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Abstract— In this paper, we implement a biologically inspired
approach for the generation of real-time navigation of a real
omnidirectional robot. The approach is based on a so-called
neural fields, which are equivalent to continuous recurrent neural
networks. Due to its dynamical properties, a neural field produces
only one localized peak that indicates the optimum movement
direction of the robot. Experimental results support the validity
of the approach.

Index Terms— Mobile Robots, Neural Fields, Behavior-based
Control, Navigation.

I. INTRODUCTION

The basic task the robot has to perform is to reach a
goal under constraints, e.g moving towards a goal while
avoiding obstacles. Approaches that have been developed for
this problem can be divided into global and local methods.
Global methods require the environment to be completely
known and the terrain should be static, and they return a
continuous free path. By contrast, local methods need only
local information. It means that the path planning is done while
the robot is moving, in response to environmental changes.
Due to their low-computational costs, local methods are much
more suitable for real application where the environmental
state changes continually. The most popular local method
is the potential field approach proposed by Khatib [1]. The
idea is to consider that the robot moves under influences of
an artificial potential field. The target applies an attractive
force to the robot, while obstacles exert repulsive forces onto
the robot. The sum of all forces determines the subsequent
direction of the movement. While the potential field principle
is particularly attractive because of its elegance and simplicity,
substantial drawbacks have been identified, i.e. local minima
(cyclic behavior), no passage between closely spaced obsta-
cles, oscillations in narrow passages, etc [2].
Recently, the theory of dynamical systems has proven to be
an elegant and easy to generate robot behavior [3][4][5]. The
so-called Dynamic Approach invented by Schöner in 1995
[6] provides a framework to design differential equations
for so-called behavior variables, which generates the robot’s
behavior. Usually, these variables directly parameterize the
elementary behavior to be generated. However, there are
cases for which the behavioral variable needs a more general
form. For example, a behavioral variable can have multiple
values or even no value at all. In those cases, it is necessary
to express it by a continuous function. The neural field’s
model can represent such a behavioral variable. Originally,
these fields were proposed by Amari [7] as models of the
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Fig. 1. Omnidirectional robot. (a) hardware photo. (b) CAD model

neurophysiology of cortical processes. They are equivalent
to continuous recurrent neural networks, in which units are
laterally coupled through an interaction kernel and receive
external inputs. The concept of neural fields has proven to
be a simple and an elegant approach to generate a behavior-
based control for mobile robots [8][9]. In [10] we used neural
fields to navigate the mobile robot to its goal in an unknown
environment without any collisions with static or moving
obstacles. Furthermore, their competitive dynamics were used
to optimize the target path through intermediate home-bases.
More recently, we investigated how neural fields can produce
an elegant solution for the problem of moving multiple robots
in formation [11]. The objective was to acquire a target, avoid
obstacles, and keep a geometric configuration at the same time.

In this paper, the neural field approach is implemented on
a real omnidirectional robot (Figure 1). The objective is to
acquire a target without any collisions with static or moving
obstacles. We begin by describing the basic concept of neural
fields. Then we will present our navigation model, supported
with some experimental results.

II. NEURAL FIELD THEORY

The field equation of a one-dimensional neural field is given
by

τ u̇(ϕ, t) = −u(ϕ, t) + S(ϕ, t) + h

+
∫ +∞

−∞
w(ϕ, ϕ́)f(u(ϕ́, t)dϕ́ (1)
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where u(ϕ, t) is the field excitation at time t (t ≥ 0) at the
position ϕ ∈ R. The temporal derivative of the excitation is
defined by

u̇(ϕ, t) =
∂u(ϕ, t)

∂t
(2)

The constant h defines the pre-activation of the field, and f(u)
is the local activation function. Usually, f is chosen as a step-
function:

f(u) =
{

1, u ≥ 0
0 u < 0 (3)

The stimulus S(ϕ, t) ∈ R represents the input of the field
which is dependent on the field position and varies with time.
A nonlinear interaction between the excitation u(ϕ) at the
position ϕ and its neighboring positions is achieved by the
convolution of an interaction kernel w(ϕ, ϕ́).
Depending on the parameter h and the form of S, f and w, the
activation dynamics (1) can have different types of solutions
[7]:

1. ∅-solution, if u(ϕ) ≤ 0, ∀ϕ.
2. ∞-solution, if u(ϕ) > 0, ∀ϕ.
3. a-solution, if there localized excitation from a place

a1 to a place a2. This solution is also called a single-
peak or mono-modal solution.

The correct choice of the parameters of the field equation
enables the existence of one a-solution. In this solution, when
an input of a stimulus S(ϕ, t) is very large compared with
the within-field cooperative interaction, a single-peak will be
stabilized by interaction, even if the stimulus is removed. In a
robot behavior-based control, the position of the single-peak
on the field is used as a behavior variable, for example the
heading angle of the robot.

III. ROBOT SYSTEM

A. Hardware Platform
In this work, the neural field approach is implemented on

an omnidirectional mobile robot built recently at the university
of Stuttgart (Figure 1). It is equipped with 3 omni-wheels,
each of them driven by a 90W DC motor. Gearboxes with
reduction ratios of 14:1 are used to reduce the high angular
speeds of the motors (7000 rpm) and to amplify the wheel’s
mechanical torques, and 500 ppr digital incremental encoders
are used to measure the actual wheels speed. Motors are
controlled by 3-channel microprocessor-based interface. The
robot is equipped with a laptop to manage different sensors and
tasks. The communication between the sensors and the laptop
can be done through USB, RS232, or IEEE1394 (FireWire).
For environment sensing, the robot platform is equipped with
an omnidirectional vision system, based on a hyperbolic mirror
and a standard IEEE1394 (FireWire) camera. The Omnidirec-
tional vision provides the robot a very large field of view,
which has some useful properties. For instance, it can facilitate
the tracking of robots, the ball, and a set of environmental
features used for self-localization. To extract information, the
captured image is segmented using the calibrated colors of
relevant objects, such the ball, field lines, and obstacles. An
example of an image with recognized objects is shown in
Figure 2.

(a)

(b)

Fig. 2. Information extraction from the camera a) Image captured from
the omni-camera b) Recognition of relevant objects: lines(white), ball(red),
obstacles (black), and goals (blue and yellow).

B. Self-Localization

To estimate the robot pose relative to its environment,
we use a probabilistic localization algorithm called Monte
Carlo localization (MCL) [12]. MCL can solve the localization
problem in a highly robust and efficient way, even with
temporary partial or total occlusion of relevant sensor features.

C. Software Architecture

The Software architecture has a modular design structured
into three parallel working layers (Figure 3):

1 Sensor layer, where low level features or raw data
are gathered.

2 World Model layer, which stores locally gathered
data as well as communicated data by other robots. It
provides also so-called Data Processor modules, for
example monte carlo based localization and Kalman
filter based ball tracking.

3 Control layer, responsible for the execution of ac-
tions such as driving or shooting a ball.
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Fig. 3. Robot Software Architecture.

IV. CONTROL DESIGN

When the neural field (1) is in a-solution and an input of
a stimulus S(i, t) at time t is very large compared with the
within-field cooperative interaction, this input will dominate
the solution. As a result, a single-peak will be stabilized by
interaction and remains there, even if the stimulus is removed.
The idea is to use the position of the peak to encode the
optimum movement direction of the robot. In the experiments,
the neural field has to encode angles from −π to +π divided
to N discrete directions.

A. Field Activation

For numerical reasons, the one-dimensional neural field (1)
is discretized:

τu(i, t + ∆t) = (τ −∆t)u(i, t)

+∆t




N∑

j=1

w(i, j)f [u(j, t)] + S(i, t) + h


 (4)

The interaction kernel is chosen as:

w(i, j) = kwe−σw(i−j)2 −H (5)

where the parameter σw fixes the range of excitation, and kw

its amplitude. The global inhibition H allows only one local-
ized peak on the field. The interaction kernel w(.) is chosen as
a Mexican hat function so that excitatory connections dominate
for proximate units, and inhibitory connections dominate at
greater distances. Its parameters were chosen depending on
the robot and the obstacles shapes.
After the stabilization of the field, the most activated neuron
decodes the direction to be executed by the robot:

ϕF = argmax{u(i)|i ∈ [1, N ]} (6)

B. Field Stimulus

Before selecting an appropriate direction, the neural field
needs some necessary information (stimulus). The stimulus
is determined according to two stimulus-functions. These
functions describe
• the direction towards the target ST (i, t). This stimulus

is designed excitatory, showing an attraction towards the
target direction. It is chosen as

ST (i, t) = CT1 − CT2|i− iT (t)| (7)

where CT1, CT2 are constants positive, and iT (t) is the
field position, equivalent to the main target direction at
time t.

• directions to obstacles {SOl(i, t) : l ∈ [1, NObst]}, where
NObst is the number of obstacles detected by the robot
sensors. This stimulus must be inhibitory, since obstacles
collision must be avoided. It is chosen as a Mexican Hat
function centered at the direction of an obstacle.

SOl(i, t) = COe−σO(i−il)
2

(8)

where CO and σO are positive constants. σO defines the
range of inhibition of an obstacle. In practical situations,
this parameter is tuned according to the radius of the robot
and the obstacles. il reflects the direction of the obstacle l
at time t. However, the stimulus considers only obstacles
in distances dOl, which are below a threshold dTh.

The contributions of different stimuli determine the state of
the field. Thus, the global stimulus of the field at time t is
determined by

S(i, t) = ST (i, t)−
NObst∑

l=1

g(dOl)SOl(i, t) (9)

where g is a step function:

g =
{

1, dOl < dTh

0 dOl ≥ dTh
(10)

Using the step function g, only obstacles , which their
distances dOl to the robot are below a threshold dTh, are
considered.

C. Dynamics of Speed

In a free obstacle situation, the robot moves with its
maximum speed Vmax, and slows down when it approches
a target. This velocity dynamics can be chosen as:

VT (t) = Vmax(1− e−σvdT ) (11)

where σv is a positive constant tuned in a relation with the
acceleration capability of the robot. dT represents the distance
between the robot and the target at time t.
Close to obstacles, the robot needs also to be slowed down.
In case of many obstacles, the nearest obstacle on the robot
direction is considered. This dynamics can be chosen as:

VO(t) = CO(1− g(dno)e−σOv(ϕF−inO)2) (12)

where CO and σOv are positive constant, inO is the nearest
obstacle direction to the robot movement direction and dnO is
its distance relative to the robot.
The final dynamics of the velocity is the contribution of (11)
and (12). It is also considered when no appropriate direction
can be selected, for example when the robot is completely
surrounded by obstacles. In this case the robot must stop until
the environmental situation changes. Thus, the robot velocity
that satisfies the above design creteria is the following:

V (t) =
{

VT (t)VO(t), ϕF > 0
0 ϕF ≤ 0 (13)
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V. EXPERIMENTAL RESULTS

The expriments were performed on a soccer field, since the
localization software is made for a RoboCup soccer game. On
the neural field we chose the number of discrete directions
N = 60 neurons, which means that each direction N decodes
a step of 6o. The neural field is expected to align the robot’s
heading with the direction of the target, and to bring it
away from the nearby obstacles. We will illustrate this with
some experiments showing target acquisition with collision
avoidance for multiple static and moving obstacles.
The first experiment (Figure 4) shows the test of acquisition
a target while avoiding static obstacles. Figure 4 (a) and
Figure 4 (b) show the activation and the stimulus in their
temporal course, respectively. In the first 20 time steps, both
the stimulus and the activation are unimodal, since no ob-
stacles are detected. The peak location provides therefore the
direction of the target, and the robot moves straight towards
it. In the following time steps, the stimulus contains both the
target and obstacle entries (obsacle entries are depicted as a
“cavity” in Figure 4 (b)). Therefore, it becomes bimodal. By
contrast, the field activation remains unimodal, since the field’s
parameters are adjusted such as the field is in the a-solution
state, i.e. stabilization of a single-peak even the stimulus is
removed. Due to the design of the stimulus, the peak moves
smoothly to an optimum local position on the field, which
corresponds to a new robot behavior “target acquisition with
obstacle avoidance”. The field provides now the appropriate
heading direction (Figure 4 (c)), which permits at this stage
the avoidance of obstacle 1. Furthermore, according to (13),
the robot moves with its maximum linear velocity when no
obstacles are detected, and slowed down when it is near the
obstacle or approaches the target (Figure 4 (d)). Due to the
stimulus contribution of all obstacles, and the correspodant
activity of the field, the robot was obliged to pass also to
the right of obstacle 2 and obstacle 3, until having a free
path to the target. The global path of the robot is illustrated
on Figure 4 (e). Figure 5 shows some photos from its video
sequences. In the second experiment (Figure 6), the distance
between obstacles 2 and 3 is now large enough enabling the
robot to pass through. At the begining of this experiment
the robot has the same behavior as in experiment 1 until it
passes obstacle 2. At this moment the robot could show a
flexibility and moved effectively between obstacles 2 and 3 in
order to reach the target. Figure 7 shows some photos from
video sequences taken from the second experiment. The third
experiment (Figure 8) was carried out to verify the navigation
approach ability in tackling moving obstacles. In this context,
the problem is how to reach a target in the presence of
dynamically moving obstacles. When an obstacle is moving,
collision avoidance is harder because the robot has to detect
not only its position, but also its direction. As in the prior
experiments, during the first 20 time steps, the field activation
(Figure 8 (a)) is unimodal, since the stimulus (Figure 8 (b))
contains only the target entries. In the following time steps,
the robot deviates from the straight line to avoid the static
obstacle 1.
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Fig. 4. Target acquisition with Obstacle avoidance: Experiment 1.

Fig. 5. Photos from the video sequence of the Experiment 1.

At time step 51, the stimulus (Figure 8 (b)) contains now
entries from the moving obstacle 2. When approaching it,
the robot percieves that it is a moving obstacle and knows
its direction. It maintaines a lower speed (Figure 8 (d)) and
changes its direction (Figure 8 (c)) to avoid it. After passing
obstacle 2, the peak moved to the position, which encodes the
target direction. The final path is illustrated on Figure 8 (e).
In this experiment the robot was able to reach the target after
reacting appropriately to the unexpected static and moving
obstacles.
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Fig. 6. Target acquisition with Obstacle avoidance: Experiment 2.

Fig. 7. Photos from the video sequence of the Experiment 2.

VI. DISCUSSION AND CONCLUSION

The most popular method to solve the problem of tar-
get acquisition with obstacle avoidance is the potential field
approach proposed by Khatib [1]. While the potential field
principle is particularly attractive because of its elegance and
simplicity, substantial drawbacks have been identified, i.e.
local minima (cyclic behavior), no passage between closely
spaced obstacles, oscillations in narrow passages, etc [2].
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Fig. 8. Target acquisition with Moving Obstacle avoidance

With this paper, we tried to solve these problems using a
biologically inspired approach based on a so-called neural
fields, which are equivalent to continuous recurrent neural
networks. The navigation model is developed in order to
produce peak-solutions of the field activation, which encode
the appropriate robot direction in response to a change in
the environment. When two potential targets (directions) are
presented to the field, two type of responses are possible.
When the stimulus consists of two narrowly spaced peaks, a
single peak of activation localized over an averaged direction
is generated. When the stimulus contains two peaks which
are more separate, the field dynamic becomes bi-stable and
generates only a single peak, positioned either at one or at
the other stimulated location. The possibility to generate only
one single peak presents the power of this approach. This
property could, for instance, solve some drawbacks of the
potential field method: local minima (cyclic behavior) and no
passage between closely spaced obstacles. Moving through
narrow passages is tested only on simulation, and it has
shown promising results. Furthermore, the tunning of the field
parameters is simple and doesn’t depend on the environement.
First, the field should be forced to the a-solution, in order to
produce a single peak. Then, the sitmulus should be tuned
according to the problem at hand. In [10] we used neural



6

fields to navigate the mobile robot to its goal in an unknown
environment with optimizing the target path through interme-
diate home-bases. More recently in [11], we investigated how
neural fields can produce an elegant solution for the problem
of moving multiple robots in formation. The objective was
to acquire a target, avoid obstacles and keep a geometric
configuration at the same time. In this paper we want to test
this approach on a real omnidirectional robot. The results show
that this approach provides robustness against uncertainty in
the perception system, and demonstrates the robot ability to
adapt its behavior to unexpected situations and navigate among
static and moving obstacles. However, a real implementation
for a multiple robots system is still needed to test this approach
in more complex scenarios, and to ensure the effectiveness of
the simulation results achieved in [11].
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