

Blocking Techniques
for efficient Entity Resolution

over large, highly heterogeneous Information Spaces

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

DOKTOR DER NATURWISSENSCHAFTEN
Dr. rer. nat.

genehmigte Dissertation
von

Dipl. Ing. Georgios Papadakis

geboren am 2. Juli 1984 in Heraklion, Kreta, Griechenland

2013

Referent: Prof. Dr. Wolfgang Nejdl
Korreferent: Prof. Dr. Themis Palpanas
Tag der Promotion: 7 Juni 2013

Acknowledgments

This dissertation consolidates my research on Entity Resolution in the time period

between August 2008 and August 2012. In these four years, many people have

influenced and contributed to my work, both directly and indirectly. I am deeply

grateful to all of them, especially to those mentioned by name in the following.

First and foremost, I would like to thank my advisor, Prof. Wolfgang Nejdl, for

giving me the opportunity to join the lively and inspiring team of the L3S Research

Center. I am particularly grateful for the active support he continued to offer me,

even after I took the big decision to move back to Greece, in December 2010.

Indisputably, this work would have been impossible without his help.

I am also sincerely indebted to my mentor at L3S , Claudia Niederée, for she

was the one that encouraged me to pursue this specific topic in the context of my

PhD studies. She has been apt to provide valuable feedback and guidance through-

out these four years, particularly during my first steps.

I would also like to express my gratitude to Prof. Themis Palpanas for the

close collaboration and the insightful discussions we had during the last 3 years.

He has always provided me with interesting comments and ideas for improving and

extending my work.

Quite crucial was also the support of L3S ’ Greek team, consisting of Ekaterini

Ioannou, Odysseas Papapetrou and Dimitris Skoutas. Their help and professional

advice were invaluable while working at L3S , whereas their company during free

time made life in Hanover much funnier and easier. The same applies to most of

my L3S colleagues, especially to Ricardo Kawase, Marco Fisichella and Gian Luca

Volpato. Working and hanging out with L3S people has been a great experience

that is etched in my memory and personality.

Special thanks goes to all my co-authors, as well. It has always been a pleasure

to discuss and work with them on challenging research issues. I would also like to

thank my office-mates at L3S , especially Sukriti Ramesh and Nina Tahmasebi, for

V

VI

the quiet, pleasant and inspiring environment we had at the 15th floor.

Last but not least, I would like to express my deepest respect and appreciation

for my people in Greece. They fully supported me after my return to Athens, even

though they all disagreed with my choice. This pertains particularly to my parents,

Urania and Antony, who always provided me with ample financial and moral help,

and to my sister, Katerina, who has taken care of me from the beginning of my un-

dergraduate studies. As a member of this family, I already regard Christina-Maria

Kastorini, who has stood firmly by me the last two years. I will be eternally grate-

ful to all of you.

Athens, December 2012

Zusammenfassung

Aufgrund der guten Unterstützung für ihre Publikation und der weitgehend au-

tonomen und verteilten Art ihrer Produktion ist in den letzten Jahre ein Boom

im Bereich von Daten im Web (Web Data) zu beobachten: Unternehmen und

Organisationen jeder Größe, einzelne Benutzer sowie automatische Extraktion-

swerkzeuge tragen ein schnell anwachsendes Volumen von diversen, aber auch

sehr heterogenen und verrauschten Informationen bei. Entity Resolution (ER), d.h.

die Erkennung von Duplikaten, hilft dabei, die Entropie zu verringern und die frag-

mentierten Daten im Web effektiver zu nutzen, indem sie Repräsentationen von En-

titäten identifiziert, die sich auf die gleichen Objekte der realen Welt beziehen. Um

ER für große und sehr große Datenmengen zu skalieren, kommt typischerweise

der Ansatz des Blockings zum Einsatz, d.h. die Aufteilung der zu untersuchen-

den Datenmenge in Blöcke von Duplikatkandidaten. Blocking-Methoden beruhen

jedoch auf der Nutzung von Schemainformation, wodurch sie in der betrachteten

hoch-heterogenen Situation der Web-Daten nicht einsetzbar sind. Somit werden

neue Ansätze benötigt.

Diese Dissertation führt eine innovative Methode des Blocking ein, welche

inhärent auf die sehr großen, sehr heterogenen und verrauschten Daten im Web

eingestellt ist. Sie geht damit über existierende Blocking-Methoden hinaus. Sie

setzt sich aus drei wichtigen sich ergänzenden Bausteinen zusammen: Zunächst

kommt für den Aufbau der Blöcke eine schema-agnostische Funktion zum Einsatz,

welche jede Entität mit mehreren Blöcken assoziiert. Auch im anspruchsvollen

Kontext der Web-Daten minimiert dies die Wahrscheinlichkeit Duplikate zu ver-

fehlen. Der zweite Baustein, Meta-Blocking, restrukturiert die Blöcke aufgrund

einer Analyse der überlappungsmuster von Entitäten. Dadurch lassen sich die

Berechnungskosten senken ohne die Effektivität nennenswert zu reduzieren. Der

dritte Baustein, innovative Methoden zur Blockabarbeitung, trägt zur weiteren

Steigerung der Effizienz bei, indem die Anzahl überflüssiger Vergleiche systema-

VII

VIII

tisch reduziert wird. Die Leistungsfähigkeit der einzelnen Bausteine wird in exten-

siven experimentellen Analysen mit drei umfangreichen, realen Datenkollektionen

untersucht. Die Ergebnisse der Experimente bestätigen die ausgezeichnete Balance

zwischen Effektivität und Effizienz, welche durch unseren Ansatz erreicht wird.

Schlagworte: Datenintegration, Duplikaterkennung, Blocking-Methoden.

Abstract

Web Data have boomed during the last decade, due to their largely distributed

way of production: corporations of any size, individual users as well as automatic

extraction tools have contributed a constantly increasing volume of diverse, but also

very heterogeneous and noisy information. Entity Resolution (ER) helps to reduce

the entropy, leveraging the value of the fragmented Web Data by identifying those

pieces of information that refer to the same real-world objects. To scale ER to

the large and very large data sets, such as Web Data, data blocking techniques are

typically employed. However, most of them rely on schema information and, thus,

are inapplicable to the highly heterogeneous settings of Web Data — a situation

that calls for novel approaches.

This dissertation goes beyond existing blocking techniques, by introducing a

novel methodology that is inherently crafted for the voluminous, highly heteroge-

neous, noisy collections of Web Data. Its goal is to place every pair of matching

entities in at least one common block, while minimizing the number of unneces-

sary comparisons. At its core lie three independent, but complementary phases:

first, block building techniques aim at clustering entities into blocks through a

redundancy-bearing, schema-agnostic functionality, which associates every entity

with multiple blocks without considering any schema information. In this way, the

likelihood of missed matches is minimized even in the challenging context of Web

Data. Second, meta-blocking relies on patterns of co-occurrence among entities

sharing multiple blocks in order to restructure the resulting block collection into a

new one that identifies practically the same portion of duplicates, while reducing

significantly the computational cost. Third, block processing techniques further

enhance efficiency, by discarding comparisons or even entire blocks that involve

non-matching entities. We analytically examine the performance of every phase

through a thorough experimental study that involves three large-scale, real-world

data sets. Its outcomes demonstrate that our methodology achieves an excellent

IX

X

balance between effectiveness and efficiency.

Keywords: Data Integration, Entity Resolution, Blocking Techniques.

Contents

Zusammenfassung VII

Abstract IX

Tables XV

Algorithms XVII

Figures XX

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 4

1.3 Summary of the Approach . 6

1.4 Contributions . 8

I. Block Building . 9

II. Meta-Blocking . 10

III. Block Processing . 11

IV. Metric Space . 12

1.5 Structure of the Dissertation . 13

2 Related Work 15

2.1 Entity Resolution Techniques . 15

2.2 Block Building Techniques . 17

2.2.1 Classification of Block Building Techniques 20

2.2.2 Parameter Tuning for Block Building 22

2.3 Block Processing Techniques . 23

2.4 Hybrid Blocking Techniques . 23

XI

XII CONTENTS

3 Problem Formulation 25

3.1 Entity Resolution . 25

3.2 Blocking for Entity Resolution 26

3.2.1 Blocking Scheme Quality 28

3.2.2 Internal Functionality of Blocking-based ER 30

3.3 Metric Space for Blocking Techniques 31

3.4 Summary . 34

4 Block Building 37

4.1 Token Blocking . 38

4.2 Agnostic Clustering Blocking . 39

4.2.1 Representation Models & Similarity Metrics 42

Term Vector in conjunction with Cosine Similarity 42

Character N-grams in conjunction with Jaccard Similarity 43

Character N-gram Graphs in conjunction with Value Simi-

larity . 43

4.3 URI Semantics Blocking . 45

4.3.1 Atomic Blocking Schemes 47

Infix Blocking . 48

Infix Profile Blocking . 48

Literal Profile Blocking 49

4.3.2 Composite Blocking Schemes 50

Complete Infix Blocking 51

Infix-Literal Profile Blocking 52

Infix Profile-Literal Profile Blocking 53

Total Description Blocking 53

4.4 Summary . 54

5 Meta-Blocking 55

5.1 Building the Blocking Graph . 59

Graph Materialization 60

Efficiency of Construction 60

5.2 Edge Weighting . 61

5.3 Pruning the Blocking Graph . 63

Pruning algorithms . 63

Pruning criteria . 63

5.3.1 Weight Edge Pruning (WEP) 65

CONTENTS XIII

5.3.2 Cardinality Edge Pruning (CEP) or Top-K Edges 66

5.3.3 Weight Node Pruning (WNP) 68

5.3.4 Cardinality Node Pruning (CNP) or k-Nearest Entities . . 68

5.4 Collecting the new blocks . 69

5.5 Summary . 70

6 Block Processing 71

6.1 Classification of Block Processing Techniques 71

6.2 Block-refinement Methods . 74

6.2.1 Block Purging . 74

6.2.2 Block Scheduling . 75

6.2.3 Block Pruning . 76

6.3 Comparison-refinement Methods 77

6.3.1 Comparison Propagation 77

6.3.2 Duplicate Propagation 79

6.3.3 Comparison Pruning . 79

6.3.4 Comparison Scheduling 81

6.4 Building ER Workflows . 82

6.5 Summary . 85

7 Experimental Evaluation 87

7.1 Data sets . 88

7.2 Evaluation of Block Building Approaches 89

7.2.1 Clean-Clean ER . 90

7.2.2 Dirty ER . 93

7.3 Evaluation of Block Purging . 96

7.3.1 Clean-Clean ER . 97

7.3.2 Dirty ER . 98

7.4 BC-CC Mapping vs Real Performance 99

7.5 Evaluation of Meta-blocking Approaches 101

7.5.1 Effect of meta-blocking on blocking. 102

7.5.2 Edge-centric vs. node-centric pruning schemes. 105

7.5.3 Weight vs. cardinality pruning criteria. 106

7.5.4 Comparison between weighting schemes. 107

7.5.5 Comparison with Iterative Blocking. 107

7.5.6 Discussion . 108

7.5.7 Sensitivity Analysis . 108

XIV CONTENTS

7.5.8 Time Requirements of Meta-blocking 110

7.6 Evaluation of Block Processing Approaches 112

7.7 Summary . 115

8 Conclusions 117

8.1 Summary . 117

8.2 Ongoing and Future Work . 118

Bibliography 120

List of Tables

7.1 Overview of the data sets used in our experimental study. 88

7.2 Overlap in the profiles of duplicates in Din f oboxes. 89

7.3 Execution time for the attribute clustering algorithms. 91

7.4 Performance of block building techniques over Dmovies. 92

7.5 Performance of block building techniques over Din f oboxes. 93

7.6 Technical characteristics of the block collections produced by To-

ken Blocking and the URI Semantics blocking schemes. 93

7.7 Performance of block building techniques over DBTC09. 95

7.8 Performance of Block Purging over Dmovies. 96

7.9 Performance of Block Purging over Din f oboxes. 97

7.10 Performance of Block Purging over DBTC09. 98

7.11 Pearson correlation between BC and PC as well as between CC

and PQ over all data sets for Block Building and Block Purging. . 100

7.12 Pearson correlation between BC and PC as well as between CC

and PQ for the URI Semantic blocking schemes over DBTC09. . . 101

7.13 Performance of all pruning schemes in combination with all weight-

ing schemes over the three datasets of our study. 103

7.14 Comparing effectiveness between CEP and CNP for the same num-

ber of comparisons across all datasets. 106

7.15 Processing time for all meta-blocking methods over the three datasets

of our experimental study. 111

7.16 Perfomance of three different workflows over Dmovies, when ap-

plied on top of Block Purging and Trigram Graphs AC. 113

7.17 Perfomance of three different workflows over Din f oboxes, when ap-

plied on top of Block Purging and Trigram Graphs AC. 114

XV

XVI LIST OF TABLES

List of Algorithms

4.1 Attribute Clustering Blocking. 40

5.1 Building the Blocking Graph. 60

5.2 Weight Edge Pruning. 65

5.3 Cardinality Edge Pruning. 66

5.4 Weight Node Pruning. 67

5.5 Cardinality Node Pruning. 69

6.1 Computing the Purging Threshold. 74

XVII

XVIII LIST OF ALGORITHMS

List of Figures

1.1 (a) Entity profiles stemming from a homogeneous information space

(HOIS), and (b) Blocks created for them by traditional blocking

techniques. 3

1.2 Entity profiles stemming from a highly heterogeneous information

space (HHIS). 4

1.3 Our three-layered approach to blocking-based ER over HHIS. . . 6

1.4 Blocks created for the entity collection of Figure 1.2 by a simple

attribute-agnostic approach. 7

2.1 The two-dimensional taxonomy of block building methods. Meth-

ods in italics are introduced in Chapter 4, while methods in paren-

theses are analyzed in Section 2.4. 20

3.1 The BC-CC metric space and the mapping of the two main cat-

egories of blocking methods (black dots) in comparison with the

ideal one (gray dot). 32

4.1 The trigram graph for value “home phone”. 44

4.2 Examples of matching pairs of URIs, split in the PI(S) scheme. . . 45

4.3 Illustration of the description items of an entity profile that are used

by our blocking schemes. 46

XIX

XX LIST OF FIGURES

4.4 The effect of merging two individual blocking schemes (Method1

and Method2) into a composite one (Method3), which is more ro-

bust and effective, on the BC-CC space. Although this practice

leads to more comparisons, the higher robustness it conveys allows

for enhancing efficiency through meta-blocking (cf. Chapter 5)

and block processing techniques (cf. Chapter 6). Their effect is

to move the mapping Method3 to Method4, which is closer to the

Ideal Point. 51

5.1 (a) The blocking graph of the block collection in Figure 1.4, (b)

the pruned blocking graph, and (c) an alternative pruned blocking

graph, discussed in Section 5.4. 56

5.2 The internal functionality of our approach to meta-blocking. . . . 58

5.3 Illustration of the effect of meta-blocking and of block processing

on the BC-CC mapping of a blocking collection. 59

5.4 All possible combinations of pruning algorithms with pruning cri-

teria. 64

6.1 The two-dimensional taxonomy of block processing techniques. . 73

6.2 The Entity Index employed by Comparison Propagation. 78

6.3 Procedure for creating an ER workflow. 83

7.1 Normalized histograms of the weight distributions in all blocking

graphs of Dmovies, where w denotes the average edge weight of the

blocking graph for each weighting scheme. 104

7.2 Sensitivity analysis of every pruning algorithm in conjunction with

a specific weighting scheme. 109

Chapter 1

Introduction

The amount of global, digital information has grown by a factor of 9 between

2006 and 2011, reaching the unprecedented levels of 1.8 Zettabytes1 by the end

of 20112. This information deluge includes not only unstructured data in the form

of raw, textual content (e.g., Web pages), but also semi-structured and structured

information that follow arbitrary schemas. Numerous factors account for this phe-

nomenon: the distributed production of information in businesses and organiza-

tions, the increased ability and interest for automatic information extraction from

raw data as well as the prolific activity of individual users all over the world, who

constantly and voluntarily contribute new information through Web 2.0 tools. The

combined effect of these factors gives rise to highly heterogeneous information

spaces (HHIS), which encompass the (semi-)structured data that are manifested in

Dataspaces [HFM06] and the Web of Data [BHBLBL09].

To leverage the investment in creating and collecting the massive volume of

(semi-)structured data in HHIS, the Linked Data vision has been recently proposed

[BHBLBL09]. It essentially advocates the combination of related resources in a

unified way that enhances the usefulness and the usability of the interlinked data.

A core part of this large-scale integration process is Entity Resolution (ER), i.e., the

process of automatically identifying sets of entity profiles that pertain to the same

real-world object. ER constitutes an inherently quadratic task: in principle, every

entity (of the one collection) has to be compared with all others (of the other collec-

tion). As a result, ER is typically made scalable to large volumes of data through

approximate techniques. These techniques significantly enhance efficiency (i.e., the

1A Zettabyte is equal to 1021 bytes in the SI metric system.
2http://www.emc.com/collateral/about/news/idc-emc-digital-universe-2011-infographic.pdf

1

2 CHAPTER 1. INTRODUCTION

required number of pairwise comparisons), by sacrificing some effectiveness (i.e.,

the portion of detected duplicates).

The most prominent among these approximation techniques is data blocking,

which aims at clustering similar entities into blocks so that it suffices to perform

comparisons only among entities within the same block. There is a plethora of

techniques in this field, but their vast majority is crafted for homogeneous infor-

mation spaces (HOIS), such as databases. These differ from HHIS in that they

are described by a predetermined schema and all their data adhere to it. In this

way, HOIS fulfill an essential prerequisite for the majority of existing blocking

techniques, which rely on a-priori schema knowledge in order to select the most

reliable and distinctive attributes for producing blocks of high effectiveness (i.e., a

large portion of the matching entities shares at least one block) [Chr12b, Chr12a,

NMMMBLP07]. These methods are practically inapplicable to HHIS, due to the

absence of reliable, compact and binding schema information that are suitable for

blocking.

The blocking techniques presented in this dissertation go beyond the existing

ones, as they are inherently crafted for HHIS and involve a functionality that is

decoupled from schema information. They are also highly efficient, enabling ER

to scale up to entity collections with tens of millions of profiles.

In Section 1.1, we further explain the motivation behind this work, while in

Section 1.2, we elaborate on the challenges imposed by HHIS. Section 1.3 pro-

vides an overview of the techniques introduced in this dissertation, Section 1.4

summarizes its contributions, and Section 1.5 presents its structure.

1.1 Motivation

To illustrate the difference between blocking for HOIS and for HHIS, consider the

simple HOIS entity collection depicted in Figure 1.1 (a). Apparently, profile p1

matches with p3 and p2 with p4. Despite the slightly different attribute values

among duplicate profiles, all entities share the same attribute names (i.e., schema).

This allows for easily identifying those attribute name(s) that can produce blocks

of high quality. In fact, the goal of blocking is to place every pair of matching

entities in at least one common block (high effectiveness), while restricting the to-

tal number of comparisons at low levels (high efficiency). In this context, one of

the possible solutions for the given entity collection is depicted in Figure 1.1 (b);

blocks are extracted from the values of the attribute name “zip code”, with each

1.1. MOTIVATION 3

first name : Antony P.

last name : Gray

address Los Angeles California

p1 first name : Antony

last name : Gray

address L A California USA

p3

address : Los Angeles, California

zip code : 91456

address : L.A., California, USA

zip code : 91456

fi ill
p2 fi t Willi Ni h l

p4

(a)

first name : Bill

last name : Green

address : Los Angeles, California

i d 94520

p2 first name : William Nicholas

last name : Green

address : L.A., California, USA

zip code : 94520

p4

zip code : 94520 zip code : 94520

91456

p1 p3

94520

p2 p4

(b)

p1 p3 p2 p4

Figure 1.1: (a) Entity profiles stemming from a homogeneous information space

(HOIS), and (b) Blocks created for them by traditional blocking techniques.

block corresponding to a distinct value. Both of the resulting blocks individually

contain just one pair of matching entity profiles. Thus, assuming that we have

an accurate entity matching method, all duplicate entities are detected with just 2

pairwise comparisons. The same entity matching approach would require 4 com-

parisons, when coupled with the naive (i.e., exhaustive) ER solution.

Consider now the HHIS entity collection that is depicted in Figure 1.2. Again,

profile p1 is matching with p3 and p2 with p4. In this case, however, there are

extreme levels of heterogeneity in the schema and the values of the entity profiles.

In fact, the semantically equivalent attribute names appear in so many syntactically

different forms (e.g., “Profession”, “work” and “job) that none of them is associ-

ated with more than one entity profile. The same applies to the attribute values,

as well (e.g., “car dealer”, “car seller” and “auto seller”). Note also that the loose

schema binding of HHIS abounds in tag-style values (e.g., “car seller” in p4) and

attribute names of different granularity; for instance, “zip code” corresponds to a

subset of the practically equivalent attributes “Address”, “location” and “current

location”. A further obstacle to schema-based blocking stems from the high levels

of noise, which — among others — comes in the form of spelling mistakes (e.g.,

“Calefornia” in p1).

In summary, traditional blocking approaches are inapplicable to HHIS, due

to their strict requirement for a homogeneous binding schema with attributes of

a-priori known characteristics. An alternative solution would be to transform a

4 CHAPTER 1. INTRODUCTION

FullName : John A. Smith

Profession: car dealer

Address Los Angeles 91335 Calefornia

given name : John Smith

work: auto seller

zip code 91335

p1 p3

Address : Los Angeles, 91335, Calefornia

name : Richard Brown

j b t ll

zip code : 91335

Richard Lloyd Brown

ll

p2 p4

job: auto seller

location : L.A., 91335

car seller

current location : LA, 91335, CA

Figure 1.2: Entity profiles stemming from a highly heterogeneous information

space (HHIS).

HHIS into a HOIS through a schema matching algorithm, and then apply tradi-

tional blocking techniques on the resulting canonical schema. However, the rel-

evant techniques do not scale to the extreme levels of schema heterogeneity that

HHIS involve (e.g., thousands of distinct attribute names), as the number of map-

pings they produce grows extremely fast with respect to the number of input at-

tributes names [PINF11, NMMMBLP07, RB01]. We further elaborate on the intri-

cacies of HHIS in the following section and explain how our approaches overcome

them in Section 1.3.

1.2 Challenges

Any blocking technique that aims at achieving a good balance between efficiency

and effectiveness over HHIS has to consider the following intrinsic characteristics:

• Challenge 1 — Loose schema binding. HHIS comprise structured and semi-

structured data that are loosely bound to a rich diversity of schemata, ranging

from locally-defined attribute names to pure tag-style annotations. The un-

precedented level of heterogeneity pertains not only to the schemata describ-

ing the same entity types, but also to the separate profiles describing the same

entity. For instance, Google Base3 encompasses 100,000 distinct schemata

corresponding to 10,000 entity types [MCD+07], whereas most bibliographic

databases — even small ones like Cora4 — abound in citations of varying for-

mat and quality that actually refer to the same paper. In the previous section, we

explained that the major consequence of these settings with respect to block-

ing is the lack of schema information that could indicate the most suitable at-

3http://www.google.com/base
4http://people.cs.umass.edu/ mccallum/data.html

1.2. CHALLENGES 5

tribute name(s) for clustering matching entities into blocks. Even the advanced

state-of-the-art schema matching approaches are inadequate for handling such

extreme levels of heterogeneity [PINF11, NMMMBLP07, RB01]. Therefore,

the loose schema binding calls for blocking approaches that are less dependent

or even independent of schema information.

• Challenge 2 — High levels of noise. Web data are published through a free,

unsupervised process that cannot filter information of low quality. As a re-

sult, they abound in noise, which ranges from spelling mistakes to missing

information and inconsistent values. The deficient and/or false information in

HHIS hamper the identification of matching entities and, thus, the creation of

blocks. Blocking techniques usually transform every entity profile into a sig-

nature that is extracted from one or more selected attributes and subsequently

place entities with identical signatures in the same block. In the example of Fig-

ure 1.1 (a), blocks were formed by representing every entity through a signature

that merely consists of its value for the attribute “zip code”. However, noise in

signatures averts matching entities from sharing at least one block. Continu-

ing our example, imagine there was an error in p1’s value for “zip code” (e.g.,

“9156” instead of “91456”); inevitably, p1 would have no block in common

with p3. A possible solution to this issue would be to represent every entity

with multiple signatures that are derived from different attributes. In the ab-

sence of schema information, though, this approach offers no viable solution.

Therefore, blocking techniques for HHIS have to be inherently robust against

any form of noise in entity profiles.

• Challenge 3 — Huge and evolving volume. Users contributing to HHIS are

rather prolific, conveying an exponential growth in the content of Web 2.0

platforms, such as Wikipedia [AMC07]. Freebase alone contains more than

22 millions entities together with over 350 millions facts in about 100 do-

mains [DZN12]. HHIS are also enriched by applications that automatically

extract information from a variety of sources. In total, the Web of Data has

increased its content from 4.7 billion triples in May, 2009 [BHBLBL09] to

more than 30 billion triples by the end of 2012 [BdMNW12]. In the context of

this unprecedented volume of data, the existing blocking techniques produce

blocks of low efficiency. To achieve high efficiency, their signatures have to be

quite distinctive, so that the average block size remains low. However, the more

distinctive their signatures are, the higher is the likelihood of missed matches,

due to the intrinsic noise in HHIS. Thus, distinctive signatures can only achieve

6 CHAPTER 1. INTRODUCTION

DBDB

E Block

Building c

Meta

Blocking

Block

Processing

’

Figure 1.3: Our three-layered approach to blocking-based ER over HHIS.

high effectiveness through redundancy, i.e., the practice of placing every entity

into multiple blocks, which also leads to low efficiency. In any case, the re-

sulting block collections involve an excessively high computational cost, thus

calling for novel techniques that process each block by identifying and purging

the unnecessary comparisons. These methods are able to enhance the overall

ER efficiency without affecting its effectiveness.

In the following, we introduce novel approaches to blocking-based ER over

HHIS that are inherently capable of overcoming the above three challenges.

1.3 Summary of the Approach

Our approach to blocking goes beyond those presented in the literature in three

ways:

• it is inherently crafted for dealing with the aforementioned challenges of HHIS,

• it breaks the blocking-based ER process over HHIS into three distinct steps that

decouple effectiveness from efficiency, maximizing them independently, and

• it introduces a framework that facilitates practitioners in their effort to combine

complementary blocking methods into highly performing ER solutions that can

be easily tailored to the particular settings and requirements of each application.

In more detail, our framework consists of three layers, which are depicted in Fig-

ure 1.3. Each layer is responsible for a specific step of the blocking-based ER

process and receives as input the output of the previous one. Its goal is to produce

an output that improves the effectiveness or the efficiency (or both aspects) of the

input.

The aim of the first layer, called Block Building, is to overcome Challenges 1

and 2 so as to cluster the input entities E into a block collectionB that exhibits high

levels of effectiveness at a reasonable cost in efficiency. The extreme heterogene-

ity (i.e., Challenge 1) is tackled through an attribute-agnostic functionality that

completely disregards any schema information; blocks are exclusively built on the

1.3. SUMMARY OF THE APPROACH 7

John Smith autocar

p1 p3

Richard

p1 p3

Brown

p3p2

seller 91335

p1 p4

Richard

p2 p4

Brown

p2 p4

seller

p2 p4
p3

91335

p1 p3
p2 p4p3 p2 p4

Figure 1.4: Blocks created for the entity collection of Figure 1.2 by a simple

attribute-agnostic approach.

basis of attribute values. The high levels of noise (i.e., Challenge 2) are addressed

through redundancy, which increases the likelihood that duplicate entities have at

least one block in common. To illustrate these two characteristics, consider the

blocks of Figure 1.4, which cluster the entities from Figure 1.2. We can notice that

there is a distinct block for each token appearing in the attribute values of at least

two entities and that it encompasses all entities containing the corresponding token

in their profile. Thus, no schema information is used in the creation of blocks,

and every entity is placed in multiple blocks. This example actually illustrates the

simplest of our block building techniques, called Token Blocking (cf. Section 4.1).

The goal of the second layer, called Meta-Blocking, is to restructure the output

of the first layer, B, into a new block collection B′ that maximizes efficiency, while

retaining the original, high levels of effectiveness. Meta-Blocking actually aims

at tackling the combined effect of Challenge 3 and the redundancy introduced by

the underlying attribute-agnostic block building method, which together result in

an excessively high number of pairwise comparisons. As an example, consider the

block collection of Figure 1.4; in total, it contains 13 comparisons, although the

naive ER approach would resolve the entities of Figure 1.2 with just 4 comparisons.

The number of executed comparisons can be significantly restricted by discarding

the repeated ones as well as those involving entities that are highly unlikely to

be matching. Valuable evidence for this procedure is encapsulated in the block

assignments5 of B; usually, the more blocks two entities have in common, the

more likely they are to be matching. In this context, a new block collection B′ can

be derived fromB by retaining those pairs of entities that co-occur frequently in the

input blocks of B. Continuing our example of Figure 1.4, if we retain the two pairs

5A block assignment is the association between a block and an entity.

8 CHAPTER 1. INTRODUCTION

of entities with the highest block overlap, we end up with two new blocks, b1 =

{p1, p3} and b2 = {p2, p4}, that need just 2 comparisons to identify all duplicates.

The third layer, called Block Processing, includes a variety of techniques that

also aim at overcoming the combined effect of Challenge 3 and redundancy in

order to maximize efficiency. Unlike meta-blocking techniques, they do so by ex-

amining individual blocks and comparisons so as to decide whether they will be

processed and in which order. For instance, such a technique would discard the

block “91335” of Figure 1.4 on the grounds that it is oversized (i.e., it contains the

entire entity collection of Figure 1.2). Another example is a technique that elimi-

nates all repeated comparisons, allowing the similarity of each pair of entities to be

assessed just once, in the first block they share (cf. 6.3.1). Depending on the type of

comparisons they target and the granularity of their functionality, block processing

techniques can be conflicting or complementary. The former serve exactly the same

goal and, thus, it suffices to apply one of them to the ER problem at hand; imag-

ine, for instance, two methods that eliminate all repeated comparisons. In contrast,

complementary block processing techniques target different types of comparisons

and can be combined in an ER workflow of higher efficiency according to specific

guidelines. The goal is actually to detect as many pairs of matching entities as pos-

sible, while restricting the computational cost c to the minimum possible number

of executed comparisons.

On the whole, this thesis proposes a layered framework for blocking-based

ER over HHIS that consists of three orthogonal, but complimentary tiers. Ev-

ery layer comprises multiple techniques that allow for numerous combinations,

called ER workflows. Their excellent performance in practice is verified through

a thorough experimental study that involves three large-scale, real-world data sets.

We have freely published their implementation (in Java) through Sourceforge.net6

along with directions for obtaining our benchmark data.

1.4 Contributions

The novelties of our research work are organized into the following four areas:

6https://sourceforge.net/projects/erframework/

1.4. CONTRIBUTIONS 9

I. Block Building

The vast majority of relevant works in the literature focuses on schema-based block

building techniques that are crafted for HOIS (cf. Section 2.2 for more details). In

contrast, this dissertation presents novel block building techniques that rely on an

attribute-agnostic, redundancy-bearing functionality in order to create blocks of

high effectiveness in the context of HHIS. They are grouped in three families. The

first one exclusively contains the basic technique of Token Blocking, which was

illustrated in Figure 1.4. It achieves high robustness and effectiveness, at the cost

of low efficiency (i.e., too many comparisons), due to the extreme levels of re-

dundancy it employs. The other two families build upon Token Blocking with the

aim of achieving equally high effectiveness at a significantly higher efficiency (i.e.,

lower redundancy). First, Agnostic Clustering techniques group together attributes

with similar values and apply Token Blocking inside each cluster, independently

of the others. The resulting blocks involve fewer comparisons, while missing a

negligible number of duplicate entities. Second, the URI Semantics techniques in-

clude a series of atomic blocking schemes that are crafted for RDF data, exploiting

the evidence contained in entity identifiers. They yield small blocks of high ef-

ficiency, but of limited effectiveness. Given that each atomic scheme considers a

different aspect of entity profiles, their effectiveness can be substantially enhanced

by combining them into composite blocking methods.

These block building techniques were originally introduced in the following of

my publications:

[PINF11] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Peter Fankha-

user. Efficient Entity Resolution for Large Heterogeneous Information Spaces.

In Proceedings of the 4th ACM International Conference on Web Search

and Data Mining (WSDM), February 2011, Hong Kong, China. Also pre-

sented at the 10th Hellenic Data Management Symposium (HDMS), June

2011, Athens, Greece.

[PIP+ar] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niede-

rée, and Wolfgang Nejdl. A Blocking Framework for Entity Resolution in

Highly Heterogeneous Information Spaces. In IEEE Transactions on Knowl-

edge and Data Engineering (TKDE) — to appear.

[PIN+12] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Pal-

panas, Wolfgang Nejdl. Beyond 100 Million Entities: Large-scale Blocking-

10 CHAPTER 1. INTRODUCTION

based Resolution for Heterogeneous Data. In Proceedings of the 5th ACM

International Conference on Web Search and Data Mining (WSDM), Febru-

ary 2012, Seattle, Washington, USA. Also presented at the 11th Hellenic

Data Management Symposium (HDMS), June 2012, Chania, Crete, Greece.

Also relevant to this specific contribution are the following publications:

[PDKF10] George Papadakis, Gianluca Demartini, Philipp Kaerger, Peter Fankha-

user. The Missing Links: Discovering Hidden Same-as Links among a Bil-

lion of Triples. In Proceedings of the 12th International Conference on

Information Integration and Web-based Applications & Services (iiWAS),

November 2010, Paris, France.

[PGN+11] George Papadakis, George Giannakopoulos, Claudia Niederée, Themis

Palpanas, Wolfgang Nejdl. Detecting and exploiting stability in evolving

heterogeneous information spaces. In Proceedings of the 11th ACM/IEEE

Joint Conference on Digital Libraries (JCDL), June 2011, Ottawa, Canada.

[Pap11] George Papadakis. Efficient entity resolution methods for heterogeneous

information spaces. In Proceedings of the IEEE ICDE Ph.D. Workshop,

April 2011, Hanover, Germany.

II. Meta-Blocking

To the best of our knowledge, no prior work tried to exploit the information encap-

sulated in a block collection with the aim of restructuring it into a new one of higher

efficiency and equivalent effectiveness. This is exactly the goal of meta-blocking,

another contribution of this dissertation. We actually formalize this process as a

generic task that applies to any redundant block collection so that a plethora of

solutions can be developed for it. We also tackle it through a family of techniques

that rely on the blocking graph. This data structure models the block assignments

of the input block collection in an abstract way that decouples the functionality of

our techniques from the block building method that produced it: the nodes corre-

spond to entities, and the edges to pairwise comparisons, with their weight indi-

cating an estimated likelihood that the adjacent entities are matching — based on

patterns in the block assignments. In fact, we coin five generic, attribute-agnostic

weighting schemes that are based exclusively on the blocks the adjacent entities

1.4. CONTRIBUTIONS 11

have in common. Efficiency can be enhanced simply by pruning the edges with

a low weight. To this end, we present two categories of attribute-agnostic prun-

ing algorithms along with four pruning criteria that can be organized into a two-

dimensional taxonomy. In total, they compose four techniques for meta-blocking

that are extensively evaluated through a thorough experimental study.

The problem of Meta-Blocking and the techniques for solving it were originally

introduced in the following publication:

[PKPNar] George Papadakis, Georgia Koutrika, Themis Palpanas, and Wolfgang

Nejdl. Meta-Blocking: Taking Entity Resolution to the Next Level. In IEEE

Transactions on Knowledge and Data Engineering (TKDE) — to appear.

III. Block Processing

Iterative Blocking [WMK+09] pioneered the development of methods that process

a given block collection in a way that enhances its efficiency and/or its effective-

ness. However, no other blocking method followed in this direction. This disser-

tation introduces a series of intelligent block processing techniques that enhance

efficiency at a negligible and controllable impact on effectiveness. Their goal is

actually to discard the repeated and unnecessary comparisons that are contained in

a set of blocks. To facilitate their understanding and use, we organize them into a

two-dimensional taxonomy that categorizes them according to the type of compar-

isons they target and the granularity of their functionality (i.e., whether they operate

on the coarse level of blocks or on the finer level of individual comparisons). Some

of these methods are complementary, targeting different types of comparisons, and

when combined, they form ER workflows of higher performance than the individ-

ual methods comprising them. To facilitate their composition, we also introduce

practical guidelines that are based on our two-dimensional taxonomy.

These block processing techniques were originally introduced in the following

of my publications:

[PIP+ar] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niede-

rée, and Wolfgang Nejdl. A Blocking Framework for Entity Resolution in

Highly Heterogeneous Information Spaces. In IEEE Transactions on Knowl-

edge and Data Engineering (TKDE) — to appear.

[PIN+12] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Pal-

panas, Wolfgang Nejdl. Beyond 100 Million Entities: Large-scale Blocking-

based Resolution for Heterogeneous Data. In Proceedings of the 5th ACM

12 CHAPTER 1. INTRODUCTION

International Conference on Web Search and Data Mining (WSDM), Febru-

ary 2012, Seattle, Washington, USA. Also presented at the 11th Hellenic

Data Management Symposium (HDMS), June 2012, Chania, Crete, Greece.

[PINF11] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Peter Fankha-

user. Efficient Entity Resolution for Large Heterogeneous Information Spaces.

In Proceedings of the 4th ACM International Conference on Web Search

and Data Mining (WSDM), February 2011, Hong Kong, China. Also pre-

sented at the 10th Hellenic Data Management Symposium (HDMS), June

2011, Athens, Greece.

[PIN+11a] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Pal-

panas, Wolfgang Nejdl. Eliminating the redundancy in blocking-based entity

resolution methods. In Proceedings of the 11th ACM/IEEE Joint Conference

on Digital Libraries (JCDL), June 2011, Ottawa, Canada.

[PIN+11b] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis Pal-

panas, Wolfgang Nejdl. To Compare or Not to Compare: Making Entity

Resolution more Efficient. In Proceedings of the 3rd International Workshop

on Semantic Web Information Management (SWIM), June 2011, Athens,

Greece (collocated with SIGMOD 2011).

[Pap11] George Papadakis. Efficient entity resolution methods for heterogeneous

information spaces. In Proceedings of the IEEE ICDE Ph.D. Workshop,

April 2011, Hanover, Germany.

IV. Metric Space

Another topic that has been neglected in the literature is the development of

theoretical tools that facilitate the functionality of blocking methods. In this

dissertation, we introduce a general metric space that consists of two orthog-

onal measures that quantitatively capture the trade-off between blocking ef-

fectiveness and efficiency. Their values can be efficiently computed, without

requiring any analytical block examination. Instead, they merely consider

the external characteristics of each block (i.e., the number of entities and

comparisons it involves). The resulting metric space applies to all three lay-

ers of our framework and can be used in a number of ways: to a-priori assess

the actual performance of a blocking technique, to a-priori identify the best

1.5. STRUCTURE OF THE DISSERTATION 13

performing among a set of blocking methods (based on application-specific

quality requirements), and to guide the internal functionality of a blocking

method.

This metric space was originally introduced in the following publication:

[PIN+12] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Themis

Palpanas, Wolfgang Nejdl. Beyond 100 Million Entities: Large-scale

Blocking-based Resolution for Heterogeneous Data. In Proceedings of

the 5th ACM International Conference on Web Search and Data Mining

(WSDM), February 2012, Seattle, Washington, USA. Also presented at

the 11th Hellenic Data Management Symposium (HDMS), June 2012,

Chania, Crete, Greece.

1.5 Structure of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 discusses the most

important blocking techniques in the literature; it puts more emphasis on the block

building ones, categorizing them on the basis of a novel, two-dimensional taxon-

omy. Chapter 3 introduces our metric space along with the notions that are neces-

sary for describing our methodology. Chapter 4 presents our approaches to effec-

tive block building over HHIS, while Chapter 5 analyzes the task of meta-blocking,

explaining how the abstraction of the blocking graph allows for a wide diversity of

highly efficient methods. In Chapter 6, we introduce our block processing tech-

niques along with a two-dimensional taxonomy that clarifies their functionality

and facilitates their combination into highly performing ER workflows. Chapter 7

investigates the actual performance of all our techniques through a detailed ex-

perimental study that comprises three large-scale, real-world data sets. Finally,

Chapter 8 concludes the dissertation and provides directions for future work.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This section provides a comprehensive overview of the state-of-the-art techniques

for blocking-based Entity Resolution. In Section 2.1, we start with the task of ER

in general, classifying existing methods in three main categories. We then elaborate

on blocking techniques for ER, distinguishing them into three main categories, as

well: those focusing on the creation of blocks (Section 2.2), those dealing with their

processing (Section 2.3) and the hybrid ones (Section 2.4), which simultaneously

address both aspects of blocking.

2.1 Entity Resolution Techniques

Entity Resolution (ER) constitutes a traditional problem with numerous applica-

tions that has been investigated since the very beginning of computer science [NK62].

It is the task of identifying sets of entity profiles that pertain to the same real-world

object and comes in two different forms [Chr12b, EIV07, KL10]:

• Clean-Clean ER, also known as Record Linkage, is the process of detecting

pairs of matching entities among two heterogeneous, individually clean (i.e.,

duplicate-free), but overlapping collections of entities. As an example, consider

the task of merging individual collections of consumer products that stem from

different on-line stores, thus having proprietary identifiers and slightly varying

descriptions.

• Dirty ER, also known as Deduplication, receives as input a single entity collec-

tion and aims at detecting the matching profiles that are contained in it. As an

example, consider the task of citation matching in the context of a bibliographic

15

16 CHAPTER 2. RELATED WORK

database, such as Google Scholar1.

A plethora of methods for tackling ER have been proposed over the years. They

are distinguished in three main categories [RDG11], according to the type of infor-

mation they incorporate in their functionality:

• Non-relational approaches decide whether two entities are matching or not,

judging solely from the attribute values of their profiles. In the context of

HOIS, there is usually an one-to-one mapping between the schemata describ-

ing the given entity profiles, thus allowing the comparison of attribute values

in a pairwise manner. As an example, consider the task of matching authors

using exclusively their personal information (e.g., birth-date, address, affilia-

tion). Some of the attribute comparison methods are specialized in categori-

cal and numerical data (e.g., age and time), but the emphasis lies on methods

for string-valued attributes [Chr12a]. The main bulk of non-relational ER ap-

proaches actually aims at developing string similarity metrics that are capable

of handling noise and missing values. An analytical survey of the string dis-

tance metrics can be found in [CRF03], while the phonetic encoding functions2

are analyzed in [Chr12a].

• Relational approaches enhance the non-relational ones by considering the val-

ues of associated entities, as well. An illustrative example is the task of match-

ing authors not only on the basis of their personal information, but of the sim-

ilarity of their co-authors, as well. The additional information offered by the

associated entities usually yields higher accuracy, thus outperforming the non-

relational approaches. To this category belong the approaches that are pre-

sented in [ACG02, KMC05].

• Collective approaches go beyond the relational ones by resolving multiple

types of entities at the same time. Their fundamental assumption is that the

match decisions for one type of entities facilitate the resolution of the other

types. As an example, consider the task of resolving authors, publications and

venues at the same time; detecting that two authors refer to the same real-world

person reinforces the evidence for disambiguating the related publications and

venues. Collective approaches are further distinguished into those propagat-

ing the latest matches to the rest of the data iteratively [BG07, DHM05] and

to those taking match decisions in a truly collective manner [RDG11, MW04,

1http://scholar.google.com
2The phonetic encoding functions, such as Phonex [LR96], estimate the similarity between two

string values based on their pronunciation.

2.2. BLOCK BUILDING TECHNIQUES 17

BG06, HSM08, PMM+02, SD06, WGM12]. The latter are of higher perfor-

mance and, unlike the former, they do not suffer from the burden of bootstrap-

ping (i.e., the problem of finding a good starting point for detecting the first

duplicates).

For a more detailed overview of the state-of-the-art ER approaches, the inter-

ested reader can refer to surveys [Win06, DH05, EIV07, GD05] and textbooks [Chr12a].

Regardless of their internal functionality, ER methods typically suffer from

low efficiency, due to their quadratic time complexity (basically, they compare ev-

ery entity with all others). To scale them to large data collections, approximate

techniques are usually employed. These yield large savings in efficiency by sacri-

ficing effectiveness to some extent. The most prominent among these approaches

is data blocking [EIV07, Chr12b]. Its goal is to group similar entity profiles into

blocks so that duplicate entities can be exclusively identified through the pairwise

comparisons inside every block.

We split blocking-based ER into two orthogonal, but complementary proce-

dures: (i) the creation of blocks, which deals with the effective clustering of entities

into blocks, and (ii) their processing, which deals with the efficient examination of

the resulting set of blocks. The existing blocking techniques examine these two

tasks either in conjunction or independently. We call the methods falling in the

former category hybrid blocking techniques and distinguish those of the latter cate-

gory into block building techniques, which address the creation of blocks, and block

processing techniques, which focus on executing the minimum necessary portion

of the pairwise comparisons. Each one of these categories is further analyzed in

one of the following sections.

2.2 Block Building Techniques

The goal of these methods is to cluster the similar, input entities into blocks such

that the matching ones are placed in at least one common block with a high proba-

bility. They receive as input one or two entity collections, E1 and E2, and return as

output a collection of blocks B. Internally, they transform every input entity into

a compact representation comprising one or more blocking keys (BKs) that sum-

marize the values of selected attributes. In the more restricted case, every block

corresponds to a particular BK and contains all entities having this key in their rep-

resentation [FS69]. More general approaches are not restricted to key equality, but

place entities with similar BKs into the same block [MNU00, JLM03].

18 CHAPTER 2. RELATED WORK

There is a large body of work in this field, especially for HOIS. In fact, the

majority of the existing block building methods rely on an a-priori known schema

in order to select the appropriate attributes for deriving BKs of high quality. This

decision requires knowledge about the semantics of every attribute as well as the

quality and the distribution of their values [Chr12b, Chr12a]. Inevitably, this re-

quirement turns most of the existing techniques inapplicable to the heterogeneous

settings of HHIS we are considering in this work.

The most significant block building techniques for HOIS are the following:

• Standard Blocking defined the basic blocking functionality, as it was the first

approach of this kind that was presented in the literature [FS69]. It represents

every entity by a single BK and places two entities into the same block on

the condition that they share exactly the same key (i.e., every block contains

all entities represented by a particular BK). This functionality achieves high

efficiency, but often leads to limited effectiveness, as it cannot deal with noisy

and missing values in the attribute(s) selected for the BKs. This drawback can

be partly ameliorated by applying the core functionality of Standard Blocking

multiple times — using different attributes (BKs) in every iteration [WYP10].

• Bigrams Blocking [BCC03] and its generalization, Q-grams Blocking[GIJ+01],

are inherently robust to noisy values and BKs. In contrast to Standard Block-

ing, they associate every entity with multiple blocks, based on the bi-/q-grams3

that are extracted from every BK. In this way, they incorporate redundancy

and increase the likelihood that two matching entities have at least one block

in common, even in the context of noisy data. However, the resulting num-

ber of comparisons is excessively high and does not scale well to large entity

collections [Chr12b, Chr12a].

• The Suffix Array approach [AO05] also employs redundancy in order to tackle

noise in BKs. It actually extracts suffixes of certain length from the BKs, by

removing one or more characters from their beginning. Every suffix then forms

a block that contains all entities having it in their representation. The main

drawback of this approach is that it cannot handle errors at the end of BKs,

which are rather frequent [PZ84]. To overcome this shortcoming, blocks cor-

responding to highly similar suffixes can be merged [dVKCC09, dVKCC11].

Using Bloom filters, the efficiency of this procedure can be significantly en-

3A q-gram of a textual value v is a sub-string of length q.

2.2. BLOCK BUILDING TECHNIQUES 19

hanced [dVKCC11].

• StringMap [JLM03] relies on a mapping procedure that transforms the BKs of

all records to a Euclidean space of a predefined dimensionality. The funda-

mental property of this mapping is that the new space preserves the original

similarities between the BKs. With the help of suitable data structures, such

as R-Trees, similar BKs can be efficiently grouped into clusters. A new block

is then created for every such cluster, containing all entities that are associated

with one of its BKs. The main drawback of this approach is that it suffers from

the curse of dimensionality: the dimensionality of the Euclidean space has to

be high in order to achieve good performance, but the auxiliary data structures

become less efficient under these settings [Chr12a]. This issue can be partly

ameliorated through a double embedding scheme, which further maps the Eu-

clidean space to another one of lower dimensionality and employs a binary

KD-tree for clustering [Adl09].

• Canopy Clustering [MNU00] is suitable for entities that are represented by

multiple BKs. It clusters them into (overlapping) blocks by comparing pairwise

their BKs with a computationally cheap string-similarity metric. Usually, TF-

IDF or the Jaccard coefficient are selected for this task. The main drawback of

this approach is that its performance depends on the distribution of BKs as well

as on two similarity thresholds.

• Semantic Indexing [NMMMBLP07] completely disregards BKs and creates

blocks by considering exclusively the relationships between entities. At its core

lies a collaborative graph, where every node corresponds to an entity and ev-

ery edge connects two associated entities. For instance, the collaborative graph

for a bibliographic data collection can be formed by mapping every author to a

node and adding edges between co-authors. In this context, blocks are created

in the following way: for each node n, a new block is formed, containing all

nodes connected with n through a path, whose length does not exceed a pre-

defined limit. This approach was experimentally verified to outperform both

Standard Blocking and Sorted Neighborhood (cf. Section 2.4).

Recent, comparative analyses of most of these blocking approaches can be

found in [Chr12b, Chr12a]. They experimentally demonstrate that there are large

differences in efficiency and effectiveness not only among different techniques, but

also for different configurations of the same technique. This actually indicates that

their functionality depends heavily on a variety of (sometimes sensitive) parame-

20 CHAPTER 2. RELATED WORK

����������	

���

����������	����
��

����������	

�����
��

����������	

�������

����������	

���
�
��

������	

�����

��������

��	
���

���	��

���������

��	�����

���
��	��		��

�� ������
����

��	
���

 � ��!!�"�#����

������	

������
� � �
�������

$���"��

�� ������	
�����

�� �
������

�
�������

�� �������������

Figure 2.1: The two-dimensional taxonomy of block building methods. Methods

in italics are introduced in Chapter 4, while methods in parentheses are analyzed

in Section 2.4.

ters. This study also validates that the most critical factor for blocking is the selec-

tion of the blocking keys. It is worth stressing, though, that not all these methods

address the issue of defining effective BKs. In particular, StringMap and Canopy

Clustering take as granted that every entity is associated with multiple BKs and

exclusively aim at clustering similar entities into blocks.

2.2.1 Classification of Block Building Techniques4

Block building techniques are rarely applied in isolation. Instead, they are typi-

cally combined with one or more block processing techniques so that the number

of executed comparisons is minimized. The most crucial factor for these combina-

tions is the positioning of the block building technique with respect to redundancy

and to schema information. The former determines how a blocking scheme inter-

prets redundancy and its implications (i.e., does a high number of common blocks

correspond to similar entities or to dissimilar ones?); the latter specifies whether

schema knowledge is required for the creation of blocks. This factor is also cru-

cial for selecting the most suitable block building technique for the application at

hand; schema-based techniques, for instance, are inapplicable to settings involv-

ing HHIS. Therefore, to facilitate the use of block building techniques as well as

their combination with block processing ones, we categorized them into a two-

dimensional taxonomy that comprises the orthogonal criteria of redundancy and

schema information. The resulting categorization is outlined in Figure 2.1.

With respect to redundancy, blocking methods are broadly distinguished into

4Originally introduced in [PKPNar].

2.2. BLOCK BUILDING TECHNIQUES 21

redundancy-free, which produce non-overlapping blocks, and redundancy-bearing,

which result in overlapping blocks. Redundancy-bearing techniques are further

categorized according to their interpretation of redundancy.

For the redundancy-positive ones, the number of blocks shared by a pair of

entities is proportional to their similarity and, thus, the likelihood that they are

matching. To illustrate this approach, consider the block collection of Figure 1.4.

Every block corresponds to a distinct token that has been extracted from at least

one attribute value — regardless of the associated attribute name(s). Thus, the

more blocks two entities share, the more similar their profiles are. As depicted in

Figure 2.1, this category includes methods that associate every entity with multiple

BKs, such as Q-grams Blocking and Suffix Array.

In contrast, redundancy-negative blocking methods regard a high number of

shared blocks as a strong indication that the corresponding entities unlikely to be

matching; for them, highly similar entities share just one block. Canopy Clustering

offers an illustrative example: starting with a pool of candidate matches, which

initially contains the entire entity collection(s), it iteratively selects a random seed

si and creates a cluster (i.e., canopy) around it. This cluster contains those entities

from the pool that are more similar with si than a predefined threshold t1. However,

the highly matching entities, whose similarity with si exceeds another threshold

t2(>t1), are completely removed from the pool and, thus, cannot be included in the

canopy of another seed s j. Given that si has also been removed from the pool, it is

highly unlikely to share multiple blocks with the entities that are highly matching

with it.

In the middle of these two extremes lie redundancy-neutral blocking meth-

ods: they involve the same number of common blocks across all pairs of entities

(e.g., Sorted Neighborhood) or they are completely oblivious to redundancy (e.g.,

Semantic Indexing). StringMap constitutes a special case, as its relation to redun-

dancy depends on the technique used for clustering entities in the multidimensional

Euclidean space.

The awareness of schema knowledge distinguishes block building methods into

schema-based and schema-agnostic ones. The former define the BKs on the basis

of schema information, while the latter completely decouple their functionality

from this kind of evidence. As depicted in Figure 2.1, all methods proposed in

the literature are schema-based, except for Semantic Indexing, which involves a

schema-agnostic functionality. Note, though, that schema-based methods have two

major drawbacks:

22 CHAPTER 2. RELATED WORK

• They are inapplicable to HHIS, since they cannot extract blocking keys of high

quality in the absence of schema information.

• They usually require the fine-tuning of multiple parameters [dVKCC09]. For

example, the Suffix Array involves the minimum suffix length and the max-

imum block size, while StringMap has to configure the dimensionality of the

Euclidean space and the data structure that is used for clustering. As mentioned

above, though, the most critical parameters are the definition of reliable BKs

and the selection of appropriate similarity metrics; in Section 2.2.2, we present

two approaches that automatically learn the optimal configuration for these two

factors.

The schema-agnostic methods we introduce in this work exhibit high robustness in

the context of HHIS, despite their parameter-free functionality.

2.2.2 Parameter Tuning for Block Building

As mentioned above, a common drawback of most block building techniques is

that their performance depends on the fine-tuning of many application- and data-

specific parameters [Chr12b, dVKCC09]. Two are the most critical issues that have

to be resolved:

• the attribute name(s) that provide the most reliable BKs, and

• the similarity metric(s) that decide(s) whether two BKs are to be placed in the

same block.

To overcome these issues, automatic tuning methods that are based on machine

learning algorithms have been proposed in the literature. In more detail, Bilenko

et al. [BKM06] and Michelson et al. [MK06] considered blocking schemes of the

form {similarity metric, attribute name} and proposed supervised learning tech-

niques that identify the combinations of individual schemes with the highest per-

formance over the golden standard. They only differ in their approach; the for-

mer learns blocking schemes by solving an optimization problem equivalent to the

red-blue set cover problem, while the latter learns them through the sequential set

covering algorithm. Both approaches yield high performance, but cannot scale to

the large schema space of HHIS.

2.3. BLOCK PROCESSING TECHNIQUES 23

2.3 Block Processing Techniques

These methods aim at examining a block collection in a way that enhances its ef-

fectiveness or its efficiency or both aspects. They receive as input a set of blocks

B and return as output the detected pairs of duplicates DB, usually along with the

corresponding computational cost — in terms of the number of executed compar-

isons. Such methods, however, have been overlooked by researchers, as the only

relevant approach in the literature is Iterative Blocking [WMK+09]. It processes

a given block collection iteratively, so that the match decisions taken in the cur-

rent block affect the examination of the others. In fact, every time a new pair of

entities is detected as duplicates, it is replaced by the merged profile in all blocks

containing either of the individual entities. These blocks are then examined, even if

they have already been investigated. In this way, the matching accuracy increases

(and so does the effectiveness) and many repeated comparisons are spared. Note,

though, that in this case the input block collection is not static, but is continuously

updated.

2.4 Hybrid Blocking Techniques

These methods deal with the creation and the processing of blocks in an integrated

way. Therefore, they receive as input one or two entity collections, E1 and E2,

and return as output the detected pairs of duplicates DB, usually accompanied by

the corresponding computational cost. Their fundamental assumption is that the

interplay of block building with block processing leads to a higher overall per-

formance. Their drawback, though, is that they lack the necessary flexibility for

composing ER workflows of higher performance in combination with specialized,

complementary methods.

Only a handful of hybrid blocking methods have been proposed in the liter-

ature. The Sorted Neighborhood approach [HS95, HS98] defines BKs that are

suitable for sorting, such that similar entities are placed in neighboring positions.

In fact, entities are sorted in alphabetical order of their BKs, and blocks are cre-

ated dynamically, through a sliding window of fixed size that gradually passes over

the entire entity collection. In every iteration, the window advances by one en-

tity, adding it to the block and comparing it with all other entities. This approach

has been generalized to accommodate Standard Blocking, as the latter is equiv-

alent to advancing the window by w entities, where w is the size of the sliding

24 CHAPTER 2. RELATED WORK

window [DN09].

Apparently, the performance of Sorted Neighborhood depends heavily on the

size of the sliding window; the larger its value is, the more duplicates are identified

(i.e., higher effectiveness), but the more comparisons are executed and the lower

the overall efficiency gets. In contrast, small windows lead to a high number of

missed matches (i.e., duplicate entities having no block in common) and to low

effectiveness. To address this issue, Adaptive Sorted Neighborhood [YLKG07]

adjusts dynamically the size of the window, based on the string similarity of the

BKs. Still, Sorted Neighborhood is a schema-based blocking method that is crafted

for HOIS and, thus, is not applicable to HHIS.

In another line of research, HARRA [KL10] introduces a hybrid method that

dynamically creates blocks through an LSH-based procedure and processes them

iteratively. In more detail, HARRA hashes entities so that the similar ones are

placed into the same buckets, which now operate as blocks. Inside every bucket, all

pairwise comparisons are executed and pairs of matching entities are merged into

new profiles that will be re-hashed. This procedure is repeated until one of the three

possible stopping criteria is satisfied. As stressed by the authors, this approach can

be applied to both Clean-Clean and Dirty ER, with slight modifications.

Chapter 3

Problem Formulation

3.1 Entity Resolution

At the core of entity resolution (ER) lie collections of entity profiles that individu-

ally describe real-world entities. A set of entity profiles is called entity collection

and is symbolized by E. Assuming infinite sets of attribute names N , values V,

and identifiers I, it can be formally defined as follows:

Definition 3.1. An entity collection Ei is a tuple 〈Ni,Vi,Ii,Pi〉, where Ni⊆N is the

set of attribute names appearing in it, Vi⊆(V∪I) is the set of values used in it,

Ii⊆I is the set of global identifiers1 contained in it, and Pi⊆Ii×℘(Ni×Vi) is the set

of entity profiles it comprises.

An entity profile is a uniquely identified collection of information in the form

of name-value pairs. It can be formally defined as follows:

Definition 3.2. An entity profile pid is a tuple 〈id, Apid
〉, where id ∈ I is a unique

identifier, and Apid
is a set of name-value pairs 〈n, v〉, with n∈N and v∈(V∪I).

The simplicity of our model allows for a high flexibility that can accommodate

a wide variety of entity representations. For instance, the connection between two

entities, pi and p j, can be represented simply by assigning the id of p j as an at-

tribute value of pi, and vice versa. A tag-style value vi can be simply denoted by

leaving empty the attribute name in the corresponding name-value pair 〈 , vi〉 (see

Figure 1.2), whereas a missing value for the attribute n j is represented through the

1A global identifier is an id that uniquely identifies an entity profile.

25

26 CHAPTER 3. PROBLEM FORMULATION

unspecified attribute value in 〈n j, 〉. Nested attributes are also supported, as they

merely need to be transformed into a flat set of name-value pairs. On the whole, our

model is general enough to represent the entities of the HHIS we are considering,

such as the Web and Dataspace applications [MCD+07].

Two profiles, pi and p j, are duplicates (or matches) — denoted by pi ≡ pj —

if they represent the same real-world object. Given two entity collections, E1 and

E2, the goal of entity resolution is to identify the duplicate profiles they contain.

Depending on the relation between E1 and E2, we distinguish the following types

of ER:

• Clean-Clean ER, where both E1 and E2 are individually duplicate-free (i.e.,

clean), but possibly overlapping entity collections.

• Dirty-Clean ER, where E1 is a clean collection, while E2 may contain dupli-

cates (i.e. it is “dirty”).

• Dirty-Dirty ER, where both E1 and E2 are dirty.

In all cases, the output of ER comprises the pairs of duplicate entities that are

shared by E1 and E2 — denoted byDE1∩E2 . For simplicity, we consider the last two

sub-problems to be equivalent to Dirty ER: the input comprises a single, dirty entity

collection E that is formed by the union of the given collections (i.e., E = E1∪E2),

while the output encompasses the set of matching pairs of entities that are contained

in E — represented by DE. Thus, in the following, we exclusively consider two

versions of ER: Clean-Clean ER and Dirty ER. In the context of homogeneous

information spaces, such as databases, the former problem is usually called record

linkage and the latter deduplication [Chr12b].

3.2 Blocking for Entity Resolution

The exhaustive ER solutions constitute quadratic procedures that cannot scale to

large data sets. To apply ER to voluminous data collections, blocking is typically

employed in order to restrict the computational cost to comparisons between sim-

ilar entities. Its goal is to group such entities into clusters called blocks so that it

suffices to perform comparisons solely among the entities of each block.

In practice, blocking transforms every profile into a (set of) blocking key(s) that

is suitable for clustering. Therefore, the similarity between two profiles should

be reflected in the similarity of their blocking key(s). Entities with the same (or

similar) key(s) are grouped together into blocks. This procedure is encapsulated

3.2. BLOCKING FOR ENTITY RESOLUTION 27

by a blocking scheme, which consists of two parts:

• A transformation function ft maps an entity profile to its blocking key(s). As an

example, consider a function that transforms the entity profiles of Figure 1.1 (a)

into a representation consisting of their value for the attribute “zip code”.

• A set of constraint functions Fc encapsulates the conditions for placing entities

into blocks. Each function f i
c ∈ Fc essentially captures a boolean condition that

decides for every entity profile whether it should be placed in block bi. Con-

tinuing the previous example, the constraint function f 91456
c places an entity of

Figure 1.1 (a) in the block b91456 of Figure 1.1 (b) as long as its transformation

function represents it by the value “91456”. The individual constraint func-

tions are independent from each other and allow for every entity to be placed

into multiple blocks, thus introducing redundancy.

Based on these definitions, a blocking scheme that applies to the Clean-Clean

ER problem can be formalized as follows:

Definition 3.3. A blocking scheme bsE1×E2 for two input entity collections2, E1

and E2, is defined by a transformation function ft : E1 ∪ E2 7→ K and a set of

constraint functions Fc : K 7→ {true, f alse}, where K is the space of all possible

blocking keys for the given entity profiles.

A blocking scheme bsE that applies to Dirty ER is defined in analogy.

Applying a blocking scheme to the input entity collection(s) yields a set of

blocks B that is called block collection3. Depending on the ER problem at hand,

the individual blocks it comprises may be of two types:

1. Unilateral blocks are the product of blocking-based Dirty ER. All entities

they contain are possible matches, as they stem from the same dirty entity

collection.

2. Bilateral blocks are the product of blocking-based Clean-Clean ER. Inter-

nally, they are partitioned in two inner sub-blocks that individually contain

non-matching entities (i.e., entities stemming from the same clean input col-

lection). Hence, only entities belonging to different inner blocks are possible

matches.

2Note that the input entity collections may be represented in a different format. However, we

assume that a preprocessing step transforms both of them into the data model described in Defini-

tions 3.1 and 3.2.
3In view of the unambiguous relation between a blocking scheme and a block collection, we will

use these two terms interchangeably.

28 CHAPTER 3. PROBLEM FORMULATION

Formally, these two types of blocks are defined as follows:

Definition 3.4. Given an entity collection E and a blocking scheme bsE, a uni-

lateral block bi ∈ BE is the maximal subset of E defined by the transformation

function ft and the constraint function f i
c such that: bi ⊆ E ∧ ∀p ∈ E : f i

c(ft(p)) =

true ⇔ p ∈ bi.

Definition 3.5. Given two entity collections, E1 and E2, and a blocking scheme

bsE1×E2 , a bilateral block b
1,2
i

∈ BE1×E2 is the maximal subset of E1 × E2 that is

defined by the transformation function ft and the constraint function f i
c. Its non-

empty inner blocks, b1
i

and b2
i
, are defined by the following conditions:

∀i : b1
i ⊆ E1 ∧ ∀p ∈ E1 : f i

c(ft(p)) = true ⇔ p ∈ b1
i , and

∀i : b2
i ⊆ E2 ∧ ∀q ∈ E2 : f i

c(ft(q)) = true ⇔ q ∈ b2
i .

The difference in the internal structure of these block types calls for different

processing, as well. In the case of unilateral blocks, all entities are compared with

each other, whereas for bilateral blocks, the entities of the one inner block are only

compared with those of the other.

3.2.1 Blocking Scheme Quality

The quality of a blocking scheme bs over a (pair of) entity collection(s) is expressed

in terms of the following two measures:

• The efficiency of bs is directly related to the number of comparisons contained

in the resulting block collection B. This number — denoted by ||B||— is called

aggregate cardinality and is equal to ||B|| =
∑

bi∈B ||bi||, where ||bi|| is the in-

dividual cardinality of bi (i.e., total number of comparisons entailed by block

bi). For a unilateral block, we have ||bi|| = |bi| · (|bi| − 1)/2, while for a bi-

lateral one we have ||bi|| = |b1
i
| · |b2

i
|. Efficiency is also characterized by the

minimum aggregate cardinality of a block collection B, which is denoted by

||B||min. This measure expresses the minimum number of comparisons that will

be executed in the ideal case that we process the blocks ofB using an oracle for

entity matching (i.e., the perfect matching method that always decides whether

two entities are matching with 100% accuracy). Apparently, ||B||min≤||B|| and

||B||min =
∑

bi∈B ||bi||min, where ||bi||min stands for the minimum individual cardi-

nality of block bi.

3.2. BLOCKING FOR ENTITY RESOLUTION 29

• The effectiveness of bs is directly related to the portion of detected matches.

Assuming a perfect matching method, it is derived from the ratio between the

number of duplicates sharing at least one block and the actual matches con-

tained in the input entity collection(s). The former is denoted by |DB|, and the

latter by DE1∩E2 for Clean-Clean ER and DE for Dirty ER.

There is a clear trade-off between the effectiveness and the efficiency of a block-

ing scheme: the more comparisons it entails (i.e., higher ||B||), the higher its effec-

tiveness is expected to be at the cost of lower efficiency, and vice versa. Thus, a

blocking scheme is considered successful if it achieves a good balance between

these two competing objectives. This trade-off is commonly captured by the fol-

lowing three measures [BKM06, dVKCC09, MK06, PINF11]:

• Pair Completeness (PC) expresses how many of the matching pairs of en-

tities have at least one block in common and, thus, can be detected. Given

a bilateral block collection BE1×E2 , its value is derived from the following

formula:

PC(B) =
|DB|

|DE1∩E2 |
.

For a unilateral block collection BE, it is equal to:

PC(B) =
|DB|

|DE|
.

Apparently, PC takes values in the interval [0, 1], with higher values indicat-

ing higher effectiveness of the blocking scheme.

• Pairs Quality (PQ) estimates the portion of executed comparisons that cor-

respond to real pairs of duplicate entities. Given a block collection B, it is

defined as:

PQ(B) =
|DB|

||B||min

.

PQ takes values in the interval [0, 1], with higher values indicating a lower

number of unnecessary comparisons and, thus, higher efficiency of the block-

ing scheme.

• Reduction Ratio (RR) measures the reduction in the number of executed

comparisons for a block collection B with respect to a baseline block collec-

30 CHAPTER 3. PROBLEM FORMULATION

tion B′. It is defined as:

RR(B,B′) = 1 −
||B||min

||B′||min

.

It takes values in the interval [0, 1] (provided that ||B||min≤||B
′||min), with

higher values denoting higher efficiency of the blocking scheme.

In general, high PC values satisfy the application requirements with respect

to the acceptable level of effectiveness over HHIS, while high PQ and RR values

mean that the ER process can be efficiently applied to large data sets.

Based on the above definitions, the blocking-based ER problems we are tack-

ling in this work can be formalized as follows:

Problem 3.1 (Blocking-based Clean-Clean ER). Given two duplicate-free, but

overlapping entity collections, E1 and E2, cluster the entities of E1 and E2 into

blocks and process them so that both PC(B) and PQ(B) are maximized.

Blocking-based Dirty ER is defined in analogy. Note that the requirement for

maximizing PC and PQ simultaneously necessitates that the efficiency enhance-

ments stem from the careful removal of unnecessary comparisons between irrele-

vant entities.

3.2.2 Internal Functionality of Blocking-based ER

Internally, blocking-based ER can be split into three sub-problems that are tackled

in sequence. They are formally defined in the following, in the order they should

be executed:

Problem 3.2 (Block Building). Given two duplicate-free, but overlapping entity

collections4, E1 and E2, define a blocking scheme bs that produces a block collec-

tionB of the highest possible effectiveness (i.e., PC), while having a computational

cost that is significantly lower than that of the naive block collection Bnaive (i.e.,

RR(B,Bnaive)≫0)5.

Problem 3.3 (Meta-Blocking). Given a block collection B, restructure it into a

new oneB′ that achieves significantly higher levels of efficiency (i.e., PQ(B′)≫PQ(B)

4For Dirty ER, the input comprises a single entity collection E.
5The naive block collection (Bnaive) places all input entities in a single block. Thus, it compares

every entity will all others, involving |E1| · |E2| comparisons for Clean-Clean ER and |E| · (|E| − 1)/2

for Dirty ER.

3.3. METRIC SPACE FOR BLOCKING TECHNIQUES 31

and RR(B′,B)≫0), while maintaining the original effectiveness (i.e., PC(B′)≥PC(B)).

Problem 3.4 (Block Processing). Given a block collectionB, examine its elements

so as to maximize PQ(B), while maintaining the original levels of PC(B).

Note that Meta-Blocking constitutes a novel task that, as yet, has not been

studied in the literature. Its goal seems similar to that of Block Processing, but it

involves a fundamentally different functionality: Block Processing aims at detect-

ing practically all duplicates with the minimum number of pairwise comparisons,

while Meta-Blocking aims at restructuring the input block collection based on the

information encapsulated in its block assignments — regardless of the block build-

ing method that created it. Ultimately, its target is to enhance the performance

of Block Processing by feeding it with a block collection that achieves a better

balance between effectiveness and efficiency than the original set of blocks.

Problems 3.2, 3.3 and 3.4 essentially constitute optimization tasks. Their in-

terplay in the context of the overall blocking-based ER problem is outlined in Fig-

ure 1.3. We address them individually in Chapters 4, 5 and 6, respectively, through

a set of best effort strategies.

3.3 Metric Space for Blocking Techniques

The goal of (meta-)blocking is to achieve the optimal balance between PC and

PQ. In the ideal case, this balance would be tuned by knowing the values of these

measures a-priori so as to guide the processing of the relevant techniques. How-

ever, these measures can only be quantified a-posteriori, by analytically processing

the input block collection in order to estimate the number of executed comparisons

and detected duplicates. To overcome this problem, we propose to resort to a-priori

approximations of the actual values of these measures.

To this end, we introduce the BC-CC metric space that is illustrated in Fig-

ure 3.1. It is formed by two orthogonal measures that provide a close approxi-

mation to PC and PQ, respectively. Its horizontal dimension is called Blocking

Cardinality (BC) and quantifies the redundancy of B as the average number of

block assignments per entity of the input collection(s); as we have experimentally

shown, BC is highly correlated with PC for redundancy-positive blocking schemes

(i.e., higher BC values lead to higher effectiveness) [PIN+12]. The vertical di-

mension is called Comparisons Cardinality (CC) and expresses the distribution of

32 CHAPTER 3. PROBLEM FORMULATION

CC

2
Ideal Point

BC
1

Redundancy free

Method

Redundancy bearing

Method

BC

| 1| | 2| (| 1| | 2|)

1
BCmax

| 1| | 2| (| 1| | 2|)

Figure 3.1: The BC-CC metric space and the mapping of the two main categories

of blocking methods (black dots) in comparison with the ideal one (gray dot).

comparisons per block. Its value is directly related to PQ and RR, with higher CC

values conveying higher efficiency.

More formally, BC is defined as follows:

Definition 3.6. Given a unilateral block collection BE, its Blocking Cardinality

(BC) is defined as the average number of blocks bi ∈ B
E an entity profile p ∈ E is

placed in:

BC(B) =

∑

bi∈BE
|bi|

|E|
,

where |bi| and |E| denote the size of the block bi and the input entity collection E,

respectively (i.e., the number of entity profiles they contain).

Note that the value of BC depends not only on the blocking scheme at hand,

but also on the data collection(s) it applies to. Thus, given a bilateral block collec-

tion BE1×E2 , we distinguish two different versions of BC: the Blocking Cardinality

of the individual entity collections (BCind) and the Blocking Cardinality of their

conjunction (BCov)6. Their formal definitions are respectively the following:

Definition 3.7. Given a bilateral block collection BE1×E2 , the individual Blocking

Cardinality (BCind) of E j is defined as the average number of inner blocks b
j

i
∈

BE1×E2 an entity profile p ∈ E j is placed in:

BCind(E j) =

∑

bi∈B
E1×E2 |b

j

i
|

|E j|
,

where j ∈ {1, 2}.

6Note that for Clean-Clean ER, the horizontal axis of the BC-CC metric space corresponds to the

overall Blocking Cardinality BCov of B.

3.3. METRIC SPACE FOR BLOCKING TECHNIQUES 33

Definition 3.8. Given a bilateral block collection BE1×E2 , its overall Blocking

Cardinality (BCov) is defined as the average number of blocks bi ∈ BE1×E2 an

entity profile p ∈ (E1 ∪ E2) is placed in:

BCov(BE1×E2) =

∑

bi∈B |bi|

|E1| + |E2|
,

where |E1| + |E2| denotes the total size of the entity collections, E1 and E2.

To illustrate the functionality of BC, consider the blocks of Figure 1.4. They

involve 19 block assignments that pertain to 4 distinct entity profiles, thus yield-

ing a BC value equal to (19/4=)4.75. In general, BC takes values in the interval

[0, BCmax], where BCmax denotes the maximum reasonable BC value, which corre-

sponds to the naı̈ve method of placing all pairs of comparable entities7 into a block

of minimum size (i.e., |bi| = 2 ∀bi ∈ B). For Clean-Clean ER over E1 and E2, it is

equal to BCmax =
2·|E1 |·|E2 |
|E1 |+|E2 |

, while for Dirty ER over E it is equal to BCmax = |E| −1.

A BC value lower than 1 indicates a blocking method that fails to place each en-

tity in at least one block. This is possible, for example, with blocking techniques

that group entities based on the values of a specific attribute, thus ignoring the pro-

files that do not have it. A value equal to 1 denotes a technique that is close to a

redundancy-free blocking method; it practically associates every entity with a sin-

gle block, thus producing a set of (nearly) non-overlapping blocks. A value over 1

indicates redundancy-bearing methods (cf. Section 2.2.1), with higher BC values

corresponding to higher levels of redundancy.

The vertical axis, CC, estimates the efficiency of a block collection through

the number of block assignments that account for each comparison. For instance,

the blocks of Figure 1.4 entail 15 comparisons that pertain to 19 entity-to-block

associations and, thus, the corresponding value of CC amounts to (19/15=)1.27.

The rationale behind CC is that a large set of individually small blocks is substan-

tially more efficient than a small set of extremely large blocks; the former typically

involves more block assignments, but contains fewer comparisons than the latter,

thus resulting in higher CC. Therefore, the higher the value of CC is, the more

efficient is the given block collection. Continuing our example, if we omit the two

largest blocks of Figure 1.4 (bseller and b91335), we produce a more efficient block

collection, whose CC value increases to 2.

Formally, CC is defined as follows:

7For Clean-Clean ER over E1 and E2, two entities, pi and p j, are comparable if pi ∈ E1 and

p j ∈ E2. For Dirty ER, two entities, pi and p j, are comparable if they are different (i.e., i , j).

34 CHAPTER 3. PROBLEM FORMULATION

Definition 3.9. Given a block collection B, its Comparison Cardinality (CC)

is defined as the ratio between the sum of block assignments and its aggregate

cardinality:

CC =

∑

bi∈B |bi|

||B||
,

where |bi| denotes the size of bi.

CC takes values in the interval [CCmin,CCmax], with higher values correspond-

ing to fewer comparisons per block assignment and higher efficiency (i.e., smaller

blocks, on average). Its maximum value CCmax=2 corresponds to the naı̈ve solu-

tion of placing all pairs of comparable entities into a block of minimum size, while

its maximum value CCmin corresponds to the naive block collection Bnaive. Thus,

it is equal to CCmin =
|E1 |+|E2 |
|E1 |·|E2 |

(≪ CCmax) for Clean-Clean ER and to CCmin =
|E|

|E|·(|E|−1)/2
= 2

|E|−1
≪ CCmax for Dirty ER.

On the whole, the BC-CC metric space is suitable for three tasks:

1. To a-priori estimate the values of PC, PQ and RR. This can be efficiently

accomplished, as the BC-CC mapping of a block collection exclusively relies

on the external features of its elements (i.e., size and cardinality) and can be

computed in linear time (i.e., O(|B|)).

2. To a-priori compare the performance of individual blocking schemes. In

fact, the closer a blocking method is mapped to point (1,2) (refer to Fig-

ure 3.1), the better is its balance between PC and RR [PIN+12]. Indeed, point

(1,2) represents the Ideal Point, since it corresponds to the optimal blocking

method, i.e., the method that builds a block of minimum size for every pair

of duplicates, thus involving neither repeated nor superfluous comparisons

between non-matching entities. In our work, we use the Ideal Point as a

reference point, as we will see in Chapter 5 — especially Sections 5.3.2

and 5.3.4.

3. It facilitates the development of blocking methods that enhance the effective-

ness and/or the efficiency of a blocking scheme. An example for the latter

case is the method presented in Section 6.2.3.

3.4 Summary

In this chapter, we formalized all concepts of blocking-based Entity Resolution that

are relevant to our work. We also presented the formal definitions of the individual

3.4. SUMMARY 35

tasks that correspond to the three layers of our framework. They are all modeled

as optimization problems, but in the following, we tackle them through a series

of best effort strategies. Last but not least, we introduced the BC-CC metric space

that facilitates the a-priori comparison of their relative performance as well as the a-

priori estimation of the balance between effectiveness and efficiency they achieve.

36 CHAPTER 3. PROBLEM FORMULATION

Chapter 4

Block Building

The block building techniques receive as input one or two entity collections and

aim at clustering their entities into blocks so that each pair of duplicates co-occur in

at least one block, with a high probability. Most of these methods are designed for

HOIS, relying on an a-priori known schema for their effectiveness. However, the

intricacies of HHIS (cf. Chapter 1) render them inapplicable, calling for alternative

techniques that inherently overcome the relevant challenges.

In this chapter, we introduce a series of novel block building techniques that

rely on two fundamental principles in order to deal with the intricacies of HHIS:

• The attribute-agnostic functionality ensures that the creation of blocks com-

pletely disregards any schema information. The reason is that HHIS entail so

high levels of noise and heterogeneity that attribute names cannot play a reli-

able role in the creation of blocks. Note that in the following, we use the terms

attribute-agnostic and schema-agnostic interchangeably.

• The redundancy-positive functionality ensures that each entity is placed in mul-

tiple blocks so that the more blocks two entities have in common, the higher is

the similarity of their profiles. This methodology constitutes a reliable means

for reducing the likelihood of missed matches and is practically indispensable

in the context of HHIS, due to the high levels of noise the latter entails. Note

that all block collections incorporating this approach are mapped to the right of

the x=1 axis on the BC-CC metric space.

Based on these principles, we have developed three groups of blocking meth-

ods. The most simple and general one, called Token Blocking, is presented in

Section 4.1. It essentially creates a distinct block for each token shared by at least

two input entities. Section 4.2 presents a refined version of this approach, called

37

38 CHAPTER 4. BLOCK BUILDING

Agnostic Clustering; it clusters attributes according to the similarity of their values

and applies Token Blocking inside each cluster independently of the others; in this

way, it creates blocks of higher efficiency and comparable levels of effectiveness.

Finally, Section 4.3 presents a family of block building methods that are crafted

for RDF data. They exploit the semantics in entity URIs, the links between enti-

ties as well as the tokens in the literal values of each entity in order to build block

collections of higher performance than Token Blocking.

4.1 Token Blocking

This blocking scheme, which was originally introduced in [PINF11], is based on

the following idea: each token ti creates a distinct block bi that contains all enti-

ties having ti in the values of their profile — regardless of the associated attribute

names. In this way, blocks are built in an attribute-agnostic manner, and every

entity is placed in multiple blocks, ensuring a redundancy-positive functionality.

There is only one restriction in this process: in the case of Dirty ER, a token ti is

valid (i.e., it creates a block) if it appears in at least two input entity profiles, while

for Clean-Clean ER, it has to appear in entity profiles of both input sets. The latter

requirement ensures that for each bilateral block, both inner blocks are non-empty;

formally, this is expressed as ti∈(tokens(V1)∩tokens(V2)), where tokens(V j) repre-

sents the set of all tokens contained in the values V j of the entity profiles in the

input collection E j.

More formally, the transformation function ft of this scheme converts an entity

profile into the set of tokens contained in its attribute values:

ft(p) =
{

ti : ∃ni, vi : 〈ni, vi〉 ∈ Ap ∧ ti ∈ tokens(vi)
}

,

where tokens(vi) is a function that returns the set of tokens comprising the value

vi. Its set of constraint functions Fc contains a function f i
c for every valid token ti;

each f i
c actually defines a block bi ∈ B that contains all input entities having ti in

at least one of their attribute values. Thus, f i
c encapsulates the following condition

for placing an entity p in block bi:

f i
c(ft(p)) = (ti ∈ ft(p)).

On the average case, the time complexity of this method for Clean-Clean ER is

O(BCov·(|E1|+|E2|)), while its space complexity is O(¯|bi|·(|tokens(V1)|∩|tokens(V2)|)),

4.2. AGNOSTIC CLUSTERING BLOCKING 39

where ¯|bi| is the mean block size. For Dirty ER, the average time complexity is

O(BC·|E|) and the average space complexity is O(¯|bi|·|tokens(V)|).

Token Blocking has two major performance advantages:

• It scales to large-scale entity collections, as it can be efficiently implemented

with the help of inverted indices.

• It is robust to noise and heterogeneity, because the likelihood of two matching

entities sharing no block at all is very low. Indeed, this can only be the case

when two matching entities have no token in common, a very unlikely situation

for profiles describing the same real-world object.

However, the high levels of redundancy it entails have a negative impact on ef-

ficiency (i.e., high ||B|| and ||B||min). Sections 4.2 and 4.3 present block building

techniques that enhance its efficiency at a limited cost (if any) in effectiveness.

4.2 Agnostic Clustering Blocking

Token Blocking suffers from low efficiency, since it produces large blocks with a

high portion of unnecessary comparisons. To enhance its efficiency at no cost in

effectiveness, we could split its blocks into smaller ones, without separating their

co-occurring duplicate entities. In this way, we can derive a new block collec-

tion that comprises a higher number of blocks, which are significantly smaller in

size. The aggregate cardinality of the new collection will be lower and its BC-CC

mapping will lie closer to the Ideal Point, thus indicating a better balance between

effectiveness and efficiency.

Agnostic Clustering was introduced in [PIP+ar] so as to serve exactly this

goal. Its functionality exploits the attributes associated with each token, partition-

ing them into non-overlapping clusters according to the similarity of their values.

The resulting groups are called attribute clusters (K) and are treated independently

of each other: given a cluster k ∈ K, every valid token ti of its values creates a

distinct block, which contains all entities having ti assigned to at least one attribute

belonging to k. As a result, the partitioning of attributes into clusters leads to the

partitioning of tokens and blocks, as well.

In more detail, Agnostic Clustering is equivalent to splitting each block bi of

Token Blocking according to the attribute clusters associated with ti in the entity

profiles of bi. To illustrate this difference, imagine that token ti is associated with

n attributes, which belong to m attribute clusters (m≤n). Token Blocking creates

40 CHAPTER 4. BLOCK BUILDING

Algorithm 4.1: Attribute Clustering Blocking.

Input: Attribute sets: N1, N2, Attribute values: V1, V2

Output: Set of attribute clusters: K

1 links← {}; kglue ← {};

2 foreach ni,1 ∈ N1 do

3 n j,2 ← getMostS imilarAttribute(ni,1,N2,V2);

4 if 0 < sim(ni,1.getValues(), n j,2.getValues()) then

5 links.add(newLink(ni,1, n j,2));

6 foreach ni,2 ∈ N2 do ... ; // same as with N1

7 links′ ← computeTransitiveClosure(links);

8 K ← getConnectedComponents(links′);

9 foreach ki ∈ K do

10 if |ki| = 1 then K.remove(ki); kglue.add(ki);

11 K.add(kglue);

12 return K;

a single block for ti, with all entities having it in their values — regardless of the

associated attributes. In contrast, Agnostic Clustering creates (at most) m distinct

blocks — one for each attribute cluster; every block contains all entities having at

least one attribute of the corresponding cluster associated with ti. Given that the

number of entities remains the same in both cases, the blocks of Agnostic Clus-

tering are expected to be more in number and individually smaller, thus having a

higher CC value than Token Blocking. In fact, the higher m is, the higher gets the

value of CC. On the other hand, BC exhibits a slight increase, due to the tokens that

are associated with multiple attribute clusters within the same entity profile (note

that this implies that Agnostic Clustering involves a redundancy-positive function-

ality, just like Token Blocking).

The functionality of Agnostic Clustering for Clean-Clean ER is outlined in Al-

gorithm 4.1. In essence, it works as follows: every attribute from N1 is associated

with the most similar attribute of N2 (Lines 2-5), and vice versa (Line 6). The

link between two attributes is stored in a list (Line 5) on the sole condition that

the similarity of their values exceeds zero (Line 4), a score that actually implies

dissimilarity. The transitive closure of the stored links is then computed (Line 7)

to form the basis for partitioning attributes into clusters: each connected compo-

nent of the transitive closure corresponds to a distinct attribute cluster (Line 8).

The resulting set of attribute clusters is examined for singleton clusters, i.e., those

4.2. AGNOSTIC CLUSTERING BLOCKING 41

containing a single attribute that was associated with no other. All these clusters

are then merged into a new one, which is called Glue Cluster and is symbolized as

kglue (Line 10). In this way, we ensure that no attributes and, thus, no tokens are

excluded from the block building procedure. The time complexity of the overall

procedure is O(|N1|·|N2|), while its space complexity is O(|N1|+|N2|), where |N1|

and |N2| stand for the number of distinct attribute names in E1 and E2, respectively.

For Dirty ER, the functionality of Agnostic Clustering remains almost the same

as in Algorithm 4.1. The only difference is that the two loops in Lines 2-6 are

replaced with a single one that compares every attribute with all others. Hence, the

time complexity is quadratic and the space complexity is linear in the number of

input attribute names (i.e., O(|N|2) and O(|N |), respectively).

Relation to Schema Matching. Agnostic Clustering seemingly operates as a

schema matching algorithm. As a matter of fact, though, there are three funda-

mental differences between these two approaches:

1. They serve different goals. Schema matching tries to partition the given

attributes into clusters of semantically equivalent ones, whereas Agnostic

Clustering aims at deriving attribute clusters that produce blocks with a com-

parison distribution that has a short tail (i.e., high CC values). The latter

approach actually involves a schema-agnostic functionality, as it partitions

the given attributes without considering any knowledge about their meaning

or their name; instead, it merely takes into account the similarity of their

values.

2. Agnostic Clustering associates singleton attributes with each other, a practice

that is incompatible with the goal of schema matching.

3. Agnostic Clustering is inherently capable of supporting the unprecedented

levels of heterogeneity in HHIS. In contrast, the state-of-the-art schema match-

ing techniques are crafted for the limited attribute spaces of HOIS. The num-

ber of mappings they produce grows extremely fast with respect to the given

attributes and, thus, they cannot scale to large schema spaces of HHIS [PINF11,

NMMMBLP07, RB01].

As a result, the existing schema matching techniques cannot be employed in the

place of Agnostic Clustering. In the following section, we examine the parameters

that determine its functionality.

42 CHAPTER 4. BLOCK BUILDING

4.2.1 Representation Models & Similarity Metrics

The most critical part of Algorithm 4.1 is the function that estimates the similarity

between two attributes (i.e., getMostS imilarAttribute). Internally, its functionality

relies on two components:

• the model that collectively represents the set of values associated with each

attribute, and

• the metric that assesses the similarity (i.e., common patterns) between the rep-

resentation of two attributes.

The combination of a representation model and a similarity metric is called clus-

tering settings. In the following, we elaborate on three such settings that have been

established in the literature [GMP+12]. We analytically examine their relative per-

formance in Section 7.2.

Term Vector in conjunction with Cosine Similarity

The term vector representation model transforms a set of values V into a Cartesian

space, where each dimension corresponds to a distinct token contained in V . Thus,

an attribute nk ∈ N is represented by a (sparse) vector n̄k, whose i-th coordinate

denotes the T F(ti)×IDF(ti) weight of the corresponding token ti [MRS08]. T F(ti)

represents the Term Frequency of ti, i.e., how many times ti is associated with the

specific attribute nk, while IDF(ti) is equal to log(|N|/|N(ti)|), where N stands for

the input set of attributes and N(ti) for the subset of attributes associated with ti

(N(ti)⊆N). For instance, the attribute in the pair <nk, vk>=<name, “home phone”>

is represented by the vector n̄k={T F(home)×IDF(home),T F(phone)×IDF(phone),

0,. . . ,0}.

In this context, the relevance between two attributes, n1 and n2, is quantified

through the cosine similarity CS (n1, n2) of the corresponding vectors:

CS (n1, n2) =
n̄1 × n̄2

||n̄1|| × ||n̄1||
.

CS takes values in the interval [0, 1], with higher values indicating higher similarity

between the given vectors/attributes.

The main drawback of these clustering settings is that they have to distinguish

between synonyms and homonyms in order to yield high performance. The former

term refers to different words having the same meaning (e.g., “buy” and “pur-

chase”), while the latter refers to identical words occurring with different meaning;

4.2. AGNOSTIC CLUSTERING BLOCKING 43

as an example of homonyms, consider the word “left”, which means either the past

tense of leave or the opposite of right. Such ambiguities are typically resolved

through language-specific, pre-processing techniques, like stemming, lemmatiza-

tion and part-of-speech tagging [MRS08]. However, their effectiveness is degraded

by the high levels of noise contained in HHIS (e.g., spelling mistakes). In addition,

the entity profiles of HHIS can be written in any language(s), without necessarily

conveying any information about it(them). For these reasons, in the following we

employ these clustering settings independently of any pre-processing techniques.

Character N-grams in conjunction with Jaccard Similarity

This representation model overcomes both shortcomings of the above one: it is

inherently tolerant to noise and requires no language-specific pre-processing tech-

niques for higher performance (i.e., language-neutral functionality). In essence, it

models each attribute as the set of n-grams (i.e., substrings of n consecutive char-

acters) that appear in its values [MRS08]. Most commonly, the parameter n is

set equal to 3, with the corresponding model called character trigrams. For in-

stance, the attribute in the pair <nk, vk>=<name, “home phone”> is represented as

{hom, ome,me , ph, pho, hon, one}.

In this context, the relevance between two attributes, n1 and n2, is defined as

the Jaccard similarity JS (n1, n2) of their trigrams:

JS (n1, n2) =
|trigrams(n1) ∩ trigrams(n2)|

|trigrams(n1) ∪ trigrams(n2)|
,

where function trigrams(nk) produces the trigrams representation of the attribute

nk. JS takes values in the interval [0, 1], with higher values indicating higher

similarity.

Character N-gram Graphs in conjunction with Value Similarity

This representation model enhances the previous one by connecting with edges

those n-grams that co-occur within a sliding window of n characters (i.e., neigh-

boring n-grams) [GKVS08]. The edges are actually weighted in proportion to

the frequency of co-occurrence and encapsulate contextual information that en-

sures higher effectiveness. Similar to the above clustering settings, n is usually

set equal to 3, with the corresponding model called character trigram graphs. To

illustrate its difference from the character trigrams model, consider Figure 4.1,

44 CHAPTER 4. BLOCK BUILDING

���

���

���

���

���

����

����
����

����

����

����

����

����

����

����

����

���

���

���

����
����

���� ����

����
����

����

Figure 4.1: The trigram graph for value “home phone”.

which depicts the corresponding graph representation for the attribute nk in the pair

<nk, vk>=<name, “home phone”>; apparently, the trigram graph conveys much

more information than the plain bag representation of trigrams.

The n-gram graphs represent each attribute value by an individual graph, which

we call value graph. The set of values corresponding to an attribute is also repre-

sented by a single graph. We call it attribute graph and derive it from the merge of

the individual value graphs. Thus, it comprises the union of the nodes and the edges

of the value graphs, with the weight of every edge converging to the mean weight

of the corresponding edges in the value graphs (for more details, see [GP10]).

The relevance of two attributes n1 and n2 can be estimated through any graph

metric that assesses the similarity of the corresponding attribute graphs, G1 and

G2. For higher effectiveness, we employ a metric that considers both the num-

ber of common edges and their relative weights. It is called value similarity (VS)

and essentially expresses the portion of common edges sharing exactly the same

weight [GKVS08]. More formally, each common edge e ∈ (G1 ∩ G2) contributes

VR(e)/max(|G1|, |G2|) to VS , where VR(e) is the value ratio, i.e., a symmetric, scal-

ing factor that is defined as VR(e)=min(W1(e),W2(e))/max(W1(e),W2(e)), where

Wk(e) is the weight of edge e in graph Gk (k∈{1, 2}). VR(e) takes values in the

interval [0, 1], with 0 corresponding to non-matching edges that do not contribute

to VS (i.e., VR(e)=0 ∀e < (G1 ∩ G2)). Plugging all these measures together, we

have:

VS (G1,G2) =

∑

e∈(G1∩G2)

min(W1(e),W2(e))

max(W1(e),W2(e))

max(|G1|, |G2|)
.

VS is defined in the interval [0, 1], with higher values indicating higher similarity.

Its maximum value VSmax=1 actually corresponds to a pair of graphs with identical

4.3. URI SEMANTICS BLOCKING 45

Figure 4.2: Examples of matching pairs of URIs, split in the PI(S) scheme.

nodes, edges and weights.

Similar to the previous clustering settings, the advantage of the current ones

is their language-agnostic, noise-tolerant functionality. However, they are able to

capture more reliable similarity patterns than the plain n-grams model, due to the

contextual information that is contained in their weighted edges.

4.3 URI Semantics Blocking1

The blocking schemes of this category are crafted for RDF data, relying primarily

on evidence drawn from the semantics of entity identifiers. In fact, URIs often con-

tain clues about the corresponding entity, even though the W3C explicitly discour-

ages users from incorporating semantics into them [JW04]. These semantics come

in the form of substrings that are suitable for matching entities and for clustering

them into blocks. Indeed, we experimentally verified that around two thirds of the

182 million URIs of the 2009 Billion Triple Challenge data set2 follow the Prefix-

Infix(-Suffix) scheme — PI(S) for short — that is depicted in Figure 4.2 [PDKF10].

Matching the entities on the basis of equivalent infixes actually yields a Precision

well over 90% and a Recall exceeding 70%.

Each component of the PI(S) form plays a special role: the Prefix part contains

information about the source (i.e., domain) of the URI, the Infix part is a sort of a

local identifier, and the optional Suffix part contains either details about the format

(e.g., .rdf and .n3), or a named anchor. Apparently, the infixes of URIs contain

the most discriminative information for our purpose, since they are more source-

independent than the prefixes and the suffixes [PDKF10]. As an example, consider

the duplicate entities of Pair (a) in Figure 4.2; despite the high heterogeneity in the

prefixes of their URIs, the infix remains the same, while the suffix (e.g., dblp) is

optional and can be ignored when matching URIs. It is possible, therefore, to create

1Originally introduced in [PIN+12].
2http://km.aifb.kit.edu/projects/btc-2009

46 CHAPTER 4. BLOCK BUILDING

���� �����������	�
��
����	�
���	��������������

����	
��
� ������������
�
����������

���
������	� ������� ��!�

����	"#��
� ���$�����%	��&�''��&
���()�*'�
�)���
'��$���+

�)��,
����&��)
� �!!�	�"�
���

��)���	
��
��
��-���
��)��.�
�����

�&)��
��� %	��&�''��&
���()�*'�
�)���
'/��	
##
0�����+

1��
&�
���

�� %	��&�''��&
���()�*'�
�)���
'2)
0���

+

���
� ���
����
�
�	

�	������
�
�	

������0����� /��	
##
0�����

��$���
2)
0���

������

����
�

�����

������

�

�!

3���

�� 3� !!�	

"�
���

�
)�

�	

�
��
�

-���
�.�
����

��$���

Figure 4.3: Illustration of the description items of an entity profile that are used by

our blocking schemes.

blocks on the basis of equivalent infixes that are extracted from entity identifiers.

However, there are certain limitations to this approach:

• It is possible that an entity identifier contains no semantics. This is particularly

true in the case of blank nodes3 and of arbitrary or numerical URIs.

• Some matching entities are likely to have non-identical infixes, due to noise

or divergent information. As an example, consider the matching entities of

Pair (b) in Figure 4.2, where the two duplicate profiles have dissimilar infixes

(˜oaubert and olivier.aubert).

These situations can be resolved through blocking methods that rely on evidence

drawn from different parts of entity profiles. We consider the following two meth-

ods:

• We investigate the possibility of creating blocks by exploiting the relationships

between entities; this approach seems similar to Semantic Indexing

[NMMMBLP07], but is fundamentally different in that it exclusively relies on

the semantics contained in the identifiers of directly affiliated resources.

• We explore the creation of blocks on the basis of literal values, i.e., objects in

RDF statements that are neither URIs nor blank nodes.

The common characteristic of the above blocking methods is their attribute-

agnostic functionality, since they completely disregard any knowledge about at-

tribute names. Instead, they exclusively consider the rest of the description items

that are contained in an entity profile. As depicted in Figure 4.3, they actually

partition an entity profile pid into three parts that are suitable for schema-agnostic

blocking:

3Blank nodes constitute anonymous nodes in RDF graphs and are typically used whenever there

is no available information about the corresponding resource. Consequently, their identifiers do not

carry any semantics.

4.3. URI SEMANTICS BLOCKING 47

• The Infix of pid is extracted from its identifier id.

• The Infix Profile of pid (IPpid
) is the set of the infixes of all URIs contained in

pid as attribute values, with the exception of its own identifier (i.e., id). More

formally:

IPpid
= {in f ix(idi) : idi ∈ I ∧ ∃ni :< ni, idi >∈ Apid

∧ idi , id},

where in f ix(idi) is a function that extracts the infix from the given entity iden-

tifier idi
4. Thus, the Infix Profile of pid captures the semantics encapsulated in

the URIs of all entities that are directly associated with pid.

• The Literal Profile of pid (LPpid
) comprises the set of all tokens of the literal

values contained in it. More formally:

LPpid
= {ti : ∃ni, vi :< ni, vi >∈ Apid

∧ ti ∈ tokens(vi) ∧ vi < I},

where tokens(v) is the function employed by Token Blocking in order to tok-

enize a string value v on all its special characters (i.e., characters that are neither

letters nor digits).

We call the blocking methods that solely rely on one category of the aforemen-

tioned information atomic blocking schemes. In contrast, the composite blocking

schemes consider evidence from two or more of the above information sources. We

elaborate on the former category in Section 4.3.1 and on the latter in Section 4.3.2.

Note that, before applying these blocking schemes to a collection of RDF state-

ments, we first generate the entity profiles that are contained in it according to

Definition 3.2: all triples with a common subject s comprise an entity profile ps

that has s as its identifier, while the respective predicates and objects correspond to

the set Aps
of its name-value pairs. Note that the same procedure applies to blank

nodes, as well, provided that the identifier assigned to each of them is consistent

across all triples pertaining to the corresponding entity.

4.3.1 Atomic Blocking Schemes

In this section, we formalize the three atomic schemes that stem from the afore-

mentioned entity parts.

4For an efficient approach to splitting a collection of URIs into the PI(S) form, see [PDKF10].

48 CHAPTER 4. BLOCK BUILDING

Infix Blocking

This method builds blocks on the equality of infixes, i.e., every block is associ-

ated with a specific infix and contains all entities that share it. Its transformation

function converts an entity profile pid into the infix of its id:

ft(pid) = in f ix(id).

Its constraint function f i
c places an entity in block bi if its infix is identical to i:

f i
c(pid) = (i ≡ in f ix(id)), where i is one of the infixes occurring in the data set.

Apparently, this is a redundancy-free blocking scheme (the only one presented in

this dissertation), as every entity is placed in just one block, together with all other

entities sharing the same infix. For example, the entity of Figure 4.3 is placed

solely in the block that corresponds to the infix “Barack Obama”. The resulting

blocks are non-overlapping (i.e., BC≤1), of small size and high efficiency (CC),

because of the distinctive information of infixes. The drawback, though, is that

their effectiveness as well as their robustness are rather limited: Infix Blocking

does not apply to entities with a blank node or a random URI as their id, since

the corresponding identifiers have a local scope and do not provide a meaningful

infix for blocking and entity matching. It also fails to match duplicate entities with

different infixes, due to noise.

Infix Profile Blocking

This is the second blocking scheme that creates blocks on the equality of infixes. It

differs, though, from the previous one in that it exclusively considers infixes from

the Infix Profiles of the given entities. Its transformation function represents every

entity profile pid by its Infix Profile, IPpid
:

ft(pid) = IPpid
.

Its constraint function f i
c associates an entity with block bi if the infix i is contained

in its Infix Profile:

f i
c(pid) = (i ∈ IPpid

), where i is one of the infixes occurring in the data set.

4.3. URI SEMANTICS BLOCKING 49

The cardinality of IPpid
is typically larger than one, since every entity is usually

associated with many others. Therefore, most of the entities have a non-empty

Infix Profile and are placed in multiple blocks, which are now overlapping (i.e.,

1<BC if the majority of entities have a non-empty Infix Profile). For example,

the entity of Figure 4.3 is contained in the three blocks that correspond to the

infixes “Michelle Obama”, “Hawaii”, and “Joe Biden”. This redundancy-positive

functionality leads to larger blocks, on average, and to lower CC values than Infix

Blocking. Therefore, its mapping on the BC-CC space lies to the right of Infix

Blocking on the X-axis and lower than it on the Y-axis (assuming that both schemes

are applied to the same entity collections). Thus, it exhibits lower efficiency to the

benefit of higher effectiveness and robustness.

In more detail, this blocking scheme has the potential to cover duplicates that

Infix Blocking misses; even though blank nodes and numerical URIs have no infix,

their infix profile can be non-empty. The same applies to matching entities with

non-identical infixes, since their Infix Profiles are likely to share at least one in-

fix of their related entities. However, the coverage of this strategy is also limited,

since it does not apply to entity profiles that exclusively contain literal values. In

addition, entities with numerical/arbitrary URIs tend to be related to other numer-

ical/arbitrary URIs of the same domain, thus lacking an exploitable Infix Profile,

unless they are re-used in other domains.

Literal Profile Blocking

As its name suggests, this blocking scheme forms blocks on the equality of the

tokens that are extracted from the Literal Profiles of the given entities. As a result,

each block corresponds to a single token and each entity is associated with multiple

blocks. For instance, the entity depicted in Figure 4.3 will be placed in 18 blocks,

one for each token in its Literal Profile — provided that they are all valid (cf.

Section 4.1). The underlying transformation function converts every entity profile

pid into its Literal Profile, LPpid
:

ft(pid) = LPpid
.

Its constraint function f i
c places an entity in block bi if the token ti is contained in

its Literal Profile:

f i
c(pid) = (ti ∈ LPpid

), where ti is a token.

50 CHAPTER 4. BLOCK BUILDING

This blocking scheme is similar to Token Blocking, with the only difference that

it completely disregards all URIs contained in entity profiles as values (these URIs

are exclusively handled by Infix Profile Blocking). This means that it only fails to

cover profiles that lack any valid token in their literal values, thus achieving higher

effectiveness than the other atomic schemes in most of the cases. Its efficiency,

though, is expected to be lower, due to the higher degree of redundancy it involves:

each block corresponds to a single token, with the number of entities sharing a

token being typically higher than those sharing an infix (infixes normally consist

of several tokens concatenated together, and, thus, are less common than individual

tokens). This results in blocks that are larger, on average, and yield lower values of

CC.

On the whole, its mapping on the BC-CC space lies to the right of Infix Block-

ing on the X-axis and lower than it on the Y-axis (assuming that both schemes are

applied to the same entity collection).

4.3.2 Composite Blocking Schemes

In isolation, the above atomic schemes are of limited robustness, as their effec-

tiveness depends on the characteristics of the entity collection(s) at hand. To rem-

edy this situation, we propose their combination into composite blocking schemes.

Given that the individual atomic schemes rely on different aspects of entity profiles,

they are complementary and lead to higher effectiveness when combined. This can

be accomplished simply by merging the individual block collections they produce.

Let K1 and K2 symbolize the set of blocking keys of the block collections, B1 and

B2, respectively; their union B1∪B2 forms a new block collection B′ in the fol-

lowing way: blocks that correspond to a common key ki∈(K1∩K2) are replaced by

their merge, while blocks that correspond to a unique key k j∈(K1△K2) are included

in B′ without any modifications. As an example, consider the block collections

B1={bobama={p1,p2},bmichelle={p3,p4}} and B2={bmichelle={p3,p5},bhawai={p4,p5}};

their union is the block collection B′={bobama={p1,p2},bmichelle={p3,p4,p5},

bhawai={p4,p5}}. Note that this merge has the potential to turn singleton blocks (i.e.,

blocks that contain a single entity) into valid ones, by merging those stemming

from different blocking schemes, but corresponding to the same key. Continuing

our example, imagine that B1 and B2 contained the singleton blocks bbarack={p3},

bbarack={p5}, respectively; in this case, their union B′ would comprise the addi-

tional valid block bbarack={p3,p5}.

The composite schemes consider multiple entity parts, thus achieving higher

4.3. URI SEMANTICS BLOCKING 51

CC

2
Method

4

Ideal Point

Method
3

Method
2

Method
1

4

BC

BC
max1

Figure 4.4: The effect of merging two individual blocking schemes (Method1 and

Method2) into a composite one (Method3), which is more robust and effective, on

the BC-CC space. Although this practice leads to more comparisons, the higher

robustness it conveys allows for enhancing efficiency through meta-blocking (cf.

Chapter 5) and block processing techniques (cf. Chapter 6). Their effect is to move

the mapping Method3 to Method4, which is closer to the Ideal Point.

robustness and effectiveness. This comes, however, at the cost of lower efficiency,

since the resulting block collections entail more blocks that are usually larger in

size, due to the merge of the blocks corresponding to common keys (i.e., keys that

stem from different atomic blocking schemes, but correspond to the same token or

infix). In Figure 4.4, we illustrate the effect of merging atomic blocking schemes

into composite ones on the BC-CC space. Combining Method1 with Method2

leads to Method3 that has a higher BC value (i.e., higher redundancy) and a lower

CC value (i.e., restricted efficiency), due to the larger, on average, blocks it creates.

In the following paragraphs, we present all four possible combinations of the

above atomic schemes and explain the rationale behind them. Note that all of them

involve a redundancy-positive functionality.

Complete Infix Blocking

This blocking scheme is derived from the combination of Infix Blocking with Infix

Profile Blocking. Thus, its transformation function extracts from an entity profile

pid the union of its infix and its Infix Profile:

ft(pid) = in f ix(id) ∪ IPpid
.

Blocks are built on the equivalence of infixes, with each block corresponding to a

single infix and each entity potentially placed in multiple blocks. More formally,

52 CHAPTER 4. BLOCK BUILDING

the constraint function for block bi is defined as follows:

f i
c(pid) = (i ≡ in f ix(id)) ∨ (i ∈ IPpid

), where i is an infix.

Compared to Infix Blocking, this scheme covers profiles with a synthetic identifier

(i.e., a blank node or a random URI) and is able to match entities with non-identical

infixes. Compared to Infix Profile Blocking, it applies to entities with empty infix

profiles which, nevertheless, have an infix. Most importantly, though, this combi-

nation takes advantage of infixes that originally resulted in singleton blocks, due

to their scarcity in the individual key sets (i.e., they were associated with just one

profile). As verified in Section 7.2, this results in a considerably higher levels of

redundancy and, thus, in enhanced robustness and effectiveness. In fact, the only

case that this scheme is not applicable is for entities that lack any meaningful URI

in their profile; these are entities that have an arbitrary, synthetic URI as their id

and are solely associated with identifiers of the same kind as well as with literal

values.

Infix-Literal Profile Blocking

This scheme results from the combination of Infix Blocking with Literal Profile

Blocking. Hence, its transformation function represents an entity pid by the union

of its infix and its Literal Profile:

ft(pid) = in f ix(id) ∪ LPpid
.

Its constraint functions build blocks on the equality of infixes or tokens:

f i
c(pid) = (i ≡ in f ix(id)) ∨ (i ∈ LPpid

), where i is an infix and/or a token.

Note that these two atomic schemes are likely to share a considerable portion of

blocking keys. The reason is that some infixes merely consist of a single token that

is also used as blocking key by Literal Profile Blocking. As an example, consider

the infix “Hawaii” of the entity in Figure 4.3, which appears as token in a literal

value, as well. The individual blocks that are common among the atomic schemes

are merged into new blocks of larger size, thus inducing lower efficiency (i.e., lower

CC values). However, robustness and effectiveness are substantially enhanced,

since the only profiles that are not covered by this composite scheme are those

having a blank node or a random URI as id, while containing no literal values in

4.3. URI SEMANTICS BLOCKING 53

their set of attribute values. Apparently, this case is highly unlikely.

Infix Profile-Literal Profile Blocking

This scheme is derived from the combination of Infix Profile Blocking with Literal

Profile Blocking. Thus, its transformation function models an entity profile pid as

the union of its Infix Profile and its Literal Profile:

ft(pid) = IPpid
∪ LPpid

.

Its constraint functions define blocks on the equality of infixes or tokens:

f i
c(pid) = (i ∈ IPpid

) ∨ (i ∈ LPpid
), where i is an infix and/or a token.

Similar to the above blocking scheme, it involves higher redundancy than the in-

dividual blocking schemes it comprises (i.e., higher BC value), thus exhibiting

higher effectiveness coupled with higher robustness. The only profiles that lie out

of its scope are those containing solely blank nodes and random URIs in their set

of attribute values.

Total Description Blocking

This blocking scheme is formed by the combination of all three atomic schemes of

Section 4.3.1. Hence, it represents an entity profile pid by the infixes of all URIs

contained in it and the tokens of all its literal values:

ft(pid) = in f ix(id) ∪ IPpid
∪ LPpid

.

Blocks are defined on the equality of tokens or infixes:

f i
c(pid) = (i ≡ in f ix(id))∨(i ∈ IPpid

)∨(i ∈ LPpid
), where i is an infix and/or a token.

The interplay of all atomic blocking methods leads to the highest robustness among

all schemes of URI Semantics Blocking. It fails only in the highly unlikely case

where an entity profile has a non-meaningful identifier as its id and exclusively

contains identifiers of this kind in its attribute values (i.e., it contains no valid to-

kens). This results not only in the highest effectiveness among all methods, but

also in the highest BC value. It actually entails the largest block collection, with its

blocks having the largest average size. Their aggregate cardinality is considerably

54 CHAPTER 4. BLOCK BUILDING

higher, thus yielding lower efficiency and lower CC values.

4.4 Summary

We started this chapter by introducing Token Blocking as the basic schema-agnostic,

redundancy-positive technique for building blocks. We then presented an enhance-

ment, called Agnostic Clustering, which yields blocks of equally high effective-

ness, but of higher efficiency. We explained that its clustering algorithm can be

coupled with established representation models and string similarity metrics, thus

allowing for a versatile functionality. Considering the special characteristics of

RDF data, we enhanced Token Blocking with new approaches that are inherently

crafted for them. To this end, we introduced a tripartite categorization of the evi-

dence contained in an entity profile and explained how every category lays the basis

for an atomic block building technique. We argued that these blocking schemes are

complementary and that their combinations lead to higher robustness and effective-

ness, while significantly outperforming Token Blocking with respect to efficiency.

The relative performance of all these blocking schemes is systematically analyzed

and evaluated in Section 7.2.

Chapter 5

Meta-Blocking

Meta-blocking has been formalized in Definition 3.3 as the task of restructuring a

block collection in order to improve its efficiency at a limited, if any, cost in ef-

fectiveness. In fact, the PC of the new block collection can be higher than that of

the input one, provided that meta-blocking infers new entity connections from the

original ones. In this dissertation, though, we consider this inference problem to be

orthogonal to the problem of improving the efficiency of a blocking scheme with-

out affecting its effectiveness. We actually focus on enhancing the output of our

block building techniques. Thus, our meta-blocking techniques rely on the intrinsic

characteristic of the resulting, redundancy-positive block collections: the similarity

of two entities is proportional to the number of blocks they have in common.

Based on this principle, our techniques aim at identifying the most similar pairs

of entities so as to place them in the restructured blocks of the output. At their core

lies the blocking graph, a data structure that models the block assignments of the

input block collection in an abstract way that decouples meta-blocking from the

underlying block building method. Its nodes correspond to the clustered entities

and its edges connect every pair of co-occurring entities (i.e., entities that share at

least one block). As an example, consider the blocking graph of Figure 5.1 (a),

which corresponds to the blocks of Figure 1.4. The edges of a blocking graph are

naturally undirected and weighted according to a scheme that determines the trade-

off between the computational cost and the gain of comparing the adjacent entities

(i.e., the benefit for the recall of the ER process, in case the entities are matching).

In the example of Figure 5.1 (a), we present the simplest scheme, which sets the

weight of each edge equal to the number of blocks the adjacent entities have in

common.

55

56 CHAPTER 5. META-BLOCKING

p1 p34
p1 p3 p1 p34

1 2

2

p2 p44

1 2
3

p2 p4 p2 p4

(a) (b) (c)

Figure 5.1: (a) The blocking graph of the block collection in Figure 1.4, (b) the

pruned blocking graph, and (c) an alternative pruned blocking graph, discussed in

Section 5.4.

Formally, the blocking graph for a unilateral block collection is defined as fol-

lows:

Definition 5.1. Given a unilateral block collection BE, the undirected blocking

graph derived from it is a graph GB = {VB, EB,WS }, where VB is the set of its

nodes, EB is the set its undirected edges, and WS is the weighting scheme that

determines the weight of every edge in the interval [0, 1]. VB contains all entities

of E that are placed in at least one block of BE (i.e., ∀vi ∈ VB : ∃pi ∈ E ∧ b j ∈

BE∧pi ∈ b j), while EB contains undirected edges between all pairs of co-occurring

entities (i.e., ∀ei, j = 〈pi, p j〉 ∈ EB : pi , p j ∧ ∃bk ∈ B
E ∧ pi ∈ bk ∧ p j ∈ bk).

The blocking graph over a bilateral block collection BE1×E2 is defined in anal-

ogy. The only difference is that it results in a bipartite graph, since its set of nodes

VB is separated into two disjoint sets, V1
B

and V2
B

, which comprise the entities

stemming from the entity collections E1 and E2, respectively (i.e., V1
B
⊆ E1 and

V2
B
⊆ E2). More formally: ∀vk

i
∈ Vk

B
: ∃pi ∈ Ek ∧ b

1,2
j
∈ BE1×E2 ∧ pi ∈ bk

j
,

where k ∈ {1, 2}. Thus, the set of edges EB contains only connections between

entities stemming from different entity collections: ∀ei, j = 〈pi, p j〉 ∈ EB : ∃b
1,2
k
∈

BE1×E2 ∧ pi ∈ b1
k
∧ p j ∈ b2

k
.

Note that for reasons explained in Section 5.3, the edges of a blocking graph

can be directed, as well. An edge pointing from entity pi to p j is represented by

¯ei, j to distinguish it from the undirected edge ei, j that connects the same entities. A

blocking graph with directed edges is called directed blocking graph and is sym-

bolized as ḠB.

The purpose of the blocking graph is to facilitate efficiency improvements over

the input block collection. An immediate contribution to this goal is the elimination

of redundant comparisons without any impact on effectiveness (i.e., PC). Redun-

dant comparisons are easily identified during the creation of the blocking graph,

57

since the corresponding entities have already been connected with an edge. In such

cases, we simply skip connecting them with an additional edge so that each pair of

co-occurring entities is connected with at most one edge — regardless of the total

number of comparisons between them in the blocks of B. Consequently, every pair

of adjacent entities is examined only once, thus improving efficiency without any

impact on effectiveness, as the set of co-occurring entity pairs remains unchanged.

Additional efficiency enhancements can be achieved through the pruning of

the blocking graph: edges between non-matching entities can be removed from

the graph, discarding unnecessary comparisons without any impact on PC. This

process is carried out according to a pruning algorithm and theoretically can result

in a graph that exclusively contains edges between matching entities. Continuing

our example, the blocking graph of Figure 5.1 (b) can be derived from that of

Figure 5.1 (a) by discarding edges with a weight lower than 2, or by retaining the

two edges with the highest weight. In any case, the remaining edges determine

a new set of blocks that ideally places every set of matching entities in a separate

block. The graph of Figure 5.1 (b), for instance, results in two blocks, b1 = {p1, p3}

and b2 = {p2, p4}, which achieve the same recall as the blocks of Figure 1.4, while

involving just 2 comparisons.

In practice, though, we can only approximate this ideal case by exploiting the

evidence that is encapsulated in the given block collection. How entities are as-

signed to blocks provides reliable indications for the similarity of co-occurring

entities, which can be quantified by assigning a weight to the edge connecting

them. In the context of redundancy-positive blocking methods, the more blocks

two entities share, the more similar they are and the higher the weight of their ad-

jacent edge should be. In this way, the pruning of the blocking graph becomes the

process of removing edges with low weights on the grounds that they (are likely

to) link dissimilar entities. In more detail, the weight ei, j.weight of an edge ei, j

expresses the utility of the comparison between the profiles pi and p j; that is, it

quantifies the trade-off between the cost ci, j of comparing the adjacent entities and

the gain gi, j of executing this comparison (i.e., ei, j.weight = gi, j/ci, j). The cost ci, j

pertains to the number of comparisons required by the corresponding edge and is

always equal to 1 (remember that, by definition, every edge in the blocking graph

captures one comparison). Thus, the edge weight is always equal to the gain of

the corresponding comparison; its value should be 0 if the compared entities are

not matching and 1 if they are duplicates (i.e., ei, j.weight = 0 ↔ pi . p j and

ei, j.weight = 1↔ pi ≡ p j).

58 CHAPTER 5. META-BLOCKING

Graph

Building

Edge

Weighting

GB Graph

Pruning

GB
w

Block

Collecting

GB
p ’

Building Weighting Pruning Collecting

Figure 5.2: The internal functionality of our approach to meta-blocking.

However, it is not possible to estimate the real value of gi, j (and correspond-

ingly of ei, j.weight) without actually executing the comparison between pi and p j.

For this reason, we use a weighting scheme that a-priori approximates the weight

of each edge by considering the features of the blocking graph (e.g., the num-

ber of blocks shared by the adjacent entities and/or the corresponding individual

cardinalities). In Section 5.2, we will present five such weighting schemes for

redundancy-positive blocking methods, whereas Section 5.3 introduces four tech-

niques for discarding edges with low weights through a pruning criterion, which

bounds either the number or the weight of the retained edges.

Overall, our approach to meta-blocking, which was originally introduced in

[PKPNar], involves four successive steps that are illustrated in Figure 5.2:

1. Graph Building receives a block collection B and derives the blocking graph

GB from its block assignments. We elaborate on this process in Section 5.1.

2. Edge Weighting takes as input a blocking graph GB and turns it into the

weighted blocking graph (Gw
B

) by determining the weights of its edges. We

introduce several weighting schemes for this procedure in Section 5.2.

3. Graph Pruning receives as input the weighted blocking graph and derives

the pruned blocking graph (G
p

B
) from it, by removing some of its edges. We

delve into the pruning algorithms and the pruning criteria involved in this

procedure in Section 5.3.

4. Block Collecting is given as input the pruned blocking graph G
p

B
and extracts

from it a new block collection B′, which actually constitutes the final output

of the entire meta-blocking process. Note that the type of input blocks does

not need to coincide with that of the output blocks (as we will see in Sec-

tion 5.3, a set of unilateral blocks can be transformed into a set of bilateral

ones, and vice versa). We analyze this step in Section 5.4.

The weighting scheme, the pruning algorithm and the pruning criterion can

entail a schema-dependent, a schema-agnostic, or a hybrid functionality. In the

5.1. BUILDING THE BLOCKING GRAPH 59

CC

2
Method

2

Ideal Point

Method
3

Method
2

BC
1 BC

max

Figure 5.3: Illustration of the effect of meta-blocking and of block processing on

the BC-CC mapping of a blocking collection.

following, we exclusively consider schema-agnostic techniques, since they are ap-

plicable to any blocking settings, i.e., any combination of a blocking scheme and

a (pair of) entity collection(s). Their effect on the BC-CC mapping of the original

block collection is depicted in Figure 5.3; they reduce BC and increase CC so that

the new block collection moves closer to the Ideal Point (1,2). This is similar to the

effect of block processing techniques, but our meta-blocking methods do not aim at

substituting them. Instead, their goal is to improve the output of block building in

order to facilitate the performance of block processing. This is why meta-blocking

intervenes between these two procedures, as depicted in Figure 1.3.

5.1 Building the Blocking Graph

The process of extracting the blocking graph from a bilateral block collection B

is outlined in Algorithm 5.1 (for unilateral blocks, the corresponding algorithm is

simpler, and we omit it for brevity). For each block in B, it considers every pair

of co-occurring entities it contains (Lines 2-5); for bilateral blocks, this process

requires that the considered entities belong to different inner blocks (i.e., pi ∈ b1
i

and p j ∈ b2
i
). For each pair, we add the corresponding nodes to the initially empty

blocking graph (Lines 4 and 6) and connect them with an edge (Line 7). The edge

weights are specified after the structure of the blocking graph has been settled, be-

cause — as explained in the next section — it is possible for a blocking scheme

to rely on it (Line 8). To restrict them to the interval [0, 1], regardless of the input

weighting scheme (cf. Definition 5.1), we normalize them by dividing with the

maximum one (Line 9). The time complexity of this procedure, which is indepen-

dent of the underlying blocking scheme, is equal to the aggregate cardinality of B

60 CHAPTER 5. META-BLOCKING

Algorithm 5.1: Building the Blocking Graph.

Input: (i) B a block collection,

(ii) WS a weighting scheme

Output: GB the corresponding blocking graph

1 VB ← {}; EB ← {};

2 foreach bi ∈ B do

3 foreach pi ∈ b1
i

do

4 VB ← VB ∪ {vi} ;

5 foreach p j ∈ b2
i

do

6 VB ← VB ∪ {v j} ;

7 EB ← EB ∪ {ei, j} ;

8 setWeights(WS , B, VB, EB);

9 normalizeWeights(EB);

10 return GB = {VB, EB,WS };

(i.e., O(||B||)).

Graph Materialization

The blocking graph constitutes a conceptual model that aims at facilitating the in-

terpretation and the development of our meta-blocking techniques. In the context

of large entity collections with millions of entities (nodes) and billions of compar-

isons (edges), its materialization poses significant technical challenges. For this

reason, it can be indirectly implemented in two ways:

• through inverted indices, which associate each entity with the list of the blocks

containing it, and

• with the help of bit arrays, which represent each entity as a vector with zero

values in all places, but those corresponding to the blocks containing it; the

latter places are valued 1.

Both approaches scale well in the context of HHIS and accommodate all the weight-

ing schemes of Section 5.2.

Efficiency of Construction

Theoretically, the construction of the blocking graph has the same complexity as

the naive block processing method that iterates over all pairs of co-occurring enti-

ties. In practice, though, meta-blocking exhibits a significantly lower running time,

5.2. EDGE WEIGHTING 61

because it exclusively involves operations with integers, when implemented on the

basis of inverted indices or bit arrays. Hence, the computation of edge weights is

much faster than the comparison of entity profiles, which invariably relies on string

similarity metrics that have a non-trivial complexity of their own. As an example,

consider edit distance, one of the simplest string comparison techniques, whose

complexity even for an optimized implementation is O(n2/ log n), when n is the

length for both of the compared strings [MP80]. We analytically examine the time

requirements of our meta-blocking approaches in Section 7.5.8.

5.2 Edge Weighting

We now introduce five schema-agnostic weighting schemes that rely exclusively

on evidence drawn from the input block collection. We will use the following

notations: Bi ⊆ B denotes the set of blocks containing the entity pi, Bi, j ⊆ B

is the set of blocks shared by the entities pi and p j (i.e., Bi, j = Bi ∩ B j), and

|vi| symbolizes the degree of node vi (i.e., the number of edges connected to it).

In the following, we analytically describe our weighting schemes and explain the

rationale behind them.

• Aggregate Reciprocal Comparisons Scheme (ARCS). This scheme is based on

the premise that the more entities a block contains, the less likely they are to

be matching. The reason is that the information forming a large block is not

distinctive enough to group highly similar entities. For instance, stop words

usually cluster together a large part of the input entity collection in the context

of Token Blocking. The ARCS scheme defines the similarity of two entities

sharing a block as the reciprocal of the comparisons it entails (i.e., its individual

cardinality). Hence, the aggregate similarity of two co-occurring entities, pi

and p j, is defined as the sum of the reciprocal individual cardinalities of their

common blocks. More formally, the weight of the edge ei, j connecting them is

defined as follows:

ei, j.weight =
∑

bk∈Bi, j

1

||bk||
.

• Common blocks Scheme (CBS). A strong indication for the similarity of two

entities is provided by the number of blocks they have in common; the more

blocks they share, the more likely they are to match. Hence, the weight of an

62 CHAPTER 5. META-BLOCKING

edge connecting entities pi and p j is set equal to:

ei, j.weight = |Bi, j|.

• Enhanced Common blocks Scheme (ECBS). This scheme improves on CBS

by adding contextual information to its weights. Instead of merely considering

the number of common blocks, it takes into account the total number of blocks

that are associated with each one of the co-occurring entities. Inspired from the

IDF metric of Information Retrieval, the fewer blocks an entity is placed in, the

higher should be the weights of the edges associated with it. Thus, it sets the

weight of each edge equal to:

ei, j.weight = |Bi, j| · log
|B|

|Bi|
· log

|B|

|B j|
.

• Jaccard Scheme (JS). Similar to ECBS , this scheme aims at enhancing CBS

by considering the total number of blocks associated with the co-occurring

entities. To this end, it sets the weight of edge ei, j equal to the Jaccard similarity

of the lists of blocks associated with its adjacent entities, pi and p j:

ei, j.weight =
|Bi, j|

|Bi| + |B j| − |Bi, j|
.

In essence, this weight reveals the percentage of common blocks shared by the

adjacent entities. It takes values in the interval [0, 1], with 0 indicating the

absence of common blocks and 1 corresponding to identical block lists.

• Enhanced Jaccard Scheme (EJS). This scheme improves on JS by adding

contextual information to the Jaccard similarity of the associated block lists.

Namely, it considers the total number of edges (i.e., comparisons) associated

with each one of the adjacent nodes, so that the fewer edges are connected with

a node, the higher should their individual weights be (a rationale similar to

IDF). Thus, we have:

ei, j.weight =
|Bi, j|

|Bi| + |B j| − |Bi, j|
· log

|EB|

|vi|
· log

|EB|

|v j|
.

Note that all the above weighting schemes rely on the fundamental principle

of redundancy-positive blocking methods that the similarity of block assignments

provides a good representation of matching probability: the more blocks two enti-

5.3. PRUNING THE BLOCKING GRAPH 63

ties have in common, the more similar their profiles are expected to be. We experi-

mentally analyze their effect on the performance of meta-blocking in Section 7.5.4.

5.3 Pruning the Blocking Graph

This process is based on two essential components:

• the pruning algorithm, which specifies the procedure that will be followed in

the processing of the blocking graph, and

• the pruning criterion, which determines the edges to be retained.

The combination of a pruning algorithm with a pruning criterion forms a prun-

ing scheme. In the following, we introduce a series of pruning schemes that in-

volve schema-agnostic pruning algorithms and criteria, thus being applicable to

any blocking graph.

Pruning algorithms

In general, the pruning algorithms can be categorized in two classes:

• The edge-centric algorithms iterate over the edges of a blocking graph in order

to select the globally best comparisons, by filtering out those that do not satisfy

the pruning criterion.

• The node-centric algorithms iterate over the nodes of a blocking graph with

the aim of selecting the locally best comparisons for each entity (i.e., the adja-

cent entities with the largest edge weights).

We analytically examine the relative performance of these two types of pruning

algorithms in Section 7.5.2.

Pruning criteria

In general, they can be categorized in a two-dimensional taxonomy that is formed

by the orthogonal, but complementary dimensions of functionality and scope.

The functionality of pruning criteria distinguishes them into:

• weight thresholds, which specify the minimum weight for the edges to be re-

tained, and

• cardinality thresholds, which determine the maximum number of retained edges.

The scope of pruning criteria distinguishes them into:

64 CHAPTER 5. META-BLOCKING

Node centric
functionality

i h di li

Edge centric
functionality

i h di li weight cardinality
s

c global

weight cardinality
s

c global

o

p

e
local

o

p

e
local

ee

(a) (b)

Figure 5.4: All possible combinations of pruning algorithms with pruning criteria.

• global thresholds, which define conditions that are applicable to the entire

blocking graph (i.e., all the edges of the graph), and

• local thresholds, which specify conditions that apply only to a subset of it (i.e.,

the adjacent edges of a specific node).

Cardinality thresholds should be preferred in applications that have predefined tem-

poral resources (i.e., available processing time), because they allow for a-priori

determining the number of executed comparisons. In contrast, weight thresholds

are convenient for applications that put more emphasis on controlling effective-

ness, since the harshness of their pruning is analogous to their value. Both classes,

though, are suitable for incremental ER (a.k.a., Pay-As-You-Go ER) [WMGMar],

where the goal is to execute most of the matching comparisons in the first itera-

tions, decreasing their number gradually, as ER progresses. For weight (cardinal-

ity) thresholds, this can be simply achieved by decreasing (increasing) its value in

every iteration.

Pruning Schemes. The composition of pruning schemes is determined by the

scope of pruning thresholds. In Figure 5.4, we illustrate all possible combina-

tions of pruning algorithms with pruning criteria. Starting with the edge-centric

algorithms, we observe that they can only be combined with global criteria — re-

gardless of their functionality. The reason is that it is impossible to employ a local

threshold, when trying to select the top weighted edges across the entire blocking

graph. The combination of edge-centric algorithms with global weight thresholds

(i.e., WEP) is analyzed in Section 5.3.1 and their coupling with global cardinality

thresholds (i.e., CEP) in Section 5.3.2.

By definition, the node-centric algorithms are compatible with local thresholds

— regardless of their functionality. However, they can be combined with global

thresholds, as well. Their combination with a global weight threshold is actu-

5.3. PRUNING THE BLOCKING GRAPH 65

Algorithm 5.2: Weight Edge Pruning.

Input: (i) Gin
B

the blocking graph, and

(ii) wmin the global weight criterion.

Output: Gout
B

the undirected pruned blocking graph

1 foreach ei, j ∈ EB do

2 if ei, j.weight < wmin then

3 EB ← EB - {ei, j} ;

4 return Gout
B
= {VB, EB,WS };

ally identical to WEP, as they both retain the edges that are weighted higher than

the given threshold. Their coupling with a global cardinality threshold retains the

same number of adjacent edges among all nodes (e.g., the 2 top-weighted edges

per node). In contrast, their combination with a local cardinality threshold derives

the number of retained edges for each node from its degree (e.g., |vi|/10 of the top

weighted edges for every node vi); this approach is substantially different from

CEP, which keeps the top weighted edges across the entire blocking graph. The

pruning schemes that combine node-centric algorithms with local weight thresh-

olds (i.e., WNP) are examined in Section 5.3.3, while those coupling them with

cardinality thresholds — of any scope — (i.e., CNP) are examined in Section 5.3.4.

Before elaborating on the functionality of the pruning schemes, it should be

stressed that the node-centric algorithms yield a directed, pruned blocking graph,

unlike the edge-centric algorithms, which produce an undirected one.

5.3.1 Weight Edge Pruning (WEP)

This scheme consists of the edge-centric algorithm coupled with a global weight

threshold (i.e., the minimum edge weight). Its functionality is outlined in Algo-

rithm 5.2. It iterates over all edges (Line 1) and discards (Line 3) those having

a weight lower than the input threshold (Line 2). The remaining edges form the

pruned blocking graph of the output. The time complexity of this algorithm is

equal to the aggregate cardinality of the original block collection (i.e., O(||B||)).

The most critical part of this algorithm is the selection of the minimum edge

weight wmin. Its precise value depends on the underlying weighting scheme and

the resulting distribution of edge weights, in particular. In general, though, the

matching entities are expected to be connected with edges of higher weights than

the non-matching ones. Thus, the goal is to identify the break-even point that

66 CHAPTER 5. META-BLOCKING

Algorithm 5.3: Cardinality Edge Pruning.

Input: (i) Gin
B

the blocking graph, and

(ii) K the global cardinality criterion

blocking graph.

Output: Gout
B

the undirected pruned blocking graph

1 S ortedS tack← {};

2 foreach ei, j ∈ EB do

3 S ortedS tack.push(ei, j);

4 if K < S ortedS tack.size() then

5 S ortedS tack.pop();

6 foreach ei, j ∈ EB do

7 if S ortedS tack.contains(ei, j) = false then

8 EB ← EB - {ei, j} ;

9 return Gout
B
= {VB, EB,WS };

distinguishes the former type of edges from the latter one. Experimental evidence

with real-world data sets suggests that the average edge weight provides an efficient

(i.e., requires just one iteration over all edges) as well as reliable (i.e., low impact

on effectiveness) estimation of this break-even point — regardless of the underlying

weighting scheme (see Section 7.5.1 for more details).

5.3.2 Cardinality Edge Pruning (CEP) or Top-K Edges

This scheme combines the edge-centric pruning algorithm with a global cardinality

threshold K that specifies the total number of edges retained in the pruned graph.

Its goal is to retain the K edges with the maximum weight. Its functionality is

outlined in Algorithm 5.3. At its core lies a sorted stack that stores the edges

in descending order of weight so that the edge with the lowest one is efficiently

removed (i.e., pop), when the maximum capacity K is exceeded. The algorithm

iterates over all edges of the input blocking graph twice: the first iteration (Lines

2-5) identifies the top-K edges and stores them in the sorted stack, while the second

iteration (Line 6-8) removes from the graph those edges that are not contained in

the sorted stack. Hence, its time complexity is equal to the aggregate cardinality of

the original block collection (i.e., O(||B||)).

To specify the optimal value for K, we employ a technique that relies on the

BC-CC mapping of the initial blocking graph and its pruned version (cf. Sec-

tion 3.3). The goal is to map the latter closer to the Ideal Point (1,2) than the

5.3. PRUNING THE BLOCKING GRAPH 67

Algorithm 5.4: Weight Node Pruning.

Input: (i) Gin
B

the blocking graph,

(ii) wt the local weight criterion

Output: Gout
B

the directed pruned blocking graph

1 Eout
B
← {};

2 foreach vi ∈ VB do

3 Gvi
← getNeighborhood(vi, GB);

4 tvi
← wt(Gvi

);

5 foreach ei, j ∈ Evi
do

6 if tvi
≤ ei, j.weight then

7 Eout
B
← Eout

B
∪ { ¯ei, j} ;

8 return Gout
B
= {VB, E

out
B
,WS };

former. Given that the pruned graph results in a bilateral block collection with K

blocks of size 2 (cf. Section 5.4), its CC takes the maximum value (i.e., CCout=2)1,

while its BC is equal to BCout = 2K/|E|. Thus, CCout is greater than or equal to

CCin of the input blocking graph in all cases and, for an improved BC-CC mapping,

it suffices to have:

BCout ≤ BCin ⇔
2K

|E|
≤ BCin ⇔ K ≤ ⌊

BCin · |E|

2
⌋,

where BCin stands for the BC value of the input blocking graph. Therefore, the

maximum meaningful value for K is specified with respect to the level of redun-

dancy of the input block collection. In cases where CCin ≪ CCout, we can set

K = ⌊BCin · |E|/2⌋ in order to ensure higher redundancy and, thus, higher PC.

Although this approach maintains the same levels of redundancy (i.e., the same

number of block assignments), efficiency is significantly improved; unlike the in-

put block collection, which contains blocks of various sizes, the output one exclu-

sively comprises blocks of minimum size (i.e., two entities per block). This means

that CEP minimizes the number of pairwise comparisons for a specific level of

redundancy.

1CC expresses the ratio of block assignments over comparisons (Definition 3.9). Given that the

output of CEP involves only blocks of size 2, there are two block assignments for every comparison,

thus leading to CCout = CCmax = 2.

68 CHAPTER 5. META-BLOCKING

5.3.3 Weight Node Pruning (WNP)

This scheme combines the node-centric pruning algorithm with a local weight

threshold. In essence, it applies WEP to the neighborhood of each node vi, i.e.,

the sub-graph Gvi
that comprises the nodes of GB connected with vi along with the

edges connecting them; the former are denoted by Vvi
and the latter by by Evi

. Its

functionality, though, differs from WEP in two aspects:

• it employs a different threshold for every neighborhood, and

• it replaces the retained, undirected edges with directed ones that point from vi

to a neighboring node.

Algorithm 5.4 presents the pseudo-code for this procedure. It iterates over all

nodes of the input blocking graph (Line 2) and extracts the corresponding neigh-

borhoodGvi
(Line 3). Then, it specifies the minimum edge weight forGvi

according

to the given threshold criterion (Line 4). It iterates over all edges of Evi
(Line 5)

and for each undirected edge exceeding the specified local threshold, it adds one

directed edge to the pruned graph (Lines 6-7). In the worst case, the input blocking

graph is a complete one, thus accounting for a time complexity of O(|VB|·|EB|).

In practice, though, the underlying blocking scheme ensures that not all nodes are

connected with each other, thus yielding a significantly lower time complexity.

To specify the optimal threshold for each neighborhood, we rely on the same

rationale as WEP: all weighting schemes of Section 5.2 assign high values to edges

connecting matching entities and low values to edges connecting non-matching

nodes. Regardless of the selected scheme, the corresponding break-even point can

be approximated by the mean weight of the edges in each neighborhood Gvi
.

5.3.4 Cardinality Node Pruning (CNP) or k-Nearest Entities

At the core of this scheme lies the node-centric pruning algorithm in conjunction

with a local cardinality threshold. Its goal is to select for each node vi, the k neigh-

boring nodes that are connected with the top edge weights (i.e., k-nearest entities).

To this end, it applies the CEP algorithm to the neighborhood Gvi
of vi. This pro-

cess is outlined in Algorithm 5.5. It iterates over all entities of the input blocking

graph (Line 2), extracting their neighborhood (Line 4) and setting the maximum

number of entities retained in each case (Line 5). Subsequently, it iterates over

the edges of the current neighborhood and places them into the sorted stack (Line

6-9). For each of the selected undirected edges, a new, directed one is added to

the pruned blocking graph of the output (Lines 10-12). In the worst case, the time

5.4. COLLECTING THE NEW BLOCKS 69

Algorithm 5.5: Cardinality Node Pruning.

Input: (i) Gin
B

the blocking graph,

(ii) ct the local cardinality criterion

Output: Gout
B

the directed pruned blocking graph

1 Eout
B
← {};

2 foreach vi ∈ VB do

3 S ortedS tackvi
← {};

4 Gvi
← getNeighborhood(vi, GB);

5 k← ct(Gvi
);

6 foreach ei, j ∈ Evi
do

7 S ortedS tackvi
.push(ei, j);

8 if k < S ortedS tackvi
.size() then

9 S ortedS tackvi
.pop();

10 foreach ei, j ∈ Evi
do

11 if S ortedS tack.contains(ei, j) = true then

12 Eout
B
← Eout

B
∪ { ¯ei, j} ;

13 return Gout
B
= {VB, E

out
B
,WS };

complexity of this algorithm is the same as that of WNP (i.e., O(|VB|·|EB|)), but in

practice, it is significantly lower.

In general, the cardinality threshold for each neighborhood can depend on its

size (e.g., ki = ⌈0.1 · |Evi
|⌉). For simplicity, though, we assume in the following

that k takes the same value for each neighborhood. To identify its optimal value,

we rely on the BC-CC mapping of the input and the output blocking graph. Again,

the goal is to ensure that the latter is closer to (1,2) than the former. Given that

the block collection contains bilateral blocks with inner block sizes of 1 and k (cf.

Section 5.4), the CC of the pruned graph is equal to CCout =
k+1

k
, while its BC is

equal to BCout = k + 1. Thus, k can be specified with respect to the CC and the

BC of the input block collection: 1/(1 − CCin) ≤ k ≤ BCin − 1. In cases where

CCin ≪ 1, we can safely set k = ⌊BCin−1⌋, ensuring significantly higher efficiency

(CCout > 1) at equal levels of redundancy and, thus, PC.

5.4 Collecting the new blocks

The last step of our meta-blocking approach transforms the pruned blocking graph

into the new block collection that is returned as output. This process depends on

70 CHAPTER 5. META-BLOCKING

the type of the blocking graph.

For the undirected pruned blocking graphs, which are produced by the edge-

centric pruning algorithms, block collecting is straightforward: every retained edge

lays the basis for creating a bilateral block of minimum size that contains the ad-

jacent entities. As a result, the new block collection is redundancy-free (i.e., non-

overlapping blocks). For example, the pruned blocking graph of Figure 5.1(b) is

transformed in the blocks b1 = {{p1}, {p3}} and b2 = {{p2}, {p4}}.

For the directed pruned blocking graphs, which are derived from the node-

centric pruning algorithms, block collecting creates a bilateral block for each node

vi. Its inner blocks have the following property: one of them contains the entity that

is mapped to vi, while the other contains the entities connected with vi through the

retained, outgoing edges. For instance, the pruned blocking graph of Figure 5.1(c)2

is transformed into the blocks b1 = {{p1}, {p3, p4}} and b2 = {{p2}, {p3, p4}}. In this

way, the new block collection is redundancy-bearing, since it is possible for two

retained edges with different direction to connect the same entities. This means

that its efficiency can be further enhanced with redundancy-reduction techniques.

5.5 Summary

In this chapter, we introduced meta-blocking as a generic task that can be applied

on top of any redundancy-positive block building method in order to increase its

efficiency at a minor cost in effectiveness. We also described a family of tech-

niques that rely on the blocking graph in order to identify and discard compar-

isons between entities that are highly unlikely to match. We proposed five schema-

agnostic weighting schemes for extracting the blocking graph from the input block

collection, based on the block overlap between the adjacent entities of every edge.

We distinguished the pruning algorithms that can be applied on top of them into

two orthogonal categories and defined a two-dimensional taxonomy of the rele-

vant pruning criteria. We also identified all the generic pruning settings that can be

derived from the four possible combinations of pruning algorithms with pruning

criteria. Their relative performance is analytically examined through a series of

experiments in Section 7.5.

2For clarity we have excluded the outgoing edges of nodes p3 and p4.

Chapter 6

Block Processing

The methods of this category receive as input a block collection B and examine

analytically its elements in order to identify the set of matching entities it contains.

Their goal is actually to detect most of the existing pairs of duplicates at the mini-

mum computational cost (i.e., number of executed comparisons). This means that

their effect on the BC-CC mapping of a block collection is similar to that of meta-

blocking: as depicted in Figure 5.3, CC increases, maximizing efficiency, while

BC remains relatively stable, maintaining the original levels of effectiveness. On

the whole, the mapping moves closer to the Ideal Point (1,2).

To facilitate the understanding and use of our block processing techniques,

we introduce a two-dimensional taxonomy in Section 6.1. We then introduce the

individual block processing strategies, grouped according to their granularity of

functionality: we elaborate on the Block-refinement techniques in Section 6.2

and on the Comparison-refinement ones in Section 6.3. Note that all strategies

apply transparently to both types of block collections, thus handling Dirty and

Clean-Clean ER uniformly, without any significant modifications. Some of these

techniques are complementary and can be combined into comprehensive ER so-

lutions. Section 6.4 presents the rules that guide this process on the basis of the

two-dimensional taxonomy of Section 6.1.

6.1 Classification of Block Processing Techniques1

Block processing techniques aim at reducing the number of executed pairwise com-

parisons without any significant impact on the detected number of duplicates. This

1Originally introduced in [PIP+ar].

71

72 CHAPTER 6. BLOCK PROCESSING

is usually accomplished by skipping the execution of individual blocks or compar-

isons. To grasp their functionality, we first need to clarify the type of comparisons

they target. Given a block bk ∈ B, the comparison between pi ∈ bk and p j ∈ bk

belongs to one of the following types:

• Matching comparison, if pi≡p j.

• Repeated comparison, if pi and p j have already been compared in a previously

examined block.

• Superfluous comparison, if pi or p j or both of them have been matched to some

other entity profile in the context of Clean-Clean ER and, thus, they cannot be

duplicates. For Dirty ER, the comparison between pi and p j is superfluous if

they involved entities have already been identified as matches.

• Non-matching comparison, if pi.p j and the comparison is neither repeated nor

superfluous.

In this context, a block processing technique could aim at one or more of the

following targets:

• to eliminate all repeated comparisons,

• to discard all superfluous comparisons, and

• to restrict the execution of non-matching comparisons.

Apparently, the first two targets can be achieved without any impact on the

identified matches (i.e., effectiveness). This does not apply, though, to the third tar-

get: there is no safe way of determining whether two entities are duplicates or not,

without actually comparing their profiles. Therefore, the methods that try to iden-

tify non-matching comparisons constitute approximate techniques with an inherent

risk to miss part of the duplicates (i.e., they incur lower levels of effectiveness).

In practice, each block processing technique usually targets a specific type of

comparisons. Thus, we distinguish them in the following categories:

• Repeat methods aim at discarding repeated comparisons without affecting ef-

fectiveness.

• Superfluity methods try to skip superfluous comparisons without any impact on

effectiveness.

• Non-match methods target non-matching comparisons at a limited and control-

lable cost in effectiveness.

• Scheduling methods enhance efficiency in a indirect way, specifying the pro-

cessing order that boosts the effect of other categories.

6.1. CLASSIFICATION OF BLOCK PROCESSING TECHNIQUES 73

GG

r

a

n

Comparison’s Type

Repeat

Method

Superfluity

Method

Non match

method

Scheduling

method

u

l

a

Block

refinement

1. Block Purging

2. Block Pruning

1. Block Scheduling

2. (Sorted

Neighborhood)

r

i

t

y

Comparison

refinement

1. Iterative Blocking

2. Comparison

Propagation

Duplicate

Propagation

Comparison

Pruning

Comparison

Scheduling
y p g

Figure 6.1: The two-dimensional taxonomy of block processing techniques.

In general, the block processing techniques that belong to different categories

are complementary and can be combined into an ER workflow. Instead, techniques

that target the same type of comparison typically have conflicting functionalities

(i.e., they serve exactly the same need). An additional parameter that facilitates the

distinction between complementary and conflicting approaches is their granularity

of functionality, which categorizes them in two classes:

• Block-refinement methods operate at the coarse level of entire blocks, deciding

whether a whole block will be processed or not.

• Comparison-refinement methods operate at the finer level of individual com-

parisons, deciding whether a single comparison will be executed or not.

In principle, block-refinement methods exhibit limited accuracy when discard-

ing comparisons, but involve low time and space complexity. They offer the best

choice for applications with limited resources and for those involving entity com-

parisons of low computational cost (e.g., in the case of relatively small entity pro-

files). In contrast, comparison-refinement techniques are more precise in the iden-

tification of unnecessary comparisons, but their higher accuracy comes at the cost

of higher time and space complexity. They are suitable for applications that em-

phasize on effectiveness and have ample resources at their disposal as well as for

applications that involve time-consuming entity comparisons (e.g., in the case of

large entity profiles).

On the whole, the comparisons’ type and the granularity of functionality define

a two-dimensional taxonomy of efficiency methods that facilitates the combination

of blocking methods into comprehensive ER workflows. Its outline is illustrated

in Figure 6.1, along with a complete list of the existing techniques and those intro-

duced in the following sections.

74 CHAPTER 6. BLOCK PROCESSING

Algorithm 6.1: Computing the Purging Threshold.

Input: Set of blocks: B

Output: Purging threshold: maxICardinality

1 B′ ← orderByICardinality(B);

2 blockAssignments← 0; index← 0;

3 totalComparisons← 0; lastICardinality← 1; stats[]← {};

4 foreach bi ∈ B
′ do

5 if lastICardinality < ||bi|| then

6 stats[index].iCardinality = lastICardinality;

7 stats[index].cc =
blockAssignments

totalComparisons
;

8 index++;

9 lastICardinality = ||bi||;

10 blockAssignments += |bi|; totalComparisons += ||bi||;

11 stats[index].iCardinality = lastICardinality;

12 stats[index].cc =
blockAssignments

totalComparisons
;

13 maxICardinality = lastICardinality;

14 for i← stats.size()-1 to 1 do

15 if stats[i].cc=stats[i − 1].cc then

16 maxICardinality=stats[i].iCardinality;

17 break;

18 return maxICardinality;

6.2 Block-refinement Methods

6.2.1 Block Purging

The goal of this technique, which was originally introduced in [PINF11], is to dis-

card non-matching comparisons by removing oversized blocks. These are blocks

that contain an excessively high number of comparisons, although they are highly

unlikely to contain non-redundant duplicates (i.e., pairs of matching entities that

have no other, smaller block in common). Such blocks have a negative impact on

efficiency (i.e., they decrease PQ and RR), although they have a negligible con-

tribution to PC. Therefore, the gist of Block Purging is to specify a conservative

upper limit on the individual cardinality of the processed blocks so that the over-

sized ones are discarded without any significant impact on PC. This limit is called

purging threshold.

At the core of our approach lies the following observation: assuming that the

blocks are sorted in descending order of individual cardinality, the value of CC in-

6.2. BLOCK-REFINEMENT METHODS 75

creases when moving from the top block to the ones in the lower ranking positions.

The reason is that its denominator (i.e., aggregate cardinality) decreases faster than

its numerator (i.e., number of block assignments). The purging threshold is spec-

ified as the first individual cardinality that has the same CC value with the next

(smaller) one; discarding blocks with fewer comparisons can only reduce BC (and,

thus, PC), while having a negligible effect — if any — on PQ.

The outline of this approach is presented in Alg. 6.1. Line 1 orders the given

block collection B in ascending order of individual cardinality, thus making it pos-

sible to calculate the CC for each distinct cardinality with a single pass (Lines

4-10). Lines 11-12 ensure that the last block is also considered in the computation

of the statistics. Starting from the largest individual cardinality, the CC values of

consecutive ones are then compared (Lines 14-17). The procedure stops as soon as

the value of CC remains stable (Lines 15-17).

Apparently, the time complexity of this algorithm is dominated by the initial

sorting and is equivalent to O(|B|·log|B|). Its space complexity is dominated by the

array that stores the statistics for each individual cardinality and is equal to O(|B|).

6.2.2 Block Scheduling

This technique, which was coined in [PINF11], aims at sorting the input block

collection B so that its processing makes the most of Block Prunning (cf. Sec-

tion 6.2.3) and Duplicate Propagation (cf. Section 6.3.2). The rationale behind

it is that the earlier a pair of matching entities is detected, the more superfluous

comparisons will be saved in the subsequently processed blocks. This is particu-

larly true for Clean-Clean ER, where the identified duplicate entities do not match

with any other entity and all comparisons involving them can be safely discarded.

However, this is not true for Dirty ER. In this case, the effect of Block Schedul-

ing is reinforced when combined with Block Pruning, rather than with Duplicate

Propagation. In the latter case, Block Scheduling merely discards multiple com-

parisons between the same, matching entities, a practice that is necessary only in

the absence of Comparison Propagation (see below, Section 6.3.1).

In more detail, Block Scheduling associates every block bi ∈ B with a block

utility value, u(bi), that expresses the trade-off between the cost of processing it,

cost(bi), and the corresponding gain, gain(bi). The former corresponds to the num-

ber of comparisons entailed in bi (i.e., cost(bi) = ||bi||), while the latter pertains

to the number of superfluous comparisons that are spared in the subsequently ex-

amined blocks — due to the propagation of detected duplicates. The actual value

76 CHAPTER 6. BLOCK PROCESSING

of the block utility u(bi) for a bilateral block bi (i.e., Clean-Clean ER) has been

estimated through a probabilistic analysis to be equal to [PINF11]:

u(bi) =
gain(bi)

cost(bi)
≈

1

max(|bi,1|, |bi,2|)
.

For a unilateral block bi (i.e., Dirty ER), the block utility can be simply set equal

to:

u(bi) =
1

||bi||
or, equivalently, u(bi) =

1

|bi|
.

To incorporate this measure in the processing of blocks, we employ a ranking

function r : B 7→ ℜ that defines a partial order on B, sorting its elements in de-

scending order according to the following implication: u(bi) ≤ u(b j) ⇒ r(bi) ≥

r(b j). Therefore, its time complexity is equal to O(|B|·log|B|), while its space com-

plexity is O(|B|).

6.2.3 Block Pruning

This method, which was originally presented in [PINF11], constitutes a coarse-

grained approach that builds upon Block Scheduling in order to save non-matching

comparisons. Instead of examining the resulting block collection in its entirety,

it terminates the ER process prematurely, at a point that ensures a good trade-off

between PC and PQ/RR.

In more detail, the block processing order defined by Block Scheduling ensures

that the blocks placed at the top ranking positions offer high expected gain at a low

cost. That is, they contain a relatively high number of duplicates, while involving a

low number of comparisons. Block Scheduling actually ensures that the lower the

ranking position of a block is, the fewer duplicates it contains and the more non-

matching comparisons it involves. Therefore, blocks placed at the lowest ranking

positions are unlikely to contain new, yet unidentified duplicates. This means that

there is a break-even point where the possibility of finding additional matches is

no longer worth the cost; blocks lying after this point can be excluded from the ER

process to enhance its efficiency at a negligible cost in the missed matches (i.e.,

small decrease in PC).

Block Pruning aims at approximating this point in order to discard blocks dom-

inated by non-matching comparisons. To this end, it keeps track of the evolution

of duplicate overhead (dh), a measure that assesses the (average) number of com-

parisons that were performed in order to detect the latest match(es). Its value after

6.3. COMPARISON-REFINEMENT METHODS 77

processing the k-th block containing duplicates is defined as:

dhk =
|Ck−1|

|Dk|
,

where |Ck−1| represents the number of comparisons performed after processing the

k−1-th block with duplicates, and |Dk| stands for the number of new matches

identified within the latest block (i.e., |Dk| ≥ 1).

Duplicate overhead takes low values (close to 1) for the blocks placed at the

top ranking positions, since every new pair of duplicates requires a small number

of comparisons. The value of dh increases for duplicates discovered in blocks of

lower ranking positions. As soon as it exceeds the predefined threshold of max-

imum duplicate overhead (dhmax), the entire ER process is terminated. This in-

dicates that the cost of detecting new duplicates is excessively high and the few

remaining matches are not worth it. Although this threshold can be adapted to the

performance requirements of the application at hand, a value that provides a good

estimation of the break-even point was experimentally derived from the following

formula [PINF11]:

dhmax = 10log(||B||/2). (6.1)

The intuition behind Formula 6.1 is that the number of comparisons required for

detecting the latest match is considered too large, when it reaches half the order of

magnitude of all possible comparisons in the considered blocks.

Given that Block Pruning requires a single pass over the ordered input block

collection, its time complexity is equal to O(|B|), where |B| is the number of blocks

remaining after Block Purging.

6.3 Comparison-refinement Methods

6.3.1 Comparison Propagation

This method, which was coined in [PIN+11a], constitutes a general technique for

discarding all repeated comparisons from unilateral and bilateral block collections,

without any impact on PC. In essence, it propagates all executed comparisons in

an indirect way, thus avoiding the need to explicitly store them. Its functionality

relies on two pillars:

• The process of Block Enumeration is a preparatory step that assigns a unique

index to each block, indicating its processing order. As a result, bi symbolizes

78 CHAPTER 6. BLOCK PROCESSING

p1 b3

b4 b8

b2 b5

p2

p3

b1

b1

b5

Figure 6.2: The Entity Index employed by Comparison Propagation.

the block placed in the i-th position of the processing list.

• The data structure of Entity Index (EI) points from the input entities to the

blocks containing them. It is actually a hash table, whose keys correspond

to entity ids, while each value lists the indices of the blocks that contain the

corresponding entity. As an example, consider the EI of Figure 6.2, where we

can see that entity p1 is placed in blocks b1, b3 and b5.

A comparison between pi and p j is recognized as repeated if the Least Common

Block Index condition (LeCoBI for short) does not hold. This condition ensures

that the current block is the first to contain both entities, returning true only if their

lowest common block index is equal to the current block’s index. Otherwise, if the

least common index is lower than the current one, the entities have already been

compared in another block, and the comparison should be discarded as redundant.

As an example, consider the entities p1 and p3 in Figure 6.2. They share two

blocks (b1 and b5) and, thus, their least common block index is 1. This means

that the LeCoBI condition is satisfied in b1, but not in b5, thus saving the repeated

comparison of p1 and p3 in the latter block.

The examination of the LeCoBI condition is linear with respect to the total

number of blocks associated with a pair of entities. This is achieved by iterating

once and in parallel over the two lists of block indices, after sorting them individ-

ually in ascending order. For higher efficiency, this sorting is executed only once,

during the construction of the EI.

The time complexity for building the data structure of EI is linear with respect

to the number of given blocks and the entities contained in them; in the average

case, it is equal to O(BCov·|B|). Its space complexity is linear with respect to the

size of the input entity collections, depending, of course, on the overall level of

redundancy. On average, it is equal to O(BCov·(|E1| + |E2|)) for Clean-Clean ER

6.3. COMPARISON-REFINEMENT METHODS 79

and to O(BC·|E|) for Dirty ER.

6.3.2 Duplicate Propagation

This method, which was originally presented in [PINF11], discards superfluous

comparisons at no cost in PC. At its core lies a central data structure, called Du-

plicate Index (DI), which at any time contains all pairs of duplicate entities that

have been identified so far. In the case of Dirty ER, these pairs are explicitly

stored in DI2, whereas for Clean-Clean ER, they are stored indirectly. In the latter

case, it actually suffices to store the profile ids of all the entities that have already

been matched to another one. Before comparing pi and p j, Duplicate Propagation

checks DI in order to deem whether the comparison is superfluous. For Dirty ER,

this requires that the match pi≡p j is already contained in DI. For Clean-Clean ER,

the comparison is superfluous if DI contains either of the entities and, thus, it is

executed only if neither pi nor p j is contained in DI.

Apparently, the time complexity of this technique is constant (i.e., O(c)), as

it merely requires a couple of look-ups in a hash-table. For high performance,

though, it has to be coupled with a scheduling method of higher computational

cost. Its space complexity depends on the size of DI and is equal to number of

duplicates contained in the given block collection: O(|DE1∩E2 |) for Clean-Clean

ER and O(|DE|) for Dirty ER.

6.3.3 Comparison Pruning

This technique, which was originally introduced in [PIN+11b], aims at discarding

non-matching comparisons from redundancy-positive block collections at a con-

trollable cost in effectiveness (i.e., PC). It can be conceived as an improved ver-

sion of Block Pruning that operates on the level of individual comparisons, instead

of considering entire blocks. It actually prunes a comparison if the involved enti-

ties are deemed highly unlikely to be a match in view of the overlap among their

associated blocks.

In more detail, the overlap of two entities, pi and p j, is called Entities Similarity

and is symbolized by ES (pi, p j). Its value is defined from the Jaccard similarity of

2Ostensibly, this approach does not scale to the voluminous data collections of HHIS. In practice,

though, the pairs of matching entities comprise a tiny portion of all pairwise comparisons.

80 CHAPTER 6. BLOCK PROCESSING

the lists of block indices that are associated with them:

ES (pi, p j) =
|indices(pi) ∩ indices(p j)|

|indices(pi) ∪ indices(p j)|

=
|indices(pi) ∩ indices(p j)|

|indices(pi)| + |indices(p j)| − |indices(pi) ∩ indices(p j)|
(6.2)

where indices(pk) denotes the set of block indices associated with the entity profile

pk. Formula 6.2 indicates that we only need to estimate the number of indices that

are shared by pi and p j in order to compute ES (pi, p j). As explained above, this

process is facilitated by EI and is linear with respect to the total number of indices

(i.e., it suffices to iterate over the two lists of indices just once and in parallel, due

to their sorting in ascending order).

A pair of entities, pi and p j, is considered similar enough to justify the compar-

ison of their profiles if ES (pi, p j) exceeds the predefined threshold of the minimum

allowed similarity value (ES min). The actual value of this threshold depends on the

redundancy of the individual entity collection(s). For a bilateral block collection

(i.e., Clean-Clean ER), it is derived from the following formula:

ES min =
a · min(BCind(E1), BCind(E2))

BCind(E1) + BCind(E2) − a · min(BCind(E1), BCind(E2))
(6.3)

For a unilateral block collection (i.e., Dirty ER), ES min is defined as:

ES min =
a · BC

(2 − a) · BC
(6.4)

In both cases, a takes values in the interval (0, 1]. Intuitively, these thresholds

demand that two entities are analytically compared if their common blocks amount

to a · 100% of the (minimum individual) Blocking Cardinality. The performance

of Comparison Pruning was experimentally found to be robust to the fluctuation

of a, with higher values corresponding to stricter similarity conditions, and vice

versa [PIN+11b].

Given that Comparison Pruning relies on the same data structures and oper-

ations as Comparison Propagation, it shares the same space and time complexity

with it.

6.3. COMPARISON-REFINEMENT METHODS 81

6.3.4 Comparison Scheduling

This technique, which was originally presented in [PIP+ar], aims at reducing the

superfluous comparisons that are executed in order to increase efficiency at no cost

in PC. Similar to Block Scheduling, it achieves its goal indirectly, by boosting

the effect of Duplicate Propagation. However, it is more effective than Block

Scheduling, due to the finer granularity of its functionality: instead of handling

entire blocks, it considers individual comparisons, ordering them in such a way

that the matching ones are executed first. Thus, more superfluous comparisons are

saved in the subsequently processed blocks.

To this end, it first gathers the set of valid comparisons (Cv), which encom-

passes all pairwise comparisons of B that remain after filtering the initial set of

blocks with a combination of the aforementioned efficiency methods (typically,

Comparison Propagation and Comparison Pruning). Then, it associates each pair-

wise comparison ci, j between entities pi and p j with a comparison utility value,

u(ci, j). Similar to the block utility value, this measure is defined as:

u(ci, j) =
gain(ci, j)

cost(ci, j)
.

The denominator corresponds to the cost of executing ci, j and is unary for all com-

parisons (i.e., cost(ci, j) = 1). Thus, u(ci, j) = gain(ci, j), where gain(ci, j) represents

the likelihood that pi and p j are matching.

Several approaches are possible for estimating gain(ci, j). In this work, we con-

sider a best effort scoring mechanism that is derived from the following measures:

• The Entities Similarity ES (pi, p j) is the same measure as that employed by

Comparison Pruning, i.e., the portion of blocks shared by entities pi and p j.

The higher its value is, the more likely are pi and p j to be matching. Hence,

u(ci, j) is proportional to ES (pi, p j).

• The Inverse Comparison Frequency (ICF) of each entity. Inspired from the

IDF metric of Information Retrieval, the ICF(pi) for an entity pi is computed

by dividing the size of Cv by that of its subset Cv(pi), which contains only those

comparisons involving entity pi (i.e., Cv(pi) = {ci,k ∈ Cv}). More formally:

ICF(pi) = log
|Cv|

|Cv(pi)|
. (6.5)

The rationale behind this metric is that the more valid comparisons are associ-

82 CHAPTER 6. BLOCK PROCESSING

ated with an entity pk, the less likely pk is to match with one of its co-occurring

entities. For this reason, the more comparisons entail pk, the higher is the value

of the denominator in Formula 6.5 and the lower is the value of ICF(pk). This

means that the utility of comparison ci, j is proportional to both ICF(pi) and

ICF(p j).

On the whole, the utility of a comparison ci, j is equal to3:

u(ci, j) = ES (pi, p j) · ICF(pi) · ICF(p j).

To incorporate Comparison Scheduling in the ER process, we employ a rank-

ing function r : Cv 7→ ℜ that defines a partial order on Cv, sorting its elements

in descending order according to the following implication: u(ci, j) ≤ u(ck,l) ⇒

r(ci, j) ≥ r(ck,l). Its time complexity is equal to O(|Cv|·log|Cv|), while its space

complexity is O(|Cv|).

6.4 Building ER Workflows4

Some of the above block processing techniques are complementary and can be

combined with block building and meta-blocking methods in order to form a com-

plete blocking-based ER solution, called ER workflow. Its composition typically

depends on two factors:

• the resources that are available for handling the time and space requirements

of the selected efficiency methods, and

• the performance requirements of the underlying application with respect to ef-

fectiveness and efficiency.

In this section, we introduce a general procedure for composing ER workflows,

which covers a variety of performance and resource requirements for both Clean-

Clean and Dirty ER over HHIS. In essence, this procedure explains how to combine

all methods presented in Chapters 4 to 6 and consists of the six steps that are

outlined in Figure 6.3. They are all optional, with the exception of the first one

(i.e., the creation of blocks). We elaborate on each step in the following.

The first step selects the most suitable block building method for the application

at hand. Given that the main techniques presented in Chapter 4 are conflicting, it

3Linear combinations of these three measures are also possible, but the resulting performance has

been experimentally verified to be lower than that of the mere multiplication [PIP+ar].
4Originally introduced in [PIP+ar].

6.4. BUILDING ER WORKFLOWS 83

d h h hd

Block Processing

Block

Building

Repeat

Methods

Non match

Methods

Core

Methods

Scheduling

Methods

1st step 3rd step 4th step 5th step 6th step

Meta

blocking

2nd step

Token

Blocking

OR

Block

Purging

AND

Block

Scheduling

OR

Comparison

Propagation

Block

Pruning

OR

WEP

OR

CEP

Agnostic

Clustering

OR

l

Duplicate

Propagation

Comparison

Scheduling

Comparison

Pruning

OR

WNP

OR

Total

Description

CNP

Figure 6.3: Procedure for creating an ER workflow.

suffices to include only one of those depicted in the left-most column of Figure 6.3.

All these block building techniques are redundancy-positive and, thus, can be

combined with any meta-blocking method in order to achieve a better balance be-

tween effectiveness and efficiency. The methods of Chapter 5, though, are con-

flicting and, hence, only one of the four approaches can be incorporated in an ER

workflow. Note that the choice of the meta-blocking approach is crucial, as it may

determine the block processing techniques that will be added in the ER workflow,

as well. For example, WEP and CEP do not need to be combined with Comparison

Propagation and Comparison Pruning, as they transform the input block collection

into a redundancy-free one. Note also that the high space and time complexity

of meta-blocking render it incompatible with ER applications of limited resources

(i.e., workflows that exclusively involve block-refinement methods). Instead, it is

more appropriate for ER workflows that are dominated by comparison-refinement

efficiency techniques.

The third step is to include the two core efficiency methods, i.e., Block Purging

and Duplicate Propagation. They are indispensable for practically all ER work-

flows, since they significantly improve efficiency at a negligible cost in PC, while

consuming minimal resources.

In the fourth step, we opt for the scheduling method that boosts the perfor-

mance of Duplicate Propagation and Block Pruning (where applicable), by de-

termining the processing order of the blocks or comparisons. Two are the valid

options: Block Scheduling and Comparison Scheduling. The former is better inte-

grated with block-refinement efficiency techniques, whereas the latter operates ex-

clusively in conjunction with comparison-refinement ones. Hence, the scheduling

84 CHAPTER 6. BLOCK PROCESSING

method constitutes another critical part of an ER workflow, determining the overall

granularity of its functionality and, consequently, its complexity and performance.

The fifth step incorporates the technique that eliminates all repeated compar-

isons, i.e., Comparison Propagation. As mentioned above, it is unnecessary for ER

workflows involving WEP or CEP. In addition, it should be skipped in the case

of ER workflows that can only afford minimal space requirements, due to the high

space complexity it involves.

The last step determines the technique that — in addition to Block Purging —

deals with non-matching comparisons. As mentioned above, though, the options

can be restricted by the selected meta-blocking and scheduling methods; WEP

and CEP can only be combined with Block Pruning, whereas workflows involv-

ing WNP or CNP can choose between Block Pruning and Comparison Pruning.

Similarly, Block Scheduling is compatible with either of the two options, whereas

workflows involving Comparison Scheduling can only opt for Comparison Prun-

ing. In general, it is a good practice to add Comparison Propagation in workflows

already encompassing Comparison Pruning, since both techniques share exactly

the same space and time complexity and their functionality can be integrated in a

single procedure.

Following these guidelines, an ER workflow can be simply created by specify-

ing the methods that are included in it. Regardless of its composition, its methods

are applied consecutively, in the order they are added, so that the output of the cur-

rent one constitutes the input of the next one. There are only two exceptions to this

rule (i.e., the execution order of a method deviates from the order it is added in the

workflow):

• Block Purging is added at the third step, but should be executed right after block

building. In this way, it substantially reduces the space and time complexity of

the selected meta-blocking and block processing approaches.

• Comparison Scheduling is added at the fourth step, but is the last method to be

executed in the workflows that involve it.

Duplicate Propagation constitutes a special case, since it is integrated into the entity

comparison process.

6.5. SUMMARY 85

6.5 Summary

At the core of this chapter lies the two-dimensional taxonomy of block process-

ing techniques that was introduced in Section 6.1. Based on it, we elaborated on

three block-refinement methods, explaining the type of comparisons they target

and the low space and time requirements they involve. Next, we presented four

comparison-refinement techniques, one for every type of comparisons, illuminat-

ing the way they improve on block refinement techniques. Having clarified the

scope of each block processing technique, we provided guidelines for combining

the complementary ones into ER workflows of higher performance. The proce-

dure we introduced takes into account the available resources and the performance

requirements of the underlying application. We experimentally investigate the rel-

ative performance of three major ER workflows in Section 7.6.

86 CHAPTER 6. BLOCK PROCESSING

Chapter 7

Experimental Evaluation

The goal of this chapter is to experimentally evaluate the approaches presented

in Chapters 4, 5 and 6 for the Problems 3.2, 3.3 and 3.4, respectively. We be-

gin our analysis with the presentation of the data collections it comprises in Sec-

tion 7.1. We then elaborate on the performance of our techniques independently

for every problem: the block building methods are examined in Section 7.2, the

meta-blocking ones in Section 7.5 and the block processing ones in Section 7.6. A

separate section (i.e., Section 7.3) is devoted to Block Purging, because it conveys

high efficiency enhancements at a very low computational cost and, thus, it should

always be applied on top of block building (cf. Section 6.4). We also elaborate on

the predictive accuracy of our BC-CC metric space in Section 7.4. We conclude

our experimental study with a discussion of its outcomes in Section 7.7.

Note that all approaches and experiments were fully implemented in Java, ver-

sion 1.6. We have publicly released their implementation through SourceForge.net1).

For the implementation of the blocking functionality (i.e., inverted indices), we

used the open source library of Lucene2, version 2.9. The functionality of the

n-gram graphs was provided by the open source library of JInsect3. For the imple-

mentation of the unconstrained EM clustering algorithm, we employed the open

source library of Weka4, version 3.6. All experiments were performed on a server

with Intel Xeon E5472 3.0 GHz, 32GB of RAM memory, running Linux (SUSE

SLES 10).

1http://sourceforge.net/projects/erframework
2http://lucene.apache.org/
3http://sourceforge.net/projects/jinsect
4http://www.cs.waikato.ac.nz/ml/weka/

87

88 CHAPTER 7. EXPERIMENTAL EVALUATION

Dmovies Dinfoboxes DBTC09
DBPedia IMDB DBPedia1 DBPedia2

Entities 27,615 23,182 1.19×106 2.16×106 1.82×108

Name-Value Pairs 186,013 816,012 1.75×107 3.67×107 1.15×109

Avg. Profile Size 6.74 35.20 14.66 16.94 6.31

Duplicates 22,405 892,586 11,533/5.99×106

Comparisons 6.40×108 2.58×1012 1.66×1016

Table 7.1: Overview of the data sets used in our experimental study.

7.1 Data sets

To thoroughly test our blocking techniques, we employ three large-scale, real-

world data sets: Dmovies and Din f oboxes for Clean-Clean ER5 as well as DBTC09

for Dirty ER. Their technical characteristics are summarized in Table 7.1.

Dmovies is a collection of several thousands of movies shared among IMDB and

DBPedia. We derived its ground-truth from the “imdbid” attribute in the profiles

of the DBPedia movies.

Din f oboxes consists of two different versions of the DBPedia Infobox Data Set6.

They have been collected by extracting all name-value pairs from the infoboxes of

the articles in Wikipedia’s english version. DBPedia1 is a snapshot of Wikipedia

Infoboxes in October 2007, whereas DBPedia2 dates from October 2009. Al-

though it may seem trivial to resolve two versions of the same data set, this is

not true in our case. During the two years that intervene between DBPedia1 and

DBPedia2, Wikipedia infoboxes were so heavily modified that there is only a small

overlap between their profiles, even for duplicate entities. As shown in Table 7.2,

just 40% of all name-value pairs and 50% of the attribute names are shared among

the entities that are common in both versions. Regarding the ground-truth, we con-

sidered as matches those entities that had exactly the same URL. Inevitably, a small

part of the actual matches has been ignored, but this pertains only to the entities

that had their URL changed (e.g., due to disambiguation reasons).

DBTC09 constitutes the largest, real-world data set ever used for (Dirty) ER. It

comprises more than 182 million entities that are described by 1.15 billion RDF

statements. The data were crawled from several thousand Semantic Web sources,

each having unique characteristics for the format and the quality of its informa-

5Both data sets have been publicly released (together with the implementation of

our methods) so as to encourage researchers to use them as a benchmark. See

http://www.l3s.de/ papadakis/erFramework.html for more details.
6http://wiki.dbpedia.org/Datasets

7.2. EVALUATION OF BLOCK BUILDING APPROACHES 89

Attribute Names Name-Value Pairs

DBPedia1 30,757 17,453,516

DBPedia2 52,554 36,653,387

Common 27,253 10,361,467

Distinct 56,058 43,745,435

Table 7.2: Overlap in the profiles of duplicates in Din f oboxes.

tion7. As a result, DBTC09 constitutes a sizeable and representative HHIS, which

is suitable for deriving safe conclusions about the generality of our blocking tech-

niques. As ground-truth, we employed the two golden standards that were used

in [PDKF10]. The first one was derived from the explicit owl:sameAs statements

and is denoted by S ameAs. It encompasses 5.99 pairwise million matches of the

form pi ≡ p j that, in total, involve 8.67 million distinct entities. The second

ground-truth set is symbolized as IFP and was inferred from the implicit equiv-

alence relationships of the InverseFunctionalProperties8. It contains 11, 553 pair-

wise matches among 17, 990 distinct entities.

The reason for considering two sources of ground-truth is the bias that may be

lurking in the explicit equivalence relationships. In fact, it is possible that some

of them stem from machine-generated same-as statements, which typically follow

specific URI patterns. This is the case, for instance, with the transformation of

Wikipedia URIs into DBPedia ones. Therefore, to have a better understanding of

the general performance and the robustness of our algorithm, we need an additional

data set that involves a higher variety of equivalence relationships, coming from a

rich diversity of sources. The ground-truth set of implicit equivalence relationships

(i.e., IFP) serves this need perfectly.

7.2 Evaluation of Block Building Approaches

This section consists of two parts: Section 7.2.1 compares the main variations of

AC Blocking with Token Blocking over our Clean-Clean ER datasets, while Sec-

tion 7.2.2 compares the URI Semantics blocking methods with Token Blocking

over DBTC09. In both experimental studies, we focus on the balance between effec-

tiveness (i.e., PC) and efficiency (i.e., PQ) that is achieved by the resulting block

7See http://km.aifb.kit.edu/projects/btc-2009 for more information
8The inverse functional properties (IFPs) provide a reliable means of discovering implicit equiva-

lence relationships in the Semantic Web: any two resources that share the same value for an IFP are,

actually, identical. As an example, consider the attribute name n1=“e-mail”; two profiles sharing the

same value for n1 most likely correspond to the same person.

90 CHAPTER 7. EXPERIMENTAL EVALUATION

collections. In addition, we consider the most important technical characteristics

that determine their actual performance. These characteristics are expressed in

terms of the following metrics:

• Disk Space occupied on the hard drive.

• Number of Blocks generated by the technique.

• Method Coverage denotes the portion of the given entities that qualify for the

respective blocking method (i.e., how many entities are transformed into a non-

empty set of blocking keys).

• Block Coverage expresses the portion of entities that are placed in at least one

block9.

The first two metrics are related to the efficiency aspects of a method (e.g.,

storage efficiency), with higher values corresponding to lower efficiency. In con-

trast, the last two measures are indicative of the robustness (and the effectiveness)

of a blocking scheme, with higher values corresponding to more robust methods.

Comparing Method Coverage with Block Coverage, we can actually deduce the

portion of entities that share no blocking keys with any other entity, even though

they qualify for the blocking scheme. This parameter is particularly crucial for the

applicability of the URI Semantics blocking methods that are based on the infixes

of entity profiles.

7.2.1 Clean-Clean ER

In this section, we compare Agnostic Clustering (AC) with Token Blocking over

Dmovies and Din f oboxes. We actually consider AC in conjunction with all represen-

tation models of Section 4.2.1, so as to identify the best performing combination.

In short, the following variations of AC are examined:

• Term Vector AC relies on the combination of the term vector model with the

cosine similarity,

• Trigrams AC is based on the combination of character trigrams with Jaccard

similarity, and

• Trigram Graphs AC results from the combination of trigram graphs with the

value similarity metric.

We also intend to evaluate the performance of Algorithm 4.1 with respect to the

established clustering techniques. However, only clustering methods with an un-

9Remember that, by definition, every block has to contain at least 2 entities.

7.2. EVALUATION OF BLOCK BUILDING APPROACHES 91

Dmovies (min.) Dinfoboxes (hrs.)

EM
Term Vector 1.49 116

Trigrams 1.70 >200

AC
Term Vector 0.06 17

Trigrams 0.09 66

Table 7.3: Execution time for the attribute clustering algorithms.

constrained functionality are applicable to our settings. In other words, only those

methods that do not require as input the number of returned clusters are directly

comparable with our algorithm. In this context, we selected as baseline a varia-

tion of the Expectation Maximization (EM) algorithm [DLR77] that specifies the

number of clusters through an unsupervised procedure based on cross-validation10.

EM can be combined with the character n-grams and the term vector models. For

n = 3, the former combination is termed Trigrams EM, while the latter is called

Term Vector EM. Note, though, that EM is incompatible with the n-gram graphs,

since this representation model is only suitable for pairwise comparisons (i.e., it

does not produce features in a vector format).

We begin our analysis by probing into the time efficiency of the two clustering

algorithms. To this end, we recorded the execution time of EM and AC in combina-

tion with the term vector and the character trigrams over Dmovies and Din f oboxes. The

outcomes are presented in Table 7.3. We can notice that AC is substantially faster

than EM, requiring around 1/20 and 1/6 of its running time in the case of Dmovies

and Din f oboxes, respectively. Also noteworthy is that Trigrams EM was unable to

process Din f oboxes within a time frame of 200 hours. Consequently, we consider

these particular clustering settings to be inapplicable to Din f oboxes. Apparently, the

higher running time of EM can only be compensated by block collections of sig-

nificantly better effectiveness and efficiency. Hence, we now examine the relative

performance of blocks produced by AC and EM.

Table 7.4 presents the performance of all methods on the Dmovies data set. We

can see that all variations of the clustering algorithms produce a limited number

of attribute clusters, since Dmovies contains just 11 attributes. As a result, there

are minor differences in the behavior of the blocking methods (e.g., they all oc-

cupy the same disk space). Nevertheless, we can identify the following pattern:

the higher the number of clusters is, the more blocks are produced and the less

comparisons they entail, in total. This results in higher efficiency and moves the

10See http://weka.sourceforge.net/doc/weka/clusterers/EM.html more details.

92 CHAPTER 7. EXPERIMENTAL EVALUATION

Clusters Disk Blocks Compar. BCov CC PC PQ

Space (×108) (×10−2) (%) (×10−5)

Token Blocking 1 28MB 40,825 3.05 34.30 0.57 99.92 7.35

Term Vector EM 4 52MB 33,777 2.81 32.85 0.59 97.94 7.81

Trigrams EM 2 52MB 18,707 0.48 10.86 1.18 76.55 35.72

Term Vector AC 3 52MB 43,270 2.90 33.16 0.58 99.80 7.72

Trigrams AC 3 52MB 43,271 2.91 34.08 0.59 99.82 7.70

Trigram Graphs AC 4 52MB 44,158 2.13 32.96 0.08 99.55 1.05

Table 7.4: Performance of block building techniques over Dmovies.

BC-CC mapping of the blocking methods closer to the Ideal Point (i.e., their BCov

decreases, while their CC increases). This effect has a direct impact on their actual

performance, increasing PQ to a considerable extent, while PC is reduced by less

than 2%. The only exception to this pattern is Trigrams EM, which involves the

least number of comparisons, but fails to place in a common block almost 1 out of

4 pairs of duplicates. Thus, it constitutes the only clustering approach with infe-

rior performance to Token Blocking. All other blocking techniques offer a better

balance between PC and PQ, with Term Vector AC exhibiting the best trade-off.

Table 7.5 offers stronger evidence for the differences in the performance of the

individual blocking methods. The reason is that the high number of attribute names

of Din f oboxes allows for higher variation in the attribute clusters. It is noteworthy,

though, that the performance pattern of Dmovies applies in this data set, as well:

the higher the number of attribute clusters is, the higher is the resulting number

of blocks and the less comparisons they entail, in total. This effect leads to sub-

stantially higher CC values (almost by an order of magnitude) and, thus, to higher

PQ values. On the other hand, effectiveness (i.e., PC) remains practically stable.

Unlike Dmovies, however, the increase in the number of attribute clusters results in

a substantial increase in the values of BCov and the space occupied on the disk,

due to the significantly higher number of blocks. It is also worth noting that Term

Vector EM exhibits the worst performance: it involves more comparisons than all

other methods for practically the same PC with them. In contrast, most variations

of AC provide a better balance between PC and PQ than Token Blocking, with

Trigram Graphs AC exhibiting the best trade-off.

On the whole, we can argue that AC Blocking substantially improves on Token

Blocking, offering higher efficiency for the same levels of effectiveness. It also

outperforms EM-based blocking methods in many aspects: it is applicable to large

entity collections, it can be combined with the n-gram graphs representation model,

and it produces blocks of higher quality. For the last point, it should be stressed that

7.2. EVALUATION OF BLOCK BUILDING APPROACHES 93

Clusters Disk Blocks Compar. BCov CC PC PQ

Space (×106) (×1012) (×10−4) (%) (×10−7)

Token Blocking 1 2.1GB 1.21 6.18 29.51 0.16 99.997 1.44

Term Vector EM 2 4.9GB 1.35 6.38 31.86 0.17 99.996 1.40

Term Vector AC 3,717 4.4GB 1.22 6.18 29.42 0.16 99.997 1.44

Trigrams AC 24,927 5.0GB 4.48 1.05 41.76 1.34 99.982 8.52

Trigram Graphs AC 26,762 5.0GB 4.80 1.03 43.22 1.41 99.992 8.70

Table 7.5: Performance of block building techniques over Din f oboxes.

Method Block Disk Space Blocks Comp.

Coverage Coverage (GB) (×106) (×1015)

Token Blocking 100.00% 100.00% 114 31.16 25.91

Infix 67.20% 31.32% 13 15.34 0.006

Infix Profile 66.17% 64.84% 26 23.59 1.07

Literal Profile 55.63% 54.95% 59 17.83 2.67

Complete Infix 98.91% 97.25% 33 68.87 1.10

Infix-Literal Pr. 91.88% 74.18% 65 27.90 3.25

Infix Pr.-Literal Pr. 69.29% 68.13% 75 38.44 3.90

Total Description 99.66% 98.90% 83 81.08 3.81

Table 7.6: Technical characteristics of the block collections produced by Token

Blocking and the URI Semantics blocking schemes.

EM involves a “blind” functionality: unlike our Attribute Clustering algorithm, EM

does not guarantee that every cluster contains attribute names from both input en-

tity collections. Instead, it is possible that a cluster exclusively contains attributes

stemming from the same source, thus rendering their values useless for blocking.

Regarding the relative performance of the representation models, there are minor

differences for Dmovies, but for Din f oboxes, the best performance clearly corresponds

to the n-gram graphs. The reason is that their noise-tolerant and language-agnostic

functionality turns them more suitable than the other models for tackling the intri-

cacies of HHIS.

7.2.2 Dirty ER

In this section, we examine the performance of the URI Semantics blocking meth-

ods over DBTC09. As a baseline, we employ Token Blocking, the only block build-

ing technique that is also applicable to the highly heterogeneous settings of DBTC09.

We begin our analysis with Table 7.6, which presents the technical characteristics

of the resulting block collections.

94 CHAPTER 7. EXPERIMENTAL EVALUATION

Regarding Method Coverage, we can see that the atomic blocking schemes

individually cover less than 2/3 of all entities, while their combinations have sub-

stantially higher coverage — well above 90% in most of the cases. Nevertheless,

the individual coverage of Infix and Infix Profile blocking is larger than one would

expect. To explain this phenomenon, we investigated the extent to which blank

nodes are used as ids, not only for uniquely identifying entities, but also for ex-

pressing the associations between them. We found out that, among all data sources

of DBTC09, less than a third of their entities (32.61%) have a blank node as their

id and a mere 4.99% of their statements have a blank node as their object. Con-

sequently, blank nodes are completely outweighed by real URIs, thus having a

restricted impact on the applicability of our method.

The values of Block Coverage follow the same pattern as those of Method

Coverage: they are slightly lower than 66% for atomic blocking schemes, but sig-

nificantly higher for the composite ones. In fact, the value of Block Coverage is

around 2% lower than the corresponding value of Method Coverage in almost all

the cases. This means that our blocking schemes place almost all entities that con-

tain the required description item(s) in at least one block. The only exception to

this rule is Infix Blocking, whose Block Coverage is less than half its Method Cov-

erage. This discrepancy should be attributed to the singleton infixes, i.e., infixes

that appear in just one entity identifier, thus forming no block. Another reason are

the arbitrary entity identifiers, i.e., the random or numerical URIs that lack an infix.

It is interesting to examine why this pattern does not apply to Infix Profile,

as well. One of the main reasons is the connectivity of the resources contained

in DBTC09. In fact, it was reported in [PDKF10] that 12.55% of the resources

appear only as subjects, 30.49% appear solely as objects, while the rest (56.96%)

appear both as subjects and objects. This evidence suggests that there are strong

connections between the nodes of the underlying RDF graph, and, thus, sources

with synthetic URIs are highly likely to be connected to other domains that do

not necessarily follow the same methodology for generating identifiers. Therefore,

they pose no serious threat to the robustness of Infix Profile and the composite

blocking schemes built on it.

Continuing the analysis of Table 7.6, we observe that the results on the effi-

ciency characteristics are quite intuitive: the composite blocking schemes involve

more blocks, which entail more comparisons and occupy more disk space than

the atomic ones. Therefore, the efficiency of the former is lower than that of the

latter. Among all techniques, Token Blocking is the least efficient method, as it

7.2. EVALUATION OF BLOCK BUILDING APPROACHES 95

BC CC PCIFP PCSA PQIFP PQSA

(×10−7) (%) (%) (×10−12) (×10−9)

Token Blocking 19.23 1.35 99.32 92.26 0.44 0.21

Infix 0.32 94.20 59.31 49.60 1,102.12 476.13

Infix Profile 2.30 3.92 84.19 43.78 9.10 2.45

Literal Profile 10.90 7.43 94.49 24.51 4.10 0.55

Complete Infix 3.07 5.10 85.16 87.14 9.00 4.76

Infix-Literal Pr. 11.34 6.36 96.43 65.67 3.44 1.21

Infix Pr.-Literal Pr. 13.11 6.61 96.64 52.09 2.87 0.80

Total Description 13.82 6.13 97.98 91.13 2.98 1.43

Table 7.7: Performance of block building techniques over DBTC09.

requires more than 25% additional disk space and entails the largest number of

comparisons. This is a side-effect of the low-granularity of its functionality, which

results in rather frequent blocking keys (i.e., tokens); for example, most of the URIs

contain the token “http”. For the same reason, Literal Profile exhibits the lowest

efficiency among all atomic schemes. It differs, though, from Token Blocking in

two aspects: (i) it involves a lower number of distinct blocking keys, and (ii) it can

be combined with the other atomic blocking schemes to enhance its performance.

The actual performance of the URI Semantics blocking schemes is reported in

Table 7.7. We notice that PC is quite low for the atomic blocking schemes, but

substantially higher for the composite ones — independently of the ground-truth

set. In fact, the PC of composite methods is larger than that of the individual

schemes comprising them in all cases. This pattern provides strong evidence in

favor of merging complementary blocking schemes. The combination of all three

atomic schemes (i.e., Total Description) actually achieves the highest PC among

all URI Semantics blocking methods, being lower than that of Token Blocking by

just 1% — for both benchmark sets. Note also that there is a clear association

between the values of PC and BC, with high BC values conveying high PC ones.

This interesting association is analytically discussed in Section 7.4.

Regarding efficiency, we observe two different trends for each ground-truth set:

for S ameAs, the combination of atomic blocking schemes improves at least the PQ

of the less efficient one(s), whereas for IFP, the composite schemes have a lower

PQ than all atomic schemes comprising them. The former pattern implies that

the number of detected matches increases faster than the number of comparisons

(and vise versa for the latter pattern). Indeed, we observe that there is a significant

increase in PCS A for composite schemes, whereas the relative increase in PS IFP

96 CHAPTER 7. EXPERIMENTAL EVALUATION

Purged Comp. BCov CC PC PQ

Blocks (×108) (×10−2) (%) (×10−4)

Token Blocking 42 1.11 30.23 1.38 99.91 2.01

Term Vector EM 38 1.10 29.09 1.34 97.65 1.99

Trigrams EM 35 0.09 8.11 4.61 75.60 18.82

Term Vector AC 76 0.81 27.72 1.75 99.78 2.78

Trigrams AC 74 0.81 28.65 1.79 99.80 2.75

Trigram Graphs AC 52 0.73 29.12 2.02 99.54 3.05

Table 7.8: Performance of Block Purging over Dmovies.

is substantially smaller. CC exhibits the same behavior with PQS A, taking higher

values for composite schemes. Note also that PQS A is significantly higher than

PQIFP across all blocking schemes, because the S ameAs ground-truth set involves

a higher number of duplicates than IFP.

Overall, we can conclude that the atomic blocking schemes exhibit the high-

est levels of efficiency, but suffer from deficient robustness and effectiveness. The

composite blocking methods improve on both of these weaknesses, without signifi-

cant sacrifices with respect to efficiency. Total Description actually achieves similar

levels of effectiveness and robustness with Token Blocking even though it involves

just 85% of its comparisons. Two are its advantages over Token Blocking that ac-

count for the better balance between effectiveness and efficiency it achieves:

• Token Blocking extracts all tokens from the URIs that appear as attribute values

in entity profiles, whereas Total Description exclusively considers their infix.

In this way, it exclusively retains the most distinctive blocking keys, saving the

unnecessary comparisons that stem from repeated tokens in entity URIs.

• Token Blocking completely disregards the URIs that are used as entity identi-

fiers, whereas Total Description extracts their infixes, as well. In this way, it

enhances its robustness without any significant impact on efficiency, due to the

discriminative information of infixes.

7.3 Evaluation of Block Purging

This section examines the effect of Block Purging (i.e., Algorithm 6.1) on all block

building techniques across the three data sets of our experimental study. We be-

gin with the application of Block Purging over blocking-based Clean-Clean ER in

Section 7.3.1 and continue with its application over blocking-based Dirty ER in

7.3. EVALUATION OF BLOCK PURGING 97

Purged Comp. BCov CC PC PQ

Blocks (×1010) (×10−3) (%) (×10−5)

Token Blocking 396 5.68 16.24 0.96 99.91 1.57

Term Vector EM 564 4.34 17.24 1.32 99.90 2.05

Term Vector AC 396 5.68 16.24 0.96 99.91 1.57

Trigrams AC 1,064 3.06 27.50 3.02 99.98 2.92

Trigram Graphs AC 1,358 2.42 28.12 3.90 99.99 3.69

Table 7.9: Performance of Block Purging over Din f oboxes.

Section 7.3.2.

7.3.1 Clean-Clean ER

The performance of Block Purging over Dmovies and Din f oboxes is presented in Ta-

bles 7.8 and 7.9, respectively. Comparing it with the original performance of the

block building techniques in Tables 7.4 and 7.5, respectively, we notice that BCov

decreases for all of them, thus getting closer to the x=1 axis. On the other hand, CC

increases to a great extent, getting closer to its maximum value (i.e., CCmax=2). All

approaches move, therefore, closer to the Ideal Point, thus indicating an improve-

ment in their balance between effectiveness and efficiency across both data sets.

Indeed, Block Purging decreases PC by less than 1% in all cases, whereas the

overall number of comparisons is reduced by 68% in Dmovies and by two orders of

magnitude in Din f oboxes, on average.

This behavior implies a high accuracy in detecting the oversized blocks. In fact,

Block Purging performs a conservative, but valuable cleansing across both data

sets, removing almost the same portion of blocks from all blocking methods: in

Dmovies it discards between 0.10% and 0.17% of all blocks and in Din f oboxes around

0.03% of them. Given that this results in a similar impact on the performance of

all methods, we can conclude that the original block collections involve similar

power-law distributions of comparisons: few blocks are oversized, containing the

largest part of the comparisons, while the vast majority of blocks entails a handful

of entities.

Note also that, among all blocking methods, Trigram Graphs AC maintains

the best balance between PC and PQ after Block Purging. It requires by far the

lowest number of pairwise comparisons across both data sets, while exhibiting the

highest PQ across all blocking methods with PC > 99%. Especially for Din f oboxes,

it achieves the highest PC, while requiring 20% less comparisons than the next

98 CHAPTER 7. EXPERIMENTAL EVALUATION

Comp. BC CC PCIFP PCSA PQIFP PQSA

(×1011) (×10−4) (%) (%) (×10−8) (×10−5)

Token Blocking 15.49 4.31 5.07 96.79 60.52 0.73 0.23

Infix 0.004 0.28 1,144.70 58.85 49.54 1,516.59 659.53

Infix Profile 1.62 1.42 15.97 76.53 41.36 5.49 1.53

Literal Profile 9.37 2.90 5.63 94.34 18.29 1.17 0.12

Complete Infix 1.69 2.14 23.21 72.64 86.60 4.99 3.07

Infix-Literal Pr. 8.79 3.07 6.38 94.48 63.75 1.25 0.43

Infix Pr.-Literal Pr. 12.00 4.29 6.52 93.57 50.03 0.90 0.25

Total Description 11.64 4.96 7.77 95.37 89.35 0.95 0.46

Table 7.10: Performance of Block Purging over DBTC09.

best approach.

7.3.2 Dirty ER

The performance of Block Purging over DBTC09 is reported in Table 7.10. Com-

paring it with the original performance of the block building methods in Table 7.7,

we can observe that the required number of comparisons drops by four orders of

magnitude for all of them. At the core of this substantial improvement lies the

restriction imposed by block purging on the maximum block sizes: from several

million entities, they were reduced to several thousand entities.

Note also that our experimental results verify the behavior of Block Purging on

the BC-CC space, as demonstrated in Figure 4.4: the BC values move to the left

of the X-axis, while the CC values move higher on the Y-axis. As a result, every

underlying blocking method achieves a better balance between PC and PQ: the

latter is enhanced by four orders of magnitude, while there is a negligible decrease

in the former across both ground-truth sets. In fact, the values of PC are lower than

in Table 7.7 by just 1% or 2%, in most of the cases. The only exceptions to this

rule, which exhibit a sharp decrease in PC, are Infix Profile and Complete Infix

with respect to IFP and the Token Blocking with respect to S ameAs. This is a

strong indication of limited robustness for the corresponding methods, as their ini-

tially high effectiveness depends extensively on their oversized blocks. In complete

contrast, Total Description is the only one that retains very high PC (i.e., around

90%) for both ground-truth sets, thus constituting the most robust of the proposed

blocking schemes.

7.4. BC-CC MAPPING VS REAL PERFORMANCE 99

7.4 BC-CC Mapping vs Real Performance

In this section, we experimentally verify that BC and CC provide a highly accurate,

a-priori estimation of a blocking method’s real performance. Our analysis relies on

the Pearson correlation coefficient ρ(X,Y), a well established measure for estimat-

ing the linear dependency between two variables, X and Y . It takes values in the

interval [−1, 1], with higher absolute values corresponding to a stronger correlation

between X and Y . A value of |ρ(X,Y)| = 1 actually indicates a completely linear

relationship of the form X = α · Y + β, where α, β ∈ R and 0 < α if ρX,Y = 1,

while α < 0 if ρX,Y = −1. In this context, our goal is to prove that the values of BC

exhibit a highly positive correlation with those of PC and that the same applies to

CC and PQ.

Our analysis consists of two parts. The first one measures ρ(BC, PC) and

ρ(CC, PQ) across different blocking methods that are used for the same task. In

this way, we can examine whether our metrics are suitable for a-priori distinguish-

ing the best performing technique for a given task. The second part measures

ρ(BC, PC) and ρ(CC, PQ) inside the same blocking method for various values of

the purging threshold (cf. Section 6.2.1). In this way, we can investigate the use-

fulness of incorporating BC and CC into our Block Purging approach (i.e., Al-

gorithm 6.1). In combination, these two analyses evaluate holistically the main

applications of our BC-CC metric space.

For the first analysis, we consider all techniques applied to Block Building and

Block Purging over all data sets. We actually derive the correlations ρ(BC, PC)

and ρ(CC, PQ) from the performance reported in Tables 7.4, 7.5 and 7.7 for Block

Building and in Tables 7.8, 7.9 and 7.10 for Block Purging. The outcomes of this

analysis are presented in Table 7.11. We observe that there is a positive correla-

tion between BC and PC in all cases, but for Block Building over Din f oboxes. This

exception is caused by the practically identical PC shared by all block building

methods over Din f oboxes, despite the fact that their BC varies greatly. This rather

rare behavior, though, is totally rectified by Block Purging: the variation it yields

in the effectiveness of the blocking methods turns the originally negative corre-

lation into a highly positive one. Another interesting aspect is the relatively low

values that ρ(BC, PC) takes across both tasks for the S ameAs ground-truth set of

DBTC09. This can be explained by the disproportionately higher increase in PC

(in comparison with BC), which results from the combination of atomic blocking

schemes into composite ones. In contrast, ρ(BC, PC) takes higher values for IFP,

100 CHAPTER 7. EXPERIMENTAL EVALUATION

Dmovies Dinfoboxes
DBTC09

IFP SameAs

Block ρ(BC, PC) 0.998 -0.786 0.838 0.365

Building ρ(CC, PQ) 0.755 0.999 0.998 0.998

Block ρ(BC, PC) 0.991 0.986 0.897 0.319

Purging ρ(CC, PQ) 0.989 0.992 0.999 0.999

Table 7.11: Pearson correlation between BC and PC as well as between CC and

PQ over all data sets for Block Building and Block Purging.

because the composite blocking schemes convey similar relative increase in both

PC and BC. Regarding the correlation between CC and PQ, we notice that it takes

exceptionally high positive values for Block Building, with Block Purging raising

it even higher, to the maximum possible levels (i.e., ρ(CC, PQ) ≈ 1 after Block

Purging). On the whole, we can deduce that BC and CC can accurately discern the

best technique among a set of blocking methods with high efficiency (i.e., from a

simple inspection of the blocks at hand).

The goal of the second analysis is to examine the contribution of BC and CC

metrics to the functionality of Block Purging. To this end, we evaluate the corre-

lations ρ(BC, PC) and ρ(CC, PQ) when applying various purging thresholds to all

blocking schemes over DBTC09. To ensure a large variety of purging thresholds,

we employ a mechanism different from Algorithm 6.1, which derives the maxi-

mum block size from the following formula: |bmax
i
| = 10log |E|/di , where |bmax

i
| is

the purging threshold, |E| is the size of the input entity collection, and di is an in-

teger that takes all values in the interval [1, 10]. The outcomes of our analysis are

presented in Table 7.12. We observe that there is a highly positive correlation be-

tween BC and PC, regardless of the ground-truth set: on average, their correlation

is ¯ρ(PC, BC) = 0.83 for IFP and ¯ρ(PC, BC) = 0.73 for S ameAs, with the total av-

erage being equal to ¯ρ(PC, BC) = 0.78. Regarding the correlation between CC and

PQ, its minimum value across all data sets and blocking methods is 0.985, which

implies that there is a positive, practically linear relation between the two measures

under all settings. These high values for both ρ(BC, PC) and ρ(CC, PQ) lead to the

safe conclusion that our metrics accurately determine whether a purging threshold

has a significantly negative impact on the performance of the underlying blocking

method. In such cases, a higher value for the maximum block size is required.

7.5. EVALUATION OF META-BLOCKING APPROACHES 101

ρ(BC,PCIFP) ρ(BC,PCSA) ρ(CC,PQIFP) ρ(CC,PQSA)

Token Blocking 0.68 0.93 0.986 0.998

Infix 0.99 0.76 0.993 0.999

Infix Profile 0.97 0.82 0.987 0.999

Literal Profile 0.67 0.89 0.987 0.999

Complete Infix 0.97 0.73 0.995 0.999

Infix-Literal Pr. 0.71 0.67 0.990 0.997

Infix Pr.-Literal Pr. 0.75 0.66 0.985 0.999

Total Description 0.77 0.56 0.993 0.999

Table 7.12: Pearson correlation between BC and PC as well as between CC and

PQ for the URI Semantic blocking schemes over DBTC09.

7.5 Evaluation of Meta-blocking Approaches

The goal of our experimental study is manifold: (i) to demonstrate the benefits of

meta-blocking over existing blocking methods (Section 7.5.1), (ii) to compare the

edge-centric pruning schemes with the node-centric ones (Section 7.5.2), (iii) to

compare the weight pruning criteria with the cardinality ones (Section 7.5.3), (iv)

to compare the weighting schemes for building blocking graphs (Section 7.5.4),

(v) to compare meta-blocking with the state-of-the-art approach of Iterative Block-

ing (Section 7.5.5), (vi) to examine the robustness of our pruning schemes (Sec-

tion 7.5.7), and (vii) to investigate the time requirements of meta-blocking over

large blocking graphs with millions of nodes and billions of edges (Section 7.5.8).

In the following, we evaluate the performance of our meta-blocking techniques

using the combination of Token Blocking with Block Purging as baseline. Thus,

the block collections given as input to our meta-blocking techniques have their

efficiency significantly improved with respect to the original block building tech-

nique. In more detail, they require 1.11×108 and 5.68×1010 pairwise comparisons

for Dmovies and Din f oboxes, respectively, while exhibiting high effectiveness (i.e.,

PC>99.91%) for both of data sets.

We also considered a unilateral block collection, which was extracted from the

blocks produced by Total Description when applied to the entire BTC09 data col-

lection. To restrict the originally massive dataset to a moderate block collection

that facilitates our thorough experimental analysis, we first purged those blocks

that contained none of the IFP ground-truth entities. We then removed the sin-

gleton entities, which were associated with just one block after sampling, in order

to ensure a redundancy-positive block collection (BC>1) that allows for applying

102 CHAPTER 7. EXPERIMENTAL EVALUATION

meta-blocking. Finally, we discarded the invalid blocks, which were left with just

one entity, and applied Block Purging [PIN+12] on the remaining set of blocks.

The resulting dataset is denoted by DBTC09 and comprises 106,462 blocks with

253,353 entities and 10,653 pairs of matching entities. Similar to the other block

collections, DBTC09 combines a high RR(>99%) with a high PC(≈97%).

Note that we estimate the impact of meta-blocking on the effectiveness of the

input block collections through the relative reduction in PC, which is measured by

the ∆PC metric. Formally, this metric is defined as follows:

∆PC =
PC(B′) − PC(B)

PC(B)
· 100%,

where PC(B) and PC(B′) denote the pair completeness of the original and the

restructured block collection, respectively. Apart from Block Building in com-

bination with Block Purging, we also consider as a baseline the state-of-the-art

approach of Iterative Blocking [WMK+09]. In essence, this method propagates

every new pair of duplicates to all associated blocks (even if they have already

been examined) in order to identify additional matches and to save unnecessary

comparisons.

7.5.1 Effect of meta-blocking on blocking.

We applied all pruning schemes to all blocking graphs (i.e., weighting schemes)

that can be derived from Dmovies, Din f oboxes and DBTC09. We categorized the results

according to the corresponding pruning scheme and analytically present them in

Tables 7.13(a) to 7.13(d).

Table 7.13(a) depicts the performance of WEP in conjunction with all weight-

ing schemes across all datasets. For Dmovies and Din f oboxes, we notice that all

weighting schemes convey significant enhancements in efficiency (RR>70%), while

incurring moderate reduction in PC (∆PC<10%). Similar patterns are exhibited

for DBTC09: in the worst case ∆PC≈10%, while RR remains higher than 95% for

all weighting schemes. The performance of most of them is actually very close

over DBTC09. In contrast, for Dmovies and Din f oboxes, there is a clear trade-off be-

tween RR and PC: the higher the former gets, the lower the latter is and vice versa.

Note, though, that the evolution of PQ suggests that RR decreases faster than PC

increases.

These patterns can be explained by the weight distribution lying at the core of

each weighting scheme. As an example, consider Figures 7.1(a) and (b), which de-

7.5. EVALUATION OF META-BLOCKING APPROACHES 103

Dmovies Dinfoboxes DBTC09

Comp. RR PC ∆PC PQ Comp. RR PC ∆PC PQ Comp. RR PC ∆PC PQ

(×106) (%) (%) (%) (10−2) (×108) (%) (%) (%) (10−4) (×107) (%) (%) (%) (10−4)

It. Bl. 10.41 61.06 99.39 0 0.21 255.94 35.67 99.89 0 0.35 12.98 0.84 98.22 1.32 0.81

ARCS 1.38 94.82 90.89 -8.55 1.47 2.85 99.28 92.45 -7.45 29.00 0.41 99.35 94.77 -2.24 24.85

CBS 2.71 89.88 94.68 -4.74 0.78 33.97 91.46 95.47 -4.42 2.51 2.16 96.57 86.84 -10.42 4.29

ECBS 3.52 86.82 97.95 -1.45 0.62 57.71 85.50 99.66 -0.23 1.54 1.81 97.12 86.60 -10.67 5.08

JS 6.71 74.90 97.93 -1.46 0.33 112.21 71.80 99.73 -0.16 0.79 2.15 96.58 87.13 -10.12 4.31

EJS 7.34 72.54 98.32 -1.07 0.30 110.14 72.32 99.77 -0.11 0.81 2.13 96.61 89.01 -8.18 4.45

(a) WEP

ARCS 2.55 90.44 96.55 -2.86 0.85 14.84 96.27 99.41 -0.48 5.98 2.25 96.43 95.72 -1.26 4.54

CBS 2.86 89.31 97.19 -2.21 0.76 35.65 91.04 99.35 -0.54 2.49 2.69 95.72 91.46 -5.66 3.62

ECBS 6.92 74.10 98.64 -0.75 0.32 99.37 75.02 99.75 -0.14 0.90 3.42 94.56 91.13 -5.99 2.84

JS 10.00 62.59 98.68 -0.71 0.22 195.93 50.76 99.87 -0.02 0.46 4.22 93.29 91.43 -5.68 2.31

EJS 11.81 55.77 99.16 -0.23 0.19 199.96 49.74 99.88 -0.01 0.45 4.41 93.00 92.52 -4.56 2.24

(b) WNP

ARCS 0.57 97.87 82.75 -16.74 3.25 0.26 99.94 79.46 -20.46 276.83 0.09 99.85 92.17 -4.92 103.99

CBS 0.57 97.87 75.78 -23.75 2.98 0.26 99.94 51.71 -48.37 179.68 0.09 99.85 24.07 -75.17 27.16

ECBS 0.57 97.87 81.58 -17.92 3.20 0.26 99.94 62.14 -37.79 216.49 0.09 99.85 42.81 -56.05 48.07

JS 0.57 97.87 79.12 -20.40 3.11 0.26 99.94 82.09 -17.83 285.98 0.09 99.85 25.77 -99.55 29.07

EJS 0.57 97.87 84.87 -14.61 3.33 0.26 99.94 79.61 -20.30 277.37 0.09 99.85 45.85 -52.71 51.73

(c) CEP

ARCS 1.10 95.88 94.13 -5.39 1.91 0.50 99.88 96.87 -3.02 174.63 0.18 99.72 95.60 -1.38 58.22

CBS 1.10 95.88 95.20 -3.48 1.95 0.50 99.88 96.34 -3.56 173.68 0.18 99.72 88.70 -8.50 54.02

ECBS 1.10 95.88 96.69 -2.71 1.97 0.50 99.88 97.72 -2.17 176.17 0.18 99.72 84.34 -11.03 52.53

JS 1.10 95.88 94.93 -4.45 1.93 0.50 99.88 96.86 -3.03 174.62 0.18 99.72 83.79 -13.57 51.03

EJS 1.10 95.88 95.98 -3.43 1.95 0.50 99.88 97.18 -2.71 175.19 0.18 99.72 84.50 -12.83 51.46

(d) CNP

Table 7.13: Performance of all pruning schemes in combination with all weighting

schemes over the three datasets of our study.

pict the distribution for every weighting scheme over Dmovies (similar distributions

are exhibited in the other two datasets, as well, but we omit the corresponding

diagrams, due to lack of space). In all histograms, the bucket size is set equal

to half the average edge weight (w̄) of the corresponding scheme across the en-

tire blocking graph (i.e., including the links between matching and non-matching

nodes/entities). Thus, the two leftmost bars correspond to the pruned edges and the

remaining eight bars to the retained ones. We observe a clear polarization for all

weighting schemes: the vast majority of the matching edges is concentrated on the

two right-most intervals, with a negligible portion of them lying in the left half (the

opposite applies to non-matching edges). In fact, the higher the PC of a weighting

scheme over Dmovies is, the lower is the corresponding number of matching edges

in the first two intervals. On the other hand, the higher its RR is, the lower is the

portion of non-matching edges placed in the intervals [1.5·w̄,5·w̄].

Table 7.13(b) illustrates the performance of WNP for all weighting schemes

over all datasets. Similar to WEP, there is a clear trade-off between effectiveness

and efficiency for Dmovies and Din f oboxes. It is interesting to note that ranking the

104 CHAPTER 7. EXPERIMENTAL EVALUATION

�����

���� ��� ���� �� ���

�����

��

��

��

���
���

�����������	 ��
����������	

�

	�

��

�
��
 �
��
 �
��
 	
��
 	
��
 �
��
 �
��
 �
��
 �
��
 �
��

(a) Non-matching edges.

��

��

��

���
���

�����������	 ��
����������	

�

	�

��

�
��
 �
��
 �
��
 	
��
 	
��
 �
��
 �
��
 �
��
 �
��
 �
��

(b) Matching edges.

Figure 7.1: Normalized histograms of the weight distributions in all blocking

graphs of Dmovies, where w denotes the average edge weight of the blocking graph

for each weighting scheme.

weighting schemes in descending order of RR (i.e., ascending order of PC) results

in the same order as in Table 7.13(a). For DBTC09, all weighting schemes achieve

similar, high performances with respect to all metrics. Compared to WEP, though,

the combination of every weighting scheme with WNP yields significantly higher

PC as well as lower RR and PQ.

Table 7.13(c) presents the performance of CEP in combination with all weight-

ing schemes across the three datasets. By definition, they all achieve the same RR,

which amounts to 97.48%, 99.94% and 99.85% for Dmovies, Din f oboxes and DBTC09,

respectively. In absolute numbers, this corresponds to 11, 15 and 3 comparisons per

entity, respectively, thus requiring 2 orders of magnitude fewer comparisons than

the input block collection. Apparently, this is at the cost of lower effectiveness,

since PC is reduced in all datasets by more than 14%, regardless of the weighting

scheme (the only exception is ARCS for DBTC09). The worst performance usually

corresponds to CBS and JS , because there are many pairs of entities that share ex-

actly the same number or portion of blocks, respectively. Again, this behavior can

be explained by the normalized histograms in Figures 7.1(a) and (b), since CEP

generally retains the edges of the rightmost interval; the more matching edges and

the less non-matching ones it contains, the higher is the PC of the corresponding

weighting scheme.

Finally, Table 7.13(d) presents the performance of CNP for all weighting schemes

across all datasets. Similar to its edge-centric counterpart, it exhibits excessively

high efficiency for both datasets (i.e., RR>95%). In absolute numbers, this corre-

sponds to 22, 28 and 7 comparisons per entity for Dmovies, Din f oboxes and DBTC09,

respectively. Its impact on effectiveness is rather limited, reducing PC at most by

5% for the Clean-Clean ER datasets and less than 14% for the Dirty ER one.

7.5. EVALUATION OF META-BLOCKING APPROACHES 105

7.5.2 Edge-centric vs. node-centric pruning schemes.

The relative performance of these two types of pruning schemes depends on the

pruning criteria that lie at their core. Thus, an equal basis comparison requires

exactly the same configuration. This is impossible, though, for the weight criteria:

WEP can only be combined with a global one, while WNP makes sense only when

coupled with a local one (its conjunction with a global threshold renders it identical

to WEP).

The configuration of Section 5.3 approximates the ideally equal settings, as-

suming similar criteria for both algorithms (i.e., average edge weight). For this

configuration, our experiments suggest that the edge-centric algorithms perform

a deeper pruning that results in the lowest number of comparisons and detected

matches (i.e., lowest ∆PC). Nevertheless, they are more accurate in discarding

superfluous comparisons, achieving higher PQ across all datasets and weighting

schemes. For example, consider the combination of ARCS with WEP and WNP

over Dmovies: PQ suggests that for every 100 comparisons, the former identifies

around 1.5 matches and the latter almost half of them.

On the other hand, the node-centric schemes are more conservative in pruning

edges, retaining even double as much comparisons. Thus, they have a significantly

smaller impact on PC, which is also ensured by the more even distribution of com-

parisons among entities; unlike the edge-centric algorithms, which completely dis-

regard the entities/nodes that are associated with none of the top weighted edges,

they ensure that every node remains connected with the most similar of its co-

occurring entities.

In the case of cardinality pruning criteria, it is possible to apply the same global

threshold to both CEP and CNP. However, these settings merely allow for compar-

ing the relative effectiveness, since they involve the same number of executed com-

parisons for both algorithms. We put these settings into practice using as threshold

for CEP the total number of comparisons required by CNP. The outcomes with

respect to PC are presented in Table 7.14 and confirm that the node-centric al-

gorithms achieve a significantly higher effectiveness than the edge-centric ones,

across all datasets and weighting schemes.

In summary, the most appropriate meta-blocking settings for the application

at hand depend on its performance requirements and the available resources (as-

suming the configuration of Section 5.3). The node-centric pruning schemes are

suitable for applications emphasizing on effectiveness, provided that they can af-

ford the high space requirements (these pruning schemes store a threshold or a

106 CHAPTER 7. EXPERIMENTAL EVALUATION

Dmovies Dinfoboxes DBTC09

PCCEP PCCNP PCCEP PCCNP PCCEP PCCNP

ARCS 89.16% 94.13% 83.82% 96.87% 93.22% 95.60%

CBS 80.42% 95.20% 60.46% 96.34% 31.97% 88.70%

ECBS 87.17% 96.69% 67.85% 97.72% 65.78% 86.25%

JS 89.22% 94.93% 86.02% 96.86% 35.97% 83.79%

EJS 91.03% 95.98% 85.26% 97.18% 51.85% 84.50%

Table 7.14: Comparing effectiveness between CEP and CNP for the same number

of comparisons across all datasets.

certain number of comparisons per entity). They are also particularly useful for

tasks that are inherently expressed in terms of entities (e.g., applications like so-

cial networks that seek duplicates for a specific subset of the input entities) and for

entity collections that are expected to contain a large portion of duplicate profiles

(i.e., there is a matching entity for most of the nodes). In contrast, the edge-centric

pruning schemes are suitable for applications like incremental ER that focus on

efficiency, especially when the portion of matching entities is expected to be rather

low; in these settings, the top weighted edges are more likely to correspond to the

few duplicate profiles.

7.5.3 Weight vs. cardinality pruning criteria.

There is a clear pattern in the relative performance of weight and cardinality prun-

ing thresholds for the configuration of Section 5.3: the former put more emphasis

on effectiveness and the latter on efficiency. In fact, the combination of any weight-

ing scheme with a cardinality threshold requires at least half the comparisons than

its combination with the corresponding weight one, regardless of the selected prun-

ing algorithm. In most of the cases, this difference amounts to a whole order of

magnitude in the actual number of comparisons. Note, though, that this radical in-

crease in efficiency is accompanied by a moderate difference in effectiveness, due

to the efficacy of cardinality thresholds in distinguishing the matching comparisons

from the superfluous ones. Comparing the PQ of CEP (CNP) with that of WEP

(WNP), we observe that the former is usually higher than the latter by a whole

order of magnitude. Still, weight thresholds exhibit higher PC, reducing it — in

the worst case — half as much as the corresponding meta-blocking settings with a

cardinality criterion. Therefore, there is no dilemma when choosing the appropri-

ate criterion with respect to the application requirements. Note, though, that this

7.5. EVALUATION OF META-BLOCKING APPROACHES 107

decision also depends on the available resources, since the cardinality criteria have

higher memory requirements.

7.5.4 Comparison between weighting schemes.

For DBTC09, ARCS consistently achieves the highest performance with respect to

all block quality metrics, while the rest of the weighting schemes exhibit similar,

but lower performance in most of the cases. For the Clean-Clean ER dataset, the

choice depends on the functionality of the pruning criterion. In more detail, ECBS

offers a balanced choice for the weight pruning criteria, combining high efficiency

enhancements with negligible reductions in PC. For the cardinality pruning cri-

teria, where RR remains stable across all weighting schemes, EJS consistently

achieves the (nearly) best efficiency-effectiveness balance, scoring the highest PC

values in most of the cases.

Of particular interest, though, is the comparison between the plain weighting

schemes and their enhanced versions; that is, between CBS and ECBS as well

as between JS and EJS . The actual question is whether the more information

included in the enhanced schemes leads to a better balance between RR and PC

than the plain ones. The weight pruning criteria does not offer a clear answer; we

can merely observe that the enhanced schemes offer lower RR and lower PQ at the

benefit of higher PC. In contrast, the cardinality pruning criteria allow for a direct

comparison: RR is the same across all weighting schemes, but the enhanced ones

achieve higher PC in practically all the cases. PQ also takes significantly higher

values for ECBS and EJS . We can conclude, therefore, that the enhanced schemes

convey significant enhancements in the performance of CBS and JS .

7.5.5 Comparison with Iterative Blocking.

Before examining the performance of Iterative Blocking, it is worth clarifying that

its functionality in the context of Clean-Clean ER is reduced to discarding part of

the superfluous comparisons. In fact, it propagates all detected duplicates to the

subsequently processed blocks and merely saves those comparisons that involve at

least one entity that has been matched to some other. This approach conveys signif-

icant efficiency enhancements when applied to redundancy-positive block collec-

tions: its RR exceeds 60% for Dmovies and 35% for Din f oboxes. All meta-blocking

methods, though, achieve higher efficiency gains, as they have a broader scope,

targeting all superfluous comparisons. This is also verified by PQ, which indicates

108 CHAPTER 7. EXPERIMENTAL EVALUATION

that Iterative Blocking executes the highest portion of superfluous comparisons

across both datasets. Its only advantage is that it incurs no impact on effectiveness.

In practice, though, this is of minor importance, given that most meta-blocking

approaches have limited cost in effectiveness in the context of Clean-Clean ER.

The real strength of Iterative Blocking lies in Dirty ER, especially in applica-

tions that involve equivalence classes of high cardinality. In these settings, it puts

more emphasis on identifying additional matches, thus yielding the highest PC

among all methods. This is exactly the case with DBTC09: although the original PC

is already high, amounting to 97%, Iterative Blocking increases it by more than

1%. The re-examination of large blocks, though, increases the number of executed

comparisons and prevents significant enhancements in efficiency. Indeed, it merely

saves around 1% of all comparisons in the case of DBTC09. Thus, its efficiency

is significantly lower than meta-blocking, which again discards more superfluous

comparisons.

In summary, Iterative Blocking is only appropriate for applications that place

effectiveness in priority and are satisfied with rather conservative savings in effi-

ciency. For the rest of them, meta-blocking offers a better balance between effec-

tiveness and efficiency.

7.5.6 Discussion

In summary, we can conclude that among the weighting schemes, ECBS consis-

tently offers a good balance between effectiveness and efficiency over Clean-Clean

ER. For Dirty ER, though, ARCS offers the best approach. We also observe that

the node-centric approaches perform a shallow pruning that yields lower PQ and

RR values than edge-centric ones. This allows them to retain almost intact the

original effectiveness, especially when combined with weight thresholds. There-

fore, applications that place more emphasis on effectiveness should opt for node-

centric pruning schemes, while those focusing on efficiency should consider the

edge-centric ones. Among the two types of pruning criteria, the weight thresholds

are more robust with respect to effectiveness, while the cardinality thresholds are

appropriate for applications emphasizing on efficiency, such as incremental ER.

7.5.7 Sensitivity Analysis

As mentioned above, the performance of pruning algorithms depends largely on the

underlying pruning criterion — regardless of its scope or functionality. To examine

7.5. EVALUATION OF META-BLOCKING APPROACHES 109

��

RR PC

��

���	
 ���	
 ���	
 ��
	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ��
	
 ���	

��

��

��

���

��

��

���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	

(a) WEP over ARCS

��

��

��

���

��

��

���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	

(b) WNP over JS

��

��

��

���

��

��

���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	

(c) CEP over ECBS

��

��

��

���

��

��

���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	
 ���	

(d) CNP over CBS

Figure 7.2: Sensitivity analysis of every pruning algorithm in conjunction with a

specific weighting scheme.

how our pruning schemes behave as a function of their thresholds, we performed

sensitivity analyses of RR and PC for all schemes over the three datasets of our

study. In Figures 7.2(a) to (d), we present the behavior of each pruning algorithm in

combination with a specific weighting scheme over Dmovies (for each algorithm, the

rest of the weighting schemes demonstrated similar patterns and, thus, are omitted

for brevity. Nevertheless, we tried to cover all of them, considering in each diagram

a different one.). Every diagram was derived by incrementing the pruning threshold

from 0.1·t to 1.9·t with a step of 0.1·t, where t denotes the threshold derived from

the configuration of Section 5.3 (e.g., the average edge weight in the case of WEP).

In every figure, we observe that there is a clear trade-off between RR and PC.

Higher thresholds increase RR and reduce PC for the weight pruning criteria, and

vice versa for the cardinality ones. In fact, the evolution of PC is practically lin-

ear for all pruning schemes. The same applies to RR for the cardinality criteria,

whereas for the weight ones, the linear evolution is preceded by a steep rise for the

interval [0.1·t, 0.5·t]. The thresholds of Section 5.3 correspond to the vertical dot-

ted line intersecting the middle of the x-axes. We observe that in every case, small

variations in the size of t lead to small variations in the resulting performance. This

suggests that the threshold we selected for each pruning scheme achieves a good

balance between effectiveness and efficiency. Thus, it provides a good basis for

110 CHAPTER 7. EXPERIMENTAL EVALUATION

adjusting a meta-blocking method to the requirements of the application at hand.

For example, an application employing CEP could double the threshold specified

by our approach in order to rise PC by 10% for double as many comparisons.

In summary, the sensitivity analysis of Figures 7.2(a) to (d) demonstrate that

our meta-blocking methods are robust with respect to the threshold configurations

of Section 5.3.

7.5.8 Time Requirements of Meta-blocking

The real usefulness of meta-blocking depends on the relation between the time re-

quired for building and pruning the blocking graph and the time consumed while

performing the (spared) pairwise comparisons. The goal of this section is to exam-

ine whether the former is significantly lower than the latter, thus justifying the use

of our approaches. To this end, we evaluate the time requirements of meta-blocking

using three measures:

• Materialization Time (MT) refers to the time required by the first two steps of

meta-blocking, i.e., graph building and edge weighting.

• Restructure Time (RT) corresponds to the last two steps of meta-blocking, i.e.,

graph pruning and block collecting.

• Comparison Time (CT) indicates the time required for performing the (re-

tained) pairwise comparisons.

As the baseline method, we consider the one that iterates over the input blocks,

executing all the comparisons they entail, without any further processing (i.e., its

processing time exclusively corresponds to CT , while MT=RT=0). For all meth-

ods, the similarity of entity profiles is defined as the Jaccard coefficient of their

tokenized attribute values; any other entity comparison technique is also applica-

ble, but this choice is orthogonal to the proposed method, thus not altering our

experimental results.

The outcomes of our experiments are presented in Tables 7.15. We notice the

following patterns for the vast majority of meta-blocking approaches across all

datasets: first, the overall processing time of the weighting pruning criteria is dom-

inated by CT , with MT and RT merely accounting for a fraction of it. Exception to

this rule is ARCS in conjunction with WEP and WNP, as the low discernibility of

its weights (≪0.1 in most of the cases) results in a time-consuming meta-blocking

process. Second, there is a balance between CT and MT + RT for the cardinality

pruning criteria, since they entail a very low number of comparisons with respect to

7.5. EVALUATION OF META-BLOCKING APPROACHES 111

Dmovies (minutes) Dinfoboxes (hours) DBTC09 (minutes)

MT RT CT
∑

MT RT CT
∑

MT RT CT
∑

Baseline .0 .0 14 14 .0 .0 128 128 0 0 111 111

ARCS .1 .6 1.0 1.6 3.2 24.4 25.7 53.3 .2 2.5 5.9 8.7

W CBS .1 .1 .9 1.1 3.3 7.0 21.2 31.6 .2 1.5 19.8 21.5

E ECBS .1 .2 1.2 1.4 3.1 6.7 30.8 40.6 .2 1.8 17.2 19.2

P JS .1 .1 2.1 2.3 3.2 6.0 51.2 60.4 .2 1.9 20.2 22.3

EJS .1 .2 2.3 2.5 3.2 6.7 52.0 62.0 .2 2.0 20.2 22.4

ARCS .1 .6 1.3 1.9 3.5 25.9 28.7 58.1 .2 2.7 21.5 24.5

W CBS .1 .1 1.0 1.2 3.2 6.2 24.4 33.9 .2 1.7 24.3 26.3

N ECBS .1 .2 2.1 2.4 3.6 7.5 33.4 44.6 .2 2.1 30.9 33.2

P JS .1 .1 3.0 3.2 3.5 7.0 55.4 65.9 .2 2.1 37.7 40.1

EJS .1 .2 3.6 3.8 3.6 8.0 58.5 70.1 .2 2.4 39.6 42.1

ARCS .1 .6 .2 .9 3.2 24.5 .1 27.9 .2 2.6 .8 3.6

C CBS .1 .1 .2 .4 4.2 7.4 .1 11.7 .2 1.5 .8 2.5

E ECBS .1 .2 .2 .4 4.4 8.0 .1 12.6 .2 1.9 .8 2.9

P JS .1 .2 .2 .4 4.2 7.5 .1 11.8 .2 1.9 .8 2.9

EJS .1 .2 .2 .4 3.2 7.1 .1 10.4 .2 2.2 .8 3.2

ARCS .1 .6 .3 1.0 3.2 24.7 .2 28.1 .2 2.7 1.5 4.4

C CBS .1 .1 .3 .5 3.8 6.7 .2 10.8 .2 1.6 1.5 3.3

N ECBS .1 .2 .3 .6 3.7 6.9 .2 10.9 .2 2.0 1.5 3.6

P JS .1 .2 .3 .6 3.2 6.3 .2 9.8 .2 1.9 1.5 3.6

EJS .1 .2 .3 .6 3.2 7.1 .2 10.6 .2 2.3 1.5 4.0

Table 7.15: Processing time for all meta-blocking methods over the three datasets

of our experimental study.

the size of the graph. Again, ARCS corresponds to the least efficient meta-blocking

process.

We also notice that for every dataset, MT and RT take almost identical values

for all weighting schemes, with the small variations corresponding to the different

functionality of each weighting scheme. Regarding CT , we observe that it takes

significantly lower values for the cardinality pruning criteria than for the weight

ones. This overhead is caused not only by the lower number of comparisons re-

tained by the former, but also by the fact that the latter iterate over all edges of the

blocking graph during the comparisons phase.

In summary, we observe that all combinations of pruning schemes with a

weighting one require significantly less time than the baseline method. For ex-

ample, the most efficient meta-blocking techniques for Dmovies (i.e., CEP in con-

junction with CBS or JS) are 35 times faster than the baseline. Even the most

112 CHAPTER 7. EXPERIMENTAL EVALUATION

time-consuming meta-blocking settings for each dataset run at least 2 times faster

than the baseline. As explained in Section 5.1, this should be attributed to the effi-

cient materialization of the blocking graph, which involves lower complexity than

the string-based techniques for comparing entity profiles.

Note that optimization techniques can be integrated into the implementation

of the meta-blocking and the entity comparison methods. For instance, during

the pruning of the blocking graph, edges with weights lower than the specified

threshold can be identified more efficiently with the help of prefix filtering. No such

technique was considered, though, in our experimental study, since it is orthogonal

to our evaluation.

7.6 Evaluation of Block Processing Approaches

In this section, we analyze the performance of three different ER workflows, which

share the same core: they are all based on Trigram Graphs AC for the creation of

blocks and on Block Purging and Duplicate Propagation for their processing. They

differ, though, in the additional methods they involve:

• WF1 adds exclusively block-refinement methods to the core, namely Block

Scheduling and Block Pruning [PINF11].

• WF2 combines block-refinement methods with comparison-refinement ones,

namely Block Scheduling with Comparison Propagation and Comparison Prun-

ing [PIN+11b].

• WF3 is the only workflow that operates exclusively on the level of individual

comparisons, involving Comparison Scheduling, Comparison Propagation and

Comparison Pruning11.

We selected these workflows for a number of reasons: they were all formed ac-

cording to the guidelines of Section 6.4 and collectively cover all efficiency meth-

ods presented in Chapter 6. WF1 and WF2 have already been examined over Token

Blocking in [PINF11] and [PIN+11b], respectively; given that we employ the same

data sets, our results are directly comparable with prior work. WF3 is a novel work-

flow, but it is based on WF2, modifying it so that it is compatible with Comparison

11In all cases, the ES min threshold for Comparison Pruning was derived from Formula 6.3 by

setting a = 0.20. This is a conservative value lying very close to a = 0.25, which induced a minor

reduction in PC of Token Blocking, while boosting its PQ [PIN+11b]. The slightly lower value

of a is justified by the substantially higher number of blocks produced by Trigram Graphs AC in

comparison to Token Blocking.

7.6. EVALUATION OF BLOCK PROCESSING APPROACHES 113

Compar. Duplic. PQ PC Time

(×106) (×10−2) (%) (min.)

Block Purging 73.036 22,301 0.031 99.54 0.14

WF1
Block Scheduling 0.383 22,301 5.820 99.54 0.05

Block Pruning 0.267 22,295 8.369 99.51 0.05

WF2

Comp. Propagation 60.878 22,301 0.037 99.54 0.67

Block Scheduling 0.315 22,301 7.074 99.54 0.05

Comp. Pruning 0.097 21,454 22.042 95.76 0.51

WF3

Comp. Propagation 60.878 22,301 0.037 99.54 0.67

Comp. Pruning 2.418 21,454 0.887 95.76 0.51

Comp. Scheduling 0.087 21,454 24.611 95.76 0.06

Table 7.16: Perfomance of three different workflows over Dmovies, when applied on

top of Block Purging and Trigram Graphs AC.

Scheduling. They also differ significantly in the complexity of their functionality:

WF1 conveys minimum space and time requirements, whereas WF3 involves the

most complex methods with respect to both aspects; WF2, on the other hand, lies

in the middle of these two extremes.

The performance of all workflows over Dmovies and Din f oboxes is presented in

Tables 7.16 and 7.17, respectively, with the individual methods of each work-

flow appearing in the order they are executed. Note that the performance of the

two scheduling methods is actually derived from their combination with Duplicate

Propagation. It denotes, therefore, how many comparisons are saved just by order-

ing the block’s or comparisons’ execution and propagating the detected duplicates.

This explains why Block Scheduling appears below Comparison Propagation in

WF2.

We can notice that methods targeting the repeated and superfluous comparisons

(i.e., Block Scheduling, Comparison Propagation and Comparison Scheduling)

have no effect on PC, although they significantly enhance PQ. The only methods

that affect PC (apart from Block Purging) are Block and Comparison Pruning. We

can compare their performance simply by contrasting the performance of WF1 with

that of WF2. We can identify the following pattern across both data sets: Block

Pruning has a negligible effect on PC, reducing it by less than 1.5%, whereas Com-

parison Pruning has a considerable impact on it, conveying a decrease of 5%. Thus,

the latter sacrifices PC to a larger extent in favor of higher efficiency (i.e., PQ), in-

volving around 50% less comparisons than Block Pruning. The main advantage of

Comparison Pruning, though, is that it can be seamlessly combined with Compar-

114 CHAPTER 7. EXPERIMENTAL EVALUATION

Compar. Duplic. PQ PC Time

(×108) (×10−4) (%) (hrs.)

Block Purging 241.98 892,463 0.37 99.99 0.05

WF1
Block Scheduling 15.55 892,463 5.74 99.99 0.16

Block Pruning 0.72 879,446 121.44 98.53 0.01

WF2

Comp. Propagation 123.74 892,463 0.72 99.99 5.75

Block Scheduling 9.20 892,463 9.70 99.99 0.16

Comp. Pruning 0.50 837,286 168.08 93.80 4.14

WF3

Comp. Propagation 123.74 892,463 0.72 99.99 5.75

Comp. Pruning 4.32 837,286 19.37 93.80 4.14

Comp. Scheduling 0.45 837,286 187.63 93.80 0.51

Table 7.17: Perfomance of three different workflows over Din f oboxes, when applied

on top of Block Purging and Trigram Graphs AC.

ison Scheduling (WF3), which further reduces comparisons by around 10%, at no

cost in PC.

Regarding the execution time of the workflows, we can notice the following

patterns: WF2 and WF3 share almost the same time requirements across both data

sets, with the latter taking slightly longer to complete its processing. On the other

hand, WF1 is around 100 times faster, due to its coarse granularity of functionality.

Even in the worst case, though, WF3 requires less than 12 hours for processing

the 3 million entities of Din f oboxes. Among the individual blocking methods, Com-

parison Propagation and Comparison Pruning involve the most time-consuming

processing. Compared to them, all other techniques require at most 1/10 of their

processing time.

On the whole, both data sets advocate that WF3 requires the lowest number of

comparisons per entity, followed by WF2 and WF1. Judging from its PQ, around

25% (2%) of the comparisons it retains over Dmovies (Din f oboxes) involve a pair of

duplicates. Its substantially higher efficiency, though, comes at the cost of slightly

lower effectiveness, as it detects around 4% less duplicates than WF1. It also in-

volves the highest execution time and consumes more resources, mainly due to

Comparison Scheduling. For small data sets with millions of comparisons, the

computational cost of WF3 is affordable, thus constituting the best option. How-

ever, for large-scale applications with billions of comparisons, the choice depends

on the performance requirements and the available resources of the application at

hand. WF1 is suitable for applications that have limited access to resources or are

very strict with respect to effectiveness. Given that it involves the largest number

7.7. SUMMARY 115

of comparisons, it is particularly suitable for applications with small entity profiles

that are efficiently compared. In this case, it can compensate for the higher number

of comparisons it involves in comparison to WF2 and WF3. WF2 lies in the middle

of these two extremes, offering the same effectiveness with WF3 at slightly lower

blocking efficiency and time complexity.

7.7 Summary

Our thorough experimental analysis verified that, in the context of Clean-Clean

ER, our Attribute Clustering algorithm significantly outperforms the basic Token

Blocking approach as well as other, established clustering algorithms, such as EM.

This applies to all representation models that were combined with AC, with the best

performance corresponding to character n-gram graphs. In the context of Dirty

ER, we validated that combining atomic URI Semantics blocking schemes into

composite ones leads to a better balance between efficiency and effectiveness than

Token Blocking. We also demonstrated that Block Purging conveys huge efficiency

enhancements at a negligible cost in effectiveness under all settings, while BC and

CC exhibit high correlation with PC and PQ, respectively. Another major outcome

of our analysis is that meta-blocking is suitable for enhancing the efficiency of the

input block collection(s) for all application requirements with respect to blocking

effectiveness and resource consumption. Last but not least, we also proved that

combining complementary block processing into ER workflows yields significantly

higher efficiency for the desired levels of effectiveness.

116 CHAPTER 7. EXPERIMENTAL EVALUATION

Chapter 8

Conclusions

8.1 Summary

This dissertation introduced a novel methodology for tackling blocking-based En-

tity Resolution in the context of large-scale, highly heterogeneous, noisy data col-

lections, which nowadays abound in the Web. Our approach extends the state-of-

the-art blocking techniques in several ways. First, we distinguished blocking-based

ER into three independent, but complementary subtasks, namely block building,

meta-blocking and block processing. Individually, each task focuses on improv-

ing a specific performance aspect, i.e., either the effectiveness or the efficiency of

the overall procedure. In combination, though, these tasks maximize both perfor-

mance aspects. Second, we coined a rich diversity of blocking methods that are

able to create blocks of high performance over HHIS, without taking any schema

information into account. Their basic characteristic is that they consider (parts of)

attribute values in order to create redundancy-positive block collections. Third, we

demonstrated that meta-blocking enhances the efficiency of redundancy-positive

block collections to a significant extent, by exploiting the information encapsu-

lated in their block assignments. Fourth, we introduced several block processing

techniques and categorized them according to a two-dimensional taxonomy that fa-

cilitates their independent use as well as their combination in workflows of higher

performance. To this end, we also proposed specific guidelines that consider the

available resources and the performance requirements of the underlying applica-

tion. Last but not least, we introduced the BC-CC metric space, which facilitates

the design of new blocking methods and allows for a-priori estimating their (rel-

ative) performance. All our techniques were thoroughly examined through an ex-

117

118 CHAPTER 8. CONCLUSIONS

tensive experimental study that involved three large-scale, real-world data sets. Its

outcomes validate that our methodology achieves an excellent balance between

effectiveness and efficiency under varying settings.

8.2 Ongoing and Future Work

The following paragraphs discuss the most interesting aspects of our ongoing work

and future research.

Parallelizing Blocking Techniques

The voluminous data of HHIS are likely to yield redundancy-positive block col-

lections with excessive aggregate cardinality, despite the significant efficiency en-

hancements conveyed by our blocking techniques. As an example, consider the

DBTC09 data set, which requires more than 5,000 comparisons per entity, after

applying Block Purging to Total Description Blocking. In these settings, paral-

lelization is indispensable for achieving reasonable running times. Our research

in this field focuses on the MapReduce paradigm [DG08], which requires that the

processing in every node is independent of the others, comprising a sequence of

separate Map and Reduce phases. A large body of work has already examined how

to integrate MapReduce with (blocking-based) ER [VCL10, KTR12b, KTR12a,

KTR12c, KTR11]. None of them, though, has considered redundancy-positive

block collections over HHIS. Part of our efficiency techniques for redundancy-

positive block collections can be adapted to MapReduce in a straight-forward way,

as they merely require an effective load-balancing method (e.g., Comparison Prun-

ing and the node-centric meta-blocking). Our goal is to adapt the rest of them, as

well, and to develop novel, specialized techniques that inherently support paral-

lelization.

Constraints for ER

The ER constraints encapsulate the conditions that have to be satisfied by the out-

come of Entity Resolution. There is a large body of work in this field, as the

contribution of constraints to ER performance is twofold [CSGK07]:

• They enhance efficiency, by reducing the search space of the ER process.

• They enhance effectiveness, by ensuring that the intermediate as well as the

final outcomes of the ER process satisfy specific quality requirements.

8.2. ONGOING AND FUTURE WORK 119

Several types of constraints have been proposed in the literature, with the most

important ones pertaining to pairs of entity profiles [ARS09, DLLH03, FLM+11,

WGM10, WBGM09], or to even larger groups [CSGK07, KWH+12]. These are

typically applied after block building, during the execution of pairwise compar-

isons, or during the final processing of the output. It is possible, however, that

some constraints can be incorporated into the creation of blocks in order to achieve

two goals:

• Efficient check of constraints. The computational cost of expressing a con-

straint through a string similarity metric is typically larger than that of a se-

mantically equivalent constraint that is expressed in terms of blocks.

• Higher blocking efficiency and effectiveness. This can be accomplished by par-

titioning large blocks into smaller ones. In this way, the aggregate cardinality

of the block collection is reduced, and the entities placed in every block satisfy

all relevant constraints, thus being more likely to match.

On the whole, the challenge here is to develop techniques for incorporating ER

constraints into blocking schemes that are suitable for HHIS.

Incremental ER

Incremental ER is employed in two different cases:

• When there are frequent changes in the ER algorithm that has been applied to

a given entity collection and, thus, its outcome has to be often updated.

• When there are limited resources in terms of time and/or computational re-

sources.

In the former case, the goal is to derive the up-to-date outcome without apply-

ing the new algorithm to the entire entity collection. Instead, we can significantly

reduce the computational cost by identifying the relation between the latest and the

previous logic of the ER algorithm so as to perform the minimum necessary oper-

ations. This problem has been examined in [WGM10] with respect to the general

form of ER. Given, though, that the logic of an ER algorithm can be expressed as

a (series of) ER constraint(s), this problem is related to that of Section 8.2. Hence,

our research goal is to extend the work described in Section 8.2 so as to incorporate

evolving constraints into redundancy-positive block collections1.

1In this respect, this version of Incremental ER is also related to our work in [PGN+11], which

addresses the problem of blocking-based ER in the context of evolving entity profiles.

120 CHAPTER 8. CONCLUSIONS

The second form of Incremental ER is referred to as Pay-As-You-Go Entity

Resolution [WMGMar, MCD+07]. The gist of this task is to converge as quickly

as possible to the complete deduplication of the input entity collection(s). In other

words, duplicate entities should be detected gradually, with the minimum cost in

pairwise comparisons at every iteration, due to the limited amount of available

time and/or computational resources. This problem has already been examined in

the context of iterative blocking over HOIS [WMGMar]. Our goal is to comple-

ment this approach with incremental blocking techniques for HHIS. We also intend

to investigate whether our Block and Comparison Scheduling techniques can be

adapted to this task, e.g., by combining them in a more specialized methodology.

Bibliography

[ACG02] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti.

Eliminating fuzzy duplicates in data warehouses. In VLDB,

pages 586–597, 2002.

[Adl09] Noha Adly. Efficient record linkage using a double embedding

scheme. In DMIN, pages 274–281, 2009.

[AMC07] R.B. Almeida, B. Mozafari, and J. Cho. On the evolution of

wikipedia. In ICWSM, 2007.

[AO05] Akiko N. Aizawa and Keizo Oyama. A fast linkage detection

scheme for multi-source information integration. In WIRI, pages

30–39, 2005.

[ARS09] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale

deduplication with constraints using dedupalog. In ICDE, pages

952–963, 2009.

[BCC03] R. Baxter, P. Christen, and T. Churches. A comparison of fast

blocking methods for record linkage. In SIGKDD, volume 3,

pages 25–27, 2003.

[BdMNW12] C. Böhm, G. de Melo, F. Naumann, and G. Weikum. Linda:

Distributed web-of-data-scale entity matching. In CIKM, 2012.

[BG06] Indrajit Bhattacharya and Lise Getoor. A latent dirichlet model

for unsupervised entity resolution. In SDM, 2006.

[BG07] Indrajit Bhattacharya and Lise Getoor. Collective entity resolu-

tion in relational data. TKDD, 1(1), 2007.

121

122 BIBLIOGRAPHY

[BHBLBL09] Christian Bizer, Tom Heath, Tim Berners-Lee, and Tim Berners-

Lee. Linked data - the story so far. IJSWIS, 5(3):1–22, 2009.

[BKM06] Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney.

Adaptive blocking: Learning to scale up record linkage. In

ICDM, pages 87–96, 2006.

[Chr12a] Peter Christen. Data Matching: Concepts and Techniques for

Record Linkage, Entity Resolution, and Duplicate Detection.

Springer, 2012.

[Chr12b] Peter Christen. A survey of indexing techniques for scalable

record linkage and deduplication. TKDE, 24(9):1537–1555,

2012.

[CRF03] William W. Cohen, Pradeep D. Ravikumar, and Stephen E.

Fienberg. A comparison of string distance metrics for name-

matching tasks. In IIWeb, pages 73–78, 2003.

[CSGK07] Surajit Chaudhuri, Anish Das Sarma, Venkatesh Ganti, and

Raghav Kaushik. Leveraging aggregate constraints for dedu-

plication. In SIGMOD, pages 437–448, 2007.

[DG08] J. Dean and S. Ghemawat. Mapreduce: Simplified data process-

ing on large clusters. Communications of the ACM, 51(1):107–

113, 2008.

[DH05] AnHai Doan and Alon Halevy. Semantic integration research

in the database community: A brief survey. AI Magazine,

26(1):83–94, 2005.

[DHM05] Xin Dong, Alon Y. Halevy, and Jayant Madhavan. Reference

reconciliation in complex information spaces. In SIGMOD,

pages 85–96, 2005.

[DLLH03] AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Ob-

ject matching for information integration: A profiler-based ap-

proach. In IIWeb, pages 53–58, 2003.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likeli-

hood from incomplete data via the em algorithm. Journal of the

Royal Statistical Society., pages 1–38, 1977.

BIBLIOGRAPHY 123

[DN09] U. Draisbach and F. Naumann. A comparison and generalization

of blocking and windowing algorithms for duplicate detection.

In QDB, pages 51–56, 2009.

[dVKCC09] Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Christen.

Robust record linkage blocking using suffix arrays. In CIKM,

pages 1565–1568, 2009.

[dVKCC11] Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Christen.

Robust record linkage blocking using suffix arrays and bloom

filters. TKDD, 5(2):9, 2011.

[DZN12] Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. Freeq: an

interactive query interface for freebase. In WWW (Companion

Volume), pages 325–328, 2012.

[EIV07] Ahmed Elmagarmid, Panagiotis Ipeirotis, and Vassilios

Verykios. Duplicate record detection: A survey. TKDE, 19(1):1–

16, 2007.

[FLM+11] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan

Yu. Interaction between record matching and data repairing. In

SIGMOD, pages 469–480, 2011.

[FS69] I.P. Fellegi and A.B. Sunter. A theory for record linkage. Journal

of the American Statistical Association, pages 1183–1210, 1969.

[GD05] Lise Getoor and Christopher Diehl. Link mining: a survey.

SIGKDD Explorations, 7(2):3–12, 2005.

[GIJ+01] Luis Gravano, Panagiotis Ipeirotis, H. Jagadish, Nick Koudas,

S. Muthukrishnan, and Divesh Srivastava. Approximate string

joins in a database (almost) for free. In VLDB, pages 491–500,

2001.

[GKVS08] George Giannakopoulos, Vangelis Karkaletsis, George A.

Vouros, and Panagiotis Stamatopoulos. Summarization system

evaluation revisited: N-gram graphs. TSLP, 5(3), 2008.

[GMP+12] George Giannakopoulos, Petra Mavridi, Georgios Paliouras,

George Papadakis, and Konstantinos Tserpes. Representation

124 BIBLIOGRAPHY

models for text classification: a comparative analysis over three

web document types. In WIMS, 2012.

[GP10] George Giannakopoulos and Themis Palpanas. Content and type

as orthogonal modeling features: a study on user interest aware-

ness in entity subscription services. International Journal of

Advances on Networks and Services, 3(2), 2010.

[HFM06] Alon Y. Halevy, Michael J. Franklin, and David Maier. Princi-

ples of dataspace systems. In PODS, pages 1–9, 2006.

[HS95] Mauricio Hernández and Salvatore Stolfo. The merge/purge

problem for large databases. In SIGMOD, pages 127–138, 1995.

[HS98] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data

is dirty: Data cleansing and the merge/purge problem. Data Min.

Knowl. Discov., 2(1):9–37, 1998.

[HSM08] Robert Hall, Charles A. Sutton, and Andrew McCallum. Unsu-

pervised deduplication using cross-field dependencies. In KDD,

pages 310–317, 2008.

[JLM03] Liang Jin, Chen Li, and Sharad Mehrotra. Efficient record link-

age in large data sets. In DASFAA, pages 137–146, 2003.

[JW04] Ian Jacobs and Norman Walsh. Architecture of the world wide

web, volume one. W3C Recommendation, December 2004.

[KL10] H. Kim and D. Lee. HARRA: fast iterative hashed record link-

age for large-scale data collections. In EDBT, pages 525–536,

2010.

[KMC05] Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. Ex-

ploiting relationships for domain-independent data cleaning. In

SDM, 2005.

[KTR11] Lars Kolb, Andreas Thor, and Erhard Rahm. Block-based load

balancing for entity resolution with mapreduce. In CIKM, pages

2397–2400, 2011.

[KTR12a] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient

deduplication with hadoop. PVLDB, 5(12):1878–1881, 2012.

BIBLIOGRAPHY 125

[KTR12b] Lars Kolb, Andreas Thor, and Erhard Rahm. Load balancing for

mapreduce-based entity resolution. In ICDE, pages 618–629,

2012.

[KTR12c] Lars Kolb, Andreas Thor, and Erhard Rahm. Multi-pass sorted

neighborhood blocking with mapreduce. Computer Science -

R&D, 27(1):45–63, 2012.

[KWH+12] Georgia Koutrika, Ryan Wisnesky, Mauricio Hernandez, Ra-

jaseka Krishnamurthy, and Lucian Popa. Hil: A high-level

scripting framework for entity resolution and integration. In

Technical Report by IBM Research (RJ10499), 2012.

[LR96] AJ Lait and B. Randell. An assessment of name matching algo-

rithms. Technical Report, 1996.

[MCD+07] Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y.

Halevy, Shawn R. Jeffery, David Ko, and Cong Yu. Web-scale

data integration: You can afford to pay as you go. In CIDR,

pages 342–350, 2007.

[MK06] Matthew Michelson and Craig A. Knoblock. Learning blocking

schemes for record linkage. In AAAI, pages 440–445, 2006.

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle Ungar. Efficient

clustering of high-dimensional data sets with application to ref-

erence matching. In KDD, pages 169–178, 2000.

[MP80] W.J. Masek and M.S. Paterson. A faster algorithm computing

string edit distances. Journal of Computer and System sciences,

20(1):18–31, 1980.

[MRS08] C.D. Manning, P. Raghavan, and H. Schuetze. Introduction to

information retrieval, volume 1. Cambridge University Press,

2008.

[MW04] Andrew McCallum and Ben Wellner. Conditional models of

identity uncertainty with application to noun coreference. In

NIPS, 2004.

126 BIBLIOGRAPHY

[NK62] Howard B. Newcombe and James M. Kennedy. Record linkage:

making maximum use of the discriminating power of identify-

ing information. Communications of the ACM, 5(11):563–566,

1962.

[NMMMBLP07] Jordi Nin, Victor Muntés-Mulero, Norbert Martı́nez-Bazan, and

Josep-Lluis Larriba-Pey. On the use of semantic blocking tech-

niques for data cleansing and integration. In IDEAS, pages 190–

198, 2007.

[Pap11] George Papadakis. Efficient entity resolution methods for het-

erogeneous information spaces. In ICDE Ph.D. Workshop,

pages 304–307, 2011.

[PDKF10] George Papadakis, Gianluca Demartini, Philipp Kärger, and Pe-

ter Fankhauser. The missing links: Discovering hidden same-as

links among a billion of triples. In iiWAS, pages 453–460, 2010.

[PGN+11] George Papadakis, George Giannakopoulos, Claudia Niederée,

Themis Palpanas, and Wolfgang Nejdl. Detecting and exploit-

ing stability in evolving heterogeneous information spaces. In

JCDL, pages 95–104, 2011.

[PIN+11a] George Papadakis, Ekaterini Ioannou, Claudia Niederée,

Themis Palpanas, and Wolfgang Nejdl. Eliminating the redun-

dancy in blocking-based entity resolution methods. In JCDL,

pages 85–94, 2011.

[PIN+11b] George Papadakis, Ekaterini Ioannou, Claudia Niederée,

Themis Palpanas, and Wolfgang Nejdl. To compare or not to

compare: making entity resolution more efficient. In SWIM,

2011.

[PIN+12] George Papadakis, Ekaterini Ioannou, Claudia Niederée,

Themis Palpanas, and Wolfgang Nejdl. Beyond 100 million en-

tities: Large-scale blocking-based resolution for heterogeneous

data. In WSDM, pages 53–62, 2012.

[PINF11] George Papadakis, Ekaterini Ioannou, Claudia Niederée, and

Peter Fankhauser. Efficient entity resolution for large hetero-

geneous information spaces. In WSDM, pages 535–544, 2011.

BIBLIOGRAPHY 127

[PIP+ar] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia

Niederée, and Wolfgang Nejdl. A blocking framework for entity

resolution in highly heterogeneous information spaces. TKDE,

2013 (to appear).

[PKPNar] George Papadakis, Georgia Koutrika, Themis Palpanas, and

Wolfgang Nejdl. Meta-blocking: Taking entity resolution to the

next level. TKDE, 2013 (to appear).

[PMM+02] Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart J. Russell,

and Ilya Shpitser. Identity uncertainty and citation matching. In

NIPS, pages 1401–1408, 2002.

[PZ84] J.J. Pollock and A. Zamora. Automatic spelling correction in

scientific and scholarly text. Communications of the ACM,

27(4):358–368, 1984.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches

to automatic schema matching. VLDB J., 10(4):334–350, 2001.

[RDG11] Vibhor Rastogi, Nilesh N. Dalvi, and Minos N. Garofalakis.

Large-scale collective entity matching. PVLDB, 4(4):208–218,

2011.

[SD06] Parag Singla and Pedro Domingos. Entity resolution with

markov logic. In ICDM, pages 572–582, 2006.

[VCL10] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel

set-similarity joins using mapreduce. In SIGMOD, pages 495–

506, 2010.

[WBGM09] Steven Euijong Whang, Omar Benjelloun, and Hector Garcia-

Molina. Generic entity resolution with negative rules. VLDB J.,

18(6):1261–1277, 2009.

[WGM10] Steven Whang and Hector Garcia-Molina. Entity resolution with

evolving rules. PVLDB, 3(1):1326–1337, 2010.

[WGM12] Steven Euijong Whang and Hector Garcia-Molina. Joint entity

resolution. In ICDE, pages 294–305, 2012.

128 BIBLIOGRAPHY

[Win06] William E Winkler. Overview of record linkage and current re-

search directions. Technical report, Bureau of the Cencus, 2006.

[WMGMar] S. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go

entity resolution. TKDE, 2013 (to appear).

[WMK+09] Steven Euijong Whang, David Menestrina, Georgia Koutrika,

Martin Theobald, and Hector Garcia-Molina. Entity resolution

with iterative blocking. In SIGMOD, pages 219–232, 2009.

[WYP10] WE Winkler, WE Yancey, and EH Porter. Fast record linkage

of very large files in support of decennial and administrative

records projects. In American Statistical Association, 2010.

[YLKG07] Su Yan, Dongwon Lee, Min-Yen Kan, and C. Lee Giles. Adap-

tive sorted neighborhood methods for efficient record linkage.

In JCDL, pages 185–194, 2007.

