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Abstract—In this paper we face the issue of fusing 3D data and provides a mean for seamless integration of several
from different sensors in a seamless way, using the unifying information sources, e.g. 3D line segments, 3D planesdslou
framework of uncertain projective geometry. Within this frame- of 3D points, etc. By looking at vision as a main source

work it is possible to describe, combine, and estimate various f inf fi turall the i f
types of geometric elements (2D and 3D points, 2D and 3p Of information we naturally come across the issue of sensor

lines, and 3D planes) taking their uncertainty into account. By fusion, as it is possible to build severdagical sensorse.g,
means of uncertain projective geometry, it is possible to derive line segments, corners, affine-covariant regions, etc.jopn

simple bilinear expressions to represent join and intersection of the same physical device [7, 8]. Each sensor provides a
operators using only three matrices as operator. In particular, nqiiceably different level of robustness and accuracyslt i

we are interested in using 3D information coming from different theref f utt ti t to be able to int .
(logical) vision sensors observing the same scene, to improve erefore of uttermost importance to be able to integrage, |

map accuracy. The experimental section shows that it is possible t0 associate and fuse, data provided by different logias ses
to improve both mapping accuracy and pose estimation while to get the most for precision and robustness.

performing SLAM with a mobile robot, by integrating sensor Even though we are here proposing to use just the geometric
|nformapon coming from trinocular feature-based vision and jniormation provided by 3D vision systems, we think that the
correlation based stereo. . g .
full richness of the output of vision systems is necessary fo
Index Terms— Sensor Fusion, 6DoF Hierarchical SLAM, Un-  other tasks. Moreover, as pointed out by C. Angle, an indoor
certain Projective Geometry, Computer Vision. robot with realistic sale expectations cannot base on dycost
sensing suite; a, perhaps provoking, estimate of 10US$aost
|. INTRODUCTION a complex robot sensor was reported in [1]. 3D vision-based
Simultaneous Localization and Mapping, SLAM hereaftegensing includes the capabilities obtainable from coSiy ¢r
is a well-known problem in mobile robotics since many yea2D) LRFs. We therefore think we need to deal with robotics
[6], [14], [20]. A very relevant aspect in SLAM concernstasks like SLAM with 3D data from vision. Nowadays, stereo
the representation of the entries in the world model anision is quite reliable and cheap both for the cost and fer th
the management of their uncertainty; improper uncertainppwer consumption (not a secondary issue for autonomous
management induces errors in robot localization and worldbots) and integrated devices are already available on the
mapping, which therefore suffers of geometric inconsisiesr market [5, 17].
These prevent practical use of mobile robotics technology
whenever an a priori and reliable map is not available. Il. UNCERTAIN PROJECTIVEGEOMETRY
Many robot activities requires a full 3D knowledge of the Uncertain projective geometry is a framework used to
observed environment features; a few examples are: motiogpresent the geometric entities and their relationship-in
which is constrained by table legs and steps; cleaning, twhic
has to be performed also under tables and chairs while f
extinguishers, hanging off-walls, has to be avoided; bdoks i
be moved, which are on top of tables, etc. (see Figure 1). Md§
of these items are not perceivable with the ubiquitous 2PBrlas
range finders (LRF). It is therefore relevant to map the fOll 3
robot workspace, but this has been not so common up to n
for SLAM systems. Most of the works dealing with 3D datas
bases on 3D LRFs (e.g., [21]); these devices provide clotids/®
3D points, and this makes difficult pursuing other robot sas
like, e.g. the semantic classification of places [18], wrach |
required for a real indoor service robot. .
In this paper, our main objective is to provide a genera
framework for 3D sensor fusion, for vision based SLAMFig. 1. Robots without 3D perception cannot clean under et (left)
that takes into account uncertainty in projective geometngither avoid bumping into the open window (right).




duced by Heuel [9, 10]. This framework is able to describe, 1)
combine, and estimate various types of geometric elements
(2D and 3D points, 2D and 3D lines and 3D planes) taking
their uncertainty into account. These elements are reptede
using homogeneous vectors, allowing to derive simple &
expressions to represent join and intersection operattis.

is obtained using only three matrices (construction mpatrix
S(:) (for 2D points and 2D lines)O(-) (for 3D lines) and

II(-) (for 3D points and 3D planes). To get a line from two
2D points we can use the operator:

Estimate the unknown entity using the relationship be-
tween the unknown and the observationsy, 3) = 0
and the homogeneus constralnt3) = 0. This can be
obtained minimizing

O, 8,\ ) = (8)
=30y —-9)7Q, (y —¥) + \Tw(¥,8) + uTh(3),

where )\ andy are Lagrangian multipliers, respectively
for the relationships among the entities and the

homogenity constraints.

I=xAy=S8(x)y @
2) Re-evaluate the constraints on the observations by an-
Bx A D 0 —x3 a9 other iterative process, updating the observations_by the
S(x) = XN0y _ T3 0 -z |, @) use of the relationship, the homogeneus constraint and
dy —zy @ 0 the new entity estimated. This secon step is done to
o o ] propagate the new information to the entities in the
the same hold to join two 3D points into a 3D line: relationshps as well.
L=XAY=IIX)Y, (3) Being our operators bilinear, we can estimate a new esfity
from two entitiesr andy, with a simple matrix multiplication:
W, 0 0o X z= flz,y) =U(@)y =V(y)z, )
IX A IY 8 Vgl I/g 7? where U(z) and V(y) are, at the same time, the bilinear
nX)=——= 0 7 Yl _0 ! operators and the Jacobian of thendy entity respectively.
oY P _0 ! _)1( 0 Assuming the entities to be uncertain, the pdirsY,.),
;, % 0 ! 0 and (y, %,,), and, possibly, the covariancés,, betweenz
ol ! (4) andy are required for computing the error propagation:

Again we can join a 3D point with a 3D line into a 3D (2,%..) (10)

plane: T
Yor Xz v
(vem oo (5= 5 )| bl |)-
A=XAL=0(L)X, (5) e
In case of independence between x and y one obtains:
0 Ly —Ly —L4
omy= XML _ | —Ly 0 Li —Ls | (2,8:2) = (U(2)y, U(2) By, UT () + V(1) S0V () (1)
) 4 L —L 0 —L '
Li le Le 0 0 To check the geometric relationship between two geometric

_ _ _ entities it is possible to use a statistical test on the dida
These construction matrices are useful tools to derive n€ctor d defined through the previous bilinear equation. In

geometric entities from other ones, e.g., a 3D line from tWearticular a relation can be assumed to hold if the hypashesi
3D points, a 3D point from the intersection of two 3D lines,

etc.; at the same time, being bilinear equations these tupsra

represent themself the Jacobian of the transformation twhic

is used for the uncertainty propagation in the constructié@not be rejected. Notice that the hypotheHig can be
process. rejected with a significance level of if

Finally, these matrices can be used to express various geo-
metric relations between pair of elements: incidence,titien
parallelism and orthogonality. Using these relations we ca The covariance matriXy, of d is given by first order error
generate probabilistic tests to establish relationshgisi@en propagation as
entities and formulate a simple estimation process, fandjtt
an unknown entity3 to a set of observatiorg constrained by

a set of relationshigv(y, 8) = {w(y,3)}.

Suppose we have a set of observations, described by equd 9eneralX,; may be singular, ifd is an x 1 vector,
tion: r is is the degree of freedom of the relatidhandr < n.

@ The singularity causes a problem, as we have to invert the

covariance matrix, but, at least for projective relatiqusshit
wheree; ~ N(0,Q), to estimate the unknown entity it iscan be guaranteed that the rankdy; is not less than (see
possible to use an iterative algorithm in two steps: Heuel [9, 10]).

HO:d=U(z)y =V (y)x =0, (12)

T=d"Sd>en =Xi_aum- (13)

Yaa = U(2)S,,UT (2) + V(y) e VT (y).

yi =Yyi+ei,



Fig. 2. The “moving window” problem.

IIl. 6DOF VISUAL SLAM

Our interest in the framework described in the previous
section comes from the issue of integrating 3D points, skng&g. 3. 3D segment-based reconstruction for a trinoculaesseopic system.
by a stereo camera like the one in [12], with the 3D segments
used in a previously developed algorithm for 6DoF hierar-

chical SLAM, sensed basing on trinocular stereo vision. .”fﬁstlmate of the measurement uncertainties in the filter. In

algorithm uses hierarchical map decomposition, unceytain e following, we describe the details of th.e representatio :
modeling for trinocular 3D data, and 6DoF pose represe sed for the sensed data and the mechanism used for their

tation integration.

In [16] we discussed in details some algorithms for da’Eg Segment-based stereo vision
association and the importance of using a proper critemgon't”
match features in the view with features in the map. Usually This perception channel is a widespread and well known
the point-to-point distance is considered as an appr@priéb/Stem’ which reconstructs the scene in terms of 3D segments
criterion for single segment matching and much of the effol@ order to give out such data the system has to deal with
is devoted in finding a good association strategy for dealif§gments since the very first (image) processing stepstthiei
with the exponential complexity of finding the best match fdptended meaning of the term segment-based 3D reconstruc-
the whole view. In that paper we showed how a better criterid{9n System here used. The segments are represented by the
for 3D segment matching results in a better data associatigf coordinates of their extrema. This choice is in agreement
almost independently from the algorithm for interpretaticee with the intrinsically 3D nature _of indoor environments.
traversal (i.e., data association algorithm). _Our system bases on the trinocular approach [2]. As de-

The approach we proposed is based on a multi-criteficted in Flgure 3, the processing starts with looking for
evaluation, for associating segments in the view with map se?D Ségments in the images, and then for correspondences
ments. The reason for discarding the point-to-point ddter between the different images. The last step is the compatati
is mainly due to the problem of the moving-field-of-view irPf the parameters of the 3D segment, represented by the 3D
the sensing system, which turns in a moving window on tfgoordinates of the endpoints. In FigurelBis the 3D scene
world feature(s), see Figure 2. More precisely, the segmeif@mentC; andd; are respectively the projection center and
extrema are induced by the reduced field of view and are i€ Projection ofD on images. _
always related to real extrema in the world; when the sensingn the uncertain projective geometry framework, a 3D line
system moves it senses new extrema, which could result’$féPresented by a 6-coordinates vedion a Plicker form:
new segments, at each step; this can easily become a problem T
for the classical point-to-point distarice L= ( Ly Ly Ly Ls Ls Lg ) : (14)

By using the uncertain projective geometry framework we The end-point§X;, X5) are computed projecting lines for
are able to extend the original system by integrating theach 2D end-point and collecting the intersections with the
3D segments coming from the feature-based trinocular stesstimated 3D line. The nearest intersections will be the end
with the 3D points detected by the correlation-based stergeints of the 3D segment represented by the touple:
camera. Our idea is to improve the original SLAM algorithm
integrating segments and points into 3D segments (by using Segm = (L, X, X3) (15)
the math introduced in Section Il), before introducing this
information in the EKF-based state filter. In this way we
can reuse the original filter, since we still base on segments T
to perform the SI?AM. Moreover, being uncertain projgctive Xi = ( wX o wY wZ - w ) (16)
geometry a probabilistic framework, we can take into actoun are the segment extrema with covariance matrix:
the different uncertainties in percepts so to have a cagist

where:

oxx oxy oxz 0
> oyx Ooyy oyz 0O . 17)

1our proposal is of interest also for 2D-3DoF SLAM systems \hgooups
2D data points into 2D lines, because this moving-field-efavissue applies ozx ozy 0zz 0
there too. 0 0 0 1
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edges of segments, the uncertainty ellipses as computed bgahginocular
system
Fig. 4. The sensor fusion mechanism segment, using three hypothesis tests: two tests, one ¢br ea

extrema, are devoted to checking if there are points caimgid
with the segment extrema; the third test aims at searching
This system has been implemented to provide the 3iints incident to the line passing through the two extrema.
extrema as mean and covariance, i.e., approximating the nfinis important to notice that the framework proposed allows
linear transformation by a Jacobian-based uncertaintpasro us to estimate, in a simple way, the 3D line passing trough
gation of the Gaussian noise in pixel detection and prajectithe two extrema, with its uncertainty. It is therefore pbksi
parameters. In other words, cameras calibration provitss ato identify points incident to the line by taking into accoun
the covariance matrix of the parameters, so that 3D extremigo the uncertainty in line estimation.
can be given out by the system altogether with a covarianceHaving performed such tests, we are now able to integrate
matrix, to represent the measurement uncertainty as a figsch set of points with the corresponding segment updating
order, i.e., normal, probability distribution. both the position and the uncertainty of its extrema. Also
Such systems date a long time ago and are quite widespresig activity is performed “outside the filter” and aims at
in the computer vision and robotics communities. Our implgenerating a new measure for the perceived segments. To have
mentation differs from the original only in the use of the Fas more robust segment estimation, we decided to perform the
Line Finder algorithm [11], in the polygonal approximatiorintegration by following the three steps procedure outline
phase. herefter.
This is mainly due to the presence of points that satisfy the
test because of their large uncertainty; they usually lgeton

. the plane incident with the segment, but not necessary to the
The correlation-based system computes matches betwggamem itself. For each segment we:

local areas of the two images by evaluating the similaritthef ) | . h point in th
regions. Each small area in the first image is correlated with) €stimate a 3D plane incident to each point in the subset

other areas in the second image. The maximum correlation  Matching the line incidence hypothesis test
value, for each pixel, is computed and a disparity image iSZ) estimate the new extrema of the segment, estimating the

generated, which permits to obtain 3D points. two points incident to the plane and equal to the old
This method produces quite dense results (for each pixel €Xirema, i.e., the point sets that passed the first two tests

in the first image we have a point in the 3D space, if the 3) €Stimate the new segment by using these two projected

corresponding pixel in the second image is found). In this ~ €Xtrema |

way we obtain a very large number of 3D points, for each It now is possible to pass the new segments estimated

activation, which are represented by their three coordmat in such a way as new improved measures for the EKF in

the 3D space (see eq.16 and 17). the segment-based Hierachical SLAM algorithm described in

details in [15, 16].

B. Correlation-based stereo vision

C. Sensor fusion mechanism

Sensor fusion is performed before each segment measure
is passed to the SLAM algorithm thus we say it is made In this section we show the capabilities of the framework
“out of the filter”. Following the flow chart in Figure 4, presented in this paper, using a simulator for both the featu
we perform hypothesis test to assign a sets of points based and the correlation-based stereo cameras. Given a map
each segment by using the Statistically Uncertain Geometdf segments and the robot trajectory, we simulated the image
Reasoning (SUGR) framework of Section II. In this datéormation process on the two devices, as well as the unoertai
association phase, we identify three sets of points, foh eameasurements of the world, as depicted in Figure 5.

IV. EXPERIMENTAL VALIDATION
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Fig. 6. Comparison between the same SLAM system, which takewpirt different data: on the left, the input is the trinoculiata; on the right, the input
is the data fused by using the uncertain geometry framewornkosed.



We have two reasons for using a simulated environment nmanipulating uncertain geometric entities, we are abledatt
test the proposed method. First, with a simulation enviremtm interest points as delimited portions of uncertain plaregs,
we have access to the ground truth and we can perforithed by an appearance information represented by theeimag
numerical comparison about the consistence of the EKgatch located around the point on the image plane. Perfgrmin
Second, we are not able to use the dataset collected for the data association among frames, we could estimate thie mos
experimental work in [15] and [16] because we did not hayerobable plane where the feature lies and, at the same time,
the SVS (correlation-based) camera at that time. update the appearance information depending on its positio

The two algorithm, i.e., the one with and the one withouklative to the camera orientation.
sensor fusion, have been compared on the very same data. In
Figure 6 it is possible to compare the results of the approach
proposed in this paper with our previous work. The plotsrrefe
to a circular trajectory of 40m and the SLAM algorithm ha:
been stopped before loop closure. In Figures 6(a) and 6b),
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plotted the+3o confidence ellipse around the estimated rob
pose. It can be noticed how the estimate of robot pose wi
the trinocular based system eventually becomes inconsiste
while using sensor fusion helps in maintaining it consisten
Figures 6(c), 6(d), 6(e) and 6(f) allow mapping comparisonll]
Notice that by using trinocular data and SVS points we ar
able to reduce the uncertainty in the segment extremagesip

in the plots) and to improve the overall accuracy. (3]

4
V. CONCLUSION AND FUTURE WORKS 4

This paper presents a 6DoF SLAM algorithm that exploit%]
the uncertain projective geometry framework to perfornssen [g]
fusion of 3D data coming from different sensors. The frame-
work allows to represent 3D segments and 3D points with thelf]
associate uncertainty. Although the algorithm presenteis g
paper deal with vision data, it is straightforward to incud
other source of information in the framework. For instancel?]
laser scans could be integrated either using single mesasre;
points or extracting 3D lines or 3D planes, when dealing with
3D laser scans. (11]

We faced sensor fusion by exploiting uncertain projectivigy
geometry, outside the SLAM EKF state filter, to provide
a new “virtual” sensor. This had the purpose of reducings!
measurement errors and improving the results obtained wjh
the SLAM algorithm. The described framework could be used
within the SLAM algorithm as well, for data association{1°!
trough hypothesis test, and filter update. We are actuajly;
working on the latter by adopting a Smoothing and Mapping
approach [4] to obtain independence between the featucks ﬁ'}]
thus independent fusion procedures for each of them. [18]

In the last years many researchers have demonstrated that it
is possible to use pictorial features from a monocular cam(irgl
to perform SLAM as well. Notable examples are the works Jf
Lacroix et al.[13], Davison et al.[3] and Lowe et al.[19]. &h [20]
key idea, in this kind of approaches, is to use interest poirE
as features, trying to fulfill the data association task leyubke
of a point descriptors or correlation based methods. Uguall
to have significant landmarks, these descriptors are chimsen
be invariant to image scale, rotation, and partially ireati
(i.e. robust) to changing viewpoints, and illuminationofr a
SLAM point of view this is very useful not only for the data
association but also because it allows the robot to idestfyh
possible loop closure.

We are presently working on the integration of these pic-
torial feature in the framework proposed in this paper. By

1]

%]QAWSEEDS).

REFERENCES

Colin Angle. Invited talk at the annual euron meeting. hautis CEO
of IS-Robotics; Euron: www.euron.org, March 2004.

N. Ayache and F. Lustman. Trinocular stereo vision foratts. IEEE
Trans. on PAM| 12(1), 1991.

A. Davison. Real-Time Simultaneous Localisation and Magpwith a
Single Camera. IfProc. of ICCV pages 1403-1410, October 2003.
F. Dellaert and M. Kaess. Square Root SAM: Simultaneoualization
and mapping via square root information smoothihml. J. of Robotics
Research25(12), Dec 2006.

Videre Design.ht t p: / / ww. vi der edesi gn. cont .

H. F. Durrant-Whyte. Integration, coordination and control of multi-
sensor robot system&luwer Academic, 1987.

T. Henderson, C. Hansen, and B. Bhanu. The specificafidlistributed
sensing and control). of Robotic System&:387-396, 1985.

T.C. Henderson and E. Shilcrat.Logical sensor systems Ablex
Publishing Corp. Norwood, NJ, USA, 1995.

S. Heuel. Paints, lines and planes and their optimal esiima
(2191):92-99, September 2001.

S. Heuel. Uncertain Projective Geometry: Statistical Reasoning for
Polyhedral Object Reconstructiorspringer, 2004.

P. Kahn, L. Kitchen, and E. M. Riseman. A fast line finder ¥ision-
guided robot navigationlEEE Trans. on PAMI12(11), Nov 1990.
Kurt Konolige. Small vision system. hardware and impleragoh. In
ISRR Hayama, Japan, 1997.

T. Lemaire, S. Lacroix, and J. Sola. A practical 3d begwamly slam
algorithm. InProc. of IROS 2005.

F. Lu and E. Milios. Globally consistent range scan mfigent for
environment mappingAutonomous Robqt€:333-349, 1997.

D. Marzorati, D. G. Sorrenti, and M. Matteucci. 3d-6dugrarchical
slam with trinocular vision. IrProc. of ECMR 2005.

D. Marzorati, D. G. Sorrenti, and M. Matteucci. Multiferia data
association in 3d-6dof hierarchical slam with 3d segmentsrbc. of
ASERO062006.

Point-grayht t p: / / www. pt gr ey. cont pr oduct s/ bunbl ebee2/ .
A. Rottmann, O. Mafhez Mozos, C. Stachniss, and W. Burgard. Place
classification of indoor environments with mobile robots gdiwosting.
In Proc. of AAA|] 2005.

S. Se, D. Lowe, and J. Little. Global localization usuligtinctive visual
features. InProc. of IROS Lausanne, Switzerland, October 2002.

J. D. Tards and J. A. Castellanod/obile robot localization and map
building: a multisensor fusion approachluwer Academic, 1999.

O. Wulf, B. Wagner, and M. Khalaf-Allah. Using 3d datar fmonte
carlo localization in complex indoor environments. Rmoc. of ECMR
2005.



