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Abstract
Frequently, it is convenient to describe a program in terms of the normal situations in which it will be
used, even if such a description does not describe the its complete behavior in all circumstances. This
paper surveys the issues surrounding the description of program behavior in exceptional situations.
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I. Introduction

During a computation, functions communicate with one another by passing arguments, by returning
values, and by side-effect upon shared structures. Consider the following definitions:

(PLUS ni n2) returns the sum of its two arguments, n, and n2.

(TYI instream) returns the next character on the input stream given by its argu-
ment, instream. This function performs an implicit side-effect upon
instream, typically incrementing some internal scan pointer, in order
to assure that subsequent calls attempts to read from the same stream
do not try to re-read the same character.

The descriptions of PLUS and TY I given above describe their behavior in what we shall call normal
situation. Sometimes, however, an exceptional situation will arise which does not fit neatly into the
normal description of a function. For example, PLUS might receive an argument which is not a
number, or TYI might receive a stream which has no more available characters.

This paper will examine this phenomenon of exceptional situations and the programming techniques
which can be employed to deal with such situations.

II. The Nature of Exceptional Situations

It is important to recognize that this distinction between normal and exceptional situations is in some
sense contrived. Making this distinction does not change the way programs behave; it simply changes
the way we think about programs - hopefully for the better.

Suppose for a moment that when PLUS receives a non-numeric argument, it simply returns false.' We
could simply define that in the normal situation PLUS returns the sum of its two arguments if they are
numbers or false if they are not. This wouldn't change what PLUS did, only how we thought about
it. In general, any program which could potentially be described in terms of -normal and exceptional
situations can be described with just a normal description by simply taking some union of the original
normal and exceptional descriptions and declaring that to be normal.

Unfortunately, if we want to claim that it is normal to use PLUS with non-numeric arguments, then
we have to put up with code such as:

(PLUS 'A 'B)

where a programmer calls PLUS explicitly with non-numeric arguments because he plans to take
advantage of the fact that it will yield false. Perhaps the programmer doesn't know that the variable
NIL holds the false object. Somehow we want to discourage the programmer from using PLUS in this
fashion, and one way to do so is simply to describe such a use as "not normal."

Simplifying Assumptions

Another reason for distinguishing between normal and exceptional situations shows itself in the use of
simplifying assumptions that typically distinguish a prototype from a production quality program. A
programmer may speed the development of a program by assuming the program will be needed only
for some normal case. For example, the tokenizer for a parser might be initially coded to simply read
characters from a stream until a token break, without handling the exceptional situation that occurs
at the end of file when there is no next character. In so doing, the programmer pushes off worrying
about a level of detail that would only be distracting during the prototyping phase. Later, after it is has
been shown that the program works satisfactorily in normal situations, the programmer will typically
"tighten up" the program to handle exceptional situations. This idea is explored in detail in [Rich 81]
and [Lieberman 82].

'MULISP, a commerically available dialect of Lisp for microcomputers, does exactly this.



Presentation

Another application for this same idea of simplifying assumptions may come after a program has been
developed when it is being read by another programmer. The programmer may want to first understand
what it does in the normal situation and then refine his understanding of it by reviewing its behavior
in exceptional sitatutions. If the code for dealing with the normal situation is thickly interspersed with
code attempting to recognize and deal with exceptional situations, the reader's ability to decipher the
intent of the program may be greatly diminished.

This problem may be dealt with in at least two ways. One way would be to provide primitives within
the language which encourage the separation of code to deal with normal and exceptional situations.
Another way would be to provide editing technology which allowed the code for the exceptional
situation to be hidden while the normal situation is examined on its own.

Modularity

The idea that the language should encourage separation of normal and exceptional situations has
appeal for another reason. It frequently happens that the same exceptional situation can occur in many
different places in a program; and, in many cases, the way in which such situations should be dealt
with does not vary with the location in the program.

For example, consider a program which is compiling a file from a remote machine. If the remote
machine crashes, the compilation will probably want to simply fail no matter what routine was running.
Languages should provide some way of centralizing the information about a program's behavior in
such an exceptional situation so that it doesn't have to be needlessly repeated throughout the code for
the program.

Efficiency

In some cases, there may be efficiency reasons for considering some cases exceptional. For example,
the compiled code for PLUS will be less efficient if it must contain explicit checks for its arguments
being non-numbers. In MACLISP [Pitman 83], for example, the interpreted + function will "signal
an error" if invoked with bad arguments, but a compiled calls to + will just "do the wrong thing" if
that situation arises.2 Because we distinguish normal and exceptional situations, we can conveniently
describe the semantics of + as being compromised only in the exceptional situation; if we had not
made this distinction, we would have to either make + do extra work in compiled code or describe the
process of compiling + as "unreliable."

HI. Dealing With Exceptional Situations

When an exceptional situation arises in a program, there are a number of possible actions that can be
taken.

Ignoring Exceptional Situations

Our description of exceptional situations is general enough to include situations which are not normal
but which the program does not recognize as such. The example of how compiled calls to + behave in
MACLISP is an example of this behavior. Hence, one possible way in which programs can deal with
exceptional situations is to fail to recognize them.

While such failure might not be something to encourage as a programming style, it is important to
recognize that it does occur - frequently, in fact. It can happen any time an assumption of any kind
is made by code but not mechanically verified (either at compile time or runtime).

2Specifically, it will ignore the type information of the arguments, interpreting them as if they were fixnums. The
result may be mystifying to novice programmers.



Modified Return Value Conventions

In some situations, the type of the return value is highly constrained. For example, since we know that
many operations on numbers yield only other numbers, we could use non-numeric return values from
such functions to convey other kinds of information. Our earlier suggestion that PLUS might return
false when passed non-numeric arguments is an example of this technique.
A slightly more complicated variation of this technique arises with the MACLISP ERRSET primitive.
ERRSET evaluates its argument, "trapping" any errors. The writers of ERRSET wanted to return the
result of the computation if there was no error, but also to be able to detect whether there was an
error or not. Since evaluation could return any kind of object, their problem was to devise a return
value convention which expressed both of these pieces of information unambigously. Their solution
was to return NIL if an error had occurred or a list the first element of which was the result of the
evaluation if no error occurred.

Multiple Return Values

The solution to this ERRSET "problem" on the LISP MACHINE [Weinreb 81] is somewhat more
graceful because there it is possible for a function to simply return multiple values. LISP MACHINE
LISP provides a special form called IGNORE-ERRORS which evaluates its argument returning the result
as a "first return value" (or NIL if an error occurred). Since the case of NIL being returned in this
position is ambiguous (the form might have returned NIL or an error might have occurred), it also
returns a "second return value" which is NIL if no error occurred or non-NIL otherwise.

Multiple Return Points

Especially in SCHEME [Steele 78], a popular way to deal with exceptional situations is simply to pass
multiple continuations [Steele 76].
For example, we could imagine that our earlier case of TYI could be reformulated by making TYI
take additional arguments of functions to be called in the case that either there is or is not a "next
character." Consider the Scheme definition:

(DEFINE (TYI STREAM SUCCESS FAIL)
(IF (STREAM-EMPTY? STREAM)

(FAIL)
(SUCCESS (STREAM-FIRST STREAM) (STREAM-REST STREAM))))

which would allow the caller to write:

(DEFINE (VIEW-STREAM STREAM)
(TYI STREAM (LAMBDA (FIRST-CHAR REST-OF-STREAM)

(TYO FIRST-CHAR) ;Type the first character
(VIEW-STREAM REST-OF-STREAM))

(LAMBDA () 'DONE)))

In this case, the normal and exceptional situations are factored out into separate functions so that they
can be studied independently.

Non-Local Transfer of Control

Sometimes, a convention may have been established between a group of programs so that when certain
exceptional situations are detected, control is transferred to one of the callers in a non-local fashion.
Such a transfer is generally accomplished by an escape procedure in SCHEME or the THROW primitive
in Lisp.
Also in this category are the mechanisms some languages provide for aborting and restarting computa-
tions. These are typically just "syntactic sugar" for the same kind of non-local transfer of control
already provided by THROW. For example, the tG function (which simulates the effect of the Maclisp
abort character, Control-G) "throws" to a point which restarts the toplevel Read-Eval-Print loop.



IV. Terminology

We have argued that it is useful to reason in the abstract about two separable kinds of behavior for
programs, which we have called "normal" and "exceptional." This being the case, it seems appropriate
that we evolve a special vocabulary, both in our natural language and in our programming languages,
which acknowledges this distinction.

In modern Lisp dialects, we encourage the use of primitives such as DEFSTRUCT rather than CAR, CDR,
and CONS because it allows us to get away from thinking about how objects are implemented and speak
directly in terms of more abstract properties of objects. As we have seen, Lisp primitively provides
many ways to deal with exceptional situations at the implementation level, yet many modern Lisp
dialects do not standardize ways of imposing abstraction upon these situations so that it is clear which
parts of a program are for dealing with the normal situations, which are for dealing with exceptional
situations, and which are simply gluing the two parts together.

Signalling

When a program detects an exceptional situation, it will typically want to announce the presence of
the situation, allowing any special code which has been set up for dealing with that situation to be run.
We will refer to this process of announcing an exceptional situation as signalling and to the piece of
code which announces the situation as the signaller.

The class of exceptional situations which are recognized and signalled will be henceforth referred to as
conditions.

We will think of signalling as a way for a program to request advice on which of several ways to
proceed. These possible ways to proceed will be called proceed options.

Handling

The pieces of code which are asked to select a proceed option will be called handlers. It a handler
selects a proceed option, it will be said to have handled the situation. If it does not, it will be said
to have declined. There is actually a third situation possible, which we shall call bypassing, where the
handler performs some non-local transfer of control which implicitly eliminates the need to handle the
error.

Types of Situations

Some conditions are non-fatal in that the failure to handle them will not affect the correct behavior of
the program if it simply continues on. Some common examples of places where non-fatal conditions
might want to be signalled are "end of line" and "end of page" exceptions on output devices, the entry
and exit of major and minor modes in an editor, the successful completion of subtasks in a multi-task
project, or if-needed and if-used situations in a knowledge representation system. These non-fatal
conditions are sometimes called "hooks" because there is a well-defined behavior that can occur if no
advice is supplied, but advice can be given which will augment or override the default behavior.

Some situations may be considered fatal in the sense that code should not proceed beyond the point
where they are signalled unless the condition is "corrected" by some form of external intervention. We
will call such a fatal situation an error.

Error situations, sometimes called "bugs," may be divided into two classes: errors which are signalled,
which we shall call error conditions; and errors that go unsignalled (usually only to cause confusion
later in the program's execution).

The COMMON LISP manual [Steele 84] is careful to distinguish between two kinds of error situations
by using the terminology "is an error" when an error might be signalled (but is not guaranteed to
be) and "signals an error" to refer to situations where an error is guaranteed to be signalled. This
terminology is compatible with the terms we have chosen in this discussion.

Many terms used in this paper occur also in documentation for the LISP MACHINE (e.g., [Weinreb
83]). The terms used in this paper are intended to be compatible with their uses in those documents
as well.



V. Signalling

We now turn to the question of what kind of information needs to accompany a signal. It may help
here to appeal to a fairly concrete example.
Let us imagine a situation in the control program for a robot butler which is about to put food on the
table where the robot notices that the eggs it is about to serve to serve are green. We might imagine
that the signaller's code would look something like:

To Serve a Tray-Of-Food:
For each Food in the Tray-Of-Food,
If the Food's Color is not the Food's Expected-Color,

Signal a Bad-Food-Color condition
specifying the Food, its Color, and its Expected-Color.

Carry the Tray-Of-Food to the Dining-Room.
Place the Tray-Of-Food on the Table.

Unfortunately, the "code" does not provide enough information for a potential handler to advise it
about how to proceed beyond the point where the condition is signalled. Since the handler may not
have access to the data structures necessary for for correcting the problem and since the signaller has
not provided "code" to implement any corrections, multiple correction strategies will not in general be
possible.
For this reason, when a condition is signalled, we should remember that two kinds of information may
need to be provided: a description of the condition and a description of what, if anything, the signaller
is prepared to do in order to proceed from the condition.
In the case that proceeding is possible, the above code not suffice. What would be needed might look
more like:

To Serve a Tray-Of-Food:
For each Food in the Tray-Of-Food,
If the Food's Color is not the Food's Expected-Color,

Signal a Bad-Food-Color condition
specifying the Food, its Color, and its Expected-Color
and heeding advice on which of the following ways to proceed:
To Add-Food-Coloring of a given Color:

Put Food-Coloring of the given Color to the Food.
To Serve-Food-Anyway:

Continue;
To Throw-Food-Away:

Remove the Food from the Tray-Of-Food.
Carry the Tray-Of-Food to the Dining-Room.
Place the Tray-Of-Food on the Table.



VI. Handling

When a condition is signalled, handlers may exist which could potentially handle the error. We will
defer for the moment the question of how such handlers are located and for now concern ourselves
with what those handlers will want to do once they are located.

Informally, we may think of a handler as analogous to a piece of sage advice. But like any advice,
there may be times when it is appropriate and times when it is not. Some of those times may be partly
determined by issues of scope which will be discussed later; others will be determined by inspecting
the description of the condition and the options the signaller has suggested are available.

Some appropriate means will have to be provided for inspecting the condition. In MACLISP, the
means provided 3 is a function to examine the condition state at the current (or a given) stack frame.
This made it quite difficult to test condition handlers out of context. Experience with LISP MACHINE
LISP suggests that an object-based approach (where the handler receives an argument representing the
condition's description and is provided with a means of inspecting that object) is more flexible.

After inspecting the description, the handler might want to do any of a number of things. For example,.
to continue our earlier robot scenario:

* It might suggest that it is acceptable to serve the food anyway.

* It might suggest that the food not be served.

* It might suggest that the color of the food be changed.

* It might suggest replacing the food with another kind of food.

* It might suggest replacing the food with "better" food of the same kind.

These items involve giving advice about how to proceed. in order to give such advice, the handler
would have to have verified that the particular proceed option it was suggesting was acceptable to the
signaller.

Regardless of the signaller's situation, the handler may always decline to handle the condition.

* It might say it has no suggestion to about how to proceed.

Also regardless of the situation of the signaller, the handler may always bypass the situation entirely.
For example:

* It might blow up the building.

In this case, the situation is resolved by obliterating some outer context in which the situation arose in
the first place. This is closely related to what happens in a non-local transfer of control.

Provisional Handling

Some advice may want to be given provisionally. For example, the handler might want to say: "If you
can find nothing better to do, proceed in the following way..."

On the LISP MACHINE, the CONDITION-BIND-DEFAULT primitive addresses this issue, but forces
the decision about whether advice is to be provisional or not to be decided at coding time (when the
user must select between CONDITION-BIND and CONDITION-BIND-DEFAULT) rather than allowing
the user to defer the decision until run time.

In any system where defaults may be asserted, there is the question of how to resolve a situation where
two defaults have been asserted.

For example, on the LISP MACHINE, when a signal goes unhandled via the normal mechanism (set
up by CONDITION-BIND), default handlers are searched from the inside out (along the dynamic call
3Actually, MACLISP has only an error system, not a condition system, but we will assume that the same principles

apply.



chain) until a handler is found. It is a subject of debate whether this is the correct order, or whether
the order should be reversed.4 Few systems have ever reached the necessary complexity to actually
provide such conflicting defaults. In time, as systems grow larger and need this kind of fine tuning,
better data will be available about what programmers really need and the answers to this question will
perhaps become more clear.

Classifying Conditions

When is condition handler is trying to determine whether its advice would be applicable in a given
situation, it could be considerably helped by the availability of a class hierarchy for condition types.
For example, a piece of advice appropriate for "file errors" could be detected as appropriate for "file
not found errors" using such a mechanism.
The implementors of the LISP MACHINE condition system insist that this is a situation where the ability
for a condition type to have multiple superclasses has proven nearly essential. They argue that some
errors do not fit neatly into a strict hierarchy; for example, if an "end of file" condition is signalled
from within the READ function, is this a "read error" or a "file error"? If it is possible for a condition
type to have multiple superclasses, it may be specifically type "file read error" which could inherit from
both of the more general types "read error" and "file error." This feature allows handlers a great deal
of flexibility in deciding which conditions they are willing to advise.

Classifying Proceed Options
Some advice may be more specific than others. For example, suppose that the handler for the
our Bad-Food-Color condition wants to suggest that the food color be changed and the signaller
is prepared to Add-Food-Coloring. There might want to be some notion of a class hierarchy
for proceed options such that Add-Food-Coloring is recognized as an appropriate substitute for
Change-Color.5

VII. Connecting a Signaller with a Handler

When a condition is signalled, there are some questions about how an appropriate handler should be
located.

Scope of Handlers
The first decision to be made is whether handlers for conditions are to be "globally assigned" or
"locally bound."
The trend in programming today is strongly in the direction of eliminating any notion of "global"
assignment in favor of primitives that bind things. Hence, dialects are more likely to provide primitives
with names like CONDITION-B I ND which provide handlers for conditions within a certain scope s than
primitives with names like CONDITION-SET which side-effect some "global" default handler.
On the LISP MACHINE, for example, the CONDITION-BIND special form makes a set of handlers
available within the dynamic context of the execution of its body. It also accomplishes the additional
service of partitioning the applicability of handlers according to condition type. For example, the form

(CONDITION-BIND ((typei handleri)
(type2 handlerC)

form1 form, ... )

will attempt to use a given handleri for signals generated within its body only if those signals are of
the associated type, (or some subclass of that type).
4For example, it is the author's belief that CONDITION-BIND-DEFAULT should instead search outside in.
5The author is not aware of condition systems for any existing languages that support the notion of a class

hierarchy for proceed options.
'The scope could in principle be either dynamic or lexical, though in practice dynamic scope or some very close

variant always seems to be preferred in existing systems.



The alternative might have been for the user to write:

(CONDITION-BIND (#'(LAMBDA (CONDITION)
(COND ((TYPEP CONDITION 'type,)

(FUNCALL handler, CONDITION))
(T (DECLINE CONDITION))))

#' (LAMBDA (CONDITION)
(COND ((TYPEP CONDITION 'types)

(FUNCALL handler2 CONDITION))
(T (DECLINE CONDITION))))

form1 form 2 ... )

Default Handling

One exception to this might be that defining a new condition type for use by others could also involve
the creation of a global default handler for the condition. In object systems, this could be implemented
as a method for the objects of the given condition type which is sent only if no handler was found.
This idea of a default handler could be used to implement the distinction between error and non-error
conditions in some systems by making the default handler for a non-error condition simply return
(telling the signaller to proceed in whatever way it feels best), and making the default handler for an
error enter an interactive debugger.

Synchronous and Asynchronous Conditions

The "error systems" provided in existing Lisps are primarily synchronous. That is, the signalling of
a condition from code causes that code to block pending advice from handlers, which are then run
synchronously in the same process.
Any discussion of asynchronous conditions would require new terminology to define what it means to
interrupt a running process, and is beyond the scope of this paper.

VIII. Summary

The descriptions of programs may usefully be divided into two parts, which describe their behavior in
normal situations and in exceptional situations.

This distinction is important when developing programs because it allows programmers to make
simplifying assumptions about the nature programs. It can also have important consequences on the
presentation of a program's code, by visually separating the code that handles normal and exceptional
situations. Aspects of programs' modularity and efficiency can also be influenced also be affected by
the decision to make this distinction.

Most languages already provide adequate control mechanism for dealing with exceptional situations,
including ignoring such situations, varying return value conventions, varying the number of return
values, and allowing programs to exit via non-local transfer of control such as THROW.

Unfortunately, although these mechanisms are powerful enough to implement appropriate kinds of
control structures, they are not sufficiently abstract to encourage as a language for talking about
exceptional situations. New language primitives must be evolved which interface to these mechanisms
in an abstract way.
In this paper, we have surveyed various aspects of existing condition systems for Lisp and have
established terminology which may be used in describing their behavior in an abstract way.
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