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{marzorati,sorrenti}@disco.unimib.it

Abstract— In this paper we face the issue of fusing 3D data
from different sensors in a seamless way, using the unifying
framework of uncertain projective geometry. Within this frame-
work it is possible to describe, combine, and estimate various
types of geometric elements (2D and 3D points, 2D and 3D
lines, and 3D planes) taking their uncertainty into account. By
means of uncertain projective geometry, it is possible to derive
simple bilinear expressions to represent join and intersection
operators using only three matrices as operator. In particular,
we are interested in using 3D information coming from different
(logical) vision sensors observing the same scene, to improve
map accuracy. The experimental section shows that it is possible
to improve both mapping accuracy and pose estimation while
performing SLAM with a mobile robot, by integrating sensor
information coming from trinocular feature-based vision and
correlation based stereo.

Index Terms— Sensor Fusion, 6DoF Hierarchical SLAM, Un-
certain Projective Geometry, Computer Vision.

I. I NTRODUCTION

Simultaneous Localization and Mapping, SLAM hereafter,
is a well-known problem in mobile robotics since many years
[6], [14], [20]. A very relevant aspect in SLAM concerns
the representation of the entries in the world model and
the management of their uncertainty; improper uncertainty
management induces errors in robot localization and world
mapping, which therefore suffers of geometric inconsistencies.
These prevent practical use of mobile robotics technology
whenever an a priori and reliable map is not available.

Many robot activities requires a full 3D knowledge of the
observed environment features; a few examples are: motion,
which is constrained by table legs and steps; cleaning, which
has to be performed also under tables and chairs while fire
extinguishers, hanging off-walls, has to be avoided; booksto
be moved, which are on top of tables, etc. (see Figure 1). Most
of these items are not perceivable with the ubiquitous 2D laser
range finders (LRF). It is therefore relevant to map the full 3D
robot workspace, but this has been not so common up to now
for SLAM systems. Most of the works dealing with 3D data
bases on 3D LRFs (e.g., [21]); these devices provide clouds of
3D points, and this makes difficult pursuing other robot tasks
like, e.g. the semantic classification of places [18], whichare
required for a real indoor service robot.

In this paper, our main objective is to provide a general
framework for 3D sensor fusion, for vision based SLAM,
that takes into account uncertainty in projective geometry

and provides a mean for seamless integration of several
information sources, e.g. 3D line segments, 3D planes, clouds
of 3D points, etc. By looking at vision as a main source
of information we naturally come across the issue of sensor
fusion, as it is possible to build severallogical sensors(e.g,
line segments, corners, affine-covariant regions, etc.) ontop
of the same physical device [7, 8]. Each sensor provides a
noticeably different level of robustness and accuracy. It is
therefore of uttermost importance to be able to integrate, i.e.,
to associate and fuse, data provided by different logical sensors
to get the most for precision and robustness.

Even though we are here proposing to use just the geometric
information provided by 3D vision systems, we think that the
full richness of the output of vision systems is necessary for
other tasks. Moreover, as pointed out by C. Angle, an indoor
robot with realistic sale expectations cannot base on a costly
sensing suite; a, perhaps provoking, estimate of 10US$ costfor
a complex robot sensor was reported in [1]. 3D vision-based
sensing includes the capabilities obtainable from costly (3D or
2D) LRFs. We therefore think we need to deal with robotics
tasks like SLAM with 3D data from vision. Nowadays, stereo
vision is quite reliable and cheap both for the cost and for the
power consumption (not a secondary issue for autonomous
robots) and integrated devices are already available on the
market [5, 17].

II. U NCERTAIN PROJECTIVEGEOMETRY

Uncertain projective geometry is a framework used to
represent the geometric entities and their relationship intro-

Fig. 1. Robots without 3D perception cannot clean under the table (left)
neither avoid bumping into the open window (right).
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duced by Heuel [9, 10]. This framework is able to describe,
combine, and estimate various types of geometric elements
(2D and 3D points, 2D and 3D lines and 3D planes) taking
their uncertainty into account. These elements are represented
using homogeneous vectors, allowing to derive simple bilinear
expressions to represent join and intersection operators.This
is obtained using only three matrices (construction matrix):
S(·) (for 2D points and 2D lines),O(·) (for 3D lines) and
Π(·) (for 3D points and 3D planes). To get a line from two
2D points we can use the operator:

l = x ∧ y = S(x)y (1)

S(x) =
∂x ∧ ∂y

∂y
=





0 −x3 x2

x3 0 −x1

−x2 x1 0



 , (2)

the same hold to join two 3D points into a 3D line:

L = X ∧ Y = Π(X)Y, (3)

Π(X) =
∂X ∧ ∂Y

∂Y
=

















W1 0 0 X1

0 W1 0 −Y1

0 0 W1 −Z1

0 −Z1 Y1 0
Z1 0 −X1 0
−Y1 X1 0 0

















.

(4)
Again we can join a 3D point with a 3D line into a 3D

plane:

A = X ∧ L = O(L)X, (5)

O(L) =
∂X ∧ ∂L

∂X
=









0 L3 −L2 −L4

−L3 0 L1 −L5

L2 −L1 0 −L6

L4 L5 L6 0









. (6)

These construction matrices are useful tools to derive new
geometric entities from other ones, e.g., a 3D line from two
3D points, a 3D point from the intersection of two 3D lines,
etc.; at the same time, being bilinear equations these operators
represent themself the Jacobian of the transformation which
is used for the uncertainty propagation in the construction
process.

Finally, these matrices can be used to express various geo-
metric relations between pair of elements: incidence, identity,
parallelism and orthogonality. Using these relations we can
generate probabilistic tests to establish relationships between
entities and formulate a simple estimation process, for fitting
an unknown entityβ to a set of observations̃y constrained by
a set of relationshipw(ỹ, β) = {w(ỹ, β)}.

Suppose we have a set of observations, described by equa-
tion:

ỹi = yi + ei, (7)

where ei ∼ N(0,Q), to estimate the unknown entity it is
possible to use an iterative algorithm in two steps:

1) Estimate the unknown entity using the relationship be-
tween the unknown and the observationsw(ỹ, β) = 0

and the homogeneus constrainth(β) = 0. This can be
obtained minimizing

Θ(ỹ, β, λ, µ) = (8)

= 1
2
(y − ỹ)TQ−1

y (y − ỹ) + λTw(ỹ, β) + µTh(β),

whereλ andµ are Lagrangian multipliers, respectively
for the relationships among the entities and the
homogenity constraints.

2) Re-evaluate the constraints on the observations by an-
other iterative process, updating the observations by the
use of the relationship, the homogeneus constraint and
the new entity estimated. This secon step is done to
propagate the new information to the entities in the
relationshps as well.

Being our operators bilinear, we can estimate a new entityz,
from two entitiesx andy, with a simple matrix multiplication:

z = f(x, y) = U(x)y = V (y)x, (9)

where U(x) and V (y) are, at the same time, the bilinear
operators and the Jacobian of thex andy entity respectively.

Assuming the entities to be uncertain, the pairs(x,Σxx),
and (y,Σyy), and, possibly, the covariancesΣxy betweenx

andy are required for computing the error propagation:

(z,Σzz) = (10)
(

U(x)y, [V (y), U(x)]

(

Σxx Σxy

Σxy Σyy

)[

V T (y)
UT (x)

])

.

In case of independence between x and y one obtains:

(z,Σzz) =
(

U(x)y, U(x)ΣyyUT (x) + V (y)ΣxxV T (y)
)

(11)

To check the geometric relationship between two geometric
entities it is possible to use a statistical test on the distance
vector d defined through the previous bilinear equation. In
particular a relation can be assumed to hold if the hypothesis

H0 : d = U(x)y = V (y)x = 0, (12)

cannot be rejected. Notice that the hypothesisH0 can be
rejected with a significance level ofα if

T = dT Σ−1
dd d > εH = χ2

1−α;n. (13)

The covariance matrixΣdd of d is given by first order error
propagation as

Σdd = U(x)ΣyyUT (x) + V (y)ΣxxV T (y).

In generalΣdd may be singular, ifd is a n x 1 vector,
r is is the degree of freedom of the relationR and r < n.
The singularity causes a problem, as we have to invert the
covariance matrix, but, at least for projective relationshps, it
can be guaranteed that the rank ofΣdd is not less thanr (see
Heuel [9, 10]).
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Fig. 2. The “moving window” problem.

III. 6D OF VISUAL SLAM

Our interest in the framework described in the previous
section comes from the issue of integrating 3D points, sensed
by a stereo camera like the one in [12], with the 3D segments
used in a previously developed algorithm for 6DoF hierar-
chical SLAM, sensed basing on trinocular stereo vision. The
algorithm uses hierarchical map decomposition, uncertainty
modeling for trinocular 3D data, and 6DoF pose represen-
tation.

In [16] we discussed in details some algorithms for data
association and the importance of using a proper criterion to
match features in the view with features in the map. Usually
the point-to-point distance is considered as an appropriate
criterion for single segment matching and much of the effort
is devoted in finding a good association strategy for dealing
with the exponential complexity of finding the best match for
the whole view. In that paper we showed how a better criterion
for 3D segment matching results in a better data association
almost independently from the algorithm for interpretation tree
traversal (i.e., data association algorithm).

The approach we proposed is based on a multi-criteria
evaluation, for associating segments in the view with map seg-
ments. The reason for discarding the point-to-point criterion
is mainly due to the problem of the moving-field-of-view in
the sensing system, which turns in a moving window on the
world feature(s), see Figure 2. More precisely, the segment
extrema are induced by the reduced field of view and are not
always related to real extrema in the world; when the sensing
system moves it senses new extrema, which could result in
new segments, at each step; this can easily become a problem
for the classical point-to-point distance1.

By using the uncertain projective geometry framework we
are able to extend the original system by integrating the
3D segments coming from the feature-based trinocular stereo
with the 3D points detected by the correlation-based stereo
camera. Our idea is to improve the original SLAM algorithm
integrating segments and points into 3D segments (by using
the math introduced in Section II), before introducing this
information in the EKF-based state filter. In this way we
can reuse the original filter, since we still base on segments
to perform the SLAM. Moreover, being uncertain projective
geometry a probabilistic framework, we can take into account
the different uncertainties in percepts so to have a consistent

1Our proposal is of interest also for 2D-3DoF SLAM systems which groups
2D data points into 2D lines, because this moving-field-of-view issue applies
there too.

Fig. 3. 3D segment-based reconstruction for a trinocular stereoscopic system.

estimate of the measurement uncertainties in the filter. In
the following, we describe the details of the representation
used for the sensed data and the mechanism used for their
integration.

A. Segment-based stereo vision

This perception channel is a widespread and well known
system, which reconstructs the scene in terms of 3D segments.
In order to give out such data the system has to deal with
segments since the very first (image) processing step, this is the
intended meaning of the term segment-based 3D reconstruc-
tion system here used. The segments are represented by the
3D coordinates of their extrema. This choice is in agreement
with the intrinsically 3D nature of indoor environments.

Our system bases on the trinocular approach [2]. As de-
picted in Figure 3, the processing starts with looking for
2D segments in the images, and then for correspondences
between the different images. The last step is the computation
of the parameters of the 3D segment, represented by the 3D
coordinates of the endpoints. In Figure 3D is the 3D scene
segment,Ci anddi are respectively the projection center and
the projection ofD on imagei.

In the uncertain projective geometry framework, a 3D line
is represented by a 6-coordinates vectorL in a Pl̈ucker form:

L =
(

L1 L2 L3 L4 L5 L6

)T
. (14)

The end-points(X1,X2) are computed projecting lines for
each 2D end-point and collecting the intersections with the
estimated 3D line. The nearest intersections will be the end-
points of the 3D segment represented by the touple:

Segm = 〈L,X1,X2〉 (15)

where:

Xi =
(

wX wY wZ w
)T

(16)

are the segment extrema with covariance matrix:

Σi =









σXX σXY σXZ 0
σY X σY Y σY Z 0
σZX σZY σZZ 0

0 0 0 1









. (17)
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Fig. 4. The sensor fusion mechanism

This system has been implemented to provide the 3D
extrema as mean and covariance, i.e., approximating the non-
linear transformation by a Jacobian-based uncertainty propa-
gation of the Gaussian noise in pixel detection and projection
parameters. In other words, cameras calibration provides also
the covariance matrix of the parameters, so that 3D extrema
can be given out by the system altogether with a covariance
matrix, to represent the measurement uncertainty as a first
order, i.e., normal, probability distribution.

Such systems date a long time ago and are quite widespread
in the computer vision and robotics communities. Our imple-
mentation differs from the original only in the use of the Fast
Line Finder algorithm [11], in the polygonal approximation
phase.

B. Correlation-based stereo vision

The correlation-based system computes matches between
local areas of the two images by evaluating the similarity ofthe
regions. Each small area in the first image is correlated with
other areas in the second image. The maximum correlation
value, for each pixel, is computed and a disparity image is
generated, which permits to obtain 3D points.

This method produces quite dense results (for each pixel
in the first image we have a point in the 3D space, if the
corresponding pixel in the second image is found). In this
way we obtain a very large number of 3D points, for each
activation, which are represented by their three coordinates in
the 3D space (see eq.16 and 17).

C. Sensor fusion mechanism

Sensor fusion is performed before each segment measure
is passed to the SLAM algorithm thus we say it is made
“out of the filter”. Following the flow chart in Figure 4,
we perform hypothesis test to assign a sets of points to
each segment by using the Statistically Uncertain Geometric
Reasoning (SUGR) framework of Section II. In this data
association phase, we identify three sets of points, for each

Fig. 5. Segments and points simulated for a single view. Notice, at the
edges of segments, the uncertainty ellipses as computed by thereal trinocular
system

segment, using three hypothesis tests: two tests, one for each
extrema, are devoted to checking if there are points coinciding
with the segment extrema; the third test aims at searching
points incident to the line passing through the two extrema.
It is important to notice that the framework proposed allows
us to estimate, in a simple way, the 3D line passing trough
the two extrema, with its uncertainty. It is therefore possible
to identify points incident to the line by taking into account
also the uncertainty in line estimation.

Having performed such tests, we are now able to integrate
each set of points with the corresponding segment updating
both the position and the uncertainty of its extrema. Also
this activity is performed “outside the filter” and aims at
generating a new measure for the perceived segments. To have
a more robust segment estimation, we decided to perform the
integration by following the three steps procedure outlined
herefter.

This is mainly due to the presence of points that satisfy the
test because of their large uncertainty; they usually belong to
the plane incident with the segment, but not necessary to the
segment itself. For each segment we:

1) estimate a 3D plane incident to each point in the subset
matching the line incidence hypothesis test

2) estimate the new extrema of the segment, estimating the
two points incident to the plane and equal to the old
extrema, i.e., the point sets that passed the first two tests

3) estimate the new segment by using these two projected
extrema

It now is possible to pass the new segments estimated
in such a way as new improved measures for the EKF in
the segment-based Hierachical SLAM algorithm described in
details in [15, 16].

IV. EXPERIMENTAL VALIDATION

In this section we show the capabilities of the framework
presented in this paper, using a simulator for both the feature-
based and the correlation-based stereo cameras. Given a map
of segments and the robot trajectory, we simulated the image
formation process on the two devices, as well as the uncertain
measurements of the world, as depicted in Figure 5.
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(a) Comparison with ground truth for trinocular (b) Comparison with ground truth for sensor fusion

(c) 3D map from trinocular (d) 3D map from sensor fusion

(e) Top view 3D map from trinocular (f) Top view 3D map from sensor fusion

Fig. 6. Comparison between the same SLAM system, which takes in input different data: on the left, the input is the trinoculardata; on the right, the input
is the data fused by using the uncertain geometry framework proposed.



6

We have two reasons for using a simulated environment to
test the proposed method. First, with a simulation environment
we have access to the ground truth and we can perform
numerical comparison about the consistence of the EKF.
Second, we are not able to use the dataset collected for the
experimental work in [15] and [16] because we did not have
the SVS (correlation-based) camera at that time.

The two algorithm, i.e., the one with and the one without
sensor fusion, have been compared on the very same data. In
Figure 6 it is possible to compare the results of the approach
proposed in this paper with our previous work. The plots refer
to a circular trajectory of 40m and the SLAM algorithm has
been stopped before loop closure. In Figures 6(a) and 6(b), we
plotted the±3σ confidence ellipse around the estimated robot
pose. It can be noticed how the estimate of robot pose with
the trinocular based system eventually becomes inconsistent
while using sensor fusion helps in maintaining it consistent.

Figures 6(c), 6(d), 6(e) and 6(f) allow mapping comparison.
Notice that by using trinocular data and SVS points we are
able to reduce the uncertainty in the segment extrema (ellipses
in the plots) and to improve the overall accuracy.

V. CONCLUSION AND FUTURE WORKS

This paper presents a 6DoF SLAM algorithm that exploits
the uncertain projective geometry framework to perform sensor
fusion of 3D data coming from different sensors. The frame-
work allows to represent 3D segments and 3D points with their
associate uncertainty. Although the algorithm presented in this
paper deal with vision data, it is straightforward to include
other source of information in the framework. For instance,
laser scans could be integrated either using single measures as
points or extracting 3D lines or 3D planes, when dealing with
3D laser scans.

We faced sensor fusion by exploiting uncertain projective
geometry, outside the SLAM EKF state filter, to provide
a new “virtual” sensor. This had the purpose of reducing
measurement errors and improving the results obtained with
the SLAM algorithm. The described framework could be used
within the SLAM algorithm as well, for data association,
trough hypothesis test, and filter update. We are actually
working on the latter by adopting a Smoothing and Mapping
approach [4] to obtain independence between the features and
thus independent fusion procedures for each of them.

In the last years many researchers have demonstrated that it
is possible to use pictorial features from a monocular camera
to perform SLAM as well. Notable examples are the works of
Lacroix et al.[13], Davison et al.[3] and Lowe et al.[19]. The
key idea, in this kind of approaches, is to use interest points
as features, trying to fulfill the data association task by the use
of a point descriptors or correlation based methods. Usually,
to have significant landmarks, these descriptors are chosento
be invariant to image scale, rotation, and partially invariant
(i.e. robust) to changing viewpoints, and illumination. From a
SLAM point of view this is very useful not only for the data
association but also because it allows the robot to identifyeach
possible loop closure.

We are presently working on the integration of these pic-
torial feature in the framework proposed in this paper. By

manipulating uncertain geometric entities, we are able to treat
interest points as delimited portions of uncertain planes,en-
riched by an appearance information represented by the image
patch located around the point on the image plane. Performing
the data association among frames, we could estimate the most
probable plane where the feature lies and, at the same time,
update the appearance information depending on its position
relative to the camera orientation.
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