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We analyze the existence of fixed points for mappings defined on complete metric spaces
(X,d) satisfying a general contractive inequality of integral type. This condition is analo-

gous to Banach-Caccioppoli’s one; in short, we study mappings f : X — X for which there
exists a real number ¢ €]0,1[, such that for each x,y € X we have fg(fx’fy) @(t)dt <

Cj(t)i(x,y) @ (t)dt, where @ : [0,+o0[— [0,+00] is a Lebesgue-integrable mapping which is
summable on each compact subset of [0, +oo[, nonnegative and such that for each € > 0,
$ewadt>o.

2000 Mathematics Subject Classification: 54H25, 47H10.

1. Introduction. The first important result on fixed points for contractive-type
mappings was the well-known Banach-Caccioppoli theorem, published for the first
time in 1922 in [1] (see also [3]). In the general setting of complete metric spaces this
theorem runs as follows (see [9, Theorem 1.2.2]).

THEOREM 1.1. Let (X,d) be a complete metric space, c €10,1[, and let f : X — X be
a mapping such that for each x,y € X,

d(fx,fy) <cd(x,y); (1.1)

then f has a unique fixed point a € X such that for each x € X, lim,,_. ,  f"*x = a.

After this classical result Kannan in [4] analyzed a substantially new type of con-
tractive condition. Since then there have been many theorems dealing with mappings
satisfying various types of contractive inequalities. Such conditions involve linear and
nonlinear expressions (rational, irrational, and of general type). The interested reader
who wants to know more about this matter is recommended to go deep into the survey
articles by Rhoades [6, 7, 8] and Meszaros [5], and into the references therein.

The aim of this paper is to analyze the existence of fixed points for mappings f
defined on a complete metric space (X, d) satisfying a contractive condition of integral
type (see (2.1) below).

First we introduce the matter and we present Banach-Caccioppoli fixed point theo-
rem; Section 2 contains the main result. At the end of the paper some remarks and
examples concerning this kind of contractions are given.

In the sequel, N will represent the set of natural numbers (starting from 1), R the
set of real numbers, and R* the set of nonnegative real numbers.
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2. Main results. The following theorem is the main result of this paper; the proof,
which proceeds by steps, is based on an argument similar to the one used by Boyd
and Wong [2, Theorem 1].

THEOREM 2.1. Let (X,d) be a complete metric space, c €10,1[, and let f : X — X be
a mapping such that for each x,y € X,

a(fx.fy) a(x,y)
J cp(t)dtscj @(t)dt, (2.1)
0

where @ : [0,+00[— [0, +c0] is a Lebesgue-integrable mapping which is summable (i.e.,
with finite integral) on each compact subset of [0, + [, nonnegative, and such that for
each € > 0, f(f(p(t)dt > 0; then f has a unique fixed point a € X such that for each
x e X, lim, ., f"x =a.

PROOF
STEP 1. We have

d(ffx,f+1x) d(x,fx)
I @(t)dt SC"J @ (t)dt. (2.2)
0

This follows immediately by iterating (2.1) n times:

J‘d(f"X,f"“X) Jd<fn—1xyfnx)

d(x,fx)
@(t)dt <c . pt)dt<--- SC"I @(t)dt. (2.3)

0

As a consequence, since ¢ € ]0,1[, we further have

d(f"x,f”*lx)
J @(t)dt — 0+ asn— +oo, (2.4)

0

STEP 2. We have d(f"x, f**1x) — 0 as n — +. Suppose that
nliIP supd (f"x, f*"x) =¢e>0, (2.5)

then there exist a v, € N and a sequence (™ x),y, such that d(f™x, f™*x) — &>
0asv — +ooand d(f™x,f"*1x) = &/2 for each v > v, thus (by Step 1 and the sign
of @) we have the following contradiction:

dA(fmx, frvly)

&/2
0= lim cp(t)dtzj @ (t)dt > 0. (2.6)
0

V— 400 0
STEP 3. For each x € X(f"x)nen is a Cauchy sequence, that is
Ve>0 AveeN|VmmeN, m>n>v. d(fMx,f"x) <e. 2.7)

Suppose that there exists an € > 0 such that for each v € N there are m,,n, € N,
with m, > n, > v, such that d(f™vx, f"™"x) > ¢, then we choose the sequences
(my)ven and (n,)yen such that for each v € N m,, is “minimal” in the sense that
d(fmx, fvx) = e but d(fx, fvx) < e foreach h € {n, +1,...,m, —1}.
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Now we analyze the properties of d(f™ x,f"x) and d(f™*1x, f*lx). First
of all, we have d(f™ x, f"x) — €+ as v — +oo, in fact by the triangular inequality
and Step 2

e<d(fm™x, fmx)
<d(f™x, frlx) +d (™, Y x) (2.8)
<d(f™x, frlx) +e L2 et
further there exists u € N such that for each natural number v > u, one has d (f™ *1x,
frvrlyx) < g in fact, if there exists a subsequence (Vi)xen < N such that d(f™« x,

f™tx) > ¢, then

£< d(fmvk+lx,fnvk+IX) Sd(fmvk+lx,fmka)

k—+oo (2.9)
+d (™, fx) +d (e, et i) /2 g,
and from (2.1)
d(fmvk+lx,fnvk+lx) d(fmvkx,fnvkx)
J @(t)dt < CJ @ (t)dt, (2.10)
0 0

letting now k — +co in both sides of (2.10), we have [; @ (t)dt < c [; @ (t)dt which is a
contradiction being ¢ €]0,1[ and the integral being positive. Therefore for a certain
u € N one has d(f™*lx, f™v*lx) < ¢ for all v > . Finally, we prove the stronger
property that there exist a 0. €]0,¢[ and a v, € N such that for each v > v, (v € N) we
have d(f™*lx, fv*lx) < e—0¢; suppose the existence of a subsequence (vi)gen S N
such that d(f™« ' x, f™*1x) - - as k — +oo, then from

d(fmkaX,f"VkHX) d(mek x,f""kx)
J J @ (b, 2.11)

pt)dt<c
0 0

letting k — +o0, we have again the contradiction that [; @ (t)dt < ¢ J; @ (t)dt. In con-
clusion of this step we can prove the Cauchy character of (f"x)nen (X € X); in fact
for each natural number v > v, (v as above)

e<d(f™x, ffx) <d(f™x, f™x)
+d(fmv+1x,fnv+1x)+d(fnv+lx’fnvx) (2.12)
<A(f™x, frix) + (e - 0e) +d (™ x, 0 x) e -0,
thus € < € — 0, which is a contradiction. This proves Step 3.
STEP 4. Existence of a fixed point. Since (X,d) is a complete metric space, there

exists a point a € X such that a = lim, ..« f"x; further a is a fixed point, in fact
suppose that d(a, fa) > 0, thus

0<d(a,fa)<d(a,f"'x)+d(f*'x, fa) —2-0, (2.13)
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in fact both d(a, f**'x) and d(f**1x, fa) converge to 0 as n — +co: for the first one
it is obvious, while for the second one we have

00

(p(t)dtL-

d(f"*x,fa)
J 0. (2.14)

da(fMx,a)
p(t)dt < cJ
0

Now if d(f"*'x, fa) does not converge to 0 as n — +oo, then there exists a subse-

quence (f™*1x),en € (f" 1x)nen such that d(f™*1x, fa) = ¢ for a certain & > 0;
thus we have the following contradiction:

@)dt == 0. (2.15)

Jdu’”“lx,fa)

&
0< J @((t)dt <
0 0

STEP 5. Uniqueness of the fixed point. Suppose that there are two distinct points
a,b € X such that fa =a and fb = b, then by (2.1) we have the contradiction

d(a,b) d(fa,fb) d(a,b) d(a,b)
O<J qa(t)dtzj (p(t)dtscj cp(t)dt<f @t)dt. (2.16)
0 0 0 0
This final step also proves that for each x € X, lim,_..» f"x = a = fa. The proof is
thus completed. |

3. Final remarks and examples. In this section, we give some remarks and exam-
ples concerning these contractive mappings of integral type, which clarify the connec-
tion between our result and the classical ones.

REMARK 3.1. Theorem 2.1 is a generalization of the Banach-Caccioppoli principle,
letting @ (t) =1 for each t > 0 in (2.1), we have

d(fx.f) d(x,y)
J e)dt=d(fx,fy) <cd(x,y) :cL @ (t)dt; (3.1)

thus a Banach-Caccioppoli contraction also satisfies (2.1). The converse is not true as
we will see in Example 3.6.

REMARK 3.2. We have used the idea of contractive mappings of integral type to
generalize Banach-Caccioppoli’s theorem, but in a similar way we can generalize other
results also related to contractive conditions of some kind, such as the ones contained
in [5, 6, 7, 8].

REMARK 3.3. Theorem 2.1 is no more true if we admit zero value almost every-
where near zero for the mapping ¢; we show it with the following example. In a
similar way, we cannot admit negative value for g, as in Example 3.5.

EXAMPLE 3.4. Let f:N - Nand @ :R* — R* be defined by

aef |1 ifx#1, aef |eVI7D it > 1,
X = L) = 3.2
f 12 if x=1; @) 0 ifte[0,1], (3-2)

and let d : N2 — R* be the Euclidean metric restricted to N (so that (N,d) becomes a
complete metric space). Now, since for each x,y € N, d(fx, fy) <1, we have for an
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arbitrary ¢ €10,1[

’[d(fx,fy)

1 d(x,y)
@(t)dtsjo @(t)dtzOgcJO @ (t)dt; (3.3)

thus (2.1) is satisfied for all ¢ €]0,1[, but f has no fixed points.

EXAMPLE 3.5. Let f:R" — R* be defined by fx := x+1 and let ¢ = —1, then for
an arbitrary ¢ € ]0,1[ we have (d is the Euclidean distance function)

d(fx,fy) d(x,y)
J @t)dt = -d(fx,fy)=-d(x,y) < -cd(x,y) = cJO @(t)dt; (3.4)

thus (2.1) is satisfied with ¢ = —1 and for all ¢ €]0,1[, but f, being a translation on
R*, has no fixed points.

EXAMPLE 3.6. Let X := {1/n | n € N} U {0} with metric induced by R : d(x,y) :=
|x — |, thus, since X is a closed subset of R, it is a complete metric space. We consider
now a mapping f : X — X defined by

def L ifx=lneN,
fx = n+1 n (3.5)
0 if x =0,

then it satisfies (2.1) with @ (t) = t/t2[1 ~logt] for t > 0, (0) =0, and ¢ = 1/2. In
this context one has fOT @ (t)dt = T/, so that (2.1), for x # v, is equivalent to

A(fx, fy)VAIXIY) < cd(x,y)Hax>), (3.6)

The next step is thus the proof of the validity of (3.6): let m,n € N with m > n and
let x =1/n, y = 1/m, then we have

1 1 (VI meD=1/(m+1)]

vd(fx.fy) _ |~ _
a(fx,fv) n+l m+1

3.7)
B |: m-n :|(n+1)(m+1)/(m—n)
T ln+D(m+1) ’
while on the other hand,
1/|1/n—-1/m| _ nm/(m-n)
dix,yyvaee - [ Lo L - [ (3.8)
n m nm
We now show that
[ m-n ](n+1)(m+1)/(m—n) - l [m_n]nm/(m—n) 3.9
(n+1)(m+1) 2L nm ’ )
or equivalently
[ m-n :|(n+m+1)/(m7n) [ nm ]nm/(mfn) - l (3.10)
nm+1)(m+1) m+1)(m+1) -2 )
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This last inequality is indeed true; analyzing the first member, we have

nm/(m-n)
[ 1m ] <1, (3.11)

n+1)(m+1)

sincenm< (n+1)(m+1) and nm/(m-mn) > 0, and also

[ m-mn

(n+m+1)/(m—-n)
n+1)(m+1) ]

1
< > (3.12)

the base at the first member of (3.12) is lesser than 1/2 (since for all m,n € N we have
m <3n+nm+1, and thus 2(m—n) < (n+1)(m+ 1)), while the exponent is greater
than 1 (since for all m,n € N, n+m+ 1 > m —n is trivially satisfied). On the other
hand, taking x = 1/n (n € N) and v = 0 we have

d vage sy _ [ LT L[] L, Ld(x ). 313
(fx,f¥) o <5y (%, y) ; (3.13)

because for each n € N we have

il
n+1 n+1
sincen/(n+l)<land1l/(n+1) <1/2.
Therefore such mapping f satisfies condition (3.6) with ¢ = 1/2 and therefore (2.1)
with the same ¢ and for @ defined by @ (t) = t'/1=2[1-logt] fort > 0 and @ (0) = 0, but

sup M =1, (3.15)

xyvexix-y; A(x,¥)

(3.14)

N | —

thus it is not a Banach-Caccioppoli contraction.
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