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I. LORENTZ GROUP

We consider first the Lorentz group O(1, 3) with infinitesimal generators Jµν and the

associated Lie algebra given by

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ) (1)

In quantum field theory, we actually consider a subgroup of O(1, 3), the proper orthochronous

or restricted Lorentz group SO+(1, 3) = {Λ ∈ O(1, 3)| det Λ = 1 and Λ0
0 ≥ 0}, which ex-

cludes parity and time-reversal transformations that are thus considered as separate, discrete

operations P and T . A generic element Λ of the Lorentz group is given by exponentiating

the generators together with the parameters1 of the transformation, Λ = exp(−iωµνJ
µν/2).

The Lorentz group has both finite-dimensional and infinite-dimensional representations.

However, it is non-compact, therefore its finite-dimensional representations are not unitary

(the generators are not Hermitian). The generators of the infinite-dimensional representa-

tions can be chosen to be Hermitian.

A. Finite-dimensional representations

We first study the finite-dimensional representations of SO+(1, 3). These representations

act on finite-dimensional vector spaces (the base space). Elements of these vector spaces are

said to transform according to the given representation.

Trivial representation. In the trivial representation, we have the one-dimensional

representation Jµν = 0. Hence any Lorentz transformation Λ is represented by 1. This

representation acts on a one-dimensional vector space whose elements are 1-component ob-

jects called Lorentz scalars. One can thus say that the trivial representation implements a

Lorentz transformation Λ on a scalar φ by the rule φ
Λ→ 1 ·φ = φ. The trivial representation

is denoted by (0, 0).
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Vector representation. In the vector or 4-vector representation, each generator Jµν is

represented by a 4× 4 matrix (J µν)ρ
σ, which acts on a four-dimensional vector space whose

elements are 4-component objects called Lorentz four-vectors. The vector representation is

thus four-dimensional. The explicit form of the matrices is (J µν)ρ
σ = i(gµρδν

σ − gνρδµ
σ).

A Lorentz transformation Λ is now implemented on a 4-vector V ρ by the rule V ρ Λ→

(e−iωµνJ µν/2)ρ
σV

σ where the J µν in the argument of the exponential is now a matrix, so

that we exponentiate a matrix to get another matrix which multiplies the 4-vector to give

the transformed 4-vector. Since the elements of the Lorentz group SO+(1, 3) are actually

matrices2, it is easily seen that the matrices of the vector representation are nothing but

the SO+(1, 3) matrices themselves, i.e. (e−iωµνJ µν/2)ρ
σ = Λρ

σ where Λρ
σ is the usual Lorentz

transformation matrix. A representation of a matrix group which is given by the elements

(matrices) of the group itself is called the fundamental representation. Hence the vector

representation is the fundamental representation of the Lorentz group. The vector represen-

tation is denoted by (1
2
, 1

2
).

Tensor representations. Tensor representations are given by the direct (tensor) prod-

uct of copies of the vector representation. They act on the set of tensors of a given rank,

which is indeed a linear vector space. These tensors are called Lorentz 4-tensors. For exam-

ple, consider (2, 0) tensors, that is, tensors with two contravariant (upper) indices T ρσ. An

element of the Lorentz group Λ will be represented by a 16× 16 matrix Λρσ
ρ′σ′ ≡ Λρ

ρ′Λσ
σ′ ,

which is clearly seen to be the direct product of two 4 × 4 matrices of the vector repre-

sentation. As a result, a tensor T ρσ will transform as T ρσ Λ→ Λρσ
ρ′σ′T ρ′σ′

= Λρ
ρ′Λσ

σ′T ρ′σ′
,

which reproduces the usual Lorentz transformation law for a tensor. Representations for

higher-rank tensors are constructed in the same way, with additional copies of the vector

representation in the direct product.

Adjoint representation. The Lie algebra of Eq. (1) can be written as [Jµν , Jρσ] =

ifµνρσ
αβJ

αβ where fµνρσ
αβ are the structure constants. If we define 16 × 16 matri-

ces (Jµν)ρσ
αβ ≡ −ifµνρσ

αβ, it is possible to show from the Jacobi identity [A, [B,C]] +

[B, [C,A]] + [C, [A,B]] = 0 satisfied by any matrices A,B,C that the matrices (Jµν)ρσ
αβ

satisfy the Lorentz algebra. We have thus constructed a representation of the generators

of the Lorentz group from the structure constants of the group: this is called the adjoint

representation. Its dimension is the number of generators of the group. However, since the

generators Jµν of the Lorentz group are antisymmetric Jµν = −Jνµ, there are actually only
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4 · (4 − 1)/2 = 6 independent3 generators (corresponding to the 3 rotations and 3 boosts)

so that the adjoint representation of the Lorentz group is six-dimensional. In other words,

we could write the Lie algebra as [J̃a, J̃ b] = ifab
cJ̃

c where a, b, c = 1, . . . , 6, by defining

(J̃1, J̃2, J̃3) = J where J i ≡ 1
2
εijkJ jk are the generators of rotations, and (J̃4, J̃5, J̃6) = K

where Ki ≡ J0i are the generators of boosts. With this notation, the adjoint representation

is composed of 6× 6 matrices (J̃a)b
c ≡ −ifab

c.

Spinorial representations. Spinorial representations of the Lie group SO(n,m) are

given by representations of the double cover4 of SO(n,m) called the spin group Spin(n,m).

It is possible to show that the double cover of the restricted Lorentz group SO+(1, 3) is

Spin+(1, 3) = SL(2,C) where SL(2,C) is the set of complex 2× 2 matrices with unit deter-

minant. We can thus construct a first spinorial representation of SO+(1, 3) by the matrices

M of SL(2,C) themselves, i.e. the fundamental representation of SL(2,C) is a spinorial

representation of SO+(1, 3) called (1
2
, 0). The vector space upon which this representation

acts is the set of two-component objects (complex 2 × 1 column vectors) called spinors,

or more precisely left-handed Weyl spinors for the fundamental representation. If we take

the complex conjugated matrices M∗, this defines another inequivalent representation of

SL(2,C) called the anti-fundamental representation. We can thus construct a second spino-

rial representation of SO+(1, 3) called (0, 1
2
). Objects that are acted upon in this represen-

tation are now called right-handed Weyl spinors. These two representations are thus seen

to be 2-dimensional. By taking the direct sum (1
2
, 0) ⊕ (0, 1

2
) of the two representations,

we obtain a 4-dimensional (reducible) representation of the Lorentz group which acts upon

four-component objects called Dirac spinors.

In nonrelativistic quantum mechanics, invariance under Lorentz boosts is not required

so that only SO(3), the rotational subgroup of SO+(1, 3), is relevant. In this case, the

double cover of SO(3) is Spin(3) = SU(2) so that the relevant spinorial representations are

representations of SU(2), leading to the usual spinors of quantum mechanics. Since SO(3)

and SU(2) are compact5 Lie groups, their generators can be chosen to be Hermitian.

Summary of finite-dimensional representations:

1. For a scalar φ, element of a 1-dimensional vector space R, we have

φ
Λ→ ΛSφ = φ

where ΛS = exp(−iωµνJ
µν/2) = 1 with Jµν = 0 are trivial 1× 1 matrices.
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2. For a vector V ρ, element of a 4-dimensional (ρ = 0, 1, 2, 3) vector space R4, we have

V ρ Λ→ (ΛV )ρ
σV

σ

where ΛV = exp(−iωµνJ µν/2) with (J µν)ρ
σ = i(gµρδν

σ − gνρδµ
σ) are 4× 4 matrices.

3. For a left-handed Weyl spinor ψα, element of a 2-dimensional (α = 1, 2) vector space

C2, we have

ψα
Λ→ (ΛL)αβψβ

where ΛL = exp(−iωµνS
µν/2) with Sµν = Jµν are 2 × 2 matrices such that Sij ≡ 1

2
εijkσk

and S0i ≡ − i
2
σi.

4. For a right-handed Weyl spinor6 ψα, we have similarly

ψα
Λ→ (ΛR)αβψβ

where ΛR = exp(−iωµνS
µν/2) with Sij ≡ 1

2
εijkσk again but now S0i ≡ i

2
σi.

5. For a Dirac spinor Ψa, element of a 4-dimensional (a = 1, 2, 3, 4) vector space C4, we

have

Ψa
Λ→ (ΛD)abΨb (2)

where ΛD = exp(−iωµνS
µν/2) but now the Sµν are 4× 4 matrices given by Sµν = i

4
[γµ, γν ].

They are actually the direct sum of the 2 × 2 Sµν matrices for the left-handed and right-

handed Weyl spinors:

Sij =
1

2
εijk

 σk 0

0 σk

 ≡ 1

2
εijkΣk ; S0i = −1

2

 σi 0

0 −σi

 ,

so that a Dirac spinor (also called bispinor) transforms like

 ψL

ψR

 where ψL/R is a

left/right-handed Weyl spinor.

B. Infinite-dimensional representations

Field representations. So far we have been dealing only with finite-dimensional rep-

resentations, that acted on finite-dimensional vector spaces whose elements were scalars,

vectors, tensors, spinors, giving us respectively the scalar, vector, tensor and spinorial rep-

resentations. These objects are however only ‘constants’: in quantum field theory, we deal
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with fields, which are functions of spacetime. Therefore, a generic multicomponent field Φa

will not only transform as

Φa
Λ→Mab(Λ)Φb

where M(Λ) corresponds to the ΛS,V,L,R,D matrices of the finite-dimensional representations,

but since it is a function of coordinates Φa(x) and these coordinates (being Lorentz 4-vectors)

are affected by the Lorentz transformations as xµ Λ→ Λµ
νx

ν where Λµ
ν ≡ (ΛV )µ

ν , then we

will actually have

Φa(x)
Λ→Mab(Λ)Φb(Λ

−1x) (3)

In other words, the contours of the function Φa(x) are ‘boosted’ as well by the Lorentz

transformation7. It is not difficult (by considering an infinitesimal Lorentz transformation,

for instance) to check that this transformation of coordinates in a generic field ψ(x) can be

implemented by

ψ(Λ−1x) = e−iωµνLµν/2ψ(x)

where now Lµν is a differential operator defined as

Lµν ≡ i(xµ∂ν − xν∂µ) (4)

i.e. we implement the transformation on coordinates by a (exponential-resummed) Taylor

expansion. It can be checked that the Lµν satisfy the Lorentz algebra Eq. (1). Since Lµν acts

on a space of functions ψ(x) which is an infinite-dimensional vector space, it corresponds to

an infinite-dimensional representation of the Lorentz algebra.

So we can put together both contributions to the transformation of the field Φa(x) under

a Lorentz transformation, and we obtain

Φa(x)
Λ→ (e−iωµνSµν/2)abe

−iωµνLµν/2Φb(x) (5)

where for simplicity, we will henceforth denote generically by Sµν all the finite-dimensional

representations of the infinitesimal Lorentz generators Jµν encountered in the previous sec-

tion (Sµν , J νν , ...) such that

• for a scalar field, Sµν = 0;

• for a vector field, (Sµν)ρ
σ ≡ (J µν)ρ

σ = i(gµρδν
σ − gνρδµ

σ);

• for a spinor (Weyl or Dirac) field, Sµν is given in 3.4.5. of the previous section.
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Now, since all the Sµν matrices are finite-dimensional and constant, we can put the two

factors of Eq. (5) into a single exponential, and write

Φa(x)
Λ→ (e−iωµνJµν/2)abΦb(x)

where

Jµν = Lµν + Sµν (6)

is now an infinite-dimensional representation of the Lie algebra of the Lorentz group. While

the Sµν have different forms corresponding to the different types of fields (scalars, vectors,

spinors, ...), Lµν always has the form given in Eq. (4). The representations of Eq. (6) act

on the space of fields Φa(x) and are called the field representations for the generators of the

Lorentz group.

Representations on 1-particle Hilbert space. So now we have representations of the

Lorentz group on fields, which are multicomponent functions of spacetime Φa(x). However,

there has actually been no mention of whether these fields are classical or quantum. In

other words, we use the representation theory of the Lorentz group to construct a Lorentz-

invariant Lagrangian for a given set of fields. However, this is independent of whether or not

we quantize the resulting field theory. If we quantize the theory, then we can construct still

other representations of the Lorentz group, formed by the set of unitary operators acting on

the quantum states belonging to the 1-particle Hilbert space of our quantum field theory.

Indeed, a famous theorem by Wigner, at the heart of the application of group theory to

quantum mechanics, asserts that the symmetry group of the Hamiltonian (or the Lagrangian,

better suited for a relativistic theory) can be represented by a group of unitary8 symmetry

operators acting on the Hilbert state space. Correspondingly, the algebra of infinitesimal

generators (in the case of a continuous symmetry) is represented by an algebra of Hermitian

operators. In the case of the Lorentz group, to each element of the Lorentz group Λ we assign

a unitary operator U(Λ) which implements this transformation on the 1-particle states of

the free field theory. For example, consider a 1-fermion state |p, s〉 ≡
√

2Epa
s†
p |0〉 with

momentum p and spin s. We require that9

U(Λ)|p, s〉 ≡ |Λp, s〉 =
√

2EΛpa
s†
Λp|0〉

Since the vacuum is Lorentz invariant U(Λ)|0〉 = |0〉, this implies that the cre-
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ation/annihilation operators transform as

U(Λ)as†
p U

−1(Λ) =

√
EΛp

Ep

as†
Λp ; U(Λ)as

pU
−1(Λ) =

√
EΛp

Ep

as
Λp.

To write down an algebra of Hermitian operators to represent the abstract Lorentz algebra

Eq. (1), it is easier to work with the equivalent six generators J̃a defined in the section on

the adjoint representation, namely J i ≡ 1
2
εijkJ jk and Ki ≡ J0i. The corresponding algebra

of Hermitian operators is defined by the following commutation relations, which all follow

directly from Eq. (1):

[J i, J j] = iεijkJk ; [J i, Kk] = iεijkKk ; [Ki, Kj] = −iεijkJk.

If we define the combinations J+ = 1
2
(J + iK) and J− = 1

2
(J− iK), it is straightforward to

show that both sets (J1
±, J

2
±, J

3
±) satisfy an independent su(2) algebra,

[J i
±, J

j
±] = iεijkJk

± ; [J i
±, J

j
∓] = 0, (7)

so the Lie algebra of the Lorentz group is isomorphic to su(2)× su(2).

The operators J2
+ and J2

− commute with all the generators: such operators are called

Casimir operators or Casimir invariants. As follows from the su(2) commutation relations,

they have eigenvalues j±(j±+1) with j± = 0, 1
2
, 1, 3

2
, . . . If we now consider finite-dimensional

representations of the two su(2) algebras of Eq. (7), i.e. the usual spinorial representations

of quantum mechanics, we see that we recover the finite-dimensional representations of the

Lorentz algebra, and we also see that they can be labeled by the pair of integers/half-integers

(j+, j−). This explains the notation we have been using: (0, 0) for scalars, (1
2
, 1

2
) for vectors,

(1
2
, 0) and (0, 1

2
) for Weyl spinors, (1

2
, 0)⊕ (0, 1

2
) for Dirac spinors.

II. POINCARÉ GROUP

In the Poincaré group, one adds spacetime translations to the set of (homogeneous)

Lorentz transformations:

xµ (Λ,a)−→ Λµ
νx

ν + aµ

where aµ ∈ R4. The Poincaré group is thus also called the inhomogeneous Lorentz group.

The proper orthochronous or restricted Poincaré group ISO+(1, 3) is a subgroup of the full



8

Poincaré group that contains only proper orthochronous Lorentz transformations. It is given

by a semidirect product,

ISO+(1, 3) ∼= SO+(1, 3) o R4

where the translation subgroup R4 is a normal subgroup10. To generate translations, one

has to add a new generator P µ to the Lorentz algebra Eq. (1) to form the Poincaré algebra

which reads

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ)

[P µ, P ν ] = 0

[P µ, Jρσ] = i(gµρP σ − gµσP ρ)

A correct relativistic quantum field theory has to be not only Lorentz covariant, but Poincaré

covariant as well.

Field representations. The field representations of the Poincaré algebra are

Jµν = Lµν + Sµν = i(xµ∂ν − xν∂µ) + Sµν

as previously, and

P µ = i∂µ

for the generator of translations.

Representations on 1-particle Hilbert space. On 1-particle Hilbert space, the gen-

erators of the above Poincaré algebra are represented by Hermitian operators (hence the

elements of the Poincaré group by unitary operators). In order to do that, it is easier to

work with the equivalent set of generators J i, Ki, P i and P 0. As explained before, J i and

Ki have a clearer physical meaning than the abstract generators Jµν ; J i are the generators

of rotations and Ki are the generators of boosts. In addition, P i are the generators of

space translations and P 0 is the generator of time translations. It follows that P will be

represented by the total momentum operator P, P 0 will be represented by the Hamiltonian

operator H, and J will be represented by an angular momentum operator J.

A convenient way to label representations consisting of operators acting on Hilbert space

is by the eigenvalues of Casimir operators (or Casimir invariants), which are operators that

commute with all the generators of the algebra. In the case of the Poincaré algebra, there

are two Casimir operators P µPµ and W µWµ where

W µ = −1

2
εµνρσJνρPσ
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is the Pauli-Lubanski pseudovector. We now consider two cases, depending on whether the

particle in the 1-particle state |p〉 ∼ a†p|0〉 is massive or massless.

• Massive representations : on a massive 1-particle state, P µPµ = P 2 has eigenvalue

p2 = E2
p − |p|2 = m2 where m is the mass of the particle, and W µWµ has eigenvalue

−m2j(j+1) with j the spin of the particle. The 1-particle states are actually |p, j〉 =√
2Epa

j†
p |0〉 in this case. The representations can be labeled by two labels (m, j) where

j = 0, 1
2
, 1, 3

2
, . . . Another way to see this is that if we bring P µ to the form (m,0) by a

Lorentz transformation, P µ is unchanged by arbitrary spatial rotations. This subgroup

of the Poincaré group is called the little group. In this case, it is the group of rotations

SO(3); however, to allow for spinorial representations, we choose the little group to be

the double cover SU(2). It is well-known that the irreducible representations of SU(2)

are labeled by the spin quantum number j. Thus to completely specify a massive

representation of the Poincaré group, we have to provide two labels: the mass m, and

the spin j which indexes the representation of the little group SU(2), also called the

small representation. Each spin-j representation is (2j + 1)-dimensional; therefore a

massive particle of spin j has 2j + 1 degrees of freedom.

• Massless representations : on a massless 1-particle state, obviously P 2 has eigenvalue

0. In this case, P µ can be reduced to P µ = (ω, 0, 0, ω) where ω is the eigenvalue

of P 0. The transformations that leave this P µ invariant are rotations in the (x, y)

plane, that is, elements of SO(2). We choose the little group to be the double cover

U(1) which has only one generator. Its 1-dimensional representations are labeled by

a single index h which corresponds to the helicity of the particle. In principle, each

massless particle has thus only one degree of freedom. However, for massless particles

which participate only in parity-conserving interactions such as the photon (h = 1)

and graviton (h = 2), we group the +h and −h representations together since parity

transforms positive to negative helicity and vice-versa. Thus the photon and graviton

have two degrees of freedom.

1 The antisymmetric tensor of parameters ωµν is given from the usual rotation θ = (θ1, θ2, θ3)

and boost β = (β1, β2, β3) parameters by ωij = εijkθk and ω0i = βi.
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2 The Lie groups O(n,m), O(n) and their various subgroups SO(n,m), SO(n) and others are

actually all subgroups of a matrix group, the general linear group GL(n,R) which is nothing

but the set of real invertible n× n matrices. For example, O(1, 3) is a subgroup of GL(4,R).

3 The number of independent components of a second-rank tensor is n(n+ 1)/2 for a symmetric

tensor Sµν = Sνµ and n(n − 1)/2 for an antisymmetric tensor Aµν = −Aνµ, where n is the

dimension, i.e. µ, ν = 1, . . . , n.

4 For n > 2, Spin(n,m) is simply connected so that it is also the universal covering group of

SO(n,m).

5 For example, SU(2) is homeomorphic to the 3-sphere S3 = {(x, y, z, w) ∈ R4|x2 +y2 +z2 +w2 =

1} which is a compact manifold; SO(3) is homeomorphic to the real projective space RP 3 which

is also a compact manifold (think of RP 3 as a cube [0, 1]×[0, 1]×[0, 1] with antiperiodic boundary

conditions in all three directions). In general, RPn ∼= Sn/Z2 where Z2 is the cyclic group of

order 2 and Sn is the double cover of RPn. One can thus write SO(3) ∼= SU(2)/Z2 which makes

clear the meaning of ‘double cover’: SU(2) ‘covers’ the operations of SO(3) twice, so that we

have to remove the distinction between two different elements of SU(2) (such as R(2π) = −1

and R(4π) = 1) which give the same element of SO(3). To do that, we ‘divide’ by Z2 = {1,−1}.

In the same spirit we can write SO+(1, 3) ∼= SL(2,C)/Z2. In analogy with RPn, we see that

viewed as a manifold, SO+(1, 3) is a projective space and we write SO+(1, 3) ∼= PSL(2,C) where

PSL(2,C) = SL(2,C)/Z2 is the projective special linear group.

6 A technical detail following up on our discussion of the representations of SL(2,C). A left-handed

Weyl spinor ψα transforms according to the matrices M of the fundamental representation of

SL(2,C) as ψα = Mα
βψβ . However, a right-handed Weyl spinor is usually rather denoted by χ̄α̇

(dotted spinor) and will transform according to the complex conjugated matrices M∗, which

belong to the (inequivalent) anti-fundamental representation of SL(2,C), as χ̄α̇ = χ̄β̇(M∗−1)β̇
α̇.

7 This is the usual Wigner’s convention for symmetry operators in quantum mechanics: to each

coordinate transformation R that acts on the coordinates as x R→ Rx, we assign a symmetry

operator PR that acts on quantum states as |ψ〉 R→ PR|ψ〉 such that 〈r|PR|ψ〉 = 〈R−1r|ψ〉, or

equivalently on functions as ψ(x) R→ PRψ(x) ≡ ψ(R−1x).

8 If we include time-reversal symmetry, then we must allow for antiunitary operators as well.

However we restrict our discussion here to orthochronous Lorentz transformations as explained

earlier.
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9 Note that we could have chosen U(Λ)|p, s〉 ≡ |Λ−1p, s〉 to stick blindly to our previous con-

vention. However, our previous convention applied to fields which are functions Φa(x) of some

coordinates x. While we can still consider a 1-particle state as an abstract function of some

coordinates p, it actually describes a physical particle with momentum p wandering around in

vacuum. Thus applying a Lorentz transformation U(Λ) to such a state means to rotate and boost

this particle’s momentum according to Λ: p Λ→ Λp. The resulting state thus has a particle with

momentum Λp, i.e. U(Λ)|p, s〉 = |Λp, s〉. The only drawback of this approach is that when we

quantize our field Ψa(x), the associated field operator Ψ̂a(x) that is expanded in creation and an-

nihilation operators will transform in a way opposite to the field itself. For example, the operator

for a free Dirac field will transform as Ψ̂a(x)
Λ→ U(Λ)Ψ̂a(x)U−1(Λ) = (Λ−1

D )abΨ̂b(Λx) whereas we

know from Eqs. (2) and (3) that the field itself transforms as Ψa(x)
Λ→ (ΛD)abΨb(Λ−1x). How-

ever, the relative orientation of the spinor transformation ΛD and the coordinate transformation

Λ is correct.

10 The translation subgroup {(0, a)} is normal because (Λ′, a′)−1(0, a)(Λ′, a′) = (0,Λ′−1a) is still a

translation for any Poincaré transformation (Λ′, a′). However, the Lorentz subgroup {(Λ, 0)} is

not normal because (Λ′, a′)−1(Λ, 0)(Λ′, a′) = (Λ′−1ΛΛ′, (Λ′−1Λ− Λ′−1)a′) which is not a homo-

geneous Lorentz transformation. When only one of the factors in the group product is normal,

one speaks of a semidirect group product o instead of a direct group product ×.


