
1

Comparison of Different Approaches to
Vibration-based Terrain Classification
Christian Weiss∗ Nikolas Fechner∗ Matthias Stark∗ Andreas Zell∗
∗Department of Computer Science, University of Tübingen, Tübingen, Germany

Abstract— There is a variety of different terrain types in
outdoor environments, each posing different dangers to the robot
and demanding a different driving style. In a previous paper,
we presented a terrain classification method based on Support
Vector Machines (SVM), which uses vibrations induced in the
body of the robot to learn different terrain classes. However,
in the previous paper, our experimental results were based on
vibration data collected by a hand-pulled cart with relatively hard
wheels. In this paper, we present experiments on data collected
by our RWI ATRV-Jr outdoor robot. Additionally, we compare
our SVM-based method to alternative classification methods.
The comparison shows that our approach outperforms the other
methods.

Index Terms— Outdoor robotics, vibration-based terrain clas-
sification

I. INTRODUCTION

In outdoor environments, a mobile robot typically faces
many different terrain types. Some of them are flat and not
slippery, and therefore the robot can traverse them at relatively
high speed. Other ground surfaces are loose, slippery or
bumpy, and therefore dangerous. To prevent accidents, the
robot has to traverse these regions slowly and carefully. These
examples show that the ground surface itself is a possible
hazard to the robot in outdoor environments. Such a hazard is
called a non-geometric hazard [21]. The robot can only avoid
accidents if it adapts its driving style to the current terrain
type.

One way to determine the terrain type is to directly estimate
terrain parameters like cohesion or slippage from sensor mea-
surements. Another way is to group the terrain into classes like
asphalt, dirt or gravel, and to learn these classes from training
examples. Once the robot has learned the different classes, it
can classify new terrain data according to the learned model.

The most common data used for terrain classification are
data collected by laser scanners or cameras. Ladar-based
methods often focus on segmenting the ground surface from
vegetation or all kinds of obstacles (e.g. rocks) instead of
estimating the type of the ground surface itself [18, 8, 19, 12].
Other methods divide the ground surface in navigable and
non-navigable regions [22]. Vision-based methods usually use
texture or color information [1, 4, 12]. Some research has also
been done on using force-torque sensors and potentiometers
to detect non-geometric hazards [9, 11].

Vibration-based terrain classification was first suggested by
Iagnemma and Dubowsky [10]. The idea is to measure the
vibration that is induced in the robot while it traverses the
terrain. The vibration can be measured at the wheels, the axes

or the body of the robot. Usually, accelerometers are used
to measure the vibration perpendicular to the ground surface
(z-acceleration). As different terrain types induce different
vibration signals, one tries to learn characteristic vibration
signals for each terrain type from training examples. The
learned model is then used for classification of unknown
data. The disadvantage of the method is that terrain can be
classified only while the robot traverses it, but not beforehand.
Advantages are, for example, the independence from illumina-
tion conditions and the high reliability. Thus, vibration-based
terrain classification can be used as a stand-alone classifier or
in combination with other sensors.

Brooks and Iagnemma examined vibration-based terrain
classification for planetary rovers [2, 3]. They use Principal
Component Analysis (PCA) to reduce the dimensionality
of their data and Linear Discriminant Analysis (LDA) for
classification. Sadhukhan and Moore presented an approach
based on probabilistic neural networks (PNN) [14, 15]. In [20],
we suggested an approach that uses Support Vector Machines
(SVM) for classification. Stavens et al. presented an approach
for vehicles driving up to 35 mph [17]. However, they focused
on assessing the roughness of the terrain to adapt the velocity,
and not on grouping the ground surface into classes.

In our previous paper [20], we obtained our experimental
results using data from a hand-pulled cart with relatively
hard wheels. These wheels lead to relatively clear and strong
vibration signals. In this paper, we present experimental results
on data that we collected using our RWI ATRV-Jr outdoor
robot. Its big, air-filled tires are likely to dampen the vibration
signals. We also examine how different robot speeds influence
the classification performance. Additionally, we implemented
the terrain classification approach presented by Sadhukhan
and Moore as well as the approach suggested by Brooks and
Iagnemma, and compare both to our approach. These methods
cover two of the four main groups of classification methods,
namely kernel methods (our SVM-based approach) and neural
networks (the PNN). From the third group, the methods based
on Likelihood, we chose Naı̈ve Bayes, which is a standard
method from this group. The fourth group are decision trees,
from which we examined the J4.8 algorithm. J4.8 is based
on the well known C4.5 algorithm. Finally, we also tested a
k-nearest-neighbor (kNN) classifier.

The rest of this paper is organized as follows. Section II
recapitulates our SVM-based terrain classification approach.
Section III briefly describes the alternative classification meth-
ods. Section IV presents our experimental results and finally,
Section V concludes the paper and suggests future work.

2

0 10 20 30 40 50 60 70 80 90 100
−1

0

1
ac

ce
le

ra
tio

n
(m

/s
2) asphalt

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

ac
ce

le
ra

tio
n

(m
/s

2) gravel

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

ac
ce

le
ra

tio
n

(m
/s

2) grass

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

ac
ce

le
ra

tio
n

(m
/s

2)

entry in acceleration vector

clay

Fig. 1. Some example acceleration vectors for different terrain types.

II. SVM-BASED TERRAIN CLASSIFICATION METHOD

In this section, we first give an overview over our method.
Then we present feature extraction and SVM classification in
more detail.

A. Method Overview
Our method consists of a training phase and a classification

phase. In the training phase, we first drive the robot around on
known terrain to collect z-acceleration data at 100 Hz. Then,
we split the acceleration into 1×100 vectors, i.e. each vector
represents 1 s of robot travel. Additionally, we label each
vector with its terrain type. Then we transform each vector
to the frequency domain (Section II-B). Next, we normalize
each feature (= frequency component) to mean 0 and standard
deviation 1. In the last step, we train an SVM on the labeled
feature vectors (Section II-C). The training phase is an offline
step, because it is computationally intensive.

In the online test phase, the robot drives around on unknown
terrain. After each second, we create a 1×100 acceleration
vector, transform it to the frequency domain and normalize
it using the same parameters used during training. Then, we
classify the resulting test vector using the trained SVM to get
the predicted terrain type.

B. Feature Extraction
The vibration vectors collected by the robot contain accel-

eration values measured perpendicular to the ground surface.
Fig. 1 shows some examples. Except for grass, the signals are
very similar. Thus, it is beneficial to transform these vectors
to a more significant representation.

In [20], we compared different representations: a Fast
Fourier Transform (FFT) representation as suggested by Sad-
hukhan [14], a log-scaled power spectral density (PSD) as
used by Brooks and Iagnemma [3], and a more compact
representation based on simple features calculated from the
acceleration vector (e.g. the number of sign changes). In our
experiments using data of the hand-pulled cart, we found the
simple features to work best. However, for the data collected
by our robot, the frequency-based representations, i.e. the FFT
and the log-scaled PSD, work better. Thus, for the rest of this

paper, we will use either a log-scaled PSD or a 128-point FFT
of the acceleration data as feature vector.

C. SVM Classification
After feature extraction, we use an SVM [6] to learn for

each terrain type a separation from all other terrain types (one-
versus-rest classificaton). Later on, an unseen test pattern will
be assigned to that class, for which the distance to the decision
boundary is largest.

SVMs belong to the family of kernel methods [16]. The idea
is to construct a separating hyperplane between two classes of
points, such that the margin between the hyperplane and the
points closest to it becomes maximal. Nonlinear classification
can be achieved by first mapping the original data to some
high dimensional feature space in a nonlinear fashion. This
computation is usually done implicitly by means of a kernel
function, which defines a dot product between points in feature
space. It is also possible to allow for a small number of training
errors by means of a so-called soft margin parameter C that
regularizes the trade-off between maximizing the margin and
minimizing the training error.

In our case we employ a Radial Basis Function (RBF)
k(x, y) = exp(−‖x − y‖2/2σ2) as kernel function, where x
and y are two feature vectors. The width σ of the RBF kernel
together with the soft margin parameter C are tuned via a sys-
tematic search on the grid log2 σ ∈ {σ̂/4, ..., 4σ̂} and log2 C ∈
{−2, ..., 14}, where σ̂ is set such that exp(−D/2σ̂2) = 0.1.
D denotes the length of the feature vectors. Each candidate
parameter vector (σ, C) on the grid is evaluated by 5-fold
cross-validation. Note that this automatic parameter selection
only involves the training data, but not the test data. As SVM
implementation we use LIBSVM [5].

III. ALTERNATIVE CLASSIFICATION METHODS

This section briefly describes the classification methods to
which we compare our SVM-based approach. The FFT and
log-scaled PSD feature vectors are the same for all approaches.

A. PNN
Using probabilistic neural networks for terrain classification

was suggested by Sadhukhan [14]. As feature vector, he
used the frequency components of a 1024-point FFT that are
between 10 and 20 Hz. However, in our experiments, we used
a 128-point FFT and all frequency components, because this
led to better results. Please note that we did not compute the
results presented in Section IV using Sadhukhan’s original
code given in [14], but using an own implementation of PNNs.
The reason is that on average, our code produced better results
than Sadhukhan’s code.

A PNN has three layers (Fig. 2). The first layer is the
input layer and consists of d input units ai, where d is the
dimensionality of the data. Each input unit is connected to each
of the n pattern units wi, where n is the number of training
vectors. Each of the pattern units is connected to a single
category unit ci. The number c of category units corresponds
to the number of classes.

3

Fig. 2. A probabilistic neural network consisting of d input units ai, n

pattern units wi and c category units ci.

In the training phase, the n normalized training vectors xi

are presented to the PNN. Basically, training consists of storing
each training vector xi in the corresponding pattern unit wi.
Additionally, each pattern unit is connected to the category
unit corresponding to the label of the training vector.

For classification, a normalized test vector y is presented
to the PNN. Each pattern unit wi calculates the inner product
neti = wi

ty which is called the net activation. Then, the
pattern unit wi emits the value e(neti−1)/σ2 of a nonlinear
activation function to the attached category unit ck. The
parameter σ must be set by the user. In our experiments, we
found σ = 0.4 to work best. Each category unit sums the
inputs from the pattern units. Finally, the category unit with
the highest accumulated value gives the predicted label. A
more detailed description of PNNs can be found in [7].

B. Brooks’s Method
In the approach presented by Brooks and Iagnemma, the

terrain can also be labeled as “unknown”, if the classifier is not
sure about the predicted class. We implemented the algorithm
based on the detailed descriptions given in [2] and [3].

Brooks and Iagnemma transform their acceleration data to a
power spectral density (PSD). A log-scaling of the magnitude
reduces the dominating effect of high-magnitude frequency
components. Then, they use principal component analysis
to reduce the dimensionality of their feature vectors and to
separate the signal from noise. They suggest to use k = 15
principal components. However, we used k = 30, because this
worked better for our data.

To separate feature vectors of different classes, Brooks and
Iagnemma use linear discriminant analysis (LDA). They train
a set of pairwise classifiers, one classifier for each possible
pair of terrain types. These classifiers take into account both
the distribution of feature vectors within a single class as
well as the separation of the class means, and compute a
discrimination vector d. To classify a test vector y, the dot
product d(y) = dy is computed and the Mahalanobis distance
of d(y) to both terrain class means is calculated. If the
difference between the Malahanobis distances is < 1, the
terrain class of y is “unknown” and both involved classes get
an “unknown” vote. Otherwise, the class mean with the smaller
distance specifies the predicted label and casts a positive vote
for the winning class and a negative vote for the other class.

If there are more than two classes, a voting scheme sums up
the votes of the pairwise classifiers. The class with the largest
number of positive votes wins. If the number of “unknown”

votes for this class is equal to or larger than the number of
positive votes, or there are one or more negative votes, the
terrain is classified as “unknown”.

C. kNN
The k-nearest-neighbor algorithm is a very simple classi-

fication method. However, it often performs very well and
therefore, it is an important benchmark method.

For training, simply all training vectors xi are stored. To
classify a test vector y, the distances di of y to all training
vectors are computed and the k training vectors with the
smallest distances are selected. The predicted class is the one
that is most frequent among the labels of the selected vectors.
If there is a draw, often simply a random label is chosen from
the winners. In our experiments, we found k = 10 to work
best among the values k ∈ {1, 2, 5, 10, 15}.

D. Decision Trees
Decision Trees are classical machine learning approaches

based on information theoretical considerations. The version
J4.8 used in this paper is a Java implementation based on the
well known C4.5 algorithm [13]. Both of them rely on the ID3
algorithm and use entropy-based measures for constructing
the classification tree. The entropy E(X) =

∑
i −pi log2 pi

is a measure for the disorder of a data collection X with
pi being the proportion of X belonging to the class i. This
measure can now be used for defining the ability of an attribute
A for classifying the examples by calculating the expected
reduction of entropy if the data are ordered according to
A. This leads to the information gain G(X, A) = E(X) −
∑

v∈V alues(A)
|Xv |
|X| E(Xv) which describes the discriminatory

power of an attribute A.
The ID3 algorithm constructs the tree top-down by choosing

the most descriptive attribute A in each node H and adding
a new branch to H for each value of A in the case that the
attribute is nominal. Otherwise a binary split according to the
value of A is performed. Finally, each leaf is labeled by the
most common class of the subset of X represented by it.

E. Naı̈ve Bayes
In contrast to the previously described approaches, Naı̈ve

Bayes [13] does not perform a simple prediction but
a probability estimation of a class. The basic idea of
this algorithm is to assign each instance x the class
vi which is the most probable class considering its at-
tributes Ai. Using Bayes’ theorem, this can be ex-
pressed as c(x) = argmaxvi

P (a1, ..., an|vi)P (vi) =
argmaxvi

P (vi)
∏

i P (ai|vi). The training of the classifier
simply consists of estimating the P (vi) and P (ai|vi) based
on the distribution in the training data.

IV. EXPERIMENTAL RESULTS

To collect vibration data, we used our RWI ATRV-Jr outdoor
robot (Fig. 3). We mounted an Xsens MTi sensor on an
aluminium plate on top of the robot. The Xsens MTi measures
the z-acceleration perpendicular to the ground floor at 100 Hz.

4

Fig. 3. Our RWI ATRV-JR outdoor robot “Arthur”.

TABLE I
NUMBER OF SAMPLES PER CLASS IN OUR DATASET

class 0.2 m/s 0.4 m/s 0.6 m/s total
indoor floor 282 549 581 1412

asphalt 499 513 600 1612
gravel 311 323 392 1026
grass 482 572 631 1685

paving 314 573 567 1454
clay 423 579 605 1607

no motion 199 615 615 1429
total 2510 3724 3991 10225

In the middle of July and in the beginning of December, we
collected vibration data by driving the robot over six different
terrain types: indoor PVC floor, asphalt, gravel, grass (i.e. the
soil under the grass), paving and clay (the surface of a boule
court). As seventh “terrain type”, we added some data from
situations in which the robot did not move. Fig. 4 shows
example images of the different surfaces. Additionally, we
used three different robot speeds: about 0.2 m/s, 0.4 m/s and
0.6 m/s. In total, our dataset contains 10225 samples which
correspond to about 2 h 50 min of robot drive. Tab. I shows
the number of samples in our dataset in more detail.

In our experiments, we used 10-fold cross-validation. This
means that for each experiment, we split the data into 10
equally sized parts. In each of the 10 folds, we used 9 parts
for training, and the remaining part for testing. We obtained
the final result by averaging the results of the folds.

As quality measures of a classification result, we use the
true positive rate (TPR) and the false positive rate (FPR). The
TPR for a class ci is the percentage of test vectors belonging
to ci that were correctly classified as class ci. The FPR for
class ci is the percentage of test vectors not belonging to ci but
wrongly classified as class ci. Good results are characterized
by a high TPR and a low FPR.

It is difficult to compare the classification method of Brooks
to the other approaches, because it is the only one allowing
“unknown” predictions. These “unknowns” are not counted
as correct, so the TPR of Brooks’s method is expected to be
lower than for the other methods. However, the “unknowns”
are also not regarded as false. Thus, the FPR is expected to
be better than for the other methods.

For the different classifiers, often one of the FFT or log-
scaled PSD representation works better than the other. Thus,
for each classification method, we present only the results

Fig. 4. The different terrain types we used in our experiments: 1) indoor
floor 2) asphalt 3) gravel 4) grass 5) paving 6) clay.

obtained by using the more suitable features. For PNN, Naı̈ve
Bayes and J4.8, we used the FFT representation, whereas for
kNN and the method of Brooks, we used the log-scaled PSD.
For the SVM, we present the results for both features.

In a first experiment, we considered only the three terrain
classes gravel, grass and clay, because there may be many
environments were only a small number of different terrains
exist. Fig. 5 shows the true positive rates obtained by the
different methods at different speeds. Additionally, the figure
shows the results when all speeds are merged in one dataset.
Note that the TPRs in Fig. 5 are the average TPRs of the
three classes. The results of the SVM lie between 95 and
98% for 0.2 to 0.6 m/s and between about 91 and 92% for
mixed velocities. Only the kNN method performs similarly
well. The performance of the PNN strongly depends on the
velocity; the TPRs are between 72 and 85%. The TPRs using
Brooks’s method, Naı̈ve Bayes and J4.8 are around 90% for
the individual velocities. However, on mixed velocities, the
TPRs drop to about 77-82%. The results show no general
trend on which velocity can be classified best. However, all
methods perform better on individual velocities than on the
mixed dataset.

Fig. 6 shows the false positive rates for the 3-class ex-
periment. As expected, the method of Brooks outperforms
all other approaches. This method prefers classifying samples
as “unknown” to classifying them wrong. Among the other
approaches, SVM and kNN perform similarly well. PNN,
Naı̈ve Bayes and J4.8 perform significantly worse.

In [3], Brooks and Iagnemma also presented results of a
3-class experiment including sand, dirt and gravel. They used
vibration data collected at 44.1 kHz by the rover TORTOISE,
whose velocity varied from 2 to 5 cm/s, and split the vibration
data into segments of 3 s. About 85.3% of the test vectors
were correctly classified in their experiment, and about 10.7%
of the samples were classified as “unknown”. Despite the very
different experimental settings in our experiment, Brooks’s
method also performs well. It achieves a a TPR of over 90%
on individual velocities, and a TPR of 77% on the mixed data.

In [14], Sadhukhan presented a 3-class experiment that
is very similar to our experiment. An RWI ATRV-Jr robot
collected acceleration signals at 100 Hz. The robot traversed
a testbed consisting of grass, dirt and gravel at 0.2, 0.4, 0.6
and 0.8 m/s. Sadhukhan observed that the classification rates

5

0.2 0.4 0.6 mixed
60

65

70

75

80

85

90

95

100

velocity (m/s)

tru
e

po
sit

ive
 ra

te
 (%

)

SVM (FFT)
SVM (PSD)
PNN
Brooks
kNN
Naive Bayes
J4.8

Fig. 5. True positive rates in the 3-class experiment.

0.2 0.4 0.6 mixed
0

2

4

6

8

10

12

14

velocity (m/s)

fa
lse

 p
os

itiv
e

ra
te

 (%
)

SVM (FFT)
SVM (PSD)
PNN
Brooks
kNN
Naive Bayes
J4.8

Fig. 6. False positive rates in the 3-class experiment.

increase with the speed of the robot. At 0.2 m/s, about 75%
of the test vectors were classified correctly, whereas the TPR
was about 94.7% at 0.8 m/s. Our experiments did not confirm
this finding, perhaps because Sadhukhan collected his data in
a more controlled testbed environment.

In a further experiment, we included all seven terrain
classes. The classification performance of all approaches de-
creases due to the more difficult dataset. Fig. 7 shows that
again our SVM approach performs best. The TPRs for 0.2 m/s
and the mixed dataset are about 80%, and for 0.4 and 0.6 m/s,
the TPRs are about 85-86%. This time, the kNN can not match
the performance of the SVM, but is best among the other
approaches. In total, Naı̈ve Bayes is next best, followed by
PNN, the method of Brooks and the J4.8 decision tree. Using
mixed velocities, the approach of Brooks classifies about 26%
of the samples as “unknown”, which lead to a low TPR.
The results also show that data collected at 0.2 m/s are more
difficult to classify than data collected at higher speeds.

Fig. 8 shows the false positive rates of the 7-class experi-
ment. The approach of Brooks again performs best. However,
the difference to the SVM is smaller than in the 3-class
experiment. On mixed velocities, the FPRs of Brooks’s method
and our SVM method are approximately equal. The further

0.2 0.4 0.6 mixed
50

55

60

65

70

75

80

85

90

95

100

velocity (m/s)

tru
e

po
sit

ive
 ra

te
 (%

)

SVM (FFT)
SVM (PSD)
PNN
Brooks
kNN
Naive Bayes
J4.8

Fig. 7. True positive rates in the 7-class experiment.

0.2 0.4 0.6 mixed
0

1

2

3

4

5

6

7

8

9

velocity (m/s)

fa
lse

 p
os

itiv
e

ra
te

 (%
)

SVM (FFT)
SVM (PSD)
PNN
Brooks
kNN
Naive Bayes
J4.8

Fig. 8. False positive rates in the 7-class experiment.

ranking is kNN, followed by Naı̈ve Bayes, PNN and J4.8.
We also examined how well different terrain classes could

be classified. For this purpose, Tab. II shows the confusion
matrix of our SVM method. The entry (i, j) of the matrix
shows how often (in %) samples belonging to class i were
classified as class j. To create the confusion matrix, we used
our most difficult dataset: seven terrain classes and mixed
velocities.

The confusion matrix indicates that a stopped robot is
correctly detected in most of the cases. Indoor floor is wrongly
classified as asphalt in about 20% of the cases. In turn, asphalt
is misclassified as indoor floor in about 12% of the cases.
About 17.5% of gravel samples are wrongly classified as
paving and nearly 10% of paving is classified as gravel. These
pairs show that the most noticeable misclassifications occur
between terrain types that are rather similar. Grass seems to
be well distinguishable from all other types.

Tab. III compares the computation times of the different
classifiers on two example datasets A and B, measured on a
3 GHz PC with 1 GB of RAM. In the 3-class dataset A, we did
training on 3886 vectors and classification on 432 vectors. In
the 7-class dataset B, we used 9203 vectors for training and
1022 vectors for classification. Both datasets contain mixed

6

TABLE II
CONFUSION MATRIX FOR 7-CLASS CLASSIFICATION USING SVMS. NM:

NO MOTION, IN: INDOOR FLOOR, AS: ASPHALT, GV: GRAVEL, GS:
GRASS, PV: PAVING, CL: CLAY.

NM IN AS GV GS PV CL
NM 99.93 0.07 0 0 0 0 0
IN 0 71.66 18.28 0.07 0.35 0.99 8.64
AS 0 11.85 74.13 0.43 0.50 3.91 9.18
GV 0 0.10 0.29 70.37 10.44 17.55 1.27
GS 0 0 0.06 3.02 93.83 1.96 1.13
PV 0 1.03 2.75 9.63 3.30 76.55 6.74
CL 0 2.55 7.41 0.87 2.93 7.15 79.09

TABLE III
COMPUTATION TIMES ON 3-CLASS DATASET A AND 7-CLASS DATASET B

Training (s) Classification (ms)
A B A B

Brooks 14.104 100.670 0.047 0.150
Naı̈ve Bayes 0.473 1.360 1.420 2.250
SVM (PSD) 3223.729 27213.897 0.835 3.086
SVM (FFT) 4251.225 29820.799 0.978 4.125
J4.8 8.990 41.750 19.221 38.612
kNN 7·10−6 7·10−6 27.076 65.218
PNN 0.054 0.130 66.464 135.692

velocities. Note that Tab. III shows the training times for
complete training, whereas classification times are average
values for a single vector.

The training times for the SVM (up to several hours)
are much higher than for the other methods, because the
gridsearch to tune the parameters is very time-consuming.
As training can be done offline, however, the time needed to
classify a test vector is more important. Using Naı̈ve Bayes,
the SVM and the method of Brooks, classification takes at
most a few milliseconds. The classification times for J4.8, kNN
and PNN are significantly higher.

V. CONCLUSION

In this paper, we presented extensive experiments on
vibration-based terrain classification. The experiments showed
that our SVM-based method works well on data collected by
a common outdoor robot driving between 0.2 and 0.6 m/s. As
the classification rates tended to slightly increase with higher
speed, we think that our method will also work for velocities
of about 1 m/s or above. However, the more different velocities
are merged together in one dataset, the more difficult the
classification. A solution could be to train separate classifiers
for different ranges of velocities, and to select the appropriate
classifier for a test vector based on the velocity measured by
the robot’s odometry.

We also compared our method to other approaches: an
method suggested by Brooks and Iagnemma, an approach pre-
sented by Sadhukhan and Moore based on probabilistic neu-
ral networks (PNN), a k-nearest-neighbor classifier, a Naı̈ve
Bayes approach and a J4.8 decision tree. The experiments
showed that among the compared approaches, our SVM-based
method worked best. Despite its simplicity, the kNN classifier
also worked well. Unlike the other methods, the approach of
Brooks and Iagnemma can classify a sample as “unknown”,
which often led to a low true positive rate, but also to a low

false positive rate. PNN, Naive Bayes and the J4.8 decision
tree performed worse than the other approaches.

In the future, we plan to examine if it is possible to learn a
separation between terrain classes from scratch without prior
knowledge. Additionally, we will investigate if the acceleration
measured in other directions, e.g. sideways, is also suitable
to capture the vibration, and if a combination of different
directions can further improve the classification rates.

REFERENCES

[1] P. Bellutta, L. Manduchi, K. Matthies, K. Owens, and A. Rankin. Terrain
perception for demo III. In Proc. IEEE Intelligent Vehicles Symposium,
pages 326 – 332, Dearborn, MI, 2000.

[2] C. Brooks, K. Iagnemma, and S. Dubowsky. Vibration-based terrain
analysis for mobile robots. In Proc. IEEE International Conference on
Robotics and Automation (ICRA), pages 3426–3431, Barcelona, Spain,
2005.

[3] C. A. Brooks and K. Iagnemma. Vibration-based terrain classification for
planetary exploration rovers. IEEE Transactions on Robotics, 21(6):1185
– 1191, December 2005.

[4] R. Castano, R. Manduchi, and J. Fox. Classification experiments on
real-world textures. In Workshop on Empirical Evaluation in Computer
Vision, Kauai, HI, 2001.

[5] C. Chang and C. Lin. LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[6] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273 – 297, 1995.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley,
2001.

[8] M. Hebert and N. Vandapel. Terrain classification techniques from ladar
data for autonomous navigation. In Proc. Collaborative Technology
Alliances conference, 2003.

[9] K. Iagnemma, C. Brooks, and S. Dubowsky. Visual, tactile, and
vibration-based terrain analysis for planetary rovers. In Proc. IEEE
Aerospace Conference, 2004.

[10] K. Iagnemma and S. Dubowsky. Terrain estimation for high-speed
rough-terrain autonomous vehicle navigation. In Proc. SPIE Conference
on Unmanned Ground Vehicle Technology IV, 2002.

[11] K. Iagnemma, S. Kang, H. Shibly, and S. Dubowsky. Online terrain
parameter estimation for wheeled mobile robots with application to
planetary rovers. IEEE Transactions on Robotics, 20(5):921 – 927, 2004.

[12] R. Manduchi, A. Castano, A. Talukder, and L. Matthies. Obstacle
detection and terrain classification for autonomous off-road navigation.
Robotics and Automation, 18:81 – 102, 2005.

[13] T. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[14] D. Sadhukhan. Autonomous ground vehicle terrain classification using

internal sensors. Master’s thesis, Dept. Mech. Eng., Florida State
University, Tallahassee, Florida, USA, 2004.

[15] D. Sadhukhan and C. Moore. Online terrain estimation using internal
sensors. In Proc. Florida Conf. on Recent Advances in Robotics, Boca
Raton, FL, 2003.

[16] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press,
Cambridge, MA, 2002.

[17] D. Stavens, G. Hoffmann, and S. Thrun. Online speed adaptation using
supervised learning for high-speed, off-road autonomous driving. In
Proc. International Joint Conference on Artificial Intelligence (IJCAI),
Hyderabad, India, 2007.

[18] A. Talukder, R. Manduchi, A. Rankin, and L. Matthies. Fast and reliable
obstacle detection and segmentation for cross-country navigation. In
Proc. IEEE Intelligent Vehicles Symposium, Versailles, France, 2002.

[19] N. Vandapel, D. Huber, A. Kapuria, and M. Hebert. Natural terrain clas-
sification using 3-d ladar data. In Proc. IEEE International Conference
on Robotics and Automation (ICRA), New Orleans, LA, 2004.

[20] C. Weiss, H. Fröhlich, and A. Zell. Vibration-based terrain classification
using support vector machines. In Proc. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 4429 – 4434,
Beijing, China, October 2006.

[21] B. H. Wilcox. Non-geometric hazard detection for a mars microrover. In
Proc. AIAA Conf. Intell. Robot. Field, Factory, Service, Space, volume 2,
pages 675 – 684, Houston, TX, 1994.

[22] D.F. Wolf, G. S. Sukhatme, D. Fox, and W. Burgard. Autonomous
terrain mapping and classification using hidden markov models. In Proc.
IEEE International Conference on Robotics and Automation (ICRA),
Barcelona, Spain, 2005.

