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Summary 

Gene expression is a multistep process that involves transcription, translation and 

turnover of mRNAs and proteins. Although it is one of the most fundamental processes 

of life, the entire cascade has never been quantified on a genome-wide scale. Here, we 

simultaneously measured mRNA and protein abundance and turnover by parallel 

metabolic pulse labeling for more than 5,000 genes in mammalian cells. While mRNA 

and protein levels correlated better than previously thought, corresponding half-lives 

showed no correlation. Employing a quantitative model we obtain the first genome-scale 

prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance 

of proteins is predominantly controlled at the level of translation. Genes with similar 

combinations of mRNA and protein stabilities shared functional properties, suggesting 

that half-lives evolved under energetic and dynamic constraints. Quantitative information 

about all stages of gene expression obtained in this study provides a rich resource and 

helps understanding the underlying design principles. 

Gelöscht: different 
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Introduction 

The four fundamental cellular processes involved in gene expression are transcription, 

mRNA degradation, translation and protein degradation. It is now clear that each step of 

this cascade is controlled by gene-regulatory events1-3. While each individual process 

has been intensively studied4-7, little is known about how the combined effect of all 

regulatory events shapes gene expression. The fundamental question of how genomic 

information is processed at different levels to obtain a specific cellular proteome has 

therefore remained unanswered. Genome-wide quantitative data about the flux of 

information from genes to proteins is not available for any organism. 

 

Towards a quantitative description of gene expression numerous previous studies 

compared steady-state mRNA and protein levels and arrived at the conclusion that the 

correlation is poor8. However, the available data suffers from several limitations. First, 

most studies are limited to a few hundred genes, mainly due to the technical challenges 

involved in large scale protein identification and quantification. For example, the largest 

mammalian protein copy number dataset comprises only 512 genes 9. Second, protein 

levels measured in one experiment are typically compared to mRNA levels determined 

in a different experiment performed at a different time in a different lab, making it difficult 

to interpret why the correlation is low. Third, mRNA levels are measured using 

microarrays which are less accurate than recent mRNA sequencing methods 10. Fourth, 

many studies were performed in bacteria or yeast and thus do not represent regulatory 

mechanisms specific for higher eukaryotes. Finally, mRNA and protein levels result from 

coupled processes of synthesis and degradation. Therefore, analysis of mRNA and 

protein levels alone cannot provide sufficient information to understand gene expression 

comprehensively. mRNA and protein turnover can be measured with drugs to inhibit 
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transcription or translation 11, but this has severe side-effects. Studies based on artificial 

fusion proteins are also problematic since tagging can affect protein stability 12. 

 

To overcome these limitations we sought to quantify cellular mRNA and protein 

expression levels and turnover in parallel in a population of unperturbed mammalian 

cells. Pulse labeling with radioactive nucleosides or amino acids is regarded as the gold 

standard method to determine mRNA and protein half-lives 13. Recently, variants of this 

approach based on non-radioactive tracers have been established 14-16. In stable isotope 

labeling by amino acids in cell culture (SILAC) cells are cultivated in a medium 

containing heavy stable-isotope versions of essential amino acids 17. When non-labeled 

(i.e. light) cells are transferred to heavy SILAC growth medium, newly synthesized 

proteins incorporate the heavy label while pre-existing proteins remain in the light form. 

This strategy can be used to measure protein turnover 18 or relative changes in protein 

translation 19. Similarly, newly synthesized RNA can be labeled with the nucleoside 

analog 4-thiouridine (4sU). 4sU containing mRNA can be biotinylated and affinity 

purified. Comparing the newly synthesized and pre-existing fraction allows for global 

quantification of mRNA half-lives 16,20. 

 

Parallel pulse labeling of proteins and mRNAs 

We used parallel metabolic pulse labeling with amino acids and 4sU to simultaneously 

measure protein and mRNA turnover in a population of exponentially growing non-

synchronized mouse fibroblasts (Fig. 1 A). Protein samples were harvested at three time 

points and analyzed by liquid chromatography and online tandem mass spectrometry 

(LC-MS/MS) on a high performance instrument (LTQ-Orbitrap-Velos). We identified and 

quantified proteins with the MaxQuant software package 21. During five days of data 

acquisition we measured 1,471,375 fragment spectra that resulted in 229,985 peptide 
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identifications (84,924 unique peptide sequences, false discovery rate (FDR) < 1%, see 

Supplementary Methods on ´Processing of mass spectrometry data´). These peptides 

were assigned to 6,445 unique proteins (FDR < 1%). 5,279 of these proteins were 

quantified by at least three heavy to light (H/L) peptide ratios (Fig. 1 B). Tissue-specific 

amino acid precursor pools and recycling rates, a pervasive problem for in vivo pulse 

labeling experiments15,22, did not appreciably affect our results (Fig. S1). We also tested 

if protein synthesis rates are uniform over time. In case of constant incorporation rates 

the logarithm of H/L ratios should increase linearly with time (Fig. 1 C). 93 % showed 

excellent linear correlation indicated by a variability of the linear regression slope smaller 

than 1 % (two and three time point measurements, Fig. 1 D). 

Thus, our data does not seem to be affected by non-uniform incorporation rates or by 

recycling. Also, protein abundance did not influence H/L ratio measurements (Fig. S 2).  

In total, we obtained a confident set of 5,028 protein half-lives calculated from the slope 

of the regression line (see Supplementary Methods). Cycloheximide-chase experiments 

for selected proteins spanning a representative range of half-lives agreed well with half-

lives determined by pulsed labeling and mass spectrometry in all cases (Fig. 1 E).  

 

In parallel, we pulse labeled newly synthesized RNA for 2 h with 4sU. RNA samples 

were fractionated into the newly synthesized and pre-existing fractions. Both fractions 

and the total unfractionated RNA sample were analyzed by mRNA sequencing on an 

Illumina Genome Analyzer. In total, we obtained 80,709,361 sequencing reads in all 

three samples, 55,046,553 (68%) of which could be mapped to the mouse genome. In 

all three samples, transcripts were quantified based on the number of reads mapped on 

their exonic region divided by transcript length and the total number of reads obtained 10. 

We calculated mRNA half-lives based on the ratios of newly synthesized RNA/total RNA 

ratio and the preexisting RNA/total RNA using the previously published approach16. 
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Importantly, this procedure compensates for different RNA yields during the fractionation 

process. To assess the reproducibility of protein and mRNA half-lives we performed an 

independent biological replicate of the entire large-scale experiment (see below). 

 

Proteins were on average five times more stable (median half-live 46 h) than mRNAs (9 

h) and spanned a bigger dynamic range (Fig. 2 A). Since very long (> 200 h) and very 

short (<30 min) protein half-lives cannot be accurately quantified from our three time 

points the true dynamic range of protein stabilities may be even higher (see 

Supplementary Methods). Intriguingly, we found no correlation between protein and 

mRNA half-lives (Fig. 2 C, R2 = 0.02, Rs = 0.16, both at log-log scale). Thus, many stable 

proteins have unstable mRNAs and vice versa. 

 

Absolute cellular mRNA and protein copy numbers  

We calculated absolute cellular mRNA copy numbers based on the number of 

sequencing reads in the unfractionated sample in conjunction with information on cellular 

mRNA content 10. Absolute protein copy numbers were inferred from mass spec data 

23,24. To this end, we used the sum of peak intensities of all peptides matching to a 

specific protein. When divided by the number of theoretically observable peptides, this 

value provides an accurate proxy for protein levels (‘intensity-based absolute 

quantification’ or iBAQ, see Supplementary Methods). As for half-lives, reproducibility of 

protein and mRNA copy numbers was assessed by performing an independent 

biological replicate (see below).  

 

Levels of detected proteins spanned ~5 orders of magnitude (Fig. 2 B). Since relatively 

few proteins had less than 100 copies per cell we reasoned that some low abundant 

proteins escaped detection. Indeed, comparing mRNA levels of detected and not 
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detected proteins revealed a moderate detection bias (Fig. S3). We therefore restricted 

our analysis to the set of genes that were identified at both the mRNA and protein level. 

In this subset, proteins were on average ~900 times more abundant than their 

corresponding transcripts. Despite a huge spread mRNAs and protein levels were 

clearly correlated (Fig. 2 D, R2 = 0.41, Rs = 0.62, both at log-log scale). An attempt to 

further improve this correlation by non-linear transformation resulted only in a marginal 

increase (R2=0.44, Fig. S4). It appears that for our data set, this is about the maximum 

correlation between RNA and protein that can be achieved without making use of 

additional information. This correlation is considerably higher than in any previous study 

in mammals8,9. For example, the recent study by Vogel and co-workers found an R2 of 

0.29 for a set of 512 mostly abundant proteins.  

Our data therefore suggests that the often claimed poor correlation between mRNAs and 

proteins can partially be explained by non-parallel sample acquisition and/or imprecise 

measurements. Collectively, our data indicates that mRNA and protein levels correlate 

better than previously thought. 

 

Reproducibility 

To investigate the experimental noise we performed a second independent large-scale 

experiment and measured mRNA and protein levels and half-lives again. The overall 

correlation of half-lives and levels between both replicates was good (Fig. S5 and 

Supplementary Table 1 for more detailed error estimates).   

 

To test if experimental noise affects the observed correlation between mRNAs and 

proteins we successively discarded genes with the highest variability between both 

replicates. For the remaining fraction we investigated correlation of mRNA and protein 

levels again. Removing less consistent data points did not increase correlation between 
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mRNA and protein levels (Fig. 2 F). Similar results were obtained for half-lives (Fig. 2 E). 

Therefore, noise has little impact on the observed correlation between mRNA and 

protein levels and half-lives. 

 

To exclude systematic errors we sought to quantify absolute mRNA and protein copy 

numbers using independent methods. For mRNA copy numbers we employed the 

NanoString technology which captures and counts individual transcripts without 

enzymatic reactions or bias25. Correlation between Illumina sequencing and NanoString 

data was high (R = 0.79, see also Fig S6 A). Absolute protein quantification was 

validated by spike-in experiments using a mixture of 48 proteins with known 

concentrations (Fig. S6 B). iBAQ values correlated well with known absolute protein 

amounts over at least four orders of magnitude and had a higher precision and accuracy 

than alternative measures of absolute protein abundance (data not shown)23,24.   

 

A quantitative model of gene expression allows genome-wide prediction of 

transcription and translation rates 

Our data allows calculating average synthesis rates of mRNAs and proteins for 

thousands of genes employing a mathematical model (Fig. 3 A and Supplementary 

Methods). The experimental data is based on a population of non-synchronized cells. 

Therefore, our estimated rates provide an average over the population and time. They 

do not describe gene expression in single cells which requires single cell 

measurements26. 

 

Average cellular transcription rates predicted by the model spanned two orders of 

magnitude with a median of about two mRNA molecules per hour (Fig. 3 B). An extreme 

example was mdm2 with more than 500 mRNAs per hour, consistent with the 
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extrachromosomal amplification of this gene in NIH3T3 cells. Since this is the first 

genome-scale estimate of mammalian transcription rates we cannot compare it with 

existing data. A microscopic study on the cytomegalovirus (CMV) promoter reported 

transcription termination rates of 5.8 to 8.7 mRNAs per hour 27. These values are above 

the median of our predictions as perhaps expected for a rather strong promoter system.  

 

Next, we calculated translation rate constants, i.e. how many proteins are made from 

each mRNA template per hour (Fig. 3 C). We find a median translation rate constant of 

about 40 proteins per mRNA per hour. Several proteins involved in translational 

regulation such as the translation initiation factor eIF4G, fragile X syndrome related 

protein Fxr2 and Tuberin had extremely low rate constants, i.e. were translationally 

repressed. Plotting translation rate constants against protein levels revealed that 

abundant proteins are translated about 100 times more efficiently than low abundant 

ones (Fig. 3 D). Hence, different translation efficiencies seem to contribute to the higher 

dynamic range of proteins compared to mRNAs (Fig. 2 B). Intriguingly, translation rate 

constants saturated at around 180 protein copies / (mRNA*h). This is unlikely a signal 

saturation artifact since we did not observe dynamic range compression of protein levels 

(Fig. S6 B). Alternatively, the observation can be interpreted as a maximal translation 

rate constant. To our knowledge, the maximal translation rate constant in mammals is 

not known. Based on Davidson and co-workers the estimated maximal translation rate 

constant in sea urchin embryos is 140 copies / (mRNA*h) 1 which is surprisingly close to 

the prediction of our model for mouse fibroblasts. We also assessed degradation and 

synthesis rates for mRNAs and proteins by actinomycin D and cycloheximide treatment, 

respectively (Supplementary Methods). For high turnover proteins and mRNAs we 

obtained results consistent with pulse labeling data (Fig. S6 C-F).  

 

Gelöscht: estimated 

Gelöscht: in sea urchin 
embryos 
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Estimating the impact of post-transcriptional, translational and post-translational 

control on protein abundance 

A long standing question is how much protein abundance is controlled at the 

transcriptional, post-transcriptional, translational and post-translational level. Until now, 

this has mainly been addressed indirectly by analyzing mRNA and protein sequence 

features. For example, features related to translation initiation (e.g. Shine-Dalgarno, 

Kozak and 3’ UTR sequences), elongation (e.g. codon bias) and protein stability (e.g. 

degrons) have been analyzed and reported to partially correlate with protein/mRNA 

ratios in bacteria, yeast and mammals9,28. We also observed sequence features 

characteristic of mRNA and protein stability and found that mRNAs with long 3’ UTRs 

are on average less stable (Fig. S7). In addition, the density of AU-rich elements (AREs) 

and binding motifs of specific RNA-binding proteins (Pumilio2) correlated negatively with 

mRNA stability (Fig. S8). Moreover, we observed that intrinsically unstructured proteins 

tend to have shorter half-lives, and we identified amino acids overrepresented in 

unstable proteins (Fig. S9). 

  

Sequence features are at best indirect proxies for the regulatory mechanisms controlling 

protein abundance. How much efficiencies of different steps in the gene expression 

cascade contribute to variance of cellular protein copy numbers can only be revealed by 

direct parallel genome-scale measurements of mRNA and protein levels and half-lives 

which were not available previously. In our data the coefficient of determination (R2) 

between mRNA and protein copy numbers was 0.41 (Fig. 2). If we assume absence of 

technical and biological noise, this means that ~40% of the variance in protein levels are 

explained by different mRNA levels – considerably more than previously thought (Fig. 4 

A). Most of these 40% are due to different transcription rates while mRNA stability plays 

a smaller role. Considering translation rate constants dramatically boosts R2 to 0.95 and 
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thus the correlation to 95%. Although this is an over-fit (see below), the analysis shows 

that translation rate constants play the dominant role for control of protein levels. 

Unexpectedly, the impact of protein degradation is rather small.    

 

In the above analysis the same experimental data was used to calculate synthesis rates 

and to estimate their impact on protein levels. To avoid this over-fit and to assess 

reliability of the model predictions we performed the same analysis with data from the 

biological replicate experiment. In this replicate experiment the coefficient of 

determination between mRNA and protein levels was 0.37 (Fig. 4 B). We then used the 

model including the estimated parameters from the first experiment to predict protein 

levels from mRNA levels in the replicate data. Predicted protein levels agreed very well 

with measured protein levels (R2 = 0.85, Fig. 4 C). Therefore, the model explains ~85% 

of the variability in protein copy numbers in an independent experiment. The correlation 

is very similar to the direct comparison of protein levels in both experiments (R2 = 0.84, 

Fig. S5 D). We conclude that (i) technical and biological noise in our data is low and that 

(ii) the model faithfully predicts protein levels from mRNA levels in mouse fibroblasts. It 

also indicates that the estimated impact of transcription, mRNA stability, translation and 

protein stability on protein abundance is reproducible. In the replicate experiment mRNA 

levels and translation rate constants combined can explain 75% of the variability in 

protein levels. We also assessed how much of the efficiencies of the various steps in 

gene expression are retained in a different cell type and organism. To this end, we 

quantified mRNA and protein abundance in the human breast cancer cell line MCF7 by 

RNA-seq and mass spectrometry, respectively. 2,030 human genes from the MCF7 

dataset had orthologs in the mouse fibroblast data. We then used rates from the mouse 

fibroblast model to predict protein levels from mRNA levels in human breast cancer cells. 

In MCF7 cells, the model predicted ~60% of the variability in protein levels (Fig. 4 A). 
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Although the fraction explained by the model is smaller than in mouse fibroblasts, this 

indicates that translation and degradation rates are to some extent independent of the 

cell type and conserved between mouse and human. 

 

Genes with similar combinations of mRNA and protein half-lives share functional 

properties 

It is well-known that degradation of proteins is critically involved in many cellular 

processes including cell cycle progression, signal transduction and apoptosis 7. Similarly, 

mRNA stability is important for the temporal order of gene induction20,29,30. Genes may 

have evolved specific combinations of mRNA and protein half-lives under functional 

constraints20,29-31. We therefore asked if genes with specific combinations of mRNA and 

protein stability have distinct biological functions. We grouped genes according to their 

combinations of mRNA and protein half-lives and used gene ontology to find enriched 

biological processes (Fig. 5 A, see Supplementary Table 2 for a complete list of GO 

terms with Benjamini-Hochberg adjusted p-values). 

  

Genes with stable mRNAs and stable proteins were enriched in constitutive cellular 

processes like translation (i.e. ribosomal proteins), respiration and central metabolism 

(glycolysis, citric acid cycle). Hence, many ‘house-keeping’ genes tend to have stable 

mRNAs and proteins. In lower organisms, energy costs keep transcription and 

translation rates under selective pressure32. We therefore reasoned that energy 

constraints may explain why ‘housekeeping’ genes tend to have stable mRNAs and 

proteins. Based on the model, we calculated the theoretical energy required to maintain 

cellular mRNAs and protein levels by recycling from their building blocks (nucleotide 

monophosphates and amino acids, respectively) in terms of high energy phosphates. 

This scenario corresponds to non-dividing cells in which the overall amount of mRNAs 
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and proteins stays constant. Therefore, the metabolic cost of synthesizing amino acids 

and nucleotides is not considered. mRNA synthesis costs were calculated for primary 

transcripts (i.e. including introns). The calculation is a conservative estimate since the 

energy needed for splicing, folding, transport etc. is not known and therefore not 

included. We found that protein synthesis consumes more than 90% of the energy while 

less than 10% is needed for transcription. 80% of the energy for translation is required to 

synthesize 20% of all proteins. Hence, protein synthesis follows the Pareto principle 

(“80/20 rule”) with a small fraction of proteins consuming most of the energy. If gene 

expression was optimized under energetic constraints abundant proteins are expected to 

be more stable than less abundant ones. This was indeed the case (Fig. 5 B, p<10-15, 

Wilcoxon test). This is not necessarily expected since the overall contribution of protein 

stability to protein levels is very small (Fig. 4 A). Consistent with the energy constraint 

abundant proteins were also significantly shorter (Fig. 5 C). Shuffling protein half-lives 

and lengths markedly increased theoretical energy consumption (Fig. 5 D). Similar 

results are obtained for mRNAs but their impact on overall costs is small. Collectively, 

these observations are consistent with the idea that mammalian gene expression 

evolved under energy constraints. 

 

The subset of genes with unstable mRNAs and proteins was strongly enriched in 

transcription factors, signaling genes, chromatin modifying enzymes and genes with cell 

cycle-specific functions (Fig. 5 A). Thus, many regulatory genes have low mRNA and 

protein half-lives. Since mRNAs and proteins are information carriers, their degradation 

can be interpreted as a built-in timer which controls persistence of genetic information33. 

Transcription of genes with short mRNA and protein half-lives has therefore only a short-

term impact on the protein level. In this scenario it makes intuitive sense that many 

transcription factors, cell cycle genes and chromatin modifiers have short mRNA and 
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protein half-lives. However, it must be stressed that our data cannot provide information 

about individual cells or molecules and should only be interpreted at the cell population 

level. 

 

The group of genes with stable proteins but unstable mRNAs was strongly enriched in 

terms related to processing of mRNAs, tRNAs and non-coding RNAs. This shows that 

many mammalian RNA-binding proteins are stable while their encoding transcripts tend 

to be short-lived, as noted recently for yeast34. Since many RNA-binding proteins bind 

their own message35, this observation is indicative of a post-transcriptional negative 

feedback-loop for RNA-binding proteins. Consistently, we found that unstable mRNAs 

are enriched for binding motifs of RNA-binding proteins (Fig. S8). 

 

Finally, the subset of genes with stable mRNAs and unstable proteins was rich in 

extracellular proteins. This is expected, since secreted proteins have a short cellular 

half-life. Additionally, this group contains proteins involved in cellular homeostasis, 

defense response and proteolysis. For example, this set contains two ferritin proteins 

which are rapidly up-regulated in response to iron36. Interestingly, ferritins are text book 

examples of translationally regulated genes. Since translational regulation is not 

dependent on mRNA half-lives, genes with stable mRNAs can still be dynamically 

regulated as long as their protein half-lives are short. It is tempting to speculate that 

other homeostasis genes in this group are regulated at the level of translation.  

 

Discussion 

Although gene expression is one of the most fundamental processes in biology it has 

never been quantified comprehensively. While it is now clear that regulation occurs at 

multiple levels, the flow of information from genes to proteins has not yet been 
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investigated on a genome-wide scale2,6. Here, we used parallel metabolic pulse labeling, 

mass spectrometry and next generation sequencing to provide the first analysis of 

mRNA and protein levels and half-lives for thousands of genes. We also report the first 

estimate of average transcription and translation rate constants predicted from our data. 

Our work provides a first global overview of mammalian gene expression dynamics from 

beginning (transcription) to the end (protein degradation). We provide novel insights on 

the steps that control protein abundance and shed new light on the underlying design 

principles. In the future, additional methods like sequencing of nascent transcripts and 

ribosome profiling may further refine this picture37.  

  

We found that mRNA levels explain around 40% of the variability in protein levels. This 

fraction is higher than in any previous study on mammals and does not seem to be 

affected by technical noise (Fig. 2 F). In yeast, mRNA and protein levels show a much 

higher correlation with mRNA levels already explaining 73% (R2=0.73) of the variability 

in protein levels8,9,23. One reason may be that higher eukaryotes show a higher degree of 

translational and post-translational regulation. We found that in mouse fibroblasts 

translation efficiency is the single best predictor of protein levels. Hence, protein 

abundance seems to be predominantly regulated at the ribosome, highlighting the 

importance of translational control for gene expression5. Whether this observation is 

valid in other cell types is not known. A recent study on embryonic stem cells revealed 

that changes in protein levels are not accompanied by changes in corresponding 

mRNAs, although this study did not discern translational and post-translational control38. 

It is also not clear how much translation rate constants change under different 

conditions. In fact, our observation that the mouse model can to some degree predict 

levels of orthologous proteins in MCF7 cells suggests that translation efficiency is 

partially ‘hard-coded’ in the genome and not subject to change. 
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Compared to translational control, protein stability seems to play a minor role for cellular 

protein abundance in our system. This might be surprising since protein degradation is 

involved in regulation of many cellular processes such as cell cycle progression7. From 

the global perspective, the dominance of translational regulation makes sense given the 

high energy costs associated with protein synthesis. Interestingly, the study by Maier 

and co-workers on a model bacterium comes to similar conclusions (see accompanying 

submission by Maier et al., 2010). However, it should also be stressed that our dataset 

represents average values derived from a population of dividing, non-synchronized cells. 

At the single cell level, the role of protein degradation for protein abundance may be 

higher. Similarly, protein degradation may be more important upon perturbation.  

 

Gene expression may follow certain design principles for optimal evolutionary fitness. 

Intriguingly, we found that genes with certain combinations of mRNA and protein half-

lives share common functions, suggesting they evolved under similar constraints. One of 

these constraints may be energy efficiency32. Consistently, we observed that the 

theoretical energy needed for gene expression is much lower than random. A second 

constraint may be the ability of genes to respond quickly to a stimulus. We find that 

many transcription factors and genes with cell-cycle specific function have unstable 

mRNAs and proteins, predisposing them to rapid transcriptional and/or translational 

regulation. In addition, genes with stable mRNAs but unstable proteins can be regulated 

quickly at the level of translation. These observations are consistent with the idea that 

many fast responding genes have short protein and/or mRNA half-lives20,30,31,39. The 

global picture is that most mRNAs and especially proteins tend to be stable unless 

genes need to respond quickly to a stimulus. Due to the trade-off between dynamic 

regulation and energy efficiency this may be an optimal design. Another design principle 
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emerges from the striking observation that many mammalian RNA-binding proteins are 

stable but encoded by unstable transcripts, as also seen in yeast34. 

 

Finally, our data provides a rich resource for the scientific community that can be mined 

in many ways that are beyond the scope of this study. For example, we provide by far 

the largest dataset on protein copy numbers which contains valuable information for 

modeling of cellular processes and stoichiometry of protein complexes24. Half-lives of 

proteins and mRNAs can be used to search for properties of unstable mRNAs or 

proteins, and we provide a first analysis of characteristic sequence features (Fig. S7 and 

S8). Genome-scale quantitative data on absolute mRNA and protein levels and half-lives 

will certainly help to understand the complex relationships between thousands of genes 

and their products in biological systems. 
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Figure legends 
 
Fig. 1: Parallel quantification of mRNA and protein turnover and levels. (A) Mouse 

fibroblasts were pulse labeled with heavy amino acids (SILAC, left) and the nucleoside 

4-thiouridine (4sU, right). Protein and mRNA turnover was quantified by mass 

spectrometry and next generation sequencing, respectively. (B) Mass spectra of 

peptides from a high and low turnover protein reveal increasing heavy to light (H/L) 

ratios over time. (C) Protein half-lives were calculated from log H/L ratios at all three time 

points using linear regression. (D) Variability of linear regression slopes assessed by 

leave-one-out cross validation was small. (E) Comparison of protein half-lives measured 

by SILAC and traditional cycloheximide-chase experiments. 

 
Fig. 2: mRNA and protein levels and half-lives. Histograms of mRNA (blue) and 

protein (red) half-lives (A) and levels (B). Proteins were on average 5 times more stable 

and 900 times more abundant than mRNAs and spanned a higher dynamic range. While 

mRNA and protein levels correlated significantly, correlation of half-lives was virtually 

absent (C,D). Consecutive removal of genes with highest deviation between biological 

replicates did not significantly increase correlations of mRNA and protein half-lives (E) or 

levels (F). 
 
Fig. 3: Quantitative model of gene expression in growing cells (A) mRNAs are 

synthesized with the rate vsr  and degraded with a rate constant kdr. Proteins are 

translated and degraded with rate constants ksp and kdp, respectively. (B) Calculated 

mRNA transcription rates show a uniform distribution. (C) Calculated translation rate 

constants are not uniform. (D) Translation rates of abundant proteins saturate between 

approx 120 and 240 proteins/(mRNA*h). Red line shows the locally weighted fit 

(LOWESS). Dashed lines indicate 95% confidence intervals of the LOWESS maximum 

value calculated by bootstrapping. 

 

Fig. 4: Impact of regulation at different levels on protein abundance  
(A) According to the model, protein levels are best explained by translation rates, 

followed by transcription rates. mRNA and protein stability is less important (left bar). (B) 
In a second, independent biological experiment mRNA levels explained 37% of protein 

levels in NIH3T3 cells (middle bar in A). (C) Using the model to predict protein levels 

from measured mRNA levels boosts predictive power to 85% (middle bar in A). The 
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mouse fibroblast model can to some extent predict protein levels from mRNA levels of 

human orthologs in MCF7 cells (right bar in A). Error bars show 95% confidence 

intervals estimated by bootstrapping. 

 

Fig. 5: Functional characteristics of genes with different mRNA and protein half-
lives (A) Genes were grouped according to their combination of mRNA and protein half-

lives and analyzed for enriched gene ontology terms. A heat map of enrichment p-values 

reveals functional similarities of genes with similar combinations of half-lives. (B, C) 
Abundant proteins are significantly more stable and shorter than less abundant ones 

(p<10-15, Wilcoxon test). (D) Theoretical energy consumption of gene expression. 

Randomizing protein half-lives or lengths enhances energy costs. Error bars show 95% 

confidence intervals determined by multiple randomizations and bootstrapping.  
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