (ai = bi) must be

replaced with (ai = ti) and (ti = bi) respectively.

Generating ie -local proofs in DTC

In this section we show how to implement a variant of DTC so that to

generate ie -local proofs of unsatisfiability. For the sake of simplicity, we

describe first a simplified algorithm which makes use of two distinct DPLL

engines. We then describe how to avoid the need of a second DPLL engine

with the use of a particular search strategy for DTC.

The simplified algorithm uses two distinct DPLL engines, a main one

and an auxiliary one, which we shall call DPLL-1 and DPLL-2 respectively.

Consider Figure 4.12, left. DPLL-1 receives in input the clauses of the

161



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

PROOF
REWRITING

Ck+1 C1
k+1

C1
k+1Ck+1

PROOF
GENERATION

Learn C2

Learn C1

Learn Ck+1

DPLL-1

DPLL-2 e1

e2

¬e1

¬e2

C1
1

C1
k+1

µ

C2
1

ek

C1C1
1

C2

C2
1

C∗
C∗1

e2

e1pivot on

pivot on

C1
2

C1
1

C1

C2
1

C∗

e2

e1

pivot on

pivot on

C2
C1

2C2
2

C2
2

unit-/T -prop. e1
1 on

unit-/T -prop. e2
1 on

Figure 4.12: Simple strategy for generating ie -local proofs. Left: DTC search; top-right:

corresponding (sub)proof; bottom-right: Πie (sub)proof after rewriting.

input problem φ (which we assume pure and T1 ∪ T2-inconsistent), but no

interface equality, which are instead given to DPLL-2. DPLL-1 enumerates

total Boolean models µ of φ, and invokes the two Ti-solvers separately on

the subsets µT1
and µT2

of µ. If one Ti-solver reports an inconsistency, then

DPLL-1 backtracks. Otherwise, both µTi
are Ti-consistent, and DPLL-2 is

invoked on the list of unit clauses composed of the T1 ∪ T2-literals in µ, to

check its T1 ∪ T2-consistency.

DPLL-2 branches only on interface equalities, assigning them always to

false first. Some interface equalities ej1, however, may be assigned to true by

unit-propagation on previously-learned clauses in the form Cj
1

def

= ¬µj1 ∨ e
j
1,

or by T -propagation on deduction clauses Cj
1 in the same form; we call Cj

1

the antecedent clause of ej1.
11 (As in [BCF+08], we assume that when a T -

propagation step µji |=T e
j
i occurs, µji being a subset of the current branch,

the deduction clause Cj
i

def

= ¬µji ∨e
j
i is learned, either temporarily or perma-

nently; if so, we can see this step as a unit-propagation on Cj
i .) When all

11Notationally, ej
i denotes the j-th most-recently unit-propagated interface equality in the branch in

which Ci is learned, and Cj
i

def= ¬µj
i ∨ e

j
i denotes the antecedent clause of ej

i .

162



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

the interface equalities have been assigned a truth value, the propositional

model µ′ ≡ µT1
∪ µT2

∪ µie is checked for T1 ∪ T2-consistency by invoking

each of the Ti-solvers on µTi
∪µie.

12 Since φ is inconsistent, one of the two

Ti-solvers detects an inconsistency (if both do, we consider only the first).

Therefore a Ti-lemma C1 is generated. As stated at the end of §4.5.1, we

can assume without loss of generality that C1 contains at most one positive

interface equality e1. (Notice also that all negative interface equalities ¬ej1
in C1, if any, have been assigned by unit-propagation or T -propagation on

some antecedent clause Cj
1 .) DPLL-2 then learns C1 and uses it as con-

flicting clause to backjump: starting from C1, it eliminates from the clause

every ¬ej1 by resolving the current clause against its antecedent clause Cj
1 ,

until no negated equality occurs in the final clause C∗1 . 13

If C1 includes one positive interface equality e1, then also the final clause

C∗1 includes it, so that DPLL-2 uses C∗1 as a conflict clause to jump up to

µ and to unit-propagate e1. Then DPLL-2 starts exploring a new branch.

This process is repeated on several branches, learning a sequence of T -

lemmas C1, ..., Ck each Ci containing only one positive interface equality

ei, until a branch causes the generation of a T -lemma Ck+1 containing no

positive interface equalities. Then Ck+1 is resolved backward against the

antecedent clauses of its negative interface equalities, generating a final

conflict clause C∗ which contains no interface equalities.

Overall, DPLL-2 has checked the T1∪T2-unsatisfiability of µ, building a

resolution (sub)proof Π∗ whose root is C∗. (Figure 4.12, top right.) Then

the T1 ∪ T2-lemma C∗ is passed to DPLL-1, which uses it as a blocking

clause for the assignment µ, it backtracks and continues the search. When

12In fact, it is not necessary to wait for all interface equalities to have a value before invoking the
Ti-solvers. Rather, the standard early pruning optimization (see §1.3.1 on page 18) can be applied.

13In order to determine the order in which to eliminate the interface equalities, the implication graph
of the auxiliary DPLL engine can be used. This is a standard process in the conflict analysis in modern
SAT and SMT solvers (see, e.g., [vG07, Seb07]).

163



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

the empty clause is obtained, it generates a proof of unsatisfiability in the

usual way (see e.g. [vG07]).

Since the main solver knows nothing about interface equalities, they

can only appear inside the proofs of the blocking clauses generated by

the auxiliary solver (like Π∗). Each Π∗ is not yet a Πie subproof, since

it complies only with items (i), (ii) and (iii) of Definition 4.30 but not

with item (iv). The reason for the latter fact is that Π∗ contains a set of

right branches ΠCi
, one of each T -lemma Ci in {Ck+1, ..., C1}, representing

the resolution steps to resolve away the interface equalities introduced by

unit-propagation/T -propagation in each branch. Each such sub-branch

ΠCi
, however, can be reduced to length one by moving downwards the

resolution steps with the antecedent clauses C1
i , C

2
i , ... which Ci encounters

in the branch. (Figure 4.12, bottom right.) This is done by recursively

applying the following rewriting step to ΠCi
, until it reduces to the single

clause Ci:

...
¬ei ∨ ¬µ′i

Cj
i︷ ︸︸ ︷

¬µji ∨ e
j
i

Cj−1
i

C1
i Ci

...

¬µ′′i ∨ ¬e
j
i ∨ ei

¬µji ∨ ¬µ′′i ∨ ei

ΠCi

¬µ′i ∨ ¬µ
j
i ∨ ¬µ′′i

=⇒

...
¬ei ∨ ¬µ′i

Cj−1
i

C1
i Ci

...

¬µ′′i ∨ ¬e
j
i ∨ ei

Π′Ci

¬µ′i ∨ ¬µ′′i ∨ ¬e
j
i

Cj
i︷ ︸︸ ︷

¬µji ∨ e
j
i

¬µ′i ∨ ¬µ
j
i ∨ ¬µ′′i (4.10)

As a result, each Π∗ is transformed into a Πie subproof, so that the final

proof is ie -local.

164



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

In an actual implementation, there is no need of having two distinct

DPLL solvers for constructing ie -local proofs. In fact, we can obtain the

same result by adopting a variant of the DTC Strategy 1 of [BCF+08]. We

never select an interface equality for case splitting if there is some other

unassigned atom, and we always assign false to interface equalities first.

Moreover, we “delay” T -propagation of interface equalities until all the

original atoms have been assigned a truth value. Finally, when splitting

on interface equalities, we restrict both the backjumping and the learn-

ing procedures of the DPLL engine as follows. Let d be the depth in the

DPLL tree at which the first interface equality is selected for case split-

ting. If during the exploration of the current DPLL branch we have to

backjump above d, then we generate by resolution a conflict clause that

does not contain any interface equality, and “deactivate” all the T -lemmas

containing some interface equality — that is, we do not use such T -lemmas

for performing unit propagation — and we re-activate them only when we

start splitting on interface equalities again. Using such strategy, we obtain

the same effect as in the simple algorithm that uses two DPLL engines:

the search space is partitioned in two distinct subspaces, the one of orig-

inal atoms and the one of interface equalities, and the generated proof of

unsatisfiability reflects such partition.

Finally, we remark that what described above is only one possible strat-

egy for generating ie -local proofs, and not necessarily the most efficient one.

Moreover, that of generating ie -local proofs is only a sufficient condition

to obtain interpolants from DTC avoiding duplications of sub-proofs, and

more general strategies may be conceived.

4.5.3 Discussion

Our new DTC-based combination method has several advantages over the

traditional one of [YM05] based on N.O.:

165



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

1. It inherits all the advantages of DTC over the traditional N.O. in

terms of versatility, efficiency and restrictions imposed to T -solvers

[BBC+06b, BCF+08]. Moreover, it allows for using a more modern

SMT solver, since many state-of-the-art solvers adopt variants or ex-

tensions of DTC instead of N.O..

2. Instead of requiring an “ad-hoc” method for performing the combina-

tion, it exploits the Boolean interpolation algorithm. In fact, thanks

to the fact that interface equalities occur in the proof of unsatisfia-

bility Π, once the AB-mixed terms in Π are split there is no need

of any interpolant-combination method at all. In contrast, with the

N.O.-based method of [YM05] interpolants for T1∪T2-lemmas are gen-

erated by combining “theory-specific partial interpolants” for the two

Ti’s with an algorithm that essentially duplicates the work that in our

case is performed by the Boolean algorithm. This allows also for po-

tentially exploiting optimization techniques for Boolean interpolation

which are or will be made available from the literature.

3. By splitting AB-mixed terms only after the construction of the proof

Π, it allows for computing several interpolants for several different

partitions of the input problem into (A,B) from the same proof Π .

This is particularly important for applications in abstraction refine-

ment [HJMM04]. (This feature is discussed in §4.5.4.)

The work of [YM05] can in principle deal with non-convex theories. Our

approach is currently limited to the case of convex theories; however, we see

no reason that would prevent it from being extensible at least theoretically

to the case of nonconvex theories. We also remark that implementing the

algorithm of [YM05] for non-convex theories is a non-trivial task, and in

fact we are not aware of any such implementation.

166



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

Another algorithm for computing interpolants in combined theories is

given in [SS08]. Rather than a combination of theories with disjoint sig-

natures, that work considers the interpolation problem for extensions of

a base (convex) theory with new function symbols, and it is therefore or-

thogonal to ours. The solution adopted is however similar to what we

propose, in the sense that also the algorithm of [SS08] works by splitting

AB-mixed terms. The difference is that our algorithm is tightly integrated

in an SMT context, as it is guided by the resolution proof generated by

the DPLL engine.

The recent work of [GKT09] proposes a generalization of our method

that avoids the construction of ie -local proofs. Rather, a generalization of

Algorithm 4.11 to arbitrary resolution proofs is described, by introducing

additional proof-manipulation steps. The advantage of this method is that

it does not impose any restriction – which could potentially have a negative

impact on performance – to the search strategy of DPLL. Unfortunately

however, this method might cause an exponential blowup in the size of

the proof [GKT09], because it might require the (recursive) duplication of

whole proof trees for eliminating AB-mixed interface equalities. In con-

trast, when using ie -local proofs, the exponential blowup is avoided (see

also the discussion on page 161).

4.5.4 Generating multiple interpolants

In §4.1 we remarked that a sufficient condition for generating multiple

interpolants is that all the interpolants Ii’s are computed from the same

proof of unsatisfiability.

When generating interpolants with our DTC-based algorithm, however,

we generate a different proof of unsatisfiability Πi for each partition of the

input formula φ into Ai and Bi. In particular, every Πi is obtained from the

same “base” proof Π, by splitting all the AiBi-mixed interface equalities

167



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

with Algorithm 4.11. In this section, we show that (4.2) (at §4.1 on page

113) holds also when each Πi is obtained from the same ie -local proof Π

by the rewriting of Algorithm 4.11 of §4.5.2. In order to do so, we need

the following lemma.

Lemma 4.34. Let Θ be a T1 ∪ T2-lemma, and let Π be a Πie proof for it

which does not contain any AB-mixed term. Then the formula IΘ associ-

ated to Θ in Algorithm 4.1 is an interpolant for (¬Θ \B,¬Θ ↓ B).

Proof. By induction on the structure of Π, we have to prove that:

1. ¬Θ \B |= IΘ;

2. IΘ ∧ (¬Θ ↓ B) |= ⊥;

3. IΘ contains only common symbols.

The base case is when Π is just a single leaf. Then, the lemma trivially

holds by definition of IΘ in this case (see Algorithm 4.1).

For the inductive step, let Θ1
def

= (x = y) ∨ φ1 and Θ2
def

= ¬(x = y) ∨ φ2

be the antecedents of Θ in Π. (So Θ
def

= φ1 ∨ φ2). Let IΘ1
and IΘ2

be the

interpolants for Θ1 and Θ2 (by the inductive hypothesis).

• If (x = y) 6� B, then IΘ
def

= IΘ1
∨ IΘ2

.

1. By the inductive hypothesis, (¬φ1 ∧ ¬(x = y)) \ B ≡ (¬φ1 \
B) ∧ ¬(x = y) |= IΘ1

, and (¬φ2 \ B) ∧ (x = y) |= IΘ2
. Then by

resolution (¬φ1 ∧ ¬φ2) \B ≡ ¬Θ \B |= IΘ.

2. By the inductive hypothesis, IΘ1
|= φ1 ↓ B and IΘ2

|= φ2 ↓ B, so

IΘ1
∨ IΘ2

|= (φ1 ∨ φ2) ↓ B, that is IΘ ∧ (¬Θ ↓ B) |= ⊥.

3. By the inductive hypothesis both IΘ1
and IΘ2

contain only com-

mon symbols, and so also IΘ does.

168



4.5. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

• If (x = y) � B, then IΘ
def

= IΘ1
∧ IΘ2

.

1. By the inductive hypothesis, ¬φ1 \ B |= IΘ1
and ¬φ2 \ B |= IΘ2

,

so (¬φ1 ∧ ¬φ2) \B ≡ ¬Θ \B |= IΘ.

2. By the inductive hypothesis, we also have that IΘ1
|= φ1 ↓ B∨(x =

y) and IΘ2
|= φ2 ↓ B∨¬(x = y). Therefore, IΘ1

∧IΘ2
|= (φ1∨φ2) ↓

B, that is IΘ ∧ (¬Θ ↓ B) |= ⊥.

3. Finally, also in this case both IΘ1
and IΘ2

contain only common

symbols, and so also IΘ does. �

We now formalize the sufficient condition of [HJMM04] that (4.2) holds

if the Ii’s are computed from the same Π. The proof of it will be useful for

showing that (4.2) holds also if the Ii’s are computed from Πi’s obtained

from Π by splitting the AiBi-mixed interface equalities.

Theorem 4.35. Let φ
def

= φ1∧φ2∧φ3, and let Π be a proof of unsatisfiability

for it. Let A′
def

= φ1, B′
def

= φ2∧φ3, A′′
def

= φ1∧φ2 and B′′
def

= φ3, and let I ′ and

I ′′ be two interpolants for (A′, B′) and (A′′, B′′) respectively, both computed

from Π. Then

I ′ ∧ φ2 |= I ′′.

Proof. Let ΠΘ be a proof whose root is the clause Θ. We will prove, by

induction on the structure of ΠΘ, that

I ′Θ ∧ φ2 |= I ′′Θ ∨ (Θ \ φ3),

where IΘ is defined as in Algorithm 4.1. The validity of the theorem follows

immediately, by observing that the root of Π is ⊥.

We have to consider three cases:

1. The first is when Θ is an input clause. Then, we have three subcases:

169



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

(a) If Θ ∈ φ3, then I ′Θ
def

= >, I ′′Θ
def

= > and (Θ\φ3) ≡ ⊥, so the theorem

holds.

(b) If Θ ∈ φ1, then I ′Θ
def

= (Θ ↓ (φ2 ∪ φ3)), I
′′
Θ ∨ (Θ \ φ3)

def

= (Θ ↓
φ3) ∨ (Θ \ φ3) ≡ Θ, so the theorem holds also in this case.

(c) If Θ ∈ φ2, then I ′Θ ∧ φ2 ≡ φ2 and I ′′Θ ∨ (Θ \ φ3) ≡ Θ, so again the

implication holds.

2. The second is when Θ is a T -lemma. In this case, we have that I ′Θ
is an interpolant for (¬Θ \ (φ2 ∪ φ3),¬Θ ↓ (φ2 ∪ φ3)) and I ′′Θ is an

interpolant for (¬Θ \ φ3,¬Θ ↓ φ3). Therefore, by the definition of

interpolant, (¬Θ \ (φ2 ∪ φ3)) |= I ′Θ and (¬Θ \ φ3) |= I ′′Θ. Therefore,

I ′Θ ∨ (Θ \ (φ2 ∪ φ3)) and I ′′Θ ∨ (Θ \ φ3) are valid clauses, and so the

implication trivially holds.

3. In this case Θ is obtained by resolution from Θ1
def

= φ ∨ p and Θ2
def

=

ψ ∨ ¬p. If p ∈ φ1 or p ∈ φ3, then by the inductive hypotheses that

I ′Θi
∧ φ2 |= I ′′Θi

∨ (Θi \ φ3), we have that I ′Θ ∧ φ2 |= I ′′Θ ∨ (Θ \ φ3).

If p ∈ φ2, then I ′Θ
def

= I ′Θ1
∧ I ′Θ2

and I ′′Θ
def

= I ′′Θ1
∨ I ′′Θ2

. Again, by the

inductive hypotheses I ′Θ ∧ φ2 |= I ′′Θ ∨ (Θ \ φ3) holds. �

Theorem 4.36. Let φ
def

= φ1 ∧ φ2 ∧ φ3. Let A′
def

= φ1, A′′
def

= φ1 ∧ φ2,

B′
def

= φ2 ∧ φ3, and B′′
def

= φ3. Let Π be a proof of unsatisfiability for φ,

and let Π′ and Π′′ be obtained from Π by splitting all the A′B′-mixed and

A′′B′′-mixed interface equalities respectively. Let I ′ be an interpolant for

(A′, B′) computed from Π′, and I ′′ be an interpolant for (A′′, B′′) computed

from Π′′. Then

I ′ ∧ φ2 |= I ′′.

Proof. We observe that Π′ and Π′′ are identical except for some Πie

subproofs that contained some mixed interface equalities. Then, we can

170



4.6. EXPERIMENTAL EVALUATION

proceed as in Theorem 4.35, we just need to consider one more case, namely

when Θ is a T1∪T2-lemma at the root of a Πie subproof. In this case, thanks

to Lemma 4.34 we have the same situation as in the second case of the proof

of Theorem 4.35, and so we can apply the same argument. �

Thus, due to Theorem 4.36, we can use our DTC-based interpolation

method in the context of abstraction refinement without any modification:

it is enough to remember the original proof Π, and compute the interpolant

Ii from the proof Πi obtained by splitting the AiBi-mixed terms in Π, for

each partition of the input formula φ into Ai and Bi as in (4.1).

4.6 Experimental evaluation

All the techniques presented in the previous sections have been imple-

mented within MathSAT. In this section, we experimentally evaluate our

approach.

4.6.1 Description of the benchmark sets

We have performed our experiments on two different sets of benchmarks.

The first is obtained by running the Blast software model checker [BHJM07]

on some Windows device drivers; these are similar to those used in [RSS07].

This is one of the most important applications of interpolation in formal

verification, namely abstraction refinement in the context of CEGAR. The

problem represents an abstract counterexample trace, and consists of a

conjunction of atoms. In this setting, the interpolant generator is called

very frequently, each time with a relatively simple input problem.

The second set of benchmarks originates from the SMT-LIB [RT06], and

is composed of a subset of the unsatisfiable problems used in recent SMT

solvers competitions [SMT]. The instances have been converted to CNF

and then split in two consistent parts of approximately the same size. The

171



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

Table 4.2: Comparison of execution times of MathSAT, Foci, CLP-prover and

CSIsat on problems generated by Blast.

Family # of problems MathSAT Foci CLP-prover CSIsat

kbfiltr.i 64 0.16 0.36 1.47 0.17

diskperf.i 119 0.33 0.78 3.08 0.39

floppy.i 235 0.73 1.64 5.91 0.86

cdaudio.i 130 0.35 1.07 2.98 0.47

Execution Time Size of the Interpolant

F
o
c
i

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

 2x
 4x

Single theory
Multiple theories

 10

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000  1e+06

 2x
 4x

Single theory
Multiple theories

MathSAT MathSAT

Figure 4.13: Comparison of MathSAT and Foci on SMT-LIB instances: execution time

(left), and size of the interpolant (right). In the left plot, points on the horizontal and

vertical lines are timeouts/failures.

set consists of problems of varying difficulty and with a nontrivial Boolean

structure.

The experiments have been performed on a 3GHz Intel Xeon machine

with 4GB of RAM running Linux. All the tools were run with a timeout

of 600 seconds and a memory limit of 900 MB.

4.6.2 Comparison with the state-of-the-art tools available

In this section, we compare with the other interpolant generators which are

available: Foci [McM05, JM06], CLP-prover [RSS07] and CSIsat [BZM08].

172



4.6. EXPERIMENTAL EVALUATION

Execution Time

C
L
P
-p

r
o
v
e
r

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

 2x
 4x

MathSAT

Figure 4.14: Comparison of MathSAT and CLP-prover on conjunctions of LA(Q)

atoms.

Other natural candidates for comparison would have been Zap [BLM05]

and Lifter [KW07]; however, it was not possible to obtain them from the

authors. We also remark that no comparison with Int2 [JCG08] is possi-

ble, since the domains of applications of MathSAT and Int2 are disjoint:

Int2 can handle LA(Z) equations/disequations and modular equations

but only conjunctions of literals, whereas MathSAT can handle formulae

with arbitrary Boolean structure, but does not support LA(Z) except for

its fragments DL(Z) and UT VPI(Z).

The comparison had to be adapted to the limitations of Foci, CLP-

prover and CSIsat. In fact, the current version of Foci which is publicly

available does not handle the full LA(Q), but only the DL(Q) fragment
14. We also notice that the interpolants it generates are not always DL(Q)

formulae. (See, e.g., Example 4.15 of §4.3.) CLP-prover does handle

14For example, it fails to detect the LA(Q)-unsatisfiability of the following problem: (0 ≤ y−x+w)∧
(0 ≤ x− z − w) ∧ (0 ≤ z − y − 1).

173



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

Execution Time

C
S
Is

a
t

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

2x
4x

MathSAT

Figure 4.15: Comparison of MathSAT

and CSIsat on SMT-LIB instances.

Execution Time

C
S
Is

a
t

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

 2x
 4x

 Float precision error

MathSAT

Figure 4.16: Comparison of MathSAT

and CSIsat on conjunctions of LA(Q)

atoms.

the full LA(Q), but it accepts only conjunctions of atoms, rather than

formulae with arbitrary Boolean structure. CSIsat, instead, can deal

with EUF ∪LA(Q) formulae with arbitrary Boolean structure, but it does

not support Boolean variables. These limitations made it impossible to

compare all the four tools on all the instances of our benchmark sets.

Therefore, we perform the following comparisons:

• We compare all the four solvers on the problems generated by Blast;

• We compare MathSAT with Foci on SMT-LIB instances in the the-

ories of EUF , DL(Q) and their combination. In this case, we compare

both the execution times and the sizes of the generated interpolants

(in terms of number of nodes in the DAG representation of the for-

mula). For computing interpolants in EUF , we apply the algorithm

of [McM05], using an extension of the algorithm of [NO07] to gener-

ate EUF proof trees (see §2.4). The combination EUF ∪ DL(Q) is

174



4.6. EXPERIMENTAL EVALUATION

handled with the technique described in §4.5;

• We compare MathSAT, CLP-prover and CSIsat on LA(Q) prob-

lems consisting of conjunctions of atoms. These problems are single

branches of the search trees explored by MathSAT for some LA(Q)

instances in the SMT-LIB. We have collected several problems that

took more than 0.1 seconds to MathSAT to solve, and then randomly

picked 50 of them. In this case, we do not compare the sizes of the

interpolants as they are always atomic formulae;

• We compare MathSAT and CSIsat on the subset (Consisting of

78 instances of the about 400 collected) of the SMT-LIB instances

without Boolean variables.

The results are reported in Table 4.2 and in Figures 4.13, 4.14, 4.15 and

4.16. We can observe the following facts:

• Interpolation problems generated by Blast are trivial for all the tools.

In fact, we even had some difficulties in measuring the execution times

reliably. Despite this, MathSAT and CSIsat seem to be a little

faster than the others.

• For problems with a nontrivial Boolean structure, MathSAT outper-

forms Foci in terms of execution time. This is true even for problems

in the combined theory EUF ∪ DL(Q), despite the fact that the cur-

rent implementation is still preliminary.

As regards CSIsat, it could solve (within the time and memory limits)

only 5 of the 78 instances it could potentially handle, and in all cases

MathSAT outperforms it.

• In terms of size of the generated interpolants, the gap between Math-

SAT and Foci is smaller on average. However, the right plot of Fig-

ure 4.13 (which considers only instances for which both tools were

175



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

able to generate an interpolant) shows that there are more cases in

which MathSAT produces a smaller interpolant.

• On conjunctions of LA(Q) atoms, MathSAT outperforms CLP-

prover, sometimes by more than two orders of magnitude. The

performance of MathSAT and CSIsat is comparable on such in-

stances, with MathSAT being slightly faster. However, there are

several cases in which CSIsat computes a wrong result, due to the

use of floating-point arithmetic instead of infinite-precision arithmetic

(which is used by MathSAT – see §2.5.2).

4.6.3 Comparison between graph-based interpolation and inter-

polation in LA(Q)

We conclude our experimental evaluation with a comparison between the

general-purpose LA(Q) interpolation algorithm and the graph-based algo-

rithm used for DL and UT VPI, in order to demonstrate the usefulness of

the specialized procedures of §4.3 and §4.4. For this comparison, we have

randomly generated several DL(Q) and UT VPI(Q) interpolation prob-

lems of varying size and difficulty, and run both algorithms. The results

are collected in Figure 4.17. The scatter plots show that the graph-based

solver clearly outperforms the LA(Q) solver (sometimes by more than an

order of magnitude), thus justifying the use of a specialized procedure.

Furthermore, it can be seen that the computed interpolants, in addition

to being within the theory of the input problem (DL(Q) or UT VPI(Q)),

are generally smaller, both in terms of nodes in the formula DAG and in

number of atoms.

176



4.6. EXPERIMENTAL EVALUATION

Execution Time

G
ra

ph
-b

as
ed

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

 

 

 

LA(Q)

Size of the interpolant Number of atoms

G
ra

ph
-b

as
ed

 100

 1000

 10000

 100  1000  10000

 

 

 

 10

 100

 1000

 10  100  1000

 

 

 

LA(Q) LA(Q)

Figure 4.17: Comparison between graph-based and LA(Q) interpolation within Math-

SAT.

177



CHAPTER 4. GENERATION OF CRAIG INTERPOLANTS

178



Part III

Exploiting SMT

for Software Verification





The availability of modern SMT solvers, capable of combining the high

efficiency and scalability of propositional SAT solvers with the expressive

power of first-order theories, is having a very big impact on formal verifi-

cation. In the last few years, SMT solvers have been exploited in several

novel verification techniques, among which e.g. [LNO06, CCF+07, ABM07,

BH08, LQ08, AMP09, SDPK09, LQR09].

However, SMT is still a relatively new paradigm, and several popular

verification techniques do not yet take full advantage of the power of mod-

ern SMT solvers. In the last part of our thesis, we concentrate on one such

technique – ART-based software model checking [BHJM07] – and we show

how to adapt it in order to better exploit the capability of a modern SMT

solver like MathSAT of dealing efficiently with complex formulae. We em-

pirically demonstrate that our technique leads to significant performance

improvements on a standard set of benchmark C programs.

181



182



Chapter 5

Software Model Checking

via Large-Block encoding

Note. The work presented in this chapter was performed in collabora-

tion with Dirk Beyer and Erkan Keremoglu of Simon Fraser University,

Canada. Most of the material has already been presented in [BCG+09].

Software model checking is an effective technique for software verifi-

cation. Several advances in the field have lead to tools that are able to

verify programs of considerable size, and show significant advantages over

traditional techniques in terms of precision of the analysis. Prominent ex-

amples of such tools are the software model checkers Slam [BR02] and

Blast [BHJM07]. However, efficiency and scalability remain major con-

cerns in software model checking and hamper the adaptation of the tech-

niques in industrial practice.

A successful approach to software model checking is based on the con-

struction and analysis of an abstract reachability tree (ART), and predicate

abstraction is one of the favorite abstract domains. The ART represents

unwindings of the control-flow graph of the program. The search is usually

guided by the control flow of the program. Nodes of the ART typically

consist of the control-flow location, the call stack, and formulae that rep-

183



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

resent the data states. During the refinement process, the ART nodes are

incrementally refined.

The construction and refinement of an ART require the use of deci-

sion procedures for several operations: for computing abstract successor

states (by computing strongest postconditions of program operations), for

checking entailment between formulae in the abstract space, for checking

whether an abstract execution trace leading to an error is actually fea-

sible in the concrete program, and for collecting information needed for

abstraction refinement.

In the traditional ART approach, each program operation (assignment

operation, assume operation, function call, function return) is represented

by a single edge in the ART. Therefore, we call this approach single-block

encoding (SBE). With SBE, each path in the ART represents a single (pos-

sibly infeasible) execution trace in the concrete program, and each node

represents the result of following a single execution trace in the abstract

space. Because of this, individual calls to decision procedures needed for

performing the operations listed above are typically cheap, involving small

formulae with a simple structure. However, a fundamental source of inef-

ficiency of this approach is the fact that the control-flow of the program

can induce a huge number of paths (and nodes) in the ART, which are

explored independently of each other.

In order to overcome this problem, we propose a novel, broader view

on ART-based software model checking, where a much more compact ab-

stract space is used, resulting thus in a much smaller number of paths to

be enumerated in the ART. Instead of using edges that represent single

program operations, we encode entire parts of the program in one edge.

In contrast to SBE, we call our new approach large-block encoding (LBE),

which is enabled by and exploits the use of modern SMT techniques. In

general, the new encoding may result in an exponential reduction of the

184



number of ART nodes.

The generalization from SBE to LBE has two main consequences. First,

LBE requires a more general representation of abstract states than SBE.

SBE is typically based on mere conjunctions of predicates. Because the

LBE approach summarizes large portions of the control flow, conjunctions

are not sufficient, and we need to use arbitrary Boolean combinations of

predicates to represent the abstract states. Second, LBE requires a more

accurate abstraction in the abstract-successor computations. Intuitively,

an abstract edge represents many different paths of the program, and there-

fore it is necessary that the abstract-successor computations take the rela-

tionships between the predicates into account.

The practical effect of such two consequences of LBE is that the oper-

ations that decision procedures need to perform – for computing abstract

successor states, for checking the feasibility of abstract traces in the con-

crete program, and for collecting information in order to refine the ART

– become much more expensive, involving formulae that are significantly

larger and more complex than with SBE. In other words, switching from

SBE to LBE allows for moving the bottleneck of ART-based software model

checking from the number of operations to be performed in the ART to

their cost. This in turn allows to fully exploit the power and efficiency of

modern SMT tools and techniques, which have shown to lead to significant

scalability improvements over traditional approaches.

Contributions

We show that, by exploiting efficient SMT solvers, LBE leads to signifi-

cant performance improvements to ART-based software model checking.

We formally define LBE in terms of a summarization of the control-flow

automaton for the program and we prove it correct. We analyze the differ-

ences between SBE and LBE in terms of the construction (computation of

185



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

abstract successors, refinement) and the exploration of the ART and of the

interactions with the decision procedures used for implementing the basic

steps of the verification algorithm. We implement the LBE approach, us-

ing MathSAT as a workhorse SMT engine, and we compare it both with

our own implementation of SBE and with a state-of-the-art implementa-

tion of it represented by the software model checker Blast, on different

benchmark programs commonly used in software model checking. The ex-

periments show that our new approach outperforms the previous approach.

5.1 Background

5.1.1 Programs and Control-Flow Automata

We restrict the presentation to a simple imperative programming language,

where all operations are either assignments or assume operations, and all

variables range over integers.1 We represent a program by a control-flow

automaton (CFA). A CFA A
def

= (L, G) consists of a set L of program loca-

tions, which model the program counter l , and a set G ⊆ L × Ops × L of

control-flow edges, which model the operations that are executed when con-

trol flows from one program location to another. The set of variables that

occur in operations from Ops is denoted by X. A program P
def

= (A, l0, lE)

consists of a CFA A
def

= (L, G) (which models the control flow of the pro-

gram), an initial program location l0 ∈ L (which models the program entry)

such that G does not contain any edge (·, ·, l0), and a target program loca-

tion lE ∈ L (which models the error location).

A concrete data state of a program is a variable assignment c : X → Z
that assigns to each variable an integer value. The set of all concrete data

states of a program is denoted by C. A set r ⊆ C of concrete data states

1Our implementation is based on CPAchecker [BK09], which operates on C programs that are given
in the Cil intermediate language [NMRW02]; function calls are supported.

186



5.1. BACKGROUND

is called region. We represent regions using first-order formulae (with free

variables from X): a formula φ represents the set S of all data states c

that imply φ (i.e., S = {c | c |= φ}). A concrete state of a program

is a pair (l, c), where l ∈ L is a program location and c is a concrete

data state. A pair (l, φ) represents the following set of all concrete states:

{(l, c) | c |= φ}. The concrete semantics of an operation op ∈ Ops is

defined by the strongest postcondition operator SPop: for a formula φ,

SPop(φ) represents the set of data states that are reachable from any of the

states in the region represented by φ after the execution of op. Given a

formula φ that represents a set of concrete data states, for an assignment

operation s := e, we have SPs:=e(φ)
def

= ∃ŝ : φ[s7→ŝ] ∧ (s = e[s7→ŝ]); and for an

assume operation assume(p), we have SPassume(p)(φ)
def

= φ ∧ p.
A path σ is a sequence 〈(op1, l1), ..., (opn, ln)〉 of pairs of operations and

locations. The path σ is called program path if for every i with 1 ≤ i ≤ n

there exists a CFA edge g
def

= (li−1, opi, li), i.e., σ represents a syntacti-

cal walk through the CFA. The concrete semantics for a program path

σ
def

= 〈(op1, l1), ..., (opn, ln)〉 is defined as the successive application of the

strongest postoperator for each operation: SPσ(φ)
def

= SPopn
(...SPop1

(φ)...).

The set of concrete states that result from running σ is represented by the

pair (ln, SPσ(true)). A program path σ is feasible if SPσ(true) is satisfiable.

A concrete state (ln, cn) is called reachable if there exists a feasible program

path σ whose final location is ln and such that cn |= SPσ(true). A location

l is reachable if there exists a concrete state c such that (l, c) is reachable.

A program is safe if lE is not reachable.

5.1.2 Predicate Abstraction

Let P be a set of quantifier-free predicates over program variables in a

theory T . A formula φ is a Boolean combination of predicates from P .

A precision for a formula is a finite subset π ⊂ P of predicates. The

187



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

precision for a program is a function Π : L → 2P , which assigns to each

program location a precision for a formula.

Cartesian Predicate Abstraction

Let π be a precision. The Cartesian predicate abstraction φπC of a formula φ

is the strongest conjunction of predicates from π that is entailed by φ:

φπC
def

=
∧
{p ∈ π | φ =⇒ p}. Such a predicate abstraction of a formula φ,

which represents a region of concrete program states, is used as an abstract

state (i.e., an abstract representation of the region) in program verification.

For a formula φ and a precision π, the Cartesian predicate abstraction φπC
of φ can be computed by |π| SMT-solver queries. The abstract strongest

postoperator SPπ for a predicate abstraction with precision π transforms

the abstract state φπC into its successor φ′πC for a program operation op,

written as φ′πC = SPπop(φπC), if φ′πC is the Cartesian predicate abstraction of

SPop(φπC), i.e., φ′πC = (SPop(φπC))πC. For more details, we refer the reader to

the work of Ball et al. [BPR03].

Boolean Predicate Abstraction

Let π be a precision. The Boolean predicate abstraction φπB of a formula φ is

the strongest Boolean combination of predicates from π that is entailed by

φ. For a formula φ and a precision π, the Boolean predicate abstraction φπB
of φ can be computed by querying an SMT solver in the following way:

For each predicate pi ∈ π, we introduce a propositional variable vi. Now

we ask an SMT solver to enumerate all satisfying assignments of v1, ..., v|π|

in the formula φ ∧
∧
pi∈π(pi ⇐⇒ vi). For each satisfying assignment,

we construct a conjunction of all predicates from π whose corresponding

propositional variable occurs positive in the assignment. The disjunction

of all such conjunctions is the Boolean predicate abstraction for φ. The

abstract strongest postoperator SPπ for a predicate abstraction with preci-

188



5.1. BACKGROUND

sion π transforms the abstract state φπB into its successor φ′πB for a program

operation op, written as φ′πB = SPπop(φπB), if φ′πB is the Boolean predicate

abstraction of SPop(φπB), i.e., φ′πB = (SPop(φπB))πB. For more details, we refer

the reader to the work of Lahiri et al. [LNO06].

5.1.3 ART-based Software Model Checking with SBE

An ART-based algorithm for software model checking takes an initial pre-

cision Π (which is typically very coarse) for the predicate abstraction, and

constructs an ART for the input program and Π. An ART is a tree whose

nodes are labeled with program locations and abstract states [BHJM07]

(i.e., n
def

= (l, φ)). For a given ART node, all children nodes are labeled

with successor locations and abstract successor states, according to the

strongest postoperator and the predicate abstraction. A node n
def

= (l, φ) is

called covered if there exists another ART node n′
def

= (l, φ′) that entails n

(that is, such that φ′ |= φ). An ART is called complete if every node is

either covered or all possible abstract successor states are present in the

ART as children of the node. If a complete ART is constructed and the

ART does not contain any error node, then the program is considered cor-

rect [BHJM07]. If the algorithm adds an error node to the ART, then

the corresponding path σ is checked to determine if σ is feasible (that

is, if the corresponding concrete program path is executable) or infeasible

(that is, if there is no corresponding program execution). In the former

case the path represents a witness for a program bug. In the latter case

the path is analyzed, and a refinement Π′ of Π is generated, such that

the same path cannot occur again during the ART exploration. The con-

cept of using an infeasible error path for abstraction refinement is called

counterexample-guided abstraction refinement (CEGAR) [CGJ+03]. The

concept of iteratively constructing an ART and refining only the precisions

along the considered path is called lazy abstraction [HJMS02]. After re-

189



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

fining the precision, the algorithm continues with the next iteration, using

Π′ instead of Π to construct the ART, until either a complete error-free

ART is obtained, or an error is found (note that the procedure might not

terminate). For more details and a more in-depth illustration of the overall

ART algorithm, we refer to the Blast article [BHJM07].

A popular approach to extract predicates during refinement is to use

interpolants [HJMM04]. Given a formula ϕ
def

= φ1 ∧ . . . ∧ φn correspond-

ing to an infeasible path σ
def

= 〈(op1, l1), ..., (opn, ln)〉, multiple interpolants

I1, . . . , In−1 (see §4.1 on page 112) are computed for each partition of ϕ

into Ai
def

= φ1 ∧ . . . ∧ φi and Bi
def

= φi+1 ∧ . . . ∧ φn for all i. Then, the refined

precision Π′ is built by adding, for each location li occurring in σ, all the

atomic predicates occurring in the interpolant Ii to the current precision

Π(li). (For more details, see [HJMM04].)

In order to make the algorithm scale on practical examples, implementa-

tions such as Blast or Slam use the simple but coarse Cartesian abstrac-

tion, instead of the expensive but precise Boolean abstraction. Despite

its potential imprecision, Cartesian abstraction has been proved successful

for the verification of many real-world programs. In the SBE approach,

given the large number of successor computations, the computation of the

Boolean predicate abstraction is in fact too expensive, as it may require

an SMT solver to enumerate an exponential number of assignments on the

predicates in the precision, for each single successor computation. The

reason for the success of Cartesian abstraction if used together with SBE,

is that for a given program path, state overapproximations that are ex-

pressible as conjunctions of atomic predicates —for which Boolean and

Cartesian abstractions are equivalent— are often good enough to prove

that the error location is not reachable in the abstract space.

190



5.2. LARGE-BLOCK ENCODING

5.2 Large-Block Encoding

5.2.1 Summarization of Control-Flow Automata

The large-block encoding is achieved by a summarization of the program

CFA, in which each loop-free subgraph of the CFA is replaced by a single

control-flow edge with a large formula that represents the removed sub-

graph. This process, which we call CFA-summarization, consists of the

fixpoint application of the three rewriting rules that we describe below:

first we apply Rule 0 once, and then we repeatedly apply Rules 1 and 2,

until no rule is applicable anymore.

Let P
def

= (A, l0, lE) be a program with CFA A
def

= (L, G).

Rule 0 (Error Sink). We remove all edges (lE, ·, ·) from G, such that

the target location lE is a sink node with no outgoing edges.

Rule 1 (Sequence). If G contains an edge (l1, op1, l2) with l1 6= l2 and

no other incoming edges for l2 (i.e. edges (·, ·, l2)), and G→l2 is the subset

l1 l1

l3 l4

op1 ; op2

op1 ; op3

l2

l3 l4

op2 op3

op1

of G of outgoing edges

for l2, then we change

the CFA A in the follow-

ing way: (1) we remove

location l2 from L, and

(2) we remove the edge

(l1, op1, l2) and all edges in

G→l2 from G, and for each

edge (l2, opi, li) ∈ G→l2 , we

add the edge (l1, op1 ; opi, li) to G, where SPop1 ; opi
(φ)

def

= SPopi
(SPop1

(φ)).

(Note that G→l2 might contain an edge (l2, ·, l1).)

Rule 2 (Choice). If L2
def

= {l1, l2} and A|L2

def

= (L2, G2) is the subgraph

191



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

l2

l1

op1 op2

l2

l1

op1 ‖ op2

of A with nodes from L2 and

the set G2 of edges contains

the two edges (l1, op1, l2) and

(l1, op2, l2), then we change the

CFA A in the following way:

(1) we remove the two edges

(l1, op1, l2) and (l1, op2, l2) from G and add the edge (l1, op1 ‖ op2, l2) to

G, where SPop1‖op2
(φ)

def

= SPop1
(φ) ∨ SPop2

(φ). (Note that there might be a

backwards edge (l2, ·, l1).)

Let P
def

= (A, l0, lE) be a program and let A′ be a CFA. The CFA A′ is a

CFA-summary of A if A′ is obtained from A via an application of Rule 0

and then stepwise applications of Rules 1 and 2, and no rule can be further

applied.

Example 5.1. Figure 5.1 shows a program (a) and its corresponding CFA

(b). The control-flow automaton (CFA) is iteratively transformed to a

CFA-summary (h) as follows: Rule 1 eliminates location 6 to (c), Rule 1

eliminates location 3 to (d), Rule 1 eliminates location 4 to (e), Rule 2

replaces the two edges 2–5 to (f), Rule 1 eliminates location 5 to (g), Rule

1 eliminates location 2 to (h). ♦

In the context of this thesis, we use the CFA-summary for program

analysis, that is, we want to verify if the error location of the program is

reachable. In order to prove that our summarization of a CFA is correct

in this sense, we introduce some auxiliary lemmas.

Lemma 5.2. Let (l, op, l′) be a CFA edge, and {ϕi}i a collection of formu-

lae. Then

SPop(
∨
i ϕi) ≡

∨
i SPop(ϕi).

192



5.2. LARGE-BLOCK ENCODING

6

[i > 0]
[i ≤ 0]

[x 6= 1][x == 1]

z = 0 z = 1

5

7

1: while

2: if

4: else3: then

i = i− 1

[i > 0]
[i ≤ 0]

[x 6= 1][x == 1]

z = 0 z = 1

i = i− 1
5

7

1: while

2: if

4: else3: then

[i ≤ 0]

[x == 1]
z = 0

[x 6= 1]
z = 1

i = i− 1

[i > 0] 7

1: while

[i > 0]
[i ≤ 0]

[x == 1]
z = 0

[x 6= 1]
z = 1

i = i− 1

7

2: if

1: while

[i > 0]
[i ≤ 0]

z = 1

i = i− 1

[x == 1]
z = 0

[x 6= 1] 7

1: while

4: else

5

2: if

[i > 0]
[i ≤ 0]

i = i− 1

[x == 1]
z = 0

[x 6= 1]
z = 1

2: if

5

7

1: while

[i > 0]
[i ≤ 0]

i = i− 1

[x == 1]
z = 0

[x 6= 1]
z = 1

2: if

5

7

1: while

L1: while (i>0) {
L2: if (x==1) {
L3: z = 0;

} else {
L4: z = 1;

}
L5: i = i-1;

L6: }

Figure 5.1: CFA Summarization: a) Program, b) CFA, c)–g) Intermediate CFAs, h)

CFA-Summary. In the CFAs, assume(p) is represented as [p], op1 ; op2 is represented by

drawing op2 below op1, and op1 ‖ op2 by drawing op2 beside op1

193



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

Proof. If op is an assignment operation s := e, then

SPs:=e(
∨
i ϕi) = ∃ ŝ.((

∨
i ϕi)[s7→ŝ] ∧ (s = e[s7→ŝ]))

≡ ∃ ŝ.(
∨
i(ϕi[s7→ŝ] ∧ (s = e[s7→ŝ])))

≡
∨
i(∃ ŝ.(ϕi[s7→ŝ] ∧ (s = e[s7→ŝ])))

≡
∨
i SPs:=e(ϕi)

If op is an assume operation assume(p), then

SPassume(p)(
∨
i ϕi) = (

∨
i ϕi) ∧ p

≡
∨
i(ϕi ∧ p)

≡
∨
i SPassume(p)(ϕi)

The remaining two cases can be proved by induction.

If op = op1 ; op2, then

SPop1 ; op2
(
∨
i φi) = SPop2

(SPop1
(
∨
i φi))

≡ SPop2
(
∨
i SPop1

(φi))

≡
∨
i SPop2

(SPop1
(φi))

≡
∨
i SPop1 ; op2

(φi)

If op = op1 ‖ op2, then

SPop1‖op2
(
∨
i φi) = SPop1

(
∨
i φi) ∨ SPop2

(
∨
i φi)

≡ (
∨
i SPop1

(φi)) ∨ (
∨
i SPop2

(φi))

≡
∨
i(SPop1

(φi) ∨ SPop2
(φi))

≡
∨
i SPop1‖op2

(φi)

�

Lemma 5.3. Let A
def

= (L,G) be a CFA, and let A′
def

= (L′, G′) be a summa-

rization of A. Let σ be a path in A such that its initial and final locations

occur also in L′. Then for all ϕ, there exists a path σ′ in A′, with the same

initial and final locations as σ, such that SPσ(ϕ) |= SPσ′(ϕ).

194



5.2. LARGE-BLOCK ENCODING

Proof. CFA A′ is obtained from A by a sequence of n rule applications.

If n = 0 we have A′ = A. If the lemma holds for one rule application, we

can show by induction that the lemma holds for any finite sequence of rule

applications.

We now show that the lemma holds for one rule application. Let σ
def

=

σ1, (li, opi, lj). The proof is by induction on the length of σ. (The base

case is when σ1 is empty.)

If li ∈ L′, by the inductive hypothesis there exists a path σ′1 in A′

such that SPσ1
(ϕ) |= SPσ′1(ϕ). If (li, opi, lj) ∈ G′, then we can take

σ′ = σ′1, (li, opi, lj). Otherwise, (li, opi, lj) must have been removed by

an application of Rule 2, 2 and so G′ contains an edge (li, opi ‖ ·, lj).
Therefore, we can take σ′ = σ′1, (li, opi ‖ ·, lj).

If li 6∈ L′, then by hypothesis σ ≡ σ2, (lk, opk, li), (li, opi, lj). Moreover, li

has been removed by an application of Rule 1. By the definition of Rule 1,

(lk, opk, li) is the only incoming edge for li in G. Therefore, G′ contains an

edge (lk, opk ; opi, lj) and clearly lk ∈ L′. Thus, by the inductive hypothesis

there exists a path σ′2 in A′ such that SPσ2
(ϕ) |= SPσ′2(ϕ), and so we can

take σ′ = σ′2, (lk, opk ; opi, lj). �

Lemma 5.4. Let A
def

= (L,G) be a CFA, and let A′
def

= (L′, G′) be a sum-

marization of A. Let σ′ be a path in A′. Then for all ϕ, there exists a set

Σ of paths in A, with the same initial and final locations as σ′, such that

SPσ′(ϕ) ≡
∨
σ∈Σ SPσ(ϕ).

Proof. CFA A′ is obtained from A by a sequence of n rule applications.

If n = 0 we have A′ = A. If the lemma holds for one rule application, we

can show by induction that the lemma holds for any finite sequence of rule

applications.

2It could not have been removed by Rule 1, because when Rule 1 removes the edges (·, ·, l) and (l, ·, ·),
it removes also the location l.

195



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

We now show that the lemma holds for one rule application. Let σ′
def

=

σ′p, (li, opi, lj) be a path in A′. The proof is by induction on the length of

σ′. (The base case is when σ′p is empty.)

First, we observe that all locations in σ′ occur also in G.

By the inductive hypothesis, there exists a set Σp of paths in A, with the

same initial and final locations as σ′p, such that SPσ′p(ϕ) ≡
∨
σp∈Σp

SPσp
(ϕ).

If (li, opi, lj) ∈ G, then we can take Σ = {σp, (li, opi, lj) | σp ∈ Σp} (by

Lemma 5.2).

Otherwise, (li, opi, lj) was generated by an application of one of the

Rules. If it was generated by Rule 1, then G contains two edges (li, op ′i, lk)

and (lk, opk, lj) such that opi = op ′i ; opk. Then we can take Σ = {σp, (li, op ′i, lk),

(lk, opk, lj) | σp ∈ Σp} (by Lemma 5.2). If (li, opi, lj) was generated by Rule

2, then G contains two edges (li, op ′i, lj) and (li, op ′′i , lj) such that opi =

op ′i ‖ op ′′i . Let Σ1 = {σp, (li, op ′i, lj) | σp ∈ Σp} and Σ2 = {σp, (li, op ′′i , lj) | σp ∈
Σp}. Then we can take Σ = Σ1 ∪ Σ2 (by Lemma 5.2). �

Now we can prove the correctness of our summarization.

Theorem 5.5 (Correctness of Summarization). Let P
def

= (A, l0, lE) be a

program and let A′
def

= (L′, G′) be a CFA-summary of A. Then:

(i) {l0, lE} ⊆ L′, and

(ii) lE is reachable in (A′, l0, lE) if and only if lE is reachable in P .

Proof. Now we prove Theorem 5.5.

(i) The only Rule that removes locations is Rule 1. Since l0 has no

incoming edges (by definition) and lE has no outgoing edges (because

of Rule 0), they cannot be removed by Rule 1.

(ii) “→” Follows from Lemma 5.3 and (i).

“←” Follows from Lemma 5.4 and (i).

196



5.2. LARGE-BLOCK ENCODING

�

The summarization can be performed in polynomial time. The time

taken by Rule 0 is proportional to the number of outgoing edges for lE.

Since each application of Rule 1 or Rule 2 removes at least one edge, there

can be at most |G|−1 such applications. A naive way to determine the set

of locations and edges to which to apply each rule requires O(|V | · k) time,

where k is the maximum out-degree of locations. Finally, each application

of Rule 2 requires O(1) time, and each application of Rule 1 O(k) time.

Therefore, a naive summarization algorithm requires O(|G| · |V | · k) time,

which reduces to O(|G| · |V |) if k is bounded (that is, if we rewrite a priori

all switches into nested ifs).

5.2.2 LBE versus SBE for Software Model Checking

The use of LBE instead of the standard SBE requires no modification to the

general model-checking algorithm, which is still based on ART construction

with CEGAR-based refinement. The main difference is that in LBE there is

no one-to-one correspondence between ART paths and syntactical program

paths. A single CFA edge corresponds to a set of paths between its source

and target location, and a single ART path corresponds to a set of program

paths. An ART node represents an overapproximation of the data region

that is reachable by following any of the program paths represented by the

ART path that leads to it. This difference leads to two observations.

First, LBE can lead to exponentially-smaller ARTs than SBE, and thus

it can drastically reduce the number of successor computations (see Exam-

ple 5.6) and the number of abstraction-refinement steps for infeasible error

paths. Each of these operations, however, is typically more expensive than

with SBE, because more complex formulae are involved.

Second, LBE requires a more general representation of abstract states.

197



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

When using SBE, abstract states are typically represented as sets/conjunctions

of predicates. This is sufficient for practical examples because each ab-

stract state represents a data region reachable by a single program path,

which can be encoded essentially as a conjunction of atomic formulae.

With LBE, such representation would be too coarse, since each abstract

state represents a data region that is reachable on several different program

paths. Therefore, we need to use a representation for arbitrary (and larger)

Boolean combinations of predicates. This generalization of the representa-

tion of abstract states requires a generalization of the representation of the

transfers, that is, replacing the Cartesian abstraction with a more precise

form of abstraction. In this thesis, we evaluate the use of the Boolean

abstraction, which allows for a precise representation of arbitrary Boolean

combinations of predicates.

With respect to the traditional SBE approach, LBE allows us to trade

part of the cost of the explicit enumeration of program paths with that of

the symbolic computation of abstract successor states: rather than hav-

ing to build large ARTs via SBE by performing a substantial amount of

relatively cheap operations (Cartesian abstract postoperator applications

along single-block edges and counterexample analysis of individual pro-

gram paths), we build smaller ARTs via LBE by performing more expen-

sive symbolic operations (Boolean abstract postoperator applications along

large portions of the control flow and counterexample analysis of multi-

ple program paths), involving formulae with a complex Boolean structure.

With LBE, the cost of each symbolic operation, rather than their number,

becomes a critical performance factor.

To this extent, LBE makes it possible to fully exploit the power and

functionality of modern SMT solvers: First, the capability of modern SMT

solvers to perform large amounts of Boolean reasoning allows for handling

large Boolean combinations of atomic expressions, instead of simple con-

198



5.2. LARGE-BLOCK ENCODING

L1: if(p1) {

L2: x1 = 1;

}

L3: if(p2) {

L4: x2 = 2;

}

L5: if(p3) {

L6: x3 = 3;

}

L7: if(p1) {

L8: if (x1 != 1) goto ERR;

}

L9: if (p2) {

L10: if (x2 != 2) goto ERR;

}

L11: if (p3) {

L12: if (x3 != 3) goto ERR;

}

L13: return EXIT_SUCCESS;

ERR: return EXIT_FAILURE;

 L1 

 L2  L3 

 L3 

 L4  L5 

 L5 

 L6  L7 

 L7 

 L8  L9 

ERROR  L9 

L10 L11

L11 ERROR

L12 L13

L13 ERROR

 L8  L9 

ERROR  L9 

L10 L11

L11 ERROR

L12 L13

 L6  L7 

 L7 

 L8  L9 

ERROR  L9 

L10 L11

L12 L13

L13 ERROR

 L8  L9 

ERROR  L9 

L10 L11

L12 L13

 L4  L5 

 L5 

 L6  L7 

 L7 

 L8  L9 

L10 L11

L11 ERROR

L12 L13

L13 ERROR

 L8  L9 

L10 L11

L11 ERROR

L12 L13

 L6  L7 

 L7 

 L8  L9 

L10 L11

L12 L13

L13

ERROR

 L8  L9 

L10 L11

L12 L13

L1

L13

(a) Example C program (b) ART for SBE (c) ART for LBE

Figure 5.2: Example program and corresponding ARTs for SBE and LBE.

junctions. Second, the capability of some SMT solvers to perform All-SMT

and interpolation allows for efficient computation of Boolean abstractions

and interpolants, respectively. SMT-based Boolean abstraction and in-

terpolation were shown to outperform previous approaches (see §4.6 and

[LNO06, CCF+07]), especially when dealing with complex formulae. With

SBE, instead, the use of modern SMT technology does not lead to signifi-

cant improvements of the overall ART-based algorithm, because each SMT

query involves only simple conjunctions. 3

Example 5.6. We illustrate the advantage of LBE over SBE on the example

program in Fig. 5.2 (a). In SBE, each program location is modeled explic-

3For example, Blast uses Simplify, version 1.5.4, as of October 2001, for computing abstract succes-
sor states. Experiments have shown that replacing this old Simplify version by a highly-tuned modern
SMT solver does not significantly improve the performance, because Blast does not use much power of
the SMT solver. Moreover, although MathSAT outperforms other tools in the computation of Craig
interpolants for general formulae, the difference in performance is negligible on formulae generated by a
standard SBE ART-based algorithm (see Table 4.2 on page 172).

199



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

itly, and an abstract-successor computation is performed for each program

operation. Figure 5.2 (b) shows the structure of the resulting ART. In the

figure, abstract states are drawn as ellipses, and labeled with the location

of the abstract state; the arrows indicate that there exists an edge from the

source location to the target location in the control-flow. The ART repre-

sents all feasible program paths. For example, the leftmost program path

is taking the ‘then’ branch of every ‘if’ statement. For every edge in the

ART, an abstract-successor computation is performed, which potentially

includes several SMT solver queries. The problems given to the SMT solver

are usually very small, and the runtime sums up over a large amount of sim-

ple queries. Therefore, model checkers that are based on SBE (like Blast)

experience serious performance problems on programs with such an explod-

ing structure (see also the test locks examples in Table 5.1). In LBE, the

control-flow graph is summarized, such that control-flow edges represent

entire subgraphs of the original control-flow. In our example, most of the

program is summarized into one control-flow edge. Figure 5.2 (c) shows

the structure of the resulting ART, in which all the feasible paths of the

program are represented by a single edge. The exponential growth of the

ART does not occur. ♦

5.3 Related Work

The model checkers Slam and Blast are typical examples for the SBE

approach [BR02, BHJM07], both based on counterexample-guided abstrac-

tion refinement (CEGAR) [CGJ+03]. The CEGAR approach is followed

also by the SatAbs tool [CKSY04]. Unlike Blast, SatAbs does not work

by constructing an ART using lazy abstraction. Rather, it abstracts the

input program into a Boolean program – a finite-state system whose vari-

ables represent truth-values of some predicates [BPR03] – and then checks

200



5.4. EXPERIMENTAL EVALUATION

it using a standard symbolic model checker (e.g. [McM92, CCG+02]). The

Boolean program is built by computing the Boolean abstraction of each

basic block of the input program with respect to the current set of pred-

icates. In this sense, therefore, this approach can also be seen as a form

of SBE. However, differently from ART-based approaches, SatAbs per-

forms a fully symbolic search in the abstract space. Explicit search on an

ART using lazy abstraction is instead adopted by McMillan in [McM06].

However, rather than using predicate abstraction for the abstract domain,

Craig interpolants from infeasible error paths are directly used, thus avoid-

ing abstract-successor computations.

A fundamentally different approach to software model checking is bounded

model checking (BMC), with the most prominent example CBMC [CKL04].

Programs are unrolled up to a given depth, and a formula is constructed

which is satisfiable if and only if one of the considered program executions

reaches a certain error location. The BMC approaches are targeted towards

discovering bugs, and can not be used to prove program safety.

Finally, the summarizations performed in our large-block encoding bear

some similarities with the generation of verification conditions as performed

by static program verifiers like Spec# [BL05] or Calysto [BH08].

5.4 Experimental evaluation

In order to evaluate the proposed verification method, we integrate our

algorithm as a new component into the configurable software verification

toolkit CPAchecker [BK09], using MathSAT as the workhorse SMT

engine. This implementation is written in Java. All example programs

are preprocessed and transformed into the simple intermediate language

Cil [NMRW02]. For parsing C programs, CPAchecker uses a library

from the Eclipse C/C++ Development Kit. We use binary decision dia-

201



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

grams (BDDs) for the representation of abstract-state formulae.

We run all experiments on a 2.66 GHz Intel Xeon machine with 16 GB

of RAM and 6 MB of cache, running Linux. We used a timeout of 1 800 s

and a memory limit of 2 GB.

5.4.1 Description of the benchmark programs

We use three categories of benchmark programs. First, we experiment with

programs that are specifically designed to cause an exponential blowup of

the ART when using SBE (test locks*, in the style of Example 5.6).

Second, we use the device-driver programs that were previously used as

benchmarks in the Blast project. 4 Third, we solve various verification

problems for the SSH client and server software (s3 clnt* and s3 srvr*),

which share the same program logic, but check different safety properties.

The safety property is encoded as conditional calls of a failure location

and therefore reduces to the reachability of a certain error location. All

benchmarks programs from the Blast web page are preprocessed with

Cil. For the second and third groups of programs, we also performed

experiments with artificial defects introduced.

5.4.2 Comparison with Blast

For a careful and fair performance comparison, we run experiments on

three different configurations. First, we use Blast [BHJM07], version 2.5,

which is a highly optimized state-of-the-art software model checker. Blast

is implemented in the programming language OCaml. We run Blast us-

ing all four combinations of breadth-first search (-bfs) versus depth-first

search (-dfs), both with and without heuristics for improving the predicate

4The Blast distribution contains 8 windows driver benchmarks. However, we could not run three of
them (parclass.i, mouclass.i and serial.i), as Cil fails to parse them, making both CPAchecker

and Blast fail.

202



5.4. EXPERIMENTAL EVALUATION

discovery. Blast provides five different levels of heuristics for predicate

discovery, and we use only the lowest (-predH 0) and the highest option

(-predH 7). Interestingly, every combination is best for some particular

example programs, with considerable differences in runtime and memory

consumption. The configuration using -dfs -predH 7 is the winner (in

terms of solved problems and total runtime) for the programs without de-

fects, but is not able to verify three example programs (timeout). In the

performance table, we provide results obtained using this configuration

(column -dfs -predH 7), and also the best result among the four config-

urations for every single instance (column best result). For the unsafe

programs, -bfs -predH 7 performs best. All four configurations use the

command-line options -craig 2 -nosimplemem -alias "", which spec-

ify that Blast runs with lazy, Craig-interpolation-based refinement, no

Cil preprocessing for memory access, and without pointer analysis.

Second, in order to separate the optimization efforts in Blast from

the conceptual essence of the traditional lazy abstraction algorithm, we

developed a re-implementation of the traditional algorithms as described

in the Blast tool article [BHJM07]. This re-implementation is integrated

as component into CPAchecker, so that the difference between SBE and

LBE is only in the algorithms, not in the environment (same parser, same

BDD package, same query optimization, etc.). Our SBE implementation

uses a DFS algorithm. This column is labeled as SBE.

Third, we run the experiments using our new LBE algorithm, which is

also implemented within CPAchecker. Our LBE implementation uses a

DFS algorithm. This column is labeled as LBE. Note that the purpose of

our experiments is to give evidence of the performance difference between

SBE and LBE, because these two settings are closest to each other, since

SBE and LBE differ only in the CFA summarization and Boolean abstrac-

tion. The other two columns are provided to give evidence that the new

203



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

approach beats the highly optimized traditional implementation Blast.

We actually configured and ran experiments with all four combinations:

SBE versus LBE, and Cartesian versus Boolean abstraction. The exper-

imentation clearly showed that SBE does not benefit from Boolean ab-

straction in terms of precision, with substantial degrade in performance:

the only programs for which it terminated successfully were the first five

instances of the test locks group. Similarly, the combination of LBE

with Cartesian abstraction fails to solve any of the experiments, due to

loss of precision. Thus, we report only on the two successful configura-

tions, that is, SBE in combination with Cartesian abstraction, and LBE in

combination with Boolean abstraction.

5.4.3 Discussion of results

Tables 5.1 and 5.2 present performance results of our experiments, for the

safe and unsafe programs respectively. All runtimes are given in seconds

of processor time, ‘>1800.00’ indicates a timeout, ‘MO’ indicates an out-

of-memory error and ‘NP’ an error due to the impossibility of discovering

new predicates during refinement in order to rule-out the spurious coun-

terexample found. Table 5.3 shows statistics about the algorithms for SBE

and LBE only.

The first group of experiments in Table 5.1 shows that the time complex-

ity of SBE (and Blast) can grow exponentially in the number of nested

conditional statements, as expected. Table 5.3 explains why the SBE ap-

proach does not scale: the number of abstract nodes in the reachability

tree grows exponentially in the number of predicates. The LBE approach

reduces the loop-free part of the branching control-flow structure to a few

edges (see Example 5.6), and the size of the ART is constant, because only

the structure inside the body of the loop changes. There are no refine-

ment steps necessary in the LBE approach, because the edges to the error

204



5.4. EXPERIMENTAL EVALUATION

Table 5.1: Comparison between Blast and CPAchecker (SBE and LBE) on safe pro-

grams. ‘MO’ indicates an “Out of Memory” error, and ‘NP’ a “No new predicates found

during refinement” error.

Blast CPAchecker
Program (best result) (-dfs -predH 7) SBE LBE
test locks 5.c 1.39 1.41 1.43 0.10
test locks 6.c 2.48 2.58 2.51 0.11
test locks 7.c 4.41 4.58 4.55 0.12
test locks 8.c 8.24 8.48 8.92 0.13
test locks 9.c 16.07 16.51 19.08 0.14
test locks 10.c 33.68 34.29 53.88 0.14
test locks 11.c 75.93 76.66 201.23 0.15
test locks 12.c 186.36 187.86 MO 0.15
test locks 13.c 523.81 523.81 MO 0.16
test locks 14.c 1738.60 1738.60 MO 0.17
test locks 15.c >1800.00 >1800.00 MO 0.18
cdaudio.i.cil.c 69.87 101.60 NP 16.84
diskperf.i.cil.c NP >1800.00 NP 37.38
floppy.i.cil.c 87.17 >1800.00 NP 18.03
kbfiltr.i.cil.c 8.68 11.85 14.25 2.66
parport.i.cil.c 305.55 346.52 NP 134.21
s3 clnt.blast.01.i.cil.c 13.27 516.54 207.57 3.09
s3 clnt.blast.02.i.cil.c 25.56 131.66 428.42 8.51
s3 clnt.blast.03.i.cil.c 24.74 131.63 293.16 3.07
s3 clnt.blast.04.i.cil.c 26.54 81.33 285.59 3.98
s3 srvr.blast.01.i.cil.c 388.27 490.73 1676.10 52.21
s3 srvr.blast.02.i.cil.c 158.00 158.00 >1800.00 17.94
s3 srvr.blast.03.i.cil.c 115.96 115.96 >1800.00 28.62
s3 srvr.blast.04.i.cil.c 72.45 128.55 MO 23.45
s3 srvr.blast.06.i.cil.c 131.19 131.19 >1800.00 10.92
s3 srvr.blast.07.i.cil.c 214.89 324.22 >1800.00 50.21
s3 srvr.blast.08.i.cil.c 46.08 46.08 >1800.00 255.27
s3 srvr.blast.09.i.cil.c 196.07 549.36 >1800.00 135.58
s3 srvr.blast.10.i.cil.c 46.24 46.24 >1800.00 77.01
s3 srvr.blast.11.i.cil.c 160.81 440.06 >1800.00 15.54
s3 srvr.blast.12.i.cil.c 130.81 130.81 >1800.00 7.15
s3 srvr.blast.13.i.cil.c 256.79 428.06 >1800.00 80.20
s3 srvr.blast.14.i.cil.c 131.26 131.26 >1800.00 31.61
s3 srvr.blast.15.i.cil.c 46.34 46.34 >1800.00 4.81
s3 srvr.blast.16.i.cil.c 130.88 130.88 >1800.00 34.40
TOTAL (solved/time) 33 / 5378.39 32 / 7213.65 13 / 3196.69 35 / 1054.24
TOTAL w/o test locks* 23 / 2787.42 22 / 4618.87 6 / 2905.09 24 / 1052.69

205



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

Table 5.2: Comparison between Blast and CPAchecker (SBE and LBE) on programs

with artificial bugs. ‘MO’ indicates an “Out of Memory” error, and ‘NP’ a “No new

predicates found during refinement” error.

Blast CPAchecker
Program (best result) (-bfs -predH 7) SBE LBE
cdaudio.BUG.i.cil.c 6.85 36.74 24.51 2.67
diskperf.BUG.i.cil.c 333.72 >1800.00 7.38 2.26
floppy.BUG.i.cil.c 44.45 1035.71 12.37 1.46
kbfiltr.BUG.i.cil.c 17.10 53.28 26.73 3.87
parport.BUG.i.cil.c 0.61 4.01 4.65 0.78
s3 clnt.blast.01.BUG.i.cil.c 3.18 11.06 466.06 1.84
s3 clnt.blast.02.BUG.i.cil.c 3.63 3.63 326.14 0.90
s3 clnt.blast.03.BUG.i.cil.c 2.64 2.64 300.59 1.32
s3 clnt.blast.04.BUG.i.cil.c 4.01 4.01 284.19 1.31
s3 srvr.blast.01.BUG.i.cil.c 3.79 3.79 >1800.00 0.78
s3 srvr.blast.02.BUG.i.cil.c 2.94 2.94 >1800.00 0.70
s3 srvr.blast.03.BUG.i.cil.c 3.04 3.04 >1800.00 0.74
s3 srvr.blast.04.BUG.i.cil.c 2.99 2.99 >1800.00 0.72
s3 srvr.blast.06.BUG.i.cil.c 15.45 22.24 719.64 1.22
s3 srvr.blast.07.BUG.i.cil.c 133.34 133.34 >1800.00 1.73
s3 srvr.blast.08.BUG.i.cil.c 15.37 29.56 749.61 3.24
s3 srvr.blast.09.BUG.i.cil.c 111.60 111.60 MO 3.64
s3 srvr.blast.10.BUG.i.cil.c 15.29 26.57 736.58 3.29
s3 srvr.blast.11.BUG.i.cil.c 19.21 19.21 MO 0.96
s3 srvr.blast.12.BUG.i.cil.c 15.13 15.13 1420.56 1.57
s3 srvr.blast.13.BUG.i.cil.c 105.12 105.12 >1800.00 1.09
s3 srvr.blast.14.BUG.i.cil.c 15.33 21.25 632.27 7.18
s3 srvr.blast.15.BUG.i.cil.c 15.39 31.26 999.84 3.47
s3 srvr.blast.16.BUG.i.cil.c 15.47 21.95 760.48 1.66
TOTAL (solved/time) 24 / 905.65 23 / 1701.07 16 / 7471.59 24 / 48.40

location are infeasible. Therefore, no predicates are used. The runtime

of the LBE approach slightly increases with the size of the program, be-

cause the formulae that are sent to the SMT solver are slightly increasing.

Although in principle the complexity of the SMT problem grows exponen-

tially in the size of the formulae, the heuristics used by SMT solvers avoid

the exponential enumeration that we observe in the case of SBE.

For the two other classes of experiments, we see that LBE is able to

206



5.4. EXPERIMENTAL EVALUATION

Table 5.3: Detailed comparison between LBE and SBE encodings; entries marked with

(*) denote partial statistics for analyses that terminated unsuccessfully (if available).
LBE SBE

ART # ref # predicates ART # ref # predicates
Program size steps Tot Avg Max size steps Tot Avg Max
test locks 5.c 4 0 0 0 0 1344 50 10 3 10
test locks 6.c 4 0 0 0 0 2301 72 12 4 12
test locks 7.c 4 0 0 0 0 3845 98 14 5 14
test locks 8.c 4 0 0 0 0 6426 128 16 6 16
test locks 9.c 4 0 0 0 0 10926 162 18 7 18
test locks 10.c 4 0 0 0 0 19091 200 20 8 20
test locks 11.c 4 0 0 0 0 34395 242 22 9 22
test locks 12.c 4 0 0 0 0 45596(*) 288(*) 24(*) 10(*) 24(*)
test locks 13.c 4 0 0 0 0 – – – – –
test locks 14.c 4 0 0 0 0 – – – – –
test locks 15.c 4 0 0 0 0 – – – – –
cdaudio.i.cil.c 7138 124 79 5 16 17769(*) 200(*) 83(*) 11(*) 62(*)
diskperf.i.cil.c 4184 120 64 6 23 18336(*) 180(*) 83(*) 12(*) 53(*)
floppy.i.cil.c 9471 167 55 4 13 52169(*) 531(*) 158(*) 9(*) 53(*)
kbfiltr.i.cil.c 1576 47 18 2 6 19644 153 53 5 27
parport.i.cil.c 35398 415 168 4 17 16656(*) 257(*) 97(*) 3(*) 26(*)
s3 clnt.blast.01.i.cil.c 35 4 47 11 47 132392 534 54 18 54
s3 clnt.blast.02.i.cil.c 38 5 56 14 56 354132 532 55 19 55
s3 clnt.blast.03.i.cil.c 38 5 46 11 46 196599 534 55 19 55
s3 clnt.blast.04.i.cil.c 39 5 72 18 72 172444 538 55 19 55
s3 srvr.blast.01.i.cil.c 98 4 86 21 86 452078 1142 98 26 97
s3 srvr.blast.02.i.cil.c 93 5 77 19 77 558114(*) 1185(*) 112(*) 32(*) 111(*)
s3 srvr.blast.03.i.cil.c 120 8 81 20 81 568769 1231 100 28 99
s3 srvr.blast.04.i.cil.c 106 6 80 20 80 – – – – –
s3 srvr.blast.06.i.cil.c 79 4 93 23 93 591029(*) 765(*) 73(*) 16(*) 72(*)
s3 srvr.blast.07.i.cil.c 100 6 84 21 84 517100(*) 769(*) 77(*) 21(*) 76(*)
s3 srvr.blast.08.i.cil.c 39 4 88 22 88 552926(*) 647(*) 57(*) 16(*) 57(*)
s3 srvr.blast.09.i.cil.c 207 5 80 20 80 540206(*) 846(*) 95(*) 21(*) 94(*)
s3 srvr.blast.10.i.cil.c 111 5 86 21 86 640117(*) 725(*) 68(*) 18(*) 67(*)
s3 srvr.blast.11.i.cil.c 94 5 68 17 68 496652(*) 945(*) 99(*) 25(*) 98(*)
s3 srvr.blast.12.i.cil.c 76 4 46 11 46 551382(*) 722(*) 67(*) 17(*) 66(*)
s3 srvr.blast.13.i.cil.c 100 6 80 20 80 482702(*) 1013(*) 104(*) 27(*) 103(*)
s3 srvr.blast.14.i.cil.c 100 6 91 22 91 561713(*) 721(*) 62(*) 15(*) 61(*)
s3 srvr.blast.15.i.cil.c 68 4 65 16 65 566797(*) 643(*) 62(*) 17(*) 62(*)
s3 srvr.blast.16.i.cil.c 94 5 99 24 99 705498(*) 734(*) 66(*) 17(*) 65(*)

207



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

Table 5.4: Comparison among different configurations of Blast on safe programs. ‘MO’

indicates an “Out of Memory” error, and ‘NP’ a “No new predicates found during refine-

ment” error.
Blast 1 Blast 2 Blast 3 Blast 4 Blast B

Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)

test locks 5.c 2.54 2.45 1.39 1.41 1.39

test locks 6.c 5.58 5.17 2.48 2.58 2.48

test locks 7.c 13.28 11.88 4.41 4.58 4.41

test locks 8.c 29.75 28.63 8.24 8.48 8.24

test locks 9.c 62.40 66.56 16.07 16.51 16.07

test locks 10.c 187.27 179.19 33.68 34.29 33.68

test locks 11.c 673.17 615.23 75.93 76.66 75.93

test locks 12.c >1800.00 >1800.00 186.36 187.86 186.36

test locks 13.c >1800.00 >1800.00 527.18 523.81 523.81

test locks 14.c >1800.00 >1800.00 1739.08 1738.60 1738.60

test locks 15.c >1800.00 >1800.00 >1800.00 >1800.00 >1800.00

cdaudio.i.cil.c 155.44 185.70 69.87 101.60 69.87

diskperf.i.cil.c NP >1800.00 NP >1800.00 >1800.00

floppy.i.cil.c 87.17 >1800.00 NP >1800.00 87.17

kbfiltr.i.cil.c 8.68 24.98 NP 11.85 8.68

parport.i.cil.c 305.55 844.14 NP 346.52 305.55

s3 clnt.blast.01.i.cil.c 30.01 238.98 13.27 516.54 13.27

s3 clnt.blast.02.i.cil.c 32.68 112.77 25.56 131.66 25.56

s3 clnt.blast.03.i.cil.c 52.87 192.29 24.74 131.63 24.74

s3 clnt.blast.04.i.cil.c 59.39 56.43 26.54 81.33 26.54

s3 srvr.blast.01.i.cil.c 522.66 MO 388.27 490.73 388.27

s3 srvr.blast.02.i.cil.c MO 394.68 522.33 158.00 158.00

s3 srvr.blast.03.i.cil.c 585.94 186.59 445.72 115.96 115.96

s3 srvr.blast.04.i.cil.c 88.96 72.45 672.00 128.55 72.45

s3 srvr.blast.06.i.cil.c MO MO 302.82 131.19 131.19

s3 srvr.blast.07.i.cil.c MO MO 214.89 324.22 214.89

s3 srvr.blast.08.i.cil.c MO 187.59 295.67 46.08 46.08

s3 srvr.blast.09.i.cil.c MO 662.30 196.07 549.36 196.07

s3 srvr.blast.10.i.cil.c MO 987.56 299.83 46.24 46.24

s3 srvr.blast.11.i.cil.c 896.28 519.18 160.81 440.06 160.81

s3 srvr.blast.12.i.cil.c MO 598.52 299.56 130.81 130.81

s3 srvr.blast.13.i.cil.c MO MO 256.79 428.06 256.79

s3 srvr.blast.14.i.cil.c MO 205.68 304.45 131.26 131.26

s3 srvr.blast.15.i.cil.c MO 284.69 297.46 46.34 46.34

s3 srvr.blast.16.i.cil.c MO 300.26 304.82 130.88 130.88

TOTAL (solved/time) 19 / 3799.62 25 / 6963.90 30 / 7716.29 32 / 7213.65 33 / 5378.39

successfully complete all benchmarks, and shows significant performance

gains over SBE. SBE is able to solve only about one third of all bench-

marks, and for the ones that complete, it is clearly outperformed by LBE.

In Table 5.3, we see that SBE has in general a much larger ART. In Ta-

ble 5.1 we observe not only that LBE performs significantly better than the

208



5.4. EXPERIMENTAL EVALUATION

Table 5.5: Comparison among different configurations of Blast on programs with arti-

ficial bugs. ‘MO’ indicates an “Out of Memory” error, and ‘NP’ a “No new predicates

found during refinement” error.
Blast 1 Blast 2 Blast 3 Blast 4 Blast B

Program (-bfs -predH 0) (-bfs -predH 7) (-dfs -predH 0) (-dfs -predH 7) (best result)

cdaudio.BUG.i.cil.c 43.01 36.74 9.84 6.85 6.85

diskperf.BUG.i.cil.c 333.72 >1800.00 344.95 >1800.00 333.72

floppy.BUG.i.cil.c 44.45 1035.71 47.18 1491.08 44.45

kbfiltr.BUG.i.cil.c 27.25 53.28 NP 17.10 17.10

parport.BUG.i.cil.c 2.23 4.01 0.61 0.82 0.61

s3 clnt.blast.01.BUG.i.cil.c 473.57 11.06 128.91 3.18 3.18

s3 clnt.blast.02.BUG.i.cil.c 49.69 3.63 53.51 4.75 3.63

s3 clnt.blast.03.BUG.i.cil.c 70.87 2.64 55.00 4.73 2.64

s3 clnt.blast.04.BUG.i.cil.c 79.13 4.01 57.90 4.54 4.01

s3 srvr.blast.01.BUG.i.cil.c 175.10 3.79 MO 52.42 3.79

s3 srvr.blast.02.BUG.i.cil.c 50.47 2.94 1054.91 75.74 2.94

s3 srvr.blast.03.BUG.i.cil.c 22.32 3.04 706.01 19.29 3.04

s3 srvr.blast.04.BUG.i.cil.c 32.07 2.99 1125.85 20.63 2.99

s3 srvr.blast.06.BUG.i.cil.c 814.84 22.24 243.14 15.45 15.45

s3 srvr.blast.07.BUG.i.cil.c 826.39 133.34 620.23 MO 133.34

s3 srvr.blast.08.BUG.i.cil.c MO 29.56 229.42 15.37 15.37

s3 srvr.blast.09.BUG.i.cil.c MO 111.60 597.43 MO 111.60

s3 srvr.blast.10.BUG.i.cil.c MO 26.57 230.60 15.29 15.29

s3 srvr.blast.11.BUG.i.cil.c 346.27 19.21 717.02 85.91 19.21

s3 srvr.blast.12.BUG.i.cil.c 275.10 15.13 242.42 15.25 15.13

s3 srvr.blast.13.BUG.i.cil.c 386.99 105.12 741.39 301.39 105.12

s3 srvr.blast.14.BUG.i.cil.c 350.47 21.25 242.29 15.33 15.33

s3 srvr.blast.15.BUG.i.cil.c MO 31.26 231.16 15.39 15.39

s3 srvr.blast.16.BUG.i.cil.c 460.34 21.95 242.94 15.47 15.47

TOTAL (solved/time) 20 / 4864.28 23 / 1701.07 22 / 7922.71 21 / 2195.98 24 / 905.65

-dfs -predH 7 configuration of Blast, but that LBE is better than any

Blast configuration (column best result). LBE performed best also in

finding the error paths (see Table 5.2), clearly outperforming both SBE

and Blast.

In summary, the experiments show that the LBE approach outperforms

the SBE approach, both for correct and defective programs. This provides

evidence of the benefits of a “more symbolic” analysis as performed in the

LBE approach.

One might argue that our CPAchecker-based SBE implementation

might be sub-optimal, although it uses the same implementation and exe-

cution environment as LBE; in fact, both implementations currently suffer

209



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

Table 5.6: Comparison between using MathSAT and CSIsat as interpolation proce-

dures in Blast. ‘MO’ indicates an “Out of Memory” error, ‘NP’ a “No new predicates

found during refinement” error, and ‘SAT’ indicates that CSIsat incorrectly reported a

satisfiable result for an unsatisfiable query.

Safe programs (using options -dfs -predH 7)

Blast + Blast +

Program MathSAT CSIsat

test locks 5.c 1.41 1.01

test locks 6.c 2.58 1.97

test locks 7.c 4.58 3.68

test locks 8.c 8.48 7.23

test locks 9.c 16.51 14.91

test locks 10.c 34.29 32.50

test locks 11.c 76.66 74.18

test locks 12.c 187.86 183.45

test locks 13.c 523.81 526.50

test locks 14.c 1738.60 1785.70

test locks 15.c >1800.00 >1800.00

cdaudio.i.cil.c 101.60 NP

diskperf.i.cil.c >1800.00 >1800.00

floppy.i.cil.c >1800.00 >1800.00

kbfiltr.i.cil.c 11.85 28.87

parport.i.cil.c 346.52 NP

s3 clnt.blast.01.i.cil.c 516.54 NP

s3 clnt.blast.02.i.cil.c 131.66 NP

s3 clnt.blast.03.i.cil.c 131.63 NP

s3 clnt.blast.04.i.cil.c 81.33 NP

s3 srvr.blast.01.i.cil.c 490.73 NP

s3 srvr.blast.02.i.cil.c 158.00 SAT

s3 srvr.blast.03.i.cil.c 115.96 NP

s3 srvr.blast.04.i.cil.c 128.55 NP

s3 srvr.blast.06.i.cil.c 131.19 MO

s3 srvr.blast.07.i.cil.c 324.22 MO

s3 srvr.blast.08.i.cil.c 46.08 SAT

s3 srvr.blast.09.i.cil.c 549.36 SAT

s3 srvr.blast.10.i.cil.c 46.24 NP

s3 srvr.blast.11.i.cil.c 440.06 MO

s3 srvr.blast.12.i.cil.c 130.81 SAT

s3 srvr.blast.13.i.cil.c 428.06 MO

s3 srvr.blast.14.i.cil.c 131.26 MO

s3 srvr.blast.15.i.cil.c 46.34 MO

s3 srvr.blast.16.i.cil.c 130.88 SAT

TOTAL (solved/time) 32 / 7213.65 11 / 2660.00

Unsafe programs (using options -bfs -predH 7)

Blast + Blast +

Program MathSAT CSIsat

cdaudio.BUG.i.cil.c 36.74 33.40

diskperf.BUG.i.cil.c >1800.00 NP

floppy.BUG.i.cil.c 1035.71 >1800.00

kbfiltr.BUG.i.cil.c 53.28 NP

parport.BUG.i.cil.c 4.01 8.17

s3 clnt.blast.01.BUG.i.cil.c 11.06 17.85

s3 clnt.blast.02.BUG.i.cil.c 3.63 6.05

s3 clnt.blast.03.BUG.i.cil.c 2.64 9.34

s3 clnt.blast.04.BUG.i.cil.c 4.01 7.74

s3 srvr.blast.01.BUG.i.cil.c 3.79 SAT

s3 srvr.blast.02.BUG.i.cil.c 2.94 4.73

s3 srvr.blast.03.BUG.i.cil.c 3.04 3.50

s3 srvr.blast.04.BUG.i.cil.c 2.99 3.61

s3 srvr.blast.06.BUG.i.cil.c 22.24 19.59

s3 srvr.blast.07.BUG.i.cil.c 133.34 SAT

s3 srvr.blast.08.BUG.i.cil.c 29.56 42.19

s3 srvr.blast.09.BUG.i.cil.c 111.60 SAT

s3 srvr.blast.10.BUG.i.cil.c 26.57 52.58

s3 srvr.blast.11.BUG.i.cil.c 19.21 15.93

s3 srvr.blast.12.BUG.i.cil.c 15.13 16.17

s3 srvr.blast.13.BUG.i.cil.c 105.12 SAT

s3 srvr.blast.14.BUG.i.cil.c 21.25 18.46

s3 srvr.blast.15.BUG.i.cil.c 31.26 44.87

s3 srvr.blast.16.BUG.i.cil.c 21.95 18.59

TOTAL (solved/time) 23 / 1701.07 17 / 322.77

from some inefficiencies and have room for several optimizations. There-

fore, we compare also with Blast. By looking at Tables 5.1 and 5.2, we

see that LBE outperforms also Blast, despite the fact that the latter is

210



5.4. EXPERIMENTAL EVALUATION

the result of several years of fine-tuning. Blast in turn is much more effi-

cient than SBE. However, the performance gap between Blast and SBE

highly depends on the command-line options used for Blast: the perfor-

mance of Blast varies significantly with different command-line options,

as demonstrated by the results reported in Tables 5.4 and 5.5, where the

four different configurations of Blast that we have tried are compared.

Finally, it is also important to observe that in all experiments with

Blast we have used MathSAT as interpolation procedure, instead of the

default one CSIsat [BZM08]. The reason for this is not only that Math-

SAT is generally faster than CSIsat (see §4.6), but also – and more im-

portantly – that we wanted to minimize the differences between Blast and

CPAchecker in terms of the kind of predicates that are automatically

discovered during abstraction refinement, since this is an extremely impor-

tant factor for performance of CEGAR-based approaches. In fact, when

we tried to run Blast with CSIsat as interpolation procedure, the per-

formance was significantly worse, as shown by the results reported in Table

5.6. 5 We also tried to use MathSAT instead of Simplify for computing

abstract successor states with SBE, but this did not improve performance.

On the contrary, Blast performed worse in this case. The reason is that

with SBE the SMT solver gets invoked very frequently and with very small

formulae, and MathSAT is not optimized for this scenario.

5.4.4 Comparison with SatAbs

In the last part of our experiments, we compare our LBE implementation

with the SatAbs tool [CKSY04]. The comparison is interesting in princi-

ple because the approach followed by SatAbs bears similarities with both

LBE and SBE. On the one hand, SatAbs uses a fully symbolic CEGAR

approach – by first abstracting the whole program into a Boolean program,

5We ran this comparison only for the best configurations of Blast.

211



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

Table 5.7: Comparison between CPAchecker-LBE and SatAbs on simplified bench-

mark instances. For SatAbs, an ‘RF’ entry indicates a “Refinement failure” error.

Safe programs
Program CPAchecker-LBE SatAbs

test locks 5.c 0.10 0.72

test locks 6.c 0.11 1.11

test locks 7.c 0.12 1.69

test locks 8.c 0.13 2.41

test locks 9.c 0.14 3.72

test locks 10.c 0.15 5.43

test locks 11.c 0.15 7.67

test locks 12.c 0.15 10.32

test locks 13.c 0.16 15.17

test locks 14.c 0.17 21.07

test locks 15.c 0.18 22.84

cdaudio SIMPL 11.22 RF

diskperf SIMPL 54.09 RF

floppy SIMPL 8.96 RF

kbfiltr SIMPL 1.69 26.51

s3 clnt 1 SIMPL 11.84 1002.18

s3 clnt 2 SIMPL 4.15 >1800.00

s3 clnt 3 SIMPL 5.99 >1800.00

s3 clnt 4 SIMPL 10.34 1475.30

s3 srvr 1 SIMPL 135.30 1493.43

s3 srvr 2 SIMPL 152.02 843.55

s3 srvr 3 SIMPL 65.06 939.82

s3 srvr 4 SIMPL 188.17 748.60

TOTAL (solved/time) 23 / 650.39 18 / 6621.54

TOTAL w/o test locks* 12 / 648.83 7 / 6529.39

Unsafe programs
Program CPAchecker-LBE SatAbs

cdaudio SIMPL BUG 5.92 RF

diskperf SIMPL BUG 2.03 12.84

floppy SIMPL BUG 5.40 RF

kbfiltr SIMPL BUG 1.27 RF

s3 clnt 1 SIMPL BUG 1.51 44.22

s3 clnt 2 SIMPL BUG 1.24 46.70

s3 clnt 3 SIMPL BUG 1.52 47.78

s3 clnt 4 SIMPL BUG 1.73 47.40

s3 srvr 1 SIMPL BUG 0.70 77.51

s3 srvr 2 SIMPL BUG 0.68 77.33

s3 srvr 3 SIMPL BUG 0.71 76.45

s3 srvr 4 SIMPL BUG 0.66 76.53

TOTAL (solved/time) 12 / 23.37 9 / 506.76

and then using standard symbolic model checking techniques for analyzing

the abstract program – which in some sense can be thought of as pushing

to the extreme the idea behind LBE of reducing the amount of explicit

search in favor of more symbolic techniques. On the other hand, instead,

in order to construct the abstract program, each basic block of the input

program is abstracted separately, similarly to what is done with SBE.

From the practical point of view, however, the comparison presents sev-

eral difficulties. First, SatAbs uses a bit-accurate representation of data

types and constructs of C programs, whereas in our LBE implementation

within CPAchecker we model program variables using unbounded inte-

gers, as done in Blast. Second, in our current implementation of LBE we

212



5.4. EXPERIMENTAL EVALUATION

do not take the semantics of pointers into account (treating them as regular

variables), and we treat arrays as uninterpreted functions, whereas in Sa-

tAbs both are modeled precisely. Therefore, SatAbs is potentially much

more precise than our current implementation of LBE. 6 However, this

increased precision could also have a non-negligible computational cost.

Since all the benchmarks that we have collected do not require such in-

creased precision, therefore, the comparison on them would be biased in

favor of LBE.

In order to mitigate (at least partially) the effects of such differences,

we have created some simplified benchmark instances, obtained from a

subset of the programs that we used in the comparison with Blast by

manually replacing all pointer dereferences and accesses to fields of data

structures with fresh variables and by removing bit-level operations. The

results of the comparison between LBE and SatAbs on these instances

are reported in Table 5.7. (For the experiments, we used SatAbs version

2.4 with Cadence-SMV as model checker.) From Table 5.7 we can see

that LBE is significantly faster than SatAbs on such instances, with gaps

of an order of magnitude on average. 7 Moreover, in several cases SatAbs

fails to complete the analysis, exiting with a “Refinement failure” error

(indicated with ‘RF’). We thought that the significant performance gap

could be attributed, at least in part, to the fact that SatAbs models all

variables as bit-vectors in the abstraction and refinement phases. However,

6We remark that this is not because of some intrinsic limitations of LBE or of CPAchecker, but
only because the current implementation is still a prototype.

7In principle, the “manual” simplifications that we performed to obtain the simplified instances are
very similar to what is done internally by CPAchecker. Therefore, one could expect the execution
times of CPAchecker-LBE on such instances to be substantially identical to the corresponding ones
on the original instances. In some cases, however, we observe significant gaps between the “normal” and
the “simplified” version of a program. This can be explained by observing that the formulae given to
MathSAT in the two cases might be slightly different, and this can lead to differences in the search
space of the DPLL engine. It is a well-known fact in the SAT and SMT communities that even minor
syntactical variations in the input problem can have a very big impact on the performance of DPLL.

213



CHAPTER 5. SOFTWARE MODEL CHECKING VIA LARGE-BLOCK ENCODING

by analyzing the output produced by SatAbs, we found that most of the

time (about 95% for safe programs, and about 85% for unsafe ones) is spent

in model checking the abstract Boolean program, and not in computing the

abstraction and refining it. Therefore, we think that this shows that the

lazy abstraction approach with LBE works better than a fully symbolic

CEGAR for these benchmarks.

214



Chapter 6

Conclusions

Formal methods are becoming increasingly important for debugging and

verifying hardware and software systems, whose current complexity makes

the traditional approaches based on testing increasingly-less adequate.

One of the most promising research directions in formal verification

is based on the exploitation of Satisfiability Modulo Theories (SMT), an

emerging paradigm for checking the satisfiability of logical formulae ex-

pressed in a combination of decidable first-order theories. SMT solvers

have seen tremendous improvements over the last few years, and they are

now able to deliver the same high levels of automation, efficiency and scal-

ability of propositional SAT solvers – which are at the basis of a number of

successful verification techniques – while at the same time offering a much

higher expressive power.

In order to fully exploit the potential of SMT in formal verification,

SMT solvers should provide functionalities that go beyond simply check-

ing the satisfiability of a formula, such as model generation and enumer-

ation, proof-production, extraction of unsatisfiable cores and computation

of interpolants.

In this thesis, we have presented MathSAT, a modern, efficient SMT

solver that provides several important functionalities, and can be used

215



CHAPTER 6. CONCLUSIONS

as a workhorse engine in formal verification. We have developed novel

algorithms for the extraction of unsatisfiable cores and the generation of

interpolants in SMT that significantly advance the state of the art, taking

full advantage of modern SMT techniques. In order to demonstrate the

usefulness and potential of SMT in verification, we have developed a novel

technique for software model checking, that fully exploits the power and

functionalities of the SMT engine, showing that this leads to significant

improvements in performance.

The work in this thesis opens a number of future research directions

to explore. First, MathSAT can be further developed to support other

important theories, and to improve the functionalities that it provides. In

particular, a natural research direction worth investigating is the possibil-

ity of extending the generation of interpolants to other important theories

such as linear integer arithmetic, some fragments of the theory of arrays,

and the theory of bit-vectors. Other possibilities are the investigation of

techniques for quantifier elimination and for simplifications of formulae,

and the improvement of the proof-production capabilities of MathSAT.

Finally, techniques for better exploiting SMT solvers in formal verification

can be further investigated, considering in particular approaches based on

Bounded Model Checking, interpolation, and abstraction-refinement, ex-

ploiting the integration of MathSAT within the NuSMV symbolic model

checker that is already ongoing.

216



Bibliography

[ABC+02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and

R. Sebastiani. A SAT Based Approach for Solving Formu-

las over Boolean and Linear Mathematical Propositions. In

A. Voronkov, editor, Proceedings of CADE-18, volume 2392

of LNCS, pages 195–210. Springer, 2002.

[ABM07] A. Armando, M. Benerecetti, and J. Mantovani. Abstraction

Refinement of Linear Programs with Arrays. In O. Grumberg

and M. Huth, editors, Proceedings of TACAS’07, volume 4424

of LNCS, pages 373–388. Springer, 2007.

[Ack54] W. Ackermann. Solvable Cases of the Decision Problem.

North Holland Pub. Co., 1954.

[AMP09] A. Armando, J. Mantovani, and L. Platania. Bounded model

checking of software using SMT solvers instead of SAT solvers.

Int. J. Softw. Tools Technol. Transf., 11(1):69–83, 2009.

[ANORC08] R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez Car-

bonell. Efficient Generation of Unsatisfiability Proofs and

Cores in SAT. In I. Cervesato, H. Veith, and A. Voronkov,

editors, Proceedings of LPAR’08, volume 5330 of LNCS, pages

16–30. Springer, 2008.

217



BIBLIOGRAPHY

[BB04] C. Barrett and S. Berezin. CVC Lite: A New Implementation

of the Cooperating Validity Checker. In R. Alur and D. A.

Peled, editors, Proceedings of CAV’04, volume 3114 of LNCS,

pages 515–518. Springer, 2004.

[BB09a] R. Brummaryer and A. Biere. Lemmas on Demand for the Ex-

tensional Theory of Arrays. Journal on Satisfiability, Boolean

Modeling and Computation (JSAT), 6, 2009.

[BB09b] R. Brummayer and A. Biere. Boolector: An Efficient SMT

Solver for Bit-Vectors and Arrays. In S. Kowalewski and

A. Philippou, editors, Proceedings of TACAS’09, volume 5505

of LNCS, pages 174–177. Springer, 2009.

[BBC+05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van

Rossum, S. Schulz, and R. Sebastiani. MathSAT: Tight Inte-

gration of SAT and Mathematical Decision Procedures. Jour-

nal of Automated Reasoning, 35(1-3):265–293, 2005.

[BBC+06a] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén,

Z. Hanna, Z. Khasidashvili, A. Palti, and R. Sebastiani. En-

coding RTL Constructs for MathSAT: a Preliminary Report.

Electr. Notes Theor. Comput. Sci., 144(2):3–14, 2006.

[BBC+06b] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila,

S. Ranise, P. van Rossum, and R. Sebastiani. Efficient Theory

Combination via Boolean Search. Inf. Comput., 204(10):1493–

1525, 2006.

[BCF+07] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio,

Z. Hanna, A. Nadel, A. Palti, and R. Sebastiani. A Lazy

and Layered SMT(BV) Solver for Hard Industrial Verification

218



BIBLIOGRAPHY

Problems. In W. Damm and H. Hermanns, editors, Proceed-

ings of CAV’07, volume 4590 of LNCS. Springer, 2007.

[BCF+08] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and

R. Sebastiani. Delayed Theory Combination vs. Nelson-Oppen

for Satisfiability Modulo Theories: A Comparative Analysis.

Extended version. Annals of Mathematics and Artificial In-

telligence., 2008. To appear.

[BCG+09] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Se-

bastiani. Software Model Checking via Large-Block Encoding.

In Proceedings of FMCAD’09, 2009. To appear. Technical re-

port available at http://arxiv.org/abs/0904.4709.

[BCLZ04] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Auto-

matic Theorem Proving for Predicate Abstraction Refinement.

In Proceedings of CAV’04, volume 3114 of LNCS, pages 457–

461. Springer, 2004.

[BD02] Raik Brinkmann and Rolf Drechsler. Rtl-datapath verification

using integer linear programming. In Proceedings of ASP-

DAC’02, page 741, Washington, DC, USA, 2002. IEEE Com-

puter Society.

[BDL98] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision proce-

dure for bit-vector arithmetic. In Proceedings of DAC, pages

522–527, 1998.

[BDS02] C. W. Barrett, D. L. Dill, and A. Stump. A Generalization

of Shostak’s Method for Combining Decision Procedures. In

Proceedings of FroCos’02, volume 2309 of LNCS, pages 132–

146. Springer, 2002.

219

http://arxiv.org/abs/0904.4709


BIBLIOGRAPHY

[BH07] D. Babic and A. J. Hu. Structural Abstraction of Software

Verification Conditions. In W. Damm and H. Hermanns, ed-

itors, Proceedings of CAV’07, volume 4590 of LNCS, pages

366–378. Springer, 2007.

[BH08] D. Babic and A. J. Hu. Calysto: scalable and precise ex-

tended static checking. In W. Schäfer, M. B. Dwyer, and

V. Gruhn, editors, Proceedings of ICSE’08, pages 211–220.

ACM, 2008.

[BHJM07] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The

software model checker Blast. STTT, 9(5-6):505–525, 2007.

[Bie08a] A. Biere. Adaptive restart strategies for conflict driven sat

solvers. In H. K. Büning and X. Zhao, editors, Proceedings of

SAT’08, volume 4996 of LNCS, pages 28–33. Springer, 2008.

[Bie08b] A. Biere. Picosat essentials. Journal on Satisfiability, Boolean

Modeling and Computation (JSAT), 4:75–97, May 2008.

[BK09] D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for

Configurable Software Verification. Technical Report SFU-

CS-2009-002, Simon Fraser University, January 2009.

[BKO+09] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia,

O. Strichman, and B. Brady. An abstraction-based decision

procedure for bit-vector arithmetic. Int. J. Softw. Tools Tech-

nol. Transf., 11(2):95–104, 2009.

[BL05] M. Barnett and K. R. M. Leino. Weakest-precondition of

unstructured programs. In M. D. Ernst and T. P. Jensen,

editors, Proceedings of PASTE’05, pages 82–87. ACM, 2005.

220



BIBLIOGRAPHY

[BLM05] T. Ball, S. K. Lahiri, and M. Musuvathi. Zap: Automated

theorem proving for software analysis. In G. Sutcliffe and

A. Voronkov, editors, Proceedings of LPAR’05, volume 3835

of LNCS, pages 2–22. Springer, 2005.

[BMS06] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable

about arrays? In E. A. Emerson and K. S. Namjoshi, editors,

Proceedigs of VMCAI’06, volume 3855 of LNCS, pages 427–

442. Springer, 2006.

[BNO+08a] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez Car-

bonell, and A. Rubio. The Barcelogic SMT Solver. In

A. Gupta and S. Malik, editors, Proceedings of CAV’08, vol-

ume 5123 of LNCS, pages 294–298. Springer, 2008.

[BNO+08b] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-

Carbonell, and A. Rubio. A Write-Based Solver for SAT Mod-

ulo the Theory of Arrays. In A. Cimatti and R. B. Jones, ed-

itors, Proceedings of FMCAD’08, pages 101–108. IEEE, 2008.

[BNOT06] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Split-

ting on Demand in SAT Modulo Theories. In M. Hermann and

A. Voronkov, editors, Proceedings of LPAR’06, volume 4246

of LNCS, pages 512–526. Springer, 2006.

[BPR03] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and

cartesian abstraction for model checking c programs. STTT,

5(1):49–58, 2003.

[BPST09] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich.

OpenSMT 0.2 System Description. Available at http://

verify.inf.unisi.ch/opensmt, August 2009.

221

http://verify.inf.unisi.ch/opensmt
http://verify.inf.unisi.ch/opensmt


BIBLIOGRAPHY

[BR02] T. Ball and S. K. Rajamani. The Slam project: debugging

system software via static analysis. In Proceedings of POPL,

pages 1–3, 2002.

[Bru09] R. Bruttomesso. An Extension of the Davis-Putnam Proce-

dure and its Application to Preprocessing in SMT. In Pro-

ceedings of SMT’09, Montreal, Canada, 2009.

[BSST09] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli.

Satisfiability Modulo Theories. In A. Biere, M. Heule, H. van

Maaren, and T. Walsh, editors, Handbook of Satisfiability, vol-

ume 185 of Frontiers in Artificial Intelligence and Applica-

tions, pages 825–885. IOS Press, 2009.

[BT07] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Her-

manns, editors, Proceedings of CAV’07, volume 4590 of LNCS,

pages 298–302. Springer, 2007.

[BZM08] D. Beyer, D. Zufferey, and R. Majumdar. CSIsat: Interpo-

lation for LA+EUF. In A. Gupta and S. Malik, editors, Pro-

ceedings of CAV’08, volume 5123 of LNCS, pages 304–308.

Springer, 2008.

[CCF+07] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram,

M. Roveri, and R. K. Shyamasundar. Computing Predicate

Abstractions by Integrating BDDs and SMT Solvers. In Pro-

ceedings of FMCAD’07, pages 69–76. IEEE Computer Society,

2007.

[CCG+02] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,

M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.

NuSMV 2: An OpenSource Tool for Symbolic Model Check-

ing. In E. Brinksma and K. G. Larsen, editors, Proceedings

222



BIBLIOGRAPHY

of CAV’02, volume 2404 of LNCS, pages 359–364. Springer,

2002.

[CGJ+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-guided abstraction refinement for symbolic

model checking. J. ACM, 50(5):752–794, 2003.

[CGS07] A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and

Flexible Way of Computing Small Unsatisfiable Cores in SAT

Modulo Theories. In J. Marques-Silva and K. A. Sakallah,

editors, Proceedings of SAT’07, volume 4501 of LNCS, pages

334–339. Springer, 2007.

[CGS08] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient In-

terpolant Generation in Satisfiability Modulo Theories. In

C. R. Ramakrishnan and J. Rehof, editors, Proceedings of

TACAS’08, volume 4963 of LNCS, pages 397–412. Springer,

2008.

[CGS09a] A. Cimatti, A. Griggio, and R. Sebastiani. Computing Small

Unsatisfiable Cores in Satisfiability Modulo Theories. Submit-

ted for publication, 2009.

[CGS09b] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Gener-

ation of Craig Interpolants in Satisfiability Modulo Theories.

CoRR, abs/0906.4492, 2009. Submitted for publication.

[CGS09c] A. Cimatti, A. Griggio, and R. Sebastiani. Interpolant Gen-

eration for UTVPI. In R. A. Schmidt, editor, Proceedings of

CADE-22, volume 5663 of LNCS, pages 167–182. Springer,

2009.

223



BIBLIOGRAPHY

[CKL04] E. M. Clarke, D. Kroening, and F. Lerda. A Tool for Checking

ANSI-C Programs. In K. Jensen and A. Podelski, editors,

Proceedings of TACAS’04, volume 2988 of LNCS, pages 168–

176. Springer, 2004.

[CKSY04] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Pred-

icate Abstraction of ANSI-C Programs Using SAT. Formal

Methods in System Design, 25(2-3):105–127, 2004.

[CM06] S. Cotton and O. Maler. Fast and Flexible Difference Con-

straint Propagation for DPLL(T). In A. Biere and C. P.

Gomes, editors, Proceedings of SAT’06, volume 4121 of LNCS,

pages 170–183. Springer, 2006.

[CMNQ06] G. Cabodi, M. Murciano, S. Nocco, and S. Quer. Stepping

forward with interpolants in unbounded model checking. In

S. Hassoun, editor, Proceedings of ICCAD’06, pages 772–778.

ACM, 2006.

[DDA09] I. Dillig, T. Dillig, and A. Aiken. Cuts from Proofs: A Com-

plete and Practical Technique for Solving Linear Inequalities

over Integers. In A. Bouajjani and O. Maler, editors, Proceed-

ings of CAV’09, volume 5643 of LNCS. Springer, 2009.

[DdM06a] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver

for DPLL(T). In T. Ball and R. B. Jones, editors, Proceed-

ings of CAV’06, volume 4144 of LNCS, pages 81–94. Springer,

2006.

[DdM06b] B. Dutertre and L. de Moura. Integrating Simplex with

DPLL(T). Technical Report CSL-06-01, SRI, 2006.

224



BIBLIOGRAPHY

[DdM06c] B. Dutertre and L. de Moura. System Description:

Yices 1.0. Available at http://yices.csl.sri.com/

yices-smtcomp06.pdf, 2006.

[DHN06] N. Dershowitz, Z. Hanna, and A. Nadel. A Scalable Algorithm

for Minimal Unsatisfiable Core Extraction. In A. Biere and

C. P. Gomes, editors, Proceedings of SAT’06, volume 4121 of

LNCS, pages 36–41. Springer, 2006.

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. A machine

program for theorem-proving. Commun. ACM, 5(7):394–397,

1962.

[dMB08a] L. de Moura and N. Bjørner. Model-based theory combination.

Electron. Notes Theor. Comput. Sci., 198(2):37–49, 2008.

[dMB08b] L. de Moura and N. Bjørner. Proofs and Refutations, and Z3.

In P. Rudnicki, G. Sutcliffe, B. Konev, R. A. Schmidt, and

S. Schulz, editors, Proceedings of the LPAR’08 Workshops,

volume 418 of CEUR Workshop Proceedings. CEUR-WS.org,

2008.

[dMB08c] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.

In C. R. Ramakrishnan and J. Rehof, editors, Proceedings of

TACAS’08, volume 4963 of LNCS, pages 337–340. Springer,

2008.

[dMOR+04] L. de Moura, S. Owre, H. Ruess, J. Rushby, and N. Shankar.

The ICS Decision Procedures for Embedded Deduction. In

Proceedings of IJCAR’04, volume 3097 of LNCS, pages 218–

222. Springer, 2004.

225

http://yices.csl.sri.com/yices-smtcomp06.pdf
http://yices.csl.sri.com/yices-smtcomp06.pdf


BIBLIOGRAPHY

[dMRS02] L. de Moura, H. Rueß, and M. Sorea. Lemmas on demand

for satisfiability solvers. In Proceedings of SAT’02, LNCS.

Springer, 2002.

[DNS05] D. Detlefs, G. Nelson, and J. Saxe. Simplify: a theorem prover

for program checking. Journal of the ACM, 52(3):365–473,

2005.

[EKS06] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refine-

ment with craig interpolation and symbolic pushdown sys-

tems. In H. Hermanns and J. Palsberg, editors, Proceedings

of TACAS’06, volume 3920 of LNCS, pages 489–503. Springer,

2006.

[End01] H. B. Enderton. A Mathematical Introduction to Logic. Aca-

demic Press, 2nd edition, 2001.

[FGG+09] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli.

Ground interpolation for the theory of equality. In

S. Kowalewski and A. Philippou, editors, Proceedings of

TACAS’09, volume 5505 of LNCS, pages 413–427. Springer,

2009.

[FJOS03] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem Prov-

ing Using Lazy Proof Explication. In Proceedings of CAV’03,

LNCS. Springer, 2003.

[FORS01] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. Ics: Inte-

grated canonizer and solver. In Proceedings of CAV’01, LNCS,

pages 246–249. Springer, 2001.

[GD07] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-

Vectors and Arrays. In W. Damm and H. Hermanns, editors,

226



BIBLIOGRAPHY

Proceedings of CAV’07, volume 4590 of LNCS, pages 519–531,

2007.

[GKF08] A. Goel, S. Krstić, and A. Fuchs. Deciding array for-

mulas with frugal axiom instantiation. In Proceedings of

SMT’08/BPR’08, pages 12–17, New York, NY, USA, 2008.

ACM.

[GKS08] R. Gershman, M. Koifman, and O. Strichman. An approach

for extracting a small unsatisfiable core. Formal Methods in

System Design, 33(1-3):1–27, 2008.

[GKT09] A. Goel, S. Krstic, and C. Tinelli. Ground Interpolation for

Combined Theories. In R. A. Schmidt, editor, Proceedings of

CADE-22, volume 5663 of LNCS, pages 183–198. Springer,

2009.

[GLST05] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald.

Proof-guided underapproximation-widening for multi-process

systems. SIGPLAN Not., 40(1):122–131, 2005.

[GMP] The GNU Multiple Precision Arithmetic Library (GMP).

http://gmplib.org.

[GNRZ07] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision

procedures for extensions of the theory of arrays. Ann. Math.

Artif. Intell., 50(3-4):231–254, 2007.

[GSZ+98] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal. BDD

Based Procedures for a Theory of Equality with Uninterpreted

Functions. In A. J. Hu and M. Y. Vardi, editors, Proceedings

of CAV’98, volume 1427 of LNCS, pages 244–255. Springer,

1998.

227

http://gmplib.org


BIBLIOGRAPHY

[HJMM04] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.

Abstractions from proofs. In N. D. Jones and X. Leroy, editors,

Proceedings of POPL’04, pages 232–244. ACM, 2004.

[HJMS02] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy

abstraction. In Proceedings of POPL, pages 58–70, 2002.

[HS97] W. Harvey and P. Stuckey. A unit two variable per inequal-

ity integer constraint solver for constraint logic programming.

In Australian Computer Science Conference (Australian Com-

puter Science Communications), pages 102–111, 1997.

[Hua05] J. Huang. MUP: a minimal unsatisfiability prover. In Proceed-

ings of ASP-DAC’05, pages 432–437, New York, NY, USA,

2005. ACM Press.

[JCG08] H. Jain, E. M. Clarke, and O. Grumberg. Efficient Craig In-

terpolation for Linear Diophantine (Dis)Equations and Linear

Modular Equations. In A. Gupta and S. Malik, editors, Pro-

ceedings of CAV’08, volume 5123 of LNCS, pages 254–267.

Springer, 2008.

[JLS09] S. Jha, R. Limaye, and S. A. Seshia. Beaver: Engineering an

Efficient SMT Solver for Bit-Vector Arithmetic. In A. Boua-

jjani and O. Maler, editors, Proceedings of CAV’09, volume

5643 of LNCS, pages 668–674. Springer, 2009.

[JM05] R. Jhala and K. L. McMillan. Interpolant-based transition

relation approximation. In K. Etessami and S. K. Rajamani,

editors, Proceedings of CAV’05, volume 3576 of LNCS, pages

39–51. Springer, 2005.

228



BIBLIOGRAPHY

[JM06] R. Jhala and K. L. McMillan. A Practical and Complete

Approach to Predicate Refinement. In H. Hermanns and

J. Palsberg, editors, Proceedings of TACAS’06, volume 3920

of LNCS, pages 459–473. Springer, 2006.

[JM07] R. Jhala and K. L. McMillan. Array Abstractions from

Proofs. In W. Damm and H. Hermanns, editors, Proceedings

of CAV’07, volume 4590 of LNCS, pages 193–206. Springer,

2007.

[JMSY94] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Be-

yond Finite Domains. In Proceedings of PPCP, volume 874 of

LNCS, pages 86–94. Springer, 1994.

[JMX07] R. Jhala, R. Majumdar, and R. Xu. State of the Union:

Type Inference Via Craig Interpolation. In O. Grumberg and

M. Huth, editors, Proceedings of TACAS’07, volume 4424 of

LNCS, pages 553–567. Springer, 2007.

[JS05] P. Jackson and D. Sheridan. Clause Form Conversions for

Boolean Circuits. In H. H. Hoos and D. G. Mitchell, editors,

Proceedings of SAT’04, volume 3542 of LNCS, pages 183–198.

Springer, 2005.

[KG07] S. Krstic and A. Goel. Architecting Solvers for SAT Mod-

ulo Theories: Nelson-Oppen with DPLL. In Proceedings of

FroCoS’07, volume 4720 of LNAI, pages 1–27. Springer, 2007.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear program-

ming. Soviet Mathematics Doklady, 20:191–194, 1979.

229



BIBLIOGRAPHY

[KMZ06] D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for

data structures. In M. Young and P. T. Devanbu, editors,

Proceedings of FSE’05, pages 105–116. ACM, 2006.

[KSJ09] H. Kim, F. Somenzi, and H. Jin. Efficient Term-ITE Con-

version for Satisfiability Modulo Theories. In O. Kullmann,

editor, Proceedings of SAT’09, volume 5584 of LNCS, pages

195–208. Springer, 2009.

[KW07] D. Kroening and G. Weissenbacher. Lifting Propositional In-

terpolants to the Word-Level. In Proceedings of FMCAD’07,

pages 85–89, Los Alamitos, CA, USA, 2007. IEEE Computer

Society.

[KZ05] D. Kapur and C. Zarba. A reduction approach to decision

procedures. Technical Report TR-CS-1005-44, University of

New Mexico, 2005.

[LM05] S. K. Lahiri and M. Musuvathi. An Efficient Decision Pro-

cedure for UTVPI Constraints. In B. Gramlich, editor, Pro-

ceedings of FroCos’05, volume 3717 of LNCS, pages 168–183.

Springer, 2005.

[LMS04] I. Lynce and J. P. Marques-Silva. On Computing Mini-

mum Unsatisfiable Cores. In Proceedings of SAT’04, LNCS.

Springer, 2004.

[LNO06] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT Tech-

niques for Fast Predicate Abstraction. In T. Ball and R. B.

Jones, editors, Proceedings of CAV’06, volume 4144 of LNCS,

pages 413–426. Springer, 2006.

230



BIBLIOGRAPHY

[LQ08] S. K. Lahiri and S. Qadeer. Back to the future: revisiting

precise program verification using SMT solvers. In G. C. Nec-

ula and P. Wadler, editors, Proceedings of POPL’08, pages

171–182. ACM, 2008.

[LQR09] S. K. Lahiri, S. Qadeer, and Z. Rakamaric. Static and Precise

Detection of Concurrency Errors in Systems Code Using SMT

Solvers. In A. Bouajjani and O. Maler, editors, Proceedings

of CAV’09, volume 5643 of LNCS, pages 509–524. Springer,

2009.

[LS06] B. Li and F. Somenzi. Efficient Abstraction Refinement in

Interpolation-Based Unbounded Model Checking. In H. Her-

manns and J. Palsberg, editors, Proceedings of TACAS’06,

volume 3920 of LNCS, pages 227–241. Springer, 2006.

[MA03] K. L. McMillan and N. Amla. Automatic abstraction with-

out counterexamples. In H. Garavel and J. Hatcliff, editors,

Proceedings of TACAS’03, volume 2619 of LNCS, pages 2–17.

Springer, 2003.

[McM92] K. L. McMillan. Symbolic model checking: an approach to the

state explosion problem. PhD thesis, Pittsburgh, PA, USA,

1992.

[McM02] K. L. McMillan. Applying sat methods in unbounded symbolic

model checking. In E. Brinksma and K. G. Larsen, editors,

Proceedings of CAV’02, volume 2404 of LNCS, pages 250–264.

Springer, 2002.

[McM03] K. L. McMillan. Interpolation and SAT-Based Model Check-

ing. In W. A. Hunt Jr. and F. Somenzi, editors, Proceedings

of CAV’03, volume 2725 of LNCS, pages 1–13. Springer, 2003.

231



BIBLIOGRAPHY

[McM05] K. L. McMillan. An interpolating theorem prover. Theor.

Comput. Sci., 345(1):101–121, 2005.

[McM06] K. L. McMillan. Lazy Abstraction with Interpolants. In

T. Ball and R. B. Jones, editors, Proceedings of CAV’06, vol-

ume 4144 of LNCS, pages 123–136. Springer, 2006.

[McM08] K. L. McMillan. Quantified Invariant Generation Using an

Interpolating Saturation Prover. In C. R. Ramakrishnan and

Jakob Rehof, editors, Proceedings of TACAS’08., volume 4963

of LNCS, pages 413–427. Springer, 2008.

[Min01] A. Miné. The Octagon Abstract Domain. In Proceedings of

WCRE, pages 310–, 2001.

[MLA+05] M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. Marques-Silva,

and K. A. Sakallah. A Branch-and-Bound Algorithm for Ex-

tracting Smallest Minimal Unsatisfiable Formulas. In F. Bac-

chus and T. Walsh, editors, Proceedings of SAT’05, volume

3569 of LNCS, pages 467–474. Springer, 2005.

[Mon09] D. Monniaux. On using floating-point computations to help

an exact linear arithmetic decision procedure. In A. Bouajjani

and O. Maler, editors, Proceedings of CAV’09, volume 5643 of

LNCS. Springer, 2009.

[MS07] J. Marques-Silva. Interpolant Learning and Reuse in SAT-

Based Model Checking. Electr. Notes Theor. Comput. Sci.,

174(3):31–43, 2007.

[MSV07] P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The Bit-

Level Analysis Tool. In W. Damm and H. Hermanns, editors,

232



BIBLIOGRAPHY

Proceedings of CAV’07, volume 4590 of LNCS, pages 303–306.

Springer, 2007.

[MV07] P. Manolios and D. Vroon. Efficient Circuit to CNF Conver-

sion. In J. Marques-Silva and K. A. Sakallah, editors, Proceed-

ings of SAT’07, volume 4501 of LNCS, pages 4–9. Springer,

2007.

[MZ03] Z. Manna and C. G. Zarba. Combining Decision Procedures.

In In Formal Methods at the Cross Roads: From Panacea to

Foundational Support, LNCS, pages 381–422. Springer, 2003.

[NMRW02] G. C. Necula, S. McPeak, S. Prakash Rahul, and W. Weimer.

Cil: Intermediate Language and Tools for Analysis and

Transformation of C Programs. In R. N. Horspool, editor,

Proceedings of CC’02, volume 2304 of LNCS, pages 213–228.

Springer, 2002.

[NO79] C. G. Nelson and D. C. Oppen. Simplification by cooperating

decision procedures. TOPLAS, 1(2):245–257, 1979.

[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive

Theory Propagation and Its Application to Difference Logic.

In Proceedings of CAV’05, volume 3576 of LNCS, pages 321–

334. Springer, 2005.

[NO07] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure

and Extensions. Inf. Comput., 2005(4):557–580, 2007.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving

SAT and SAT Modulo Theories: From an abstract Davis–

Putnam–Logemann–Loveland procedure to DPLL(T). J.

ACM, 53(6):937–977, 2006.

233



BIBLIOGRAPHY

[OMA+04] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and

I. L. Markov. Amuse: A Minimally-Unsatisfiable Subfor-

mula Extractor. In Proceedings of DAC’04, pages 518–523.

ACM/IEEE, 2004.

[Opp80] D. C. Oppen. Complexity, Convexity and Combinations of

Theories. Theoretical Computer Science, 12:291–302, 1980.

[Pap81] C. H. Papadimitriou. On the complexity of integer program-

ming. J. ACM, 28(4):765–768, 1981.

[Pud97] P. Pudlák. Lower bounds for resolution and cutting planes

proofs and monotone computations. J. of Symb. Logic, 62(3),

1997.

[Pug91] W. Pugh. The Omega test: a fast and practical integer pro-

gramming algorithm for dependence analysis. In Proceedings

of SC, pages 4–13, 1991.

[RS04] H. Rueß and N. Shankar. Solving linear arithmetic constraints.

Technical Report CSL-SRI-04-01, SRI International, Com-

puter Science Laboratory, January 2004.

[RSS07] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint

Solving for Interpolation. In B. Cook and A. Podelski, ed-

itors, Proceedings of VMCAI’07, volume 4349 of LNCS, pages

346–362. Springer, 2007.

[RT06] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories

Library (SMT-LIB). http://www.smt-lib.org, 2006.

[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A deci-

sion procedure for an extensional theory of arrays. In Proceed-

234

http://www.smt-lib.org


BIBLIOGRAPHY

ings of LICS’01, page 29, Washington, DC, USA, 2001. IEEE

Computer Society.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wi-

ley, 1986.

[SDPK09] C. Scholl, S. Disch, F. Pigorsch, and S. Kupferschmid. Com-

puting Optimized Representations for Non-convex Polyhedra

by Detection and Removal of Redundant Linear Constraints.

In S. Kowalewski and A. Philippou, editors, Proceedings of

TACAS’09, volume 5505 of LNCS, pages 383–397. Springer,

2009.

[Seb07] R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal

on Satisfiability, Boolean Modeling and Computation, JSAT,

3(3-4):141–224, 2007.

[SFBD08] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler. Using unsat-

isfiable cores to debug multiple design errors. In Proceedings of

GLSVLSI’08, pages 77–82, New York, NY, USA, 2008. ACM.

[Sho79] R. Shostak. A Pratical Decision Procedure for Arithmetic

with Function Symbols. Journal of the ACM, 26(2):351–360,

1979.

[Sho84] R.E. Shostak. Deciding Combinations of Theories. Journal of

the ACM, 31:1–12, 1984.

[SI09] C. Sinz and M. Iser. Problem-sensitive restart heuristics for

the dpll procedure. In O. Kullmann, editor, Proceedings of

SAT’09, volume 5584 of LNCS, pages 356–362. Springer, 2009.

[SMT] The SMT solvers competition (SMT-COMP). http://

smtcomp.org.

235

http://smtcomp.org
http://smtcomp.org


BIBLIOGRAPHY

[SR02] N. Shankar and H. Rueß. Combining shostak theories. In

Proceedings of RTA’02, pages 1–18. Springer, 2002.

[SS08] V. Sofronie-Stokkermans. Interpolation in Local Theory Ex-

tensions. Logical Methods in Computer Science (Special issue

dedicated to IJCAR 2006), 4(4):Paper 1, 2008.

[SSB02] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding Sepa-

ration Formulas with SAT. In E. Brinksma and K. G. Larsen,

editors, Proceedings of CAV’02, volume 2404 of LNCS, pages

209–222. Springer, 2002.

[Tse68] G. S. Tseitin. On the complexity of derivation in propositional

calculus. Studies in Constructive Mathematics and Mathemat-

ical Logic, Part 2, pages 115–125, 1968.

[Van01] R. J. Vanderbei. Linear Programming: Foundations and Ex-

tensions. Springer, 2001.

[vG07] A. van Gelder. Verifying Propositional Unsatisfiability: Pit-

falls to Avoid. In J. Marques-Silva and K. A. Sakallah, editors,

Proceedings of SAT’07, volume 4501 of LNCS, pages 328–333.

Springer, 2007.

[vMW08] H. van Maaren and S. Wieringa. Finding guaranteed muses

fast. In H. K. Büning and X. Zhao, editors, Proceedings of

SAT’08, volume 4996 of LNCS, pages 291–304. Springer, 2008.

[WFG+07] R. Wille, G. Fey, D. Große, S. Eggersglüß, and Rolf Drechsler.

SWORD: A SAT like prover using word level information. In

Proceedings of IFIP VLSI-SoC’07, pages 88–93. IEEE, 2007.

[WKG07] C. Wang, H. Kim, and A. Gupta. Hybrid cegar: combining

variable hiding and predicate abstraction. In Proceedings of

236



BIBLIOGRAPHY

ICCAD’07, pages 310–317, Piscataway, NJ, USA, 2007. IEEE

Press.

[YM05] G. Yorsh and M. Musuvathi. A combination method for gen-

erating interpolants. In R. Nieuwenhuis, editor, Proceedings

of CADE-20, volume 3632 of LNCS, pages 353–368. Springer,

2005.

[YM06] Y. Yu and S. Malik. Lemma Learning in SMT on Linear

Constraints. In A. Biere and C. P. Gomes, editors, Proceedings

of SAT’06, volume 4121 of LNCS, pages 142–155. Springer,

2006.

[ZLS06] J. Zhang, S. Li, and S. Shen. Extracting Minimum Unsatisfi-

able Cores with a Greedy Genetic Algorithm. In Proceedings of

ACAI, volume 4304 of LNCS, pages 847–856. Springer, 2006.

[ZM02] L. Zhang and S. Malik. The quest for efficient boolean sat-

isfiability solvers. In Proceedings of CAV’02, number 2404 in

LNCS, pages 17–36. Springer, 2002.

[ZM03] L. Zhang and S. Malik. Extracting small unsatisfiable cores

from unsatisfiable boolean formula. In E. Giunchiglia and

A. Tacchella, editors, Proceedings of SAT’03, volume 2919 of

LNCS. Springer, 2003.

[ZMMM01] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Ef-

ficient conflict driven learning in a boolean satisfiability solver.

In Proceedings of ICCAD’01, pages 279–285, Piscataway, NJ,

USA, 2001. IEEE Press.

237



Index

AB-mixed equality, 151

theory solver, 16

DL(Q), 24

DL(Z), 24

LA(Q)-proof of unsatisfiability, 113

LA(Q)-proof rule, 113

LA(Q), 23

LA(Z), 23

UT VPI(Q), 25

UT VPI(Z), 25

DPLL(T ), 18

eij-deduction completeness, 30

T -backjumping, 21

T -learning, 21

T -lemmas, 21

T -propagation, 20

T -solver

layering, 46

T -solver

backtrackable, 17

deduction-complete, 17

incremental, 17

T -solver, 16

ie -local proof, 154

abstract reachability tree, 183

abstract state, 188

Ackermann’s expansion, 37

Ackermann’s reduction, 37

antecedent clause, 21

arrays, 26

ART

complete, 189

ART node

covered, 189

ART, 183

atom

i-pure, 30

Σ-atom, 13

Boolean, 13

auxiliary DPLL, 161

bit blasting, 28

bit vectors, 27

Bland’s rule, 53

BMC, 201

Boolean Constraint Propagation, BCP,

20

Boolean skeleton, 16

238



INDEX

CEGAR, 189, 200

CFA, 186

CFA-summarization, 191

CFA-summary, 192

clause, 14

CNF, 14

concrete data state, 186

concrete semantics, 187

concrete state, 187

reachable, 187

conditional tightening summarization,

144

conflicting clause, 21

congruence classes, 22

congruence closure, 22, 45

constant, 13

constraint graph, 25

control-flow automaton, 186

convexity, 14

core-ratio plot, 98

Craig interpolant, 108

decision, 19

decision level, 19

decision literal, 19

deduction clause, 21

Diophantine equations, 58

dual constraints, 132

Early Pruning, EP, 20

Adaptive, 42

Approximate, 43

Weak, 43

elementary atoms, 48

Equality-interpolating theory, 151

EUF, 22

extensionality axiom, 26

first-UIP strategy, 22

formula, 13

T -equisatisfiable, 14

T -satisfiable, 14

T -valid, 14

precision, 187

pure, 30

quantifier-free, 13

implication graph, 163

infinitesimal parameter, 120

interface equality, 30

interface variable, 30

interpolant, 108

stronger, 125

large-block encoding, 184

last-UIP strategy, 22

layering, 21

lazy abstraction, 189

lazy SMT, 18

LBE, 184

Lemma-Lifting, 88

239



INDEX

linear arithmetic, 23

literal, 13

negative, 13

positive, 13

main DPLL, 161

maximal A-path, 128

McCarthy’s axioms, 26

mixed Boolean+theory conflict clause,

21

Nelson-Oppen

logical framework, 28

procedure, 29

pivoting, 49

predicate abstraction, 187

Boolean, 188

Cartesian, 188

program, 186

precision, 188

safe, 187

program path, 187

concrete semantics, 187

feasible, 187

proof of unsatisfiability, 81

purification, 30

region, 187

resolution proof, 81

resolution proof of unsatisfiability, 81

resolution refutation, 81

Satisfiability Modulo Theories, 11

SBE, 184

single-block encoding, 184

SMT(T ), 15

SMT solvers, 11

software model checking, 183

stably-infiniteness, 14

static learning, 42

summary constraint, 129

term, 13

i-pure, 30

i-term, 29

alien, 30

theory, 14

arrays, 26

bit vectors, 27

combination, 28

DTC, 33

Nelson-Oppen, 31

conflict set, 17

deduction, 17

difference logic, 24

equality, 22

linear arithmetic, 23

Nelson-Oppen, 31

UTVPI, 25

tightening, 62, 63

240



INDEX

tightening summarization, 142

unsatisfiable core, 80

extractor, 95

minimal, 81

minimum, 81

variable

T -variable, 15

Boolean, 15

dependent, 48

independent, 48

initially basic, 48

initially non-basic, 48

241


	Introduction
	I MathSAT: an Efficient SMT Solver
	Background
	The SMT problem
	Notation

	T-solvers
	Modern Lazy SMT Solvers
	The Online Lazy SMT Schema

	Some Relevant Theories in SMT
	Equality and Uninterpreted Functions
	Linear Arithmetic
	Difference logic
	Unit-Two-Variable-Per-Inequality
	Arrays
	Bit vectors

	SMT for Combinations of Theories
	SMT(T 1T 2) via Theory Combination
	SMT(EUFT) via Ackermann's Reduction


	Details on MathSAT
	Overview
	The preprocessor
	Interaction between the DPLL engine and T-solvers
	Adaptive Early Pruning

	The EUF-solver
	The LA(Q)-solver
	High-level view of the Dutertre-de Moura algorithm
	Reducing the cost of pivoting operations
	Reducing the number of pivoting steps
	Experimental evaluation

	The LA(Z)-solver
	The Diophantine equation handler
	The Branch and Bound module

	Other Theory Solvers
	The AR-solver
	The DL-solver
	The UTVPI-solver

	Combination of Theories


	II Extended SMT Functionalities
	Extraction of Unsatisfiable Cores
	State of The Art
	Definitions
	Techniques for unsatisfiable-core extraction in SAT
	Techniques for unsatisfiable-core extraction in SMT

	A novel approach: Lemma-Lifting
	The main ideas
	Extracting SMT cores by Lifting Theory Lemmas
	Discussion

	Empirical Evaluation
	Unsat-core extraction with PicoSat
	Using different Boolean unsat-core extractors


	Generation of Craig Interpolants
	Background and State of the Art
	From SMT(LA(Q)) solving to SMT(LA(Q)) interpolation
	Interpolation with non-strict inequalities
	Interpolation with strict inequalities and disequalities
	Obtaining stronger interpolants

	From SMT(DL) solving to SMT(DL) interpolation
	From SMT(UTVPI) solving to SMT(UTVPI) interpolation
	Graph-based interpolation for UTVPI(Q)
	Graph-based interpolation for UTVPI(Z)

	Computing interpolants for combined theories via DTC
	Background
	From DTC solving to DTC Interpolation
	Discussion
	Generating multiple interpolants

	Experimental evaluation
	Description of the benchmark sets
	Comparison with the state-of-the-art tools available
	Graph-based interpolation vs. LA(Q) interpolation



	III Exploiting SMT for Software Verification
	Software Model Checking via Large-Block encoding
	Background
	Programs and Control-Flow Automata
	Predicate Abstraction
	ART-based Software Model Checking with SBE

	Large-Block Encoding
	Summarization of Control-Flow Automata
	LBE versus SBE for Software Model Checking

	Related Work
	Experimental evaluation
	Description of the benchmark programs
	Comparison with Blast
	Discussion of results
	Comparison with SatAbs


	Conclusions
	Bibliography


