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ABSTRACT

This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean

basins during the first decade of the millennium. To the extent possible, the flux estimates are based on

satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the

estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints

simultaneously in a variational framework in order to produce objectively determined optimized flux esti-

mates. In the majority of cases, the observed annual surface and atmospheric water budgets over the conti-

nents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty

estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or

exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South

Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land

processes are negligible. Fluxes were poorly observed over theArctic Ocean, certain seas, Antarctica, and the

Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the

satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate

ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data

records caused by these transitions. Continued development of such models is essential for maximizing the

value of the observations. Next-generation observing systems are the best hope for significantly improving

global water budget accounting.

1. Introduction

The most noticeable consequences of climate change

will be impacts on the water cycle—water’s journey

through ocean, atmosphere, land, and back again—whose

vagaries determine the distribution of humanity, agri-

culture, and all life on land, and also control circulation

of the oceans and atmosphere. Such consequences may

include increased total evaporation, precipitation, at-

mospheric humidity, and horizontal moisture transport

at the global scale (Bosilovich et al. 2005; Held and

Soden 2006; Huntington 2006), enhanced drying and

longer droughts in semiarid and arid regions, changes in

the timing and intensity of monsoons, more intense pre-

cipitationwith a smaller fraction occurring as snowfall, and
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earlier spring thaw, snowmelt, and peak streamflow

(Trenberth and Asrar 2014). A robust global inventory

of current hydrologic flux rates is essential to the as-

sessment and prediction of climate change. This hydro-

logic article and its energetic companion (L’Ecuyer et al.

2015) attempt to quantify the current state of the water

and energy cycles, which is an important first step toward

the NASA Energy and Water Cycle Study (NEWS)

program goal of evaluating water and energy cycle

consequences of climate change (NSIT 2007). That is, in

order to identify change, one must first establish the

present condition. Thus our analysis begins to address a

grand challenge of the National Research Council’s

decadal survey for Earth science, ‘‘to integrate in situ

and space-borne observations to quantify the key water-

cycle state variables and fluxes’’ (NRC 2007, p. 339)

toward identifying ‘‘large-scale and persistent shifts in

precipitation and water availability’’ (NRC 2007, p. 27).

This state of the water cycle assessment will serve as a

baseline for hydroclimatic variability studies and climate

change predictions and as a standard for Earth system

model evaluations. By providing a rigorous accounting

of errors, it also benchmarks the state of quantitative

understanding of the water cycle and reveals the extent

to which the water budget can be closed over multiple

regions and timeframes given current observational

capabilities.

Scores of global water cycle analyses have been per-

formed over the past century, but several aspects make

this one unique. First, it focuses on conditions during

roughly the first decade of the twenty-first century,

whereas previous analyses have made use of earlier data

records and often stopped near the turn of century.

Second, it makes use of only new data products that

integrate satellite remote sensing and conventional ob-

servations. The 2000s have been rich with remotely

sensed Earth observations that are relevant to the water

and energy cycles. Third, rigorous assessments of un-

certainty in the data products were supplied by the di-

verse group of data providers who compose the study

team and were examined and refined during the analy-

sis. Fourth, an optimization algorithm was employed to

compute the final water flux estimates, making use of the

uncertainty assessments and constraining water balance

on multiple scales: monthly, annual, continental, ocean

basin, and global. Finally, the water and energy budgets

were used to constrain each other through the equiva-

lence of the evapotranspiration and latent heat flux

terms, thus ensuring consistency between the two

analyses.

In the following sections we describe the present state

of knowledge of the global water cycle and results of this

new analysis. Section 2 summarizes advances made by

previous studies. Sections 3 and 4 detail the datasets and

methods used herein. Section 5 presents water cycle

fluxes during approximately 2000–10, as monthly and

annual means over six continents and nine ocean basins,

as well as the global ocean and global land. Section 6

discusses implications and limitations of the results and

recommends future directions.

2. Background

Characterizing the stocks and fluxes of Earth’s global

water budget has posed considerable challenges through

the decades. In spite of the importance of water to hu-

manity, ecology, and environment, a comprehensive

global hydrological observing system for monitoring the

storage and movement of Earth’s water does not exist.

Consequently, the earliest compilations (e.g., Bruckner

1905; Nace 1969; Korzoun 1974) relied on limited ob-

servations to estimate globally averaged fluxes of pre-

cipitation and evapotranspiration. Results varied widely

(see, e.g., Schlosser and Houser 2007) and have not en-

abled water budget closure (Chahine 1992). Moreover,

global water stocks such as groundwater were estimated

using ad hoc assumptions for land properties, for ex-

ample, aquifer thickness and porosity (Nace 1964;

Korzoun 1974), yielding only first-order approximations

of the magnitude of this and other critical reservoirs.

Although such estimates should be used with caution,

they have nevertheless been propagated in the literature

and continue to appear in modern global hydrological

budgets and assessments (e.g., Shiklomonov 1993; Oki

and Kanae 2006; Trenberth et al. 2007, 2011; Bodnar

et al. 2013).

L’vovitch (1974), Baumgartner and Reichel (1975),

Berner and Berner (1987), and others continued and

updated global compilations, producing global maps as

well as globally averaged fluxes. Sparse ground-based

data and simple water budget analyses were used to

estimate spatial patterns of precipitation and evapo-

transpiration respectively. Because long-term measure-

ments of river discharge are also limited in availability

(Alsdorf et al. 2007), it is generally estimated as the

difference of precipitation minus evapotranspiration in

the above-mentioned studies (despite significant un-

certainty therein; see Robertson et al. 2014), based on

assumptions of negligible long-term net water storage

change, or by using a model to account for storage

changes. Given current capabilities to observe terrestrial

water storage changes using the NASA and German

Gravity Recovery and Climate Experiment (GRACE)

mission (Tapley et al. 2004; Wahr et al. 2004), the storage

term can now be quantified with confidence in water

budget analyses (Rodell et al. 2004a; Syed et al. 2010).
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The evolution of the representation of the land surface

in climate models (Dickinson 1984; Sellers et al. 1986)

and of large-scale hydrological models (Vörösmarty

et al. 1989; Dirmeyer et al. 2006) has fostered a new

generation of global water budget studies that supple-

ment traditionally sparse hydrologic observations with

global model output. Model output may itself be cali-

brated to (e.g., Dai et al. 2009) or otherwise constrained

by observations (e.g., Fekete et al. 2002), or may in-

corporate observations as input (e.g., Mitchell et al.

2004) or via data assimilation (e.g., Kumar et al. 2008). In

lieu of sufficiently dense hydrological observing net-

works, combined model–observational global budgets

offer a physically based alternative for producing well-

constrained global water budgets. Trenberth et al. (2007,

2011) and Trenberth and Fasullo (2013) applied this

approach to produce what are widely considered to be

the current state-of-the-art global water and energy cycle

assessments. We compare estimates from Trenberth

et al. (2011) and Oki and Kanae (2006), another highly

regarded global water budget assessment, with our re-

sults in section 6.

Chahine (1992) ushered in the modern era of global

water budget analyses, by providing insight that con-

tinues to help define the current research agenda. For

example, Chahine (1992) was the first to articulate that

water vapor, clouds and radiation, and sea surface fluxes

are all major branches of the global water cycle, along

with precipitation and terrestrial hydrology. Further,

Chahine (1992) highlighted current inabilities to close

the global water budget, and speculated that satellite

remote sensing and integrative programs like theGlobal

Energy and Water Cycle Experiment (GEWEX) proj-

ect may ultimately play a critical role in alleviating

current shortcomings.

Clearly, both GEWEX and satellite remote sensing

are contributing to global water budget analyses, as

anticipated by Chahine (1992). Key contributions from

the GEWEX program include the development of im-

portant research datasets [e.g., the Global Precipitation

Climatology Project (GPCP) for combining gauge- and

satellite-based data to estimate global precipitation

patterns; Huffman et al. 1997]; the development of fo-

cused water cycle research questions to encourage

community research; and integrative observing and

modeling activities (GEWEX 2012a,b). Meanwhile, the

NEWSprogramhas fostered the development of several

satellite-based global hydrological datasets and com-

bined model–satellite products, which contribute to the

present study (see section 3).

While tremendous progress has been made in global

water budget analyses in recent years, several impor-

tant issues remain unresolved. Differences among flux

datasets and the difficulty of characterizing errors still

pose challenges for water budget closure and, by ex-

tension, for energy budget closure as well. Mehta et al.

(2005) performed a global analysis of the atmospheric

water cycle relying on remote sensing–based datasets,

which was hampered by a lack of quantitative error es-

timates. Sahoo et al. (2011) attempted to close the water

budget with satellite-derived precipitation, evaporation,

and terrestrial water storage changes and gauged river

discharge over 10 continental river basins, reporting

large residuals that they alleviated using an ensemble

Kalman filter approach akin to the method used herein.

Several key hydrologic stores and fluxes remain poorly

measured in many regions of the world, such as

groundwater and surface water storage (Famiglietti and

Rodell 2013). Data assimilating modeling systems like

the Land Information System (Kumar et al. 2008) and

Community Land Model Data Assimilation Research

Testbed (CLM-DART; Oleson et al. 2010; Anderson

et al. 2009) are progressing rapidly toward the goal of

simultaneously ingesting the full suite of data from water

cycle observing satellites, but additional development,

testing, and refinement are necessary.

The study described here addresses some of the

aforementioned problems and leaves others for future

work. By using predominantly satellite-derived datasets,

data scarcity and accessibility issues are circumvented.

By incorporating GRACE data on terrestrial or ocean

water storage changes, water balance can be achieved at

multiple scales (Rodell et al. 2004a; Syed et al. 2010;

Trenberth and Fasullo 2013). When model output is

included in the analyses, it has been constrained by

in situ or remote observations. Our water budget closure

approach applies error estimates from those who are

most knowledgeable about each dataset, the providers

themselves, within an optimization routine that mini-

mizes subjectivity in adjusting fluxes. Hence, herein we

present an entirely new analysis of the current state of

the global water cycle that emphasizes objectivity,

careful analysis of uncertainty, and the use of modern

observing systems.

3. Data

The scales of this research are continental and major

sea or ocean basin (Fig. 1) to global, and mean monthly

to mean annual, during the period 2000–10, although in

some cases data from as far back as 1998 are used. Other

than the strong El Niño that ended in early 1998, this

period encompasses generally weak El Niño and La

Niña events. It is also noteworthy that the period co-

incides with the so-called global warming hiatus (Meehl

et al. 2011).
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Observation-integrating data products are favored

here, particularly those that incorporate satellite-based

measurements (Table 1). These criteria disqualify

many of the datasets that are commonly used in hy-

droclimatological analyses. Further, we give prefer-

ence to datasets provided by members of the NEWS

team, which are among the newest available, over

outside alternatives, because that ensures detailed un-

derstanding and well-vetted uncertainty assessments.

While alternative datasets of similar quality certainly

exist, we contend that none could definitively be

described as better. In some cases, flux estimates from

multiple sources are combined. In other cases, only one

dataset is available, or one is chosen based on accep-

tance in the community as the standard. We are not

anointing any of the chosen datasets as ‘‘best’’ and our

choices should not be interpreted as a dismissal of

others. Rather, the associated errors speak to the

quality of each dataset, and it will be shown that the

results of the water balance optimization suggest that

both the choices of datasets and the associated error

estimates are appropriate.

FIG. 1. Delineation of continents and ocean basins used in this study.

TABLE 1. Sources of data used in this study.

Parameter Dataset name Contributing remote sensing instruments Key references

Precipitation GPCP v2.2 SSM/I, SSMIS, GOES-IR,

TOVS, and AIRS

Adler et al. (2003) and Huffman

et al. (2009)

Ocean evaporation SeaFlux v1.0 SSM/I, AVHRR, AMSR-E,

TMI, and WindSat

Clayson et al. (2015, manuscript

submitted

to Int. J. Climatol.)

Terrestrial

evapotranspiration

Princeton ET AIRS, CERES, MODIS, and

AVHRR

Vinukollu et al. (2011)

MERRA and

MERRA-Land

MSU, HIRS, SSU, AMSU, AIRS,

SSM/I, ERS-1/-2, QuikSCAT,

MODIS, GOES

Rienecker et al. (2011),

Bosilovich et al. (2011), and

Reichle (2012)

GLDAS SSM/I, SSMIS, GOES-IR, TOVS, AIRS,

TRMM, MODIS, and AVHRR

Rodell et al. (2004b)

River runoff University of Washington

runoff

TRMM, GOES-IR, TOVS, SSM/I,

ERS, and ATOVS

Clark et al. (2015)

Atmospheric

convergence

MERRA See MERRA above See MERRA above

QuikSCAT water balance QuikSCAT, TRMM, and GRACE Liu et al. (2006)

PMWC v2.0 SSM/I, AMSR-E, TMI, and WindSat Hilburn (2009)

Water storage

changes

Chambers/Center for Space

Research (CSR) Release

05 (RL05)

GRACE Chambers and Bonin (2012),

Johnson and Chambers (2013),

Bettadpur (2012), and Tapley

et al. (2004)

Precipitable

water vapor

AIRS and AMSR-E

precipitable water

AIRS and AMSR-E Fetzer et al. (2006)
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a. Precipitation

The GPCP monthly satellite-gauge precipitation

analysis (Adler et al. 2003; Huffman et al. 2009), version

2.2 (v2.2), is the exclusive precipitation dataset used

herein. It is a globally complete, monthly estimate of

surface precipitation at 2.58 3 2.58 latitude–longitude

resolution that begins in 1979, although this study made

use of the period January 2001–December 2010. The

product employs precipitation estimates from the 0600

and 1800 LT (local time) low-orbit satellite Special

Sensor Microwave Imager (SSM/I) and Special Sensor

Microwave Imager and Sounder (SSMIS) passive mi-

crowave data to perform a calibration, that varies by

month and location, of infrared (IR) data from the in-

ternational collection of geostationary satellites in the

latitude band 408N–408S, including NOAA’s Geosta-

tionary Operational Environmental Satellites (GOES).

At higher latitudes, estimates based on the Television

Infrared Observation Satellite (TIROS) Operational

Vertical Sounder (TOVS) or Atmospheric Infrared

Sounder (AIRS), calibrated by gauges over land and

microwave estimates over ocean at lower latitudes, are

combined with the SSM/I and SSMIS microwave esti-

mates to provide globally complete and temporally

stable, satellite-only precipitation estimates. These

multisatellite estimates are combined with rain gauge

analyses over land (Schneider et al. 2014) in a two-step

process that adjusts the satellite estimates to the large-

scale bias of the gauges and then combines the adjusted

satellite and gauge fields with weighting by inverse error

variance. Absolute magnitudes are considered reliable

and interannual changes are robust. Precipitation may

be underestimated in mountainous areas, although

version 2.2 is improved in this regard over previous

versions. GPCP v2.2 generally falls in the middle of the

range of global land precipitation annual totals from six

observation-based precipitation products during the

study period (Trenberth et al. 2014a). Regional and

global bias errors in the GPCP climatology have been

estimated using data from other satellites, including the

Tropical Rainfall Measuring Mission (TRMM), follow-

ing Adler et al. (2012).

b. Ocean evaporation

SeaFlux, version 1.0 (v1.0) (Clayson et al. 2015,

manuscript submitted to Int. J. Climatol.), is our exclu-

sive source of ocean evaporation data. SeaFlux is a

satellite-derived surface turbulent flux dataset currently

produced at 0.258 spatial resolution and 3-hourly tem-

poral resolution. While many other satellite-based

products are produced at coarser resolution through

binning, averaging, and statistical interpolation, SeaFlux

attempts to utilize the high-resolution nature of the

satellite data. It includes a sea surface temperature

dataset with diurnal variations specifically included

(Clayson et al. 2015, manuscript submitted to Int.

J. Climatol.). The bulk atmospheric parameters of

temperature and humidity are provided by SSM/I re-

trievals using a neural net algorithm (Roberts et al.

2010). This retrieval method reduces both mean biases

in comparisons with in situ data and also systematic er-

rors at extremely low and high humidity. Air tempera-

ture retrievals using this method have shown the

greatest increase in accuracy compared to other prod-

ucts, with biases now under 0.258C across the spectrum

of air–sea temperature differences. Winds are provided

by the Cross-Calibrated Multi-Platform (CCMP) level

2.5 gridded swath product. A novel interpolation

method based on the use of the temporal evolution of a

model reanalysis [for SeaFlux v1.0, NASA’s Modern-

Era Retrospective Analysis for Research and Applica-

tions (MERRA; see section 3b) is the reanalysis used as

the basis] has been implemented. This reanalysis-based

interpolation uses the time tendencies from a high-

resolution model analysis but is driven through the

satellite observations in a smooth manner. The inter-

polation algorithm selectively takes the physically cal-

culated time tendencies from the model results to

interpolate the missing data points at a 3-hourly reso-

lution. A neural network emulation of the Coupled

Ocean–Atmosphere Response Experiment (COARE)

3.0 algorithm (Fairall et al. 2003) has been developed

as a computationally inexpensive forward model to

calculate the surface turbulent fluxes from the input bulk

variables. The version of the SeaFlux product used here

covers 1998–2007 and integrates the Colorado State

University SSM/I calibrated brightness temperature

dataset (C. Kummerow 2011, personal communication).

Uncertainty was estimated using basic sampling theory

and propagation of errors to determine both systematic

and random errors, using over six million measurements

from the voluntary observing ships database (Kent et al.

1999). Details are provided by Clayson et al. (2015,

manuscript submitted to Int. J. Climatol.).

c. Terrestrial evapotranspiration

Estimating evapotranspiration (ET) at large scales is

challenging because ET is highly variable in space and

time and weighing lysimeters, which are the gold stan-

dard, are difficult and expensive to install and maintain.

More commonly, ground-based observation is accom-

plished using eddy covariance measurements. While

satellite retrieval algorithms do exist (e.g., Anderson

et al. 1997; Bastiaanssen et al. 1998), the available sat-

ellite observations are not perfectly suited to the
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application, and accuracy is limited by the sparseness of

in situ observations available for calibration and vali-

dation, which themselves may be unrepresentative of

500-m and larger-scale satellite footprints and grid

pixels. Other alternatives include physically based and

empirical models of land surface processes (e.g.,

Jiménez at al. 2011), which are limited in accuracy by the

quality of the input data and the simplifications inherent

to numerical models, and river basin–scale water budget

analysis (e.g., Rodell et al. 2004a), which requires river

discharge time series that are scarce outside of a few

nations and is best suited for large river basins.

Because of these challenges and the resulting uncertainty

in any one technique, ET estimates from three sources are

averaged to produce the values used herein. Total un-

certainty (bias and randomerrors) in the averaged values is

estimated as the standard deviation of the three estimates

for each region and time period. The three sources are

Princeton University’s remote sensing–informed Penman–

Monteith scheme andNASA’sMERRA andGlobal Land

Data Assimilation System (GLDAS).

1) PRINCETON REMOTE SENSING–BASED ET

Princeton’s model for global ET estimation (Vinukollu

et al. 2011) is based on the Penman–Monteith approach

(Monteith 1965) as implemented by Mu et al. (2007).

All model inputs and forcings (with the exception of wind

and surface pressure, which are taken from a reanalysis)

are derived from satellite remote sensors including AIRS

(air temperature and surface temperature, humidity),

the Moderate Resolution Imaging Spectroradiometer

(MODIS; emissivity, albedo and land cover), the Clouds

and the Earth’s Radiant Energy System (CERES;

downward shortwave and longwave radiation), and the

Advanced Very High Resolution Radiometer [AVHRR;

leaf area index (LAI) and vegetation fraction]. Surface

resistance is adjusted and ecophysiological constraints are

applied to account for changing environmental factors

such as vapor pressure deficit and minimum air temper-

ature (Mu et al. 2007). Evaporation over snow-covered

regions is calculated using a modified Penman equation

(Calder 1990) but evaporation from blowing snow is not

considered (Vinukollu et al. 2011). Instantaneous fluxes of

latent heat computed at the time of satellite overpass are

linearly scaled to the equivalent daily evapotranspiration

using the computed evaporative fraction and the day time

net radiation, following Crago and Brutsaert (1996) and

Sugita and Brutsaert (1991), and described in detail in

Vinukollu et al. (2011). A constant fraction (10% of

daytime evaporation) is used to account for the night time

evaporation, based on the observational estimates of

Sugita and Brutsaert (1991) and offline land surface

modeling (Vinukullu et al. 2011). Interception losses are

computed using the simple mass-balance model of Rutter

et al. (1971) as updated by Valente et al. (1997), with

maximum interception storage capacity calculated as a

function of LAI and fractional vegetation cover. Satellite-

based inputs and model outputs have been evaluated at

monthly and annual time scales against eddy-covariance

tower measurements over the United States, and against

climatological estimates based on inferred ET from ob-

served precipitation and streamflow over 26 major global

basins and for latitudinal profiles (Vinukollu et al. 2011).

Monthly correlation with the tower measurements is

about 0.6 averaged over the sites and correlation with

inferred annual ET across the major basins is about 0.8.

These exercises also revealed proper representation of

seasonal cycles and major droughts.

2) MERRA

MERRA (Rienecker et al. 2011) has reanalyzed the

recent satellite era (1979–present) utilizing a significant

portion of the available in situ and satellite data records,

including those from GOES and European Remote

Sensing Satellite-1 and -2 (ERS-1 and -2) instruments,

AIRS, SSM/I, MODIS, the Microwave Sounding Unit

(MSU) and Advanced Microwave Sounding Unit

(AMSU), Stratospheric Sounding Unit (SSU), High-

Resolution Infrared Radiation Sounder (HIRS), and

Quick Scatterometer (QuikSCAT). NASA’s Goddard

Earth Observing System Model, version 5 (GEOS-5;

Rienecker et al. 2008), is the model basis. MERRA

water and energy budget data are reported hourly on a

nominal 0.58 grid. In the development of the output di-

agnostics, special care was taken to include all the

budget terms so that budget closure could be achieved.

Of course, like all reanalyses, the observational analysis

exerts significant influence on the physics budgets (e.g.,

Roads et al. 2002), which leads to imbalances in the

physical terms of the budget. In MERRA, this influence

is computed from the data assimilation and provided

as a tendency term (called the analysis increment) in the

budget equation, so that it does not need to be derived

from residuals. The analysis increments generally reflect

the long-term bias present in the background model. In

this study, we use MERRA data that are averaged over

1998–2009. We have corrected the precipitation, evapo-

transpiration, and runoff fields to account for the analysis

increments, using regression equations based onBosilovich

and Schubert (2001). Note that the satellite data assimi-

lated byMERRA(Table 1) have only an indirect influence

on ET through their effects on air temperature, specific

humidity, and wind velocity.

Bosilovich et al. (2011) discuss the strengths and

weaknesses of the MERRA global water and energy

budgets, including the interrelationships of the physical
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terms with the analysis increment. Despite the strengths

and utility of the MERRA dataset, Trenberth et al.

(2011) caution that there are land regions over which

atmospheric convergence is negative and show a sub-

stantial shift in MERRA evaporation minus precipita-

tion (E 2 P) between the pre-1998 and post-2001

periods, presumably due to changes in the observa-

tions being assimilated. During the period of this study

the suite of contributing instruments was relatively sta-

ble and the assimilated data were presumably better

than earlier periods in terms of the number and quality

of observations. The temporal averaging also mitigates

the impact of any spurious trends or outlier years.

A supplemental land surface reanalysis, MERRA-

Land, provides enhanced land surface hydrology esti-

mates based on a land-only GEOS-5 simulation (Reichle

et al. 2011; Reichle 2012). Compared with MERRA,

MERRA-Land claims two advantages. First, the version

of the land surface model within GEOS-5 has been up-

dated from that used in MERRA. Second, precipitation

forcing fields fromMERRAare correctedwith the global,

gauge-based NOAA Climate Prediction Center ‘‘Uni-

fied’’ (CPCU) precipitation product (Chen et al. 2008). In

this analysis, the mean of MERRA and MERRA-Land

ET is used as the ‘‘MERRA ET estimate,’’ which is

subsequently averaged together with the Princeton

and GLDAS ET estimates.

3) GLDAS

GLDAS (Rodell et al. 2004b) is a quasi-operational

implementation of the Land Information System soft-

ware (Kumar et al. 2008), which drives multiple land

surface models (LSMs) and offers numerous options of

input parameter and meteorological forcing datasets,

spatial scales, and other functionalities. The goal of

GLDAS is to generate optimal fields of land surface

states (e.g., soil moisture and temperature) and fluxes

(e.g., evapotranspiration and runoff) by integrating

satellite- and ground-based observational data products

within a suite of LSMs. The GLDAS output fields have

been evaluated in a variety of studies through compar-

ison with observations and other model products, and in

general they compare favorably, particularly when the

multimodel GLDAS mean is used (Kato et al. 2007;

Syed et al. 2008; Zaitchik et al. 2010; Jiménez et al. 2011;
Mueller et al. 2011; Wang et al. 2011). This study utilizes

1.08 resolution output from GLDAS instances of the

Noah LSM (Chen et al. 1996; Ek et al. 2003; Koren et al.

1999); Community Land Model (CLM), version 2

(Bonan et al. 2002); Variable Infiltration Capacity (VIC;

Liang et al. 1994); and Mosaic (Koster and Suarez 1996)

LSMs. The models were forced with a combination of

meteorological fields (air temperature, humidity, wind

speed, and surface pressure) from the National Centers

for Environmental Prediction (NCEP) Global Data

Assimilation System (GDAS) product, precipitation

fields from the GPCP one-degree daily (1DD) product,

version 1.1 (Huffman et al. 2001), and downward

shortwave and longwave radiation fields derived from

Air Force Weather Agency cloud analyses using the

schemes of Shapiro (1987), Idso (1981), andWachtmann

(1975). The GPCP 1DD data were downscaled to

3-hourly resolution by bias correcting precipitation

fields from MERRA for 1998–99 and from GDAS for

2000–09. All four models were parameterized with land

cover data from the University of Maryland (Hansen

et al. 2000), soil data fromReynolds et al. (2000), and the

GTOPO30 digital elevation model (available from

https://lta.cr.usgs.gov/GTOPO30). The GLDAS simu-

lations were previously spun up from 1979 and were exe-

cuted on 15-min time steps (except for VIC, whose time

step is 1 h). A GLDAS climatology is constructed by

averaging the four models over the period 1998–2008

(GPCP 1DD data were not available to force themodels

aftermid-2009) to producemonthlymeans. Inlandwater

bodies (e.g., the Great Lakes) and ice sheets (Greenland

and Antarctica) not modeled by GLDAS are filled with

MERRA data in order to conform to the continental

delineation defined for this study (Fig. 1).

d. Continental runoff

Clark et al. (2015) estimated river runoff using a

method, similar to that of Dai et al. (2009), that com-

bined gauged streamflow from 839 near-coast gauging

stations and simulated runoff from two implementations

of the VIC model. The gauge data used are a subset of

those compiled by Dai et al. (2009; http://www.cgd.ucar.

edu/cas/catalog/surface/dai-runoff/). The first subset, a

VIC simulation (called SHEFF) for the period of 1949–

2008, was performed at 18 resolution in full energy bal-

ance mode (energy balance calculations performed at

each hourly time step) forced with the surface meteo-

rological inputs of Sheffield et al. (2006). The second

subset (WATCH), from 1959 to 2001, was run at 0.58
resolution in VIC water balance mode (energy budget

balanced daily) forced with surface meteorological in-

puts from the European Union Water and Global

Change programme (EU WATCH; Weedon et al.

2011). Simulated gauge and river mouth streamflow was

calculated by routing these runoff values through the

0.58 Simulated Topological Network (STN-30p), version

6.01 (v6.01), flow network (Vörösmarty et al. 2000).

Gaps in the gauge records were filled through linear

regression of monthly or annual gauged streamflow

against simulated streamflow, as in Dai et al. (2009).

Gauged flows were extrapolated at monthly and annual
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time steps to river mouths based on the ratio of simu-

lated runoff at the mouth to simulated runoff at the

station. Flows at the mouths of completely ungauged

rivers were estimated by multiplying simulated flow at

that river mouth with the ratio of observed to simulated

flows for all gauged rivers within 628 latitude of that

mouth. The latitude bands included either all stations

628 latitude on the same continent (CONT) or draining

to the same ocean (OCN).

The annual and monthly runoff estimates used here

are the average of SHEFF-CONT and SHEFF-OCN

from 1999 to 2008. Because this approach assumes that

the model performance is regionally consistent and that

some of the residual errors are averaged out in the ag-

gregate, neither of which can be easily tested with existing

data, we estimated errors based on multiple datasets.

Errors in annual and monthly runoff are estimated as the

standard deviation of estimates from the SHEFF-CONT

(1998–2008), SHEFF-OCN (1998–2008),WATCH-CONT

(1960–2001), WATCH-OCN (1960–2001), Dai et al.

(2009)’s estimate (1998–2004), GLDAS simulated

runoff, and MERRA simulated runoff.

Over Greenland and Antarctica, observations of

runoff (which primarily consists of ice flows) are not

available. Therefore monthly runoff is computed as a

water budget residual.

To account for total continental runoff, submarine

groundwater discharge (SGD) must be added to river

runoff. Many localized estimates of SGD are available,

but these are not easily scaled up, and directly compa-

rable continental SGD estimates have not been pub-

lished, to our knowledge. Korzoun (1974) estimated

global SGD to be 2200km3 yr21, while Zektser et al.

(2006) estimated 2200–2400km3 yr21. Here we take the

midpoint of the latter range, 2300km3 yr21, and dis-

tribute it among the continents by assuming that SGD is

proportional to both surface runoff and coastline length.

The ‘‘coastline paradox’’ is the observation that, be-

cause of the fractal nature of coastline features, esti-

mated coastline length increases with the precision of

one’s measurements (Mandelbrot 1983). Because we are

concerned only with the relative lengths of continental

coastlines at macro scales, and because small-scale fea-

tures such as fjords are unlikely to increase large-scale

SGD relative to that of a flat coastline, we estimate

continental coastline length based on a 0.258 resolution
gridded map (Table 2). We then use the product of

continental coastline length and mean annual conti-

nental river runoff to weight the distribution of the

2300km3 yr21 SGD among the continents. Monthly

SGD is computed by assuming it is directly proportional

to monthly river runoff, and the results are added to the

monthly river runoff values to estimate total monthly

continental runoff. Despite the vast majority of Ant-

arctic surface runoff being frozen, in the form of glacier

calving into the ocean, Antarctic SGD has indeed been

measured (Uemura et al. 2011), explained by the com-

bination of geothermal heating and pressure that pro-

duces liquid water lakes beneath the ice sheet. Owing to

the scarcity of large-scale SGD estimates and our re-

liance on several simplifying assumptions, uncertainty in

our estimates is conservatively computed as 50% of

SGD itself.

e. Atmospheric convergence

Atmospheric convergence data are taken from three

sources. The first is MERRA, which has full global

coverage. The second source is a water vapor transport

product developed by Liu et al. (2006). It is based on an

accounting of moisture fluxes over the continental

margins derived from QuikSCAT data, constrained by

rainfall from TRMM, terrestrial water storage changes

from GRACE, and climatological river discharge. This

product is available on a monthly basis over the major

ocean basins, but over land it is limited to two conti-

nents, North and South America, as annual averages.

The third source is the Passive Microwave Water Cycle

(PMWC) dataset (Hilburn 2009). PMWC, version 2.0

(v2.0), was constructed using retrievals of wind speed,

water vapor, and rain rate from Remote Sensing Sys-

tems (RSS) intercalibrated data record of the Advanced

Microwave Scanning Radiometer for EOS (AMSR-E;

Kawanishi et al. 2003), AMSR2, SSM/I, SSMIS, TRMM

Microwave Imager (TMI), and WindSat. PMWC de-

rives water vapor transport from the satellite water va-

por data using MERRA to specify the effective

transport velocity. PMWC estimates are only available

over the major ocean basins. Over the ocean basins all

three products are combined by simple averaging. For

the North and South American annual means, the

MERRA and the QuikSCAT estimates are averaged.

TABLE 2. Estimated coastline length (km) and land area (km2)

for each continent and world land based on the 0.258 land mask

used in this study.

Continent or land areas

Coastline

length (km)

Land

area (km2)

North America 127 796 24 030 089

South America 33 956 17 737 690

Eurasia 174 833 53 234 055

Africa 41 792 29 903 956

Australia and islands 61 387 9 045 392

Mainland Australia 20 803 7 560 766

Australasian and Indonesian islands 40 583 1 484 627

Antarctica 41 193 12 705 364

World land 480 957 146 656 546
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For the monthly means and for all other continents

MERRA alone is used because of large uncertainties in

the QuikSCAT estimates. In cases where multiple esti-

mates are available, monthly and annual errors are es-

timated as the standard deviation of the available

estimates, but not less than 3mmmonth21. In cases

where only the MERRA estimate is available (the

Arctic Ocean; the Caribbean,Mediterranean, and Black

Seas; and continents other than the Americas), the error

is fixed at 19% (the error percentage computed for

South American annual convergence) or 3mm month21,

whichever is larger.

f. Terrestrial and oceanic water storage changes

Monthly changes in terrestrial water storage (TWS)

for each continent and the global ocean have been de-

rived from GRACE satellite observations of Earth’s

time-varying gravity field (Tapley et al. 2004). The

gravity coefficients used here are from the University of

Texas Center for Space Research’s Release-05 product

(Bettadpur 2012), for 2003–2012. They were processed

with standard corrections to account for the degree 2

and order 0 coefficients, geocenter motion, and glacial

isostatic adjustment (Chambers and Schröter 2011;

Chambers and Bonin 2012). Average continental water

storage was computed using the method of averaging

kernels convolved with the GRACE coefficients, with

results scaled based on convolutions with simulated data

in order to restore the power of the signal reduced by the

resolution of GRACE (Swenson and Wahr 2002). The

kernels and scaling factors for the continents have pre-

viously been described and tested (Chambers 2009;

Johnson and Chambers 2013). Formal GRACE ‘‘in-

strument errors’’ account for random GRACE errors,

gravity signals outside the area of interest leaking into

the estimate, and the variance of intra-annual variations.

TWS as observed byGRACE comprises all water in and

on the land, including groundwater, soil moisture, surface

water, snow and ice, and biological water. This definition

is precisely appropriate for the terrestrial water budget

equation (see section 4c). However, GRACE provides

monthly mean anomalies of TWS, which cannot be used

directly to compute the change in TWS between the start

and the end of a given month as required by the standard

terrestrial water budget [Eq. (3a) in section 4b; see Rodell

et al. 2004a]. Thus daily TWS changes are estimated here

by linearly interpolating the GRACE data and then

applying a scale factor so that the interpolated daily values

approximately average to the observed monthly values.

Changes in TWS between the first days of adjacent

months are then computed.

Monthly changes in World Ocean water volume have

likewise been estimated based on GRACE data

(Johnson and Chambers 2013). Changes in water vol-

umes of individual ocean basins are not included in the

analysis owing to a lack of ocean transport data to bal-

ance the ocean basin water budget. Total uncertainty in

theGRACE-based TWS changes for each continent and

the global ocean is estimated as the root sum square of

three error components: formal instrument errors, at-

mospheric errors, and leakage errors. That result is then

multiplied by the square root of two in order to account

for uncorrelated errors in the two consecutive months

used to compute a change (Wahr et al. 1998; Rodell and

Famiglietti 1999; Landerer and Swenson 2012).

g. Total precipitable water vapor

Total precipitable water vapor has been derived from

AIRS andAMSR-E observations from theNASAAqua

satellite. The AIRS spectral resolution is 100 times

greater than previous infrared sounders, revealing de-

tailed three-dimensional global distribution of water

vapor (e.g., Gordon et al. 2013; Tian et al. 2013). The

AIRS water vapor is based on a physical relaxation al-

gorithm (Susskind et al. 2011). AMSR-E is a 12-channel,

6-frequency, passive microwave radiometer system,

which can provide precipitable water vapor measure-

ments over water only, where low surface emissivity

provides a low temperature background for retrieval of

atmospheric properties. The AMSR-E retrieval uses a

regression against operational radiosondes, with up-

dated validation against a separate subset of radio-

sondes (Wentz and Meissner 2000). Precipitable water

vapor data derived from SSM/I have a longer history,

but they are not used here because they are not available

over land, the AMSR-E retrievals over ocean are very

similar, and SSM/I’s longer record would not benefit this

10-yr study.

AMSR-E total water vapor data have negligible bia-

ses and RMS differences of about 6% absolute com-

pared with radiosondes [Szczodrak et al. 2006; see

Fetzer et al. (2006) for a discussion]. The AIRS and

AMSR-E total water vapor estimates were shown by

Fetzer et al. (2006) to have relative biases of 5% or less

(though of undetermined sign) and RMS difference of

10% or less for clear or partly cloudy scenes, while

AIRS–AMSR-E relative biases ranged from 230%

(AIRS dry) to170% for persistently cloudy conditions.

AIRS total water vapor over land and ocean has been

validated against radiosondes (Tobin et al. 2006;

Divakarla et al. 2006), Global Positioning System re-

ceivers (RamaVarmaRaja et al. 2008), and group-based

radiometers (Bedka et al. 2010). Using a 7-yr surface

record at three fixed sites, Bedka et al. (2010) reported

monthly mean total water vapor biases of 1%–3% for a

wide range of weather conditions and total water vapor
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amounts, showing that the cloud-induced sampling in

AIRS is generally small. However, the AIRS sampling

biases are largest in regions of deep convection and

baroclinic activity. The global implications of these

cloud-induced biases are discussed by Tian et al. (2012,

2013), Hearty et al. (2014), and Yue et al. (2013).

AMSR-E water vapor sampling biases are small except

under heavily precipitating conditions representing 2%–

5% of all scenes.

Here we utilize the AIRS and AMSR-E version 5

level 2 (vector) 3-hourly total precipitable water vapor

at 18 from 2003 to 2007. To compute a climatology of

monthly atmospheric moisture storage changes over the

continents and ocean basins, the vector data are first

binned into 18 grids, and then time series of 5-day av-

erages centered on the first day of each month are

generated to achieve global coverage with minimal data

gaps. Smaller RMS uncertainties are expected for the

averaged data used in this analysis because they typi-

cally represent 10–20 samples, each with RMS error of

10% or less. Biases of the 5-day averages are estimated

to be 5% or smaller, consistent with Bedka et al. (2010).

AIRS uncertainties are estimated through comparisons

with in situ data over both land and ocean (Tobin et al.

2006; Divakarla et al. 2006; Rama Varma Raja et al.

2008; Bedka et al. 2010), while AMSR-E uncertainties

are estimated by comparison with operational radio-

sondes (Wentz and Meissner 2000). Fetzer et al. (2006)

compare AIRS and AMSR-E and show their common

uncertainties are consistent with those cited.

4. Methods

a. Data reconciliation and blending

As described above, inmany cases a single data source

is chosen, with other sources used for corroboration.

When multiple datasets meet the criteria and selecting

only one is not defensible, a single estimate of a given

water budget variable is computed by averaging. The

standard deviation across the original estimates is then

taken to represent the uncertainty in the blended esti-

mate. Typically this results in an uncertainty value that is

similar to or more conservative (larger) than the original

uncertainties. Blended estimates are computed for ter-

restrial evapotranspiration, atmospheric convergence

over the major ocean basins and North and South

America, and total precipitable water vapor changes

over the ocean.

Discrepancies in the delineation of regions and land–

sea masks can lead to nonnegligible differences in re-

gional mean fluxes. To minimize mismatches among

datasets, the data providers, who are the coauthors, have

supplied time series for continents and ocean basins that

are consistent with the delineation shown in Fig. 1.

However, in computing regional means, the oblateness

of Earth is ignored, whichmay cause inaccuracies in area

estimation as large as 0.7% near the equator and poles

(Oki and Sud 1998).

b. Water budget equations

This section presents the water budget equations (e.g.,

Peixoto and Oort 1992; Oki 1999) that are applied at

each spatial and temporal scale and used with the opti-

mization approach described above. (Equations (4b)

and (5b) only apply to the long-term annual mean, as-

suming no climate- or human-induced change in the

water cycle.) For any variable X (flux or change in

storage with units of mass over time) over any area, the

annual total must equal the sum of the monthly fluxes or

changes (taking into account the number of days in each

month),

X
Annual

5X
January

1X
February

1⋯1X
December

(1)

and over any time period, the worldwide total must

equal the sum of the global land and global ocean fluxes

or changes,

X
W
5X

L
1X

O
, (2)

where the subscriptsW, L, andO represent world, land,

and ocean.

At the continental scale, the surface terrestrial water

budget equation is

dS
co
5P

co
2ET

co
2Q

co
, (3a)

where dS is the change in storage between to two distinct

points in time, P, ET, and Q are total precipitation,

evapotranspiration, and runoff in the interval, re-

spectively, and the subscript ‘‘co’’ denotes continental.

On an annual-mean basis, assuming no changes in cli-

mate or direct human impacts on water storage (see

section 6c for a discussion), dSco drops to zero, so that

P
co
2ET

co
5Q

co
. (3b)

The atmospheric water budget over a continent is

dW
co
5C

co
2P

co
1ET

co
, (4a)

where dW is the change in precipitable water in the at-

mospheric column, and C is net atmospheric convergence.

The change in liquid and frozenwater in the column, which

is sometimes included on the left side of Eq. (4a), was as-

sumed to be negligible (Peixoto and Oort 1992). On an

annual-mean basis dWco becomes zero, so that
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C
co
5P

co
2ET

co
. (4b)

It follows from Eqs. (3a) and (4a) that

dS
co
1 dW

co
5C

co
2Q

co
(5a)

and on an annual-mean basis

C
co
5Q

co
. (5b)

The ocean basin water budget equation is

dS
ob
5P

ob
2E

ob
1Q

ob
1T

ob
, (6a)

where E is ocean evaporation, Qob is runoff from the

continents into the ocean basin, and Tob is net transport

of water into an ocean basin (ob). Neglecting sea level

rise, the storage term drops to zero on an annual-mean

basis, leaving

E
ob
5P

ob
1Q

ob
1T

ob
. (6b)

Because observation-based estimates of T are not

available, Eqs. (6a) and (6b) are not included in the

analysis. The atmospheric water budget over an ocean

basin is identical to that over a continent except that ET

is replaced by E

dW
ob
5C

ob
2P

ob
1E

ob
(7a)

and on a mean annual basis

C
ob
5P

ob
2E

ob
. (7b)

For the sake of completeness, we note that following

Eqs. (6a) and (7a),

dS
ob
1 dW

ob
5C

ob
1Q

ob
1T

ob
(8a)

and on a mean annual basis

C
ob
52Q

ob
2T

ob
. (8b)

For the global land and oceans, water storage changes

must balance as

dS
L
1 dS

O
52dW

L
2 dW

O
, (9a)

which, based on Eq. (2), is identical to

dS
W
52dW

W
, (9b)

with all of these terms dropping to zero on a mean an-

nual basis. The net movement of water vapor over the

land is a net loss from the atmosphere over the oceans,

so that

C
L
52C

O
(10)

and CW must be zero. Similarly, here we define

Q
O
5Q

L
, (11)

although some may prefer to define one as the additive

inverse of the other, and adjust Eqs. (6a) and (8a) ac-

cordingly. The other lateral transport T has no meaning

at the global ocean scale. Thus, from Eq. (6a), the global

ocean water budget is

dS
O
5P

O
2E

O
1Q

O
(12a)

and for the annual mean

E
O
5P

O
1Q

O
. (12b)

The budget equation for the global ocean–atmosphere

column then follows from Eq. (8a):

dS
O
1 dW

O
5C

O
1Q

L
. (13)

Similarly, the budget for the global land–atmosphere

column is unchanged from Eq. (5a),

dS
L
1 dW

L
5C

L
2Q

L
, (14a)

and, on an annual basis,

C
L
5Q

L
. (14b)

Finally, by combining equations, it can be shown that

dS
W
5P

W
2E

W
(15a)

and on a long-term mean annual basis

E
W
5P

W
. (15b)

c. Water budget closure

Taken individually, the observed fluxes described in

the section 3 represent some of the best estimates of

those terms that are currently available for the study

period, irrespective of the observational uncertainty. On

the other hand, the fluxes (and associated storage terms)

are related to one another by the water budget equations

described in section 4b. These budget equations there-

fore provide additional information that can be used to

refine the observed fluxes and storage changes to obtain

‘‘optimized’’ fluxes and storage changes that balance all

relevant budget equations while remaining consistent

with the observations and their associated uncertainties.

Further, it is desirable to achieve simultaneous water

and energy budget closure (via the equivalence of
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evapotranspiration and latent heat flux), addressing all

available global and regional budget constraints. Ap-

plying concepts from the variational data assimilation

and optimal estimation retrieval communities demon-

strated in L’Ecuyer and Stephens (2002), we employ a

new objective approach for adjusting all component

fluxes that explicitly accounts for the relative accuracies

to which they are known. The annual and monthly ob-

servational flux estimates are modified according to the

optimization method that follows.

Suppose we have a set of N flux terms that are rep-

resented by

F5 (F1
F
2

F
3

⋯ F
i

⋯ F
N )

T
(16)

(T denotes transpose; i.e., F is a column vector) and that

these fluxes are related to storage terms by budget

equations that can be written, in general,

R5AF , (17)

whereR is the vector ofMwater storage residuals andA

is the matrix representing the budget equations. For the

jth water storage residual,

R
j
5 �

N

i51

a
ji
F
i
, (18)

where each aji is an element of A. Then, optimization of

the fluxes Fi demands minimizing the functional

J[ (F2F
obs

)TS21
Fobs(F2F

obs
)

1 (R2R
obs

)TS21
Robs(R2R

obs
) , (19)

where SFobs and SRobs are covariance matrices repre-

senting the uncertainties of Fobs and Robs, respectively.

Here, obs denotes an observed flux/storage, and the

unsubscripted flux/storage terms represent optimized

values. Minimizing J with respect to F gives (e.g.,

Rodgers 2000)

F5F
obs

1 (KTS21
RobsK1 S21

Fobs)
21KTS21

Robs(Robs
2KF

obs
) ,

(20)

where K is the Jacobian of R with respect to F. The

solution for the optimal F is otherwise known as the

maximum a posteriori solution, and the uncertainty of

this solution is given by the error covariance:

S
F
5 (KTS21

RobsK1S21
Fobs)

21 . (21)

Because of the lack of information regarding the

correlation of the errors of different fluxes/storage

terms, all off-diagonal covariance elements of SFobs and

SRobs are assumed to be zero. Also, in many cases it is

assumed that the water fluxes exactly offset one another

in a given budget equation [e.g., Eqs. (4b) and (5b) for

the long-term annual mean in section 4b], and in these

cases Rj 5 0 and a small uncertainty (#0.016mmday21)

is assigned to the corresponding error variance in SRobs.

In these cases, stable solutions are found for F that are

consistent with Fobs and their uncertainties while obey-

ing the specified budget equation with no change in

storage. Similarly, stable solutions are found when ob-

servations suggest Rj 6¼ 0 (e.g., monthly surface and at-

mospheric water budget). Solutions may be unstable

when the uncertainty is too small, so in those cases the

uncertainty was raised until a reasonable solution was

achieved by comparing the magnitude of the flux ad-

justments against their estimated uncertainties.

1) ANNUAL OPTIMIZATION

The foregoing optimization framework is first applied

to the collection of observations on an annual-mean

basis. Taking advantage of the equivalence of evapo-

transpiration and latent heat flux, all water and energy

fluxes are optimized simultaneously to achieve coherent

water and energy budget closure. The fluxes that are

optimized include the horizontal convergence of atmo-

spheric water vapor C, evaporation E, evapotranspira-

tion (ET), precipitation P, runoff Q, surface longwave

downwelling radiation (DLR), surface shortwave

downwelling radiation (DSR), surface longwave up-

welling radiation (ULW), surface shortwave upwelling

radiation (USW), and surface sensible heat flux (SH),

over the seven continental regions and the global ocean.

Also optimized are the global net outgoing longwave

radiation (OLR) and the global net downwelling

shortwave radiation (TSR), both at the top of the at-

mosphere. These annual-mean fluxes are constrained by

the budget equations that describe the annual storage of

water vapor (dW) terrestrial water (dS) and downward

transfer of energy at Earth’s surface (NET) over the

seven continental regions and the global ocean. Appli-

cation of simultaneous closure in individual ocean basins

is impossible without estimates of water and energy

transport between adjacent basins. While it is technically

feasible to constrain C, P, and E to dW at each basin in

this framework, we find that it biases all results toward

those flux estimates that are contained in the most equa-

tions within the optimization routine. In particular, in-

cluding C, P, and E in 12 additional equations biases the

results away from the energy flux estimates, simply because

the latter are then represented in fewer equations than the

water flux estimates. For this reason, all fluxes except for

TSR and OLR are optimized through dW, dS, and NET
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constraints over the seven continental regions and the

global ocean (i.e., sum of all basins), whereas TSR and

OLR are constrained to the global NETA balance (i.e.,

sum of all regions). Observed annual dW for all regions

are equal to or very close to zero as expected. It is as-

sumed that dS is zero in all regions, although in reality

trends in S do exist (e.g., Luthcke et al. 2013). Similarly,

the net energy transfer to the earth, NET, over each land

region is assumed to be zero, while the net energy

transfer to the ocean basins is assumed to be 0.6Wm22

with an uncertainty of 0.4Wm22, based upon recent

estimates of ocean heat storage from the Argo array

[Willis et al. 2009; Lyman et al. 2010; see Trenberth et al.

(2014b) for a thorough discussion]. Regarding energy in

the atmosphere, it is assumed that the global annual-

mean net storage of energy is zero,

NETA5TSR2OLR1L
y
P1 SH2DLR

2DSR1ULW1USW5 0, (22)

and that the convergence of atmospheric dry static en-

ergy and kinetic energy is zero on a global, annual-mean

basis. The specific implementation of Fobs and R is

presented in the appendix and further discussed in the

companion article by L’Ecuyer et al. (2015).

The resulting global ocean water component fluxes,C,

E, and P, are in balance with the energy fluxes. Next we

seek to adjust the water fluxes in each ocean basin so

that they sum up to the optimized global ocean fluxes

while maintaining the atmospheric water balance. First,

the fluxes are optimized through the dW constraint at

individual basins. Subsequently, a Lagrange multiplier

approach (e.g., Bertsekas 1996) is used to adjust the

optimized basin fluxes according to the error variance of

the individual basin fluxes. Here, we wish to obtain the

spatially constrained basin fluxes Gl and the corre-

sponding global ocean flux F, such that

F5
1

L
�
L

l51

G
l
, (23)

where l is the index for basins from 1 to L, with L 5 9.

Because an exact match between the sum of basin

fluxes and the global ocean flux is desired, a strong

constraint approach is taken, and the Lagrangian to be

minimized is
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where sl is the uncertainty of the lth optimized basin

flux, GOl is from the first step, and l is a Lagrange

multiplier. After taking the derivative of Eq. (24) with

respect to l, setting the result to zero, and substituting

terms, the adjusted flux at the kth basin is obtained

through the relationship

G
k
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k
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�
. (25)

2) MONTHLY OPTIMIZATION

Annual optimization is performed first because the

observed annual-mean fluxes and their uncertainties are

deemed more reliable than the monthly fluxes. Changes

in storage also must be accounted at subannual scales.

Energy balance constraints are weakened due to the lack

of reliable heat transport observations, so that only the

monthly water fluxes are optimized within the same

framework as that of the annual scale. With the water

and energy budgets being decoupled, it is now appro-

priate to enforce atmospheric water balance over

each basin.

Monthly optimization is performed in two steps.

Lacking a complete set of energy fluxes, the first step is to

use the same set of budget equations as in the annual

optimization but without any constraints on NET and

NETA (i.e., only the dW and dS constraints are im-

posed). This first step is performed for all months sepa-

rately; however, the resulting optimized monthly fluxes

are not necessarily consistent with the optimized annual-

mean values. Therefore, a second ‘‘hard’’ constraint step

is applied to ensure that the sum of the monthly fluxes of

each category are exactly equal to the optimized annual

total flux, but respecting the relative uncertainty of each

monthly observation. In the second step, a Lagrange

multiplier approach is again used, this time to adjust the

monthly fluxes derived from the first step, identified ge-

nerically here as GOl, where l is the index for a particular

month. If the annually constrained monthly fluxes are

denoted by Gl and the corresponding annual flux is de-

noted by F, as above, then the constraint on the adjusted

fluxes is expressed as in Eq. (23), this time with L 5 12

(note that the only purpose and effect of dividing by L is

consistency of units; i.e., both F and Gl are quantified in

centimeters per month in this application). The La-

grangian to be minimized is defined in Eq. (24), but in

this case, sl is the uncertainty of the lth optimized

monthly flux, GOl, and l is a Lagrange multiplier. The

solution for the kth adjusted monthly flux is found using

Eq. (25). Note that eachmonthly flux from the first step is

adjusted based on the bias of the annual mean, in pro-

portion to the uncertainty of that flux, and that the an-

nual mean of the adjusted Gk is equal to F.
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d. Metrics

Evaluation of an analysis and resulting dataset is dif-

ficult when most of the pertinent data are incorporated

into the final product. Nevertheless we identify three

metrics of success. First, the new flux estimates are

compared at the global scale with those of Trenberth

et al. (2011) and Oki and Kanae (2006) and at the con-

tinental scale with those of Trenberth and Fasullo

(2013). The previous estimates are judged to be signifi-

cantly different if they lie outside of the new estimates’

error bounds, which represent approximately one stan-

dard deviation. Second, the initial and optimized un-

certainty estimates are compared with residuals of the

preoptimization (observed) water budgets at multiple

scales. A residual that was much larger than the esti-

mated total uncertainty would suggest that uncertainty

in one or more of the fluxes was overly optimistic

(small). Third, the difference between the observed and

optimized estimates of any variable should be smaller

than the uncertainty in that variable; otherwise, the

predicted uncertainty was overly optimistic.

5. Results

a. Mean annual fluxes

The mean annual fluxes of the global water cycle and

associated uncertainty ranges are depicted in Fig. 2. The

white numbers are the original ‘‘observed’’ fluxes and

uncertainties from either a single preferred source or an

average over multiple estimates. The blue numbers are

the estimates resulting from water cycle closure using

the optimization technique described in section 4. In

both cases the uncertainties may be interpreted as rep-

resenting on standard deviation. Annual precipitation,

evapotranspiration, and runoff over the global land

surface are estimated to be 116 500 6 5100, 70 600 6
5000, and 45 900 6 4400km3 yr21, respectively, after

optimization. The global land precipitation number is

very close to the value of 117 000 km3 yr21 deduced by

Schneider et al. (2014) using just a gauge data set (the

same gauge dataset used by GPCP), but for a different

period and using a slightly different adjustment for

gauge undercatch. Annual precipitation and evapora-

tion over the global ocean surface are estimated to be

403 500 6 22 200 and 449 400 6 22 200 km3 yr21 after

optimization (the equivalence of the errors is co-

incidental). For reference, the capacity of the Great

Lakes is about 23 000 km3 (Fuller et al. 1995), and

mankind’s global, annual water footprint related to ag-

riculture, industry, and domestic water supply is about

9100km3 yr21 (Hoekstra and Mekonnen 2012), so the

magnitudes of these freshwater fluxes are staggering.

The optimization routine produces revised error esti-

mates as a standard output. Narrowing of the un-

certainty range is a natural statistical response to the

FIG. 2. Mean annual fluxes (103 km3 yr21) of the global water cycle, and associated un-

certainties, during the first decade of the millennium. White numbers are based on observa-

tional products and data integrating models. Blue numbers are estimates that have been

optimized by forcing water and energy budget closure, taking into account uncertainty in the

original estimates.
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application of new constraints, similar to increasing

the sample size when computing an expected value.

Whether or not the optimized values are in fact closer to

the truth than the original observed estimates depends

in part on the veracity of the assumption that those

original estimates are unbiased.

In all cases the optimized global annual flux estimate

is well within the uncertainty range of the observed es-

timate, except for ocean evaporation, which is just out-

side of the range. That bodes well for the realism and

conservatism of the original error estimates. Further, the

same is true for the observed fluxes and the optimized

ranges, again with the exception of ocean evaporation.

The large adjustment to ocean evaporation is due in part

to simultaneous closure of the energy budget, and it is

examined further in section 6b.

Overall, the compatibility (in the sense of a closed

water budget) of the observed water cycle fluxes, which

are largely but not completely independent in their or-

igins, is encouraging. The observed global annual ter-

restrial water budget [Eq. (3b) applied to all land] closes

with a residual equal to 4.3% of PL, considerably better

than the expected error of 10.1% (computed as the

square root of the sum of the squares of the component

flux errors). After optimization, the expected error is

reduced to 7.2% (the residual being forced toward zero).

The observed global annual ocean water budget [Eq.

(12b)] closes with a residual of 6.6% of PO, with an ex-

pected error of 13.8%. Optimization reduces the ex-

pected error to 7.8%. The observed global annual

atmospheric water budget [Eq. (15b)] closes with a re-

sidual of 4.7% of PW, with a 13.6% expected error being

reduced to 7.5% by optimization. Hence the expected

errors after optimization for the annual, global land,

ocean, and atmospheric water budgets are less than

10%, which is consistent with a stated goal of NEWS

(NSIT 2007). That the observed residuals are consider-

ably smaller than the expected errors suggests that we

may have a better handle on global, annual water fluxes

than previously supposed.

Figure 3 shows optimized, mean annual precipitation,

evapotranspiration, runoff, and amplitude of the annual

cycle of terrestrial water storage for each continent. The

same numbers are presented in Table 3, along with the

original observed estimates, uncertainties, and water

budget residuals. Also included in Table 3 are ocean P

and E. While most previous studies have ignored the

Australasian and Indonesian islands (including New

Zealand and Tasmania), it is notable that they receive

nearly as much rainfall as mainland Australia and pro-

duce almost double the runoff. They also receive more

precipitation than Antarctica despite having one-eighth

the land area.

As seen in Table 3, with the notable exception of

North America, for every continent as well as theWorld

Ocean the expected closure error exceeds the magni-

tude of the surface water budget residual. In North

America, difficulty measuring snowfall, which accounts

for a large portion of precipitation, and runoff from

Greenland and the islands of northern Canada are

FIG. 3. Optimized annual-mean fluxes (103 km3 yr21) for North America (including Greenland), South America,

Africa, Eurasia, the islands of Australasia and Indonesia, mainland Australia, and Antarctica: precipitation (blue),

evapotranspiration (red), runoff (green), and annual amplitude of terrestrial water storage (yellow). The back-

ground grayscale image shows GRACE-based amplitude (max minus min) of the annual cycle of terrestrial water

storage (cm).
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possible explanations for the larger than anticipated

water budget residual. Still, the magnitude of the world

land surface water budget residual, 0.09mmday21, is well

below that of the expected closure error, 0.22mmday21.

The atmospheric water budget residuals are within the

error bounds for all ocean basins. These outcomes lend

credence to the initial uncertainty estimates, which may

in fact be overly conservative at the global land and

global ocean scales. On the other hand, the atmospheric

water budget residuals exceed the expected closure er-

rors over mainland Australia, the Australasian and In-

donesian islands, and the Black Sea. Larger than

TABLE 3. Observed and optimized (boldface text) mean annual fluxes (mmday21) of P, ET or ocean evaporation E, Q, and C for the

continents, major ocean basins and seas, world land, World Ocean, and world. Also shown are residuals of the surface (SWB) and

atmospheric (AWB) water budgets, and estimated errors on each flux and budget closure. Note that the optimization process forces the

water budgets to close, so there are no optimized residuals.

Annual-mean fluxes (mmday21)

P P error ET or E

ET or E

error Q Q error

SWB

residual

Expected

closure

error C C error

AWB

residual

Expected

closure

error

North America 1.94 0.10 1.18 0.10 0.98 0.09 20.22 0.17 0.83 0.16 20.07 0.21

2.02 0.08 1.13 0.08 0.90 0.07 — 0.13 0.89 0.07 0.00 0.13
South America 4.51 0.21 2.73 0.15 2.00 0.25 20.23 0.36 1.83 0.35 20.06 0.44

4.57 0.16 2.67 0.13 1.90 0.16 — 0.26 1.90 0.16 0.00 0.26

Eurasia 1.99 0.12 1.15 0.18 0.94 0.12 20.10 0.25 0.67 0.13 0.17 0.25

1.98 0.10 1.16 0.11 0.82 0.08 — 0.17 0.82 0.08 0.00 0.17
Africa 1.92 0.09 1.53 0.12 0.35 0.04 0.04 0.16 0.33 0.06 0.06 0.16

1.89 0.07 1.54 0.07 0.35 0.03 — 0.11 0.35 0.03 0.00 0.11

Australia and

islands

2.28 0.10 1.40 0.20 1.07 0.29 20.20 0.37 1.31 0.25 20.43 0.34

2.31 0.10 1.20 0.14 1.11 0.14 — 0.22 1.11 0.14 0.00 0.22

Mainland

Australia

1.39 0.06 1.09 0.15 0.41 0.13 20.11 0.21 0.65 0.12 20.35 0.20

1.42 0.06 0.93 0.09 0.49 0.08 — 0.13 0.49 0.08 0.00 0.13

Australasian and

Indonesian

islands

6.79 0.32 3.10 0.63 4.54 1.12 20.85 1.32 4.86 0.93 21.18 1.17

6.88 0.30 2.60 0.41 4.28 0.45 — 0.68 4.28 0.45 0.00 0.68

Antarctica 0.49 0.11 0.03 0.01 0.46 0.12 0.00 0.16 0.54 0.10 20.08 0.15

0.52 0.06 0.03 0.01 0.49 0.06 — 0.09 0.49 0.06 0.00 0.09

World land 2.16 0.12 1.33 0.13 0.92 0.13 20.09 0.22 0.80 0.15 20.01 0.18

2.18 0.09 1.32 0.09 0.86 0.08 — 0.16 0.86 0.08 0.00 0.16

Arctic 0.71 0.36 0.35 0.06 — — — — 0.60 0.09 20.24 0.37

0.93 0.10 0.34 0.06 — — — — 0.58 0.09 — 0.15
North Pacific 3.81 0.31 3.28 0.29 — — — — 0.35 0.12 0.18 0.44

3.99 0.19 3.64 0.19 — — — — 0.35 0.10 — 0.28

South Pacific 2.81 0.28 3.07 0.26 — — — — 20.42 0.15 0.16 0.41

3.00 0.17 3.42 0.16 — — — — 20.42 0.11 — 0.26
North Atlantic 2.82 0.30 3.23 0.26 — — — — 20.50 0.19 0.09 0.44

2.90 0.21 3.40 0.20 — — — — 20.50 0.16 — 0.33

South Atlantic 2.10 0.27 2.66 0.21 — — — — 20.94 0.17 0.38 0.38

2.00 0.19 2.87 0.17 — — — — 20.87 0.15 — 0.29
Indian Ocean 2.88 0.30 3.30 0.31 — — — — 20.57 0.12 0.15 0.45

3.08 0.20 3.66 0.20 — — — — 20.57 0.11 — 0.30

Caribbean Sea 2.85 0.30 4.38 0.38 — — — — 21.35 0.20 20.18 0.52

2.93 0.24 4.31 0.26 — — — — 21.38 0.19 — 0.40

Mediterranean Sea 1.58 0.21 3.81 0.43 — — — — 22.38 0.36 0.15 0.60

1.57 0.20 3.90 0.30 — — — — 22.33 0.29 — 0.46

Black Sea 2.41 0.28 2.57 0.26 — — — — 21.39 0.21 1.24 0.43

1.90 0.21 3.01 0.21 — — — — 21.11 0.18 — 0.35

World Ocean 2.89 0.29 3.08 0.27 0.37 0.05 0.19 0.40 20.35 0.14 0.17 0.42

3.03 0.17 3.37 0.17 0.34 0.03 — 0.24 20.34 0.02 — 0.24

World 2.68 0.24 2.58 0.23 0.00 0.04 0.11 0.33 20.02 0.15 0.13 0.37

2.79 0.15 2.79 0.15 0.00 0.02 — 0.21 0.00 0.03 — 0.21
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expected residuals over the islands and the Black Sea

may be attributed to their small scale and limited ob-

servational constraints. The large residual over main-

land Australia seems to arise from an imbalance in

MERRA, which provides the sole atmospheric moisture

convergence estimate due to the lack of a QuikSCAT

water balance estimate. For the same period, MERRA

P minus ET over Australia averages 0.33mmday21,

compared with a C estimate of 0.65mmday21. The

former number is more compatible with our original

P and E estimates and would produce an atmospheric

water budget residual of only 20.02mm day21 if

substituted for MERRA convergence. Errors in

MERRA’s C estimates likely arise from the sparsity and

infrequency (twice per day) of radiosonde measurements,

which are the only direct observations of the atmospheric

water vapor profile. Nevertheless, as noted by Trenberth

et al. (2011), MERRA’s atmospheric moisture transport

into Australia is at least physically plausible, unlike the

ECMWF interim reanalysis (ERA-Interim, hereinafter

ERA-I) annual mean, which is negative due to un-

realistically large ET.

b. Mean monthly fluxes

The seasonal cycles of precipitation, evapotranspira-

tion, runoff, atmospheric convergence, and water stor-

age change over each continent and the global land and

global ocean are plotted in Fig. 4 [recall Eqs. (3a) and

(4a)]. Continents in the Northern Hemisphere have

peakP, ET, andQ in the summer, and accumulate water

in the winter. The same is true for the continents in the

Southern Hemisphere, except that Q peaks later, in

austral autumn, in South America, and the fluxes in

Antarctica have a weak, bimodal annual cycle with P

and ET minima in austral summer. Africa, which

straddles the equator, has bimodal fluxes. Terrestrial

water storage changes are dominated by the outputs, ET

andQ, at the global scale and in most continents, but dS

is controlled by P in South America, Africa, and the

Australasian and Indonesian islands.

One might expect river discharge to lag precipitation

by about a month at the global scale, considering that

rainfall begets runoff, but in fact the opposite is true.

While the water fluxes associated with individual pre-

cipitation events or anomalously wet or dry periods are

likely to proceed intuitively (e.g., Changnon 1987), the

seasonal cycles of the fluxes are influenced by other

factors. In North America, the snowpack immobilizes a

large portion of annual continental precipitation and

subsequently melts and releases it in the spring (snow-

pack is not isolated from terrestrial water storage in this

analysis). As a result,Q peaks in June, while P, because

of the strength of summer convective rainfall, peaks in

July. The same is true in northern Eurasia. Further, the

precipitation to runoff ratio happens to be smaller in

June than July in all continents except for South

America and Australia, and hence the phenomenon of

P lagging Q can also be attributed in part to a fluke of

global averaging.

Similarly, the global, annual cycle of evapotranspiration

does not lag but is more or less contemporaneous with

precipitation, and precipitation actually lags evapotrans-

piration in South America. There, continental-scale water

fluxes are dominated by those in Amazonia, where P is

much larger than ET and moisture normally is abundant.

Thus, formost of the yearET is energy limited (Hasler and

Avissar 2007; da Rocha et al. 2009). That explains why ET

peaks in January (when downward radiation is greatest in

the Southern Hemisphere), two months before maximum

P.However, the amplitude of the annual cycle of incoming

shortwave radiation is only about 30% of the mean in the

Amazon, so that the annual cycle of ET is similarly weak

(Rodell et al. 2011) despite an annual mean intensive rate

of ET in South America that far exceeds that of the other

continents (excepting the Australasian and Indonesian is-

lands). Further, because seasonal changes in ET andQ in

South America are out of phase (i.e., the seasonal oscil-

lations of the two water budget outputs destructively in-

terfere) and because both are small compared with

seasonal changes in P, the annual cycles of P, C, and dS

have nearly identical amplitude and phase. The seasonal

phase of Q is closer to that of terrestrial water storage (S;

not shown) than that of P, with a maximum in April–May

and a minimum in September–October. Modulation ofQ

by S (via baseflow or, in the case of theAmazon, release of

floodplain storage), which is a central tenet of the bucket

model of terrestrial hydrology (Manabe 1969), holds true

for Africa and Australia as well.

In Eurasia, evapotranspiration follows the seasonal

cycles of precipitation and solar radiation, peaking in

July and bottoming in January. The relationships be-

tween P, S, and Q are more complicated. The seasonal

cycle of S (not shown) achieves its maximum and

minimum in April and October, respectively, while

maximum and minimum Q occur in September and

February. In this case, P seems to control Q more

strongly, with a 1–2-month lag. That may be a conse-

quence of an annual cycle of S in Eurasia with amplitude

less than half that of North America and about a quarter

that of South America. Despite the size of Eurasia, the

average residence time of water after it falls on the land

surface appears, perhaps deceptively, to be relatively

short. More likely, the unusual timing of Q with respect

to S may be the result of two very different climates

being averaged together: northern Eurasia where the

snowpack stores and releases runoff, and southern
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FIG. 4. Optimized mean annual cycles of precipitation (blue), evapotranspiration (red), runoff (green), at-

mospheric convergence (orange), and month-to-month water storage change (yellow) (mmday21) over the

continents and global ocean, during roughly 2000–10. Linear interpolation is used between monthly values.

Shading indicates the uncertainty range. Note the y axes are not uniform.
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Eurasia where powerful monsoons regulate the seasonal

cycles of P, S, andQ (e.g., Trenberth and Fasullo 2013).

As mentioned previously, monthly runoff (ice flow to

the ocean) from Antarctica was computed as a water

budget residual. Of the other fluxes, monthly mean dS

over Antarctica from GRACE is believed to be robust;

P is not well constrained by observations, but there is a

reasonably small RMS difference of 13% between

monthlyP fromGPCP andMERRA; and ET is likewise

not well constrained but is believed to be inconsequential,

averaging only 5% of P according to both MERRA and

Princeton estimates.

Averaged over theworld’s oceans, precipitation appears

to be nearly constant throughout the year (although a

difference of just 1mmday21 equates to 361km3day21

when spread over the global ocean). Evaporation is

greatest in December and January, when downward ra-

diation is strongest over the southern oceans and the air

over the northern oceans is dry, and it remains relatively

low from April through October. Terrestrial runoff into

the oceans peaks in June and July, and because of that and

the low austral winter E and nearly constant P, ocean

storage begins to increase inMay and reaches amaximum

in October (coinciding with minimum northern snow

water storage). Ocean C and dS are in phase with Q,

peaking in June (May for C) and bottoming in December

and January.

As seen in Fig. 5, among the major ocean basins, the

largest flux rates occur in theNorth Pacific and the smallest

occur in the Arctic. The ranges of monthly flux rates in the

other four basins are similar, although those in the South

Atlantic are typically on the low side. In the North Pacific

and Arctic, minimum P occurs in April and February, re-

spectively, andmaximum P occurs in August for both. The

seasonal cycle of P in the North Atlantic lags that of the

other two northern ocean basins by three months. Pre-

cipitation in the southern oceans has the opposite phase,

with greater than average P in austral autumn and lower

than average P in austral spring.

Evaporation in the Arctic peaks in May, just prior to

the month of maximum insolation, with a secondary

peak in October, when sea ice is near its minimum. In all

of the other ocean basins, E is largest in winter and

smallest in summer. Evaporation’s negative correlation

with the seasonal cycle of solar radiation and heating of

the surface may seem odd until one recognizes two facts.

First, most ocean evaporation occurs in the tropics,

where solar radiation is nearly constant through the

year. Second, evaporation is enhanced by dry, cold air

outbreaks (particularly over the Gulf Stream in the

western North Atlantic and the Kuroshio in the western

North Pacific) and midlatitude storms (because of

their winds).

In general, the seasonal cycles of atmospheric con-

vergence over the major ocean basins form smoother

sinusoids than those of precipitation or evaporation,

with familiar summer maxima and winter minima. A

notable exception is the bimodal convergence in the

North Atlantic, where separate maxima occur in June

and September. Note that P exceeds E (i.e., C is posi-

tive) in everymonth of the year in theArctic Ocean. The

North Pacific is the only other major ocean basin that

has positive annual-meanC (also see Table 3). That may

be counterintuitive, considering that more than half of

the North Pacific lies in the tropics, where the rate of

evaporation is normally very high over openwater, but it

is supported by ocean salinity observations (e.g., Durack

FIG. 5. Optimized mean annual cycles of precipitation, evapo-

ration, and atmospheric convergence (mmday21) over the major

ocean basins, during roughly 2000–10. Linear interpolation is used

between monthly values. Shading indicates the uncertainty range.
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and Wijffels 2010). In fact, E over the North Pacific is

comparable to that over the other ocean basins exclud-

ing the Arctic, but P is significantly larger due to the

intertropical convergence zone being aligned at roughly

7.58N over the Pacific, which tips the balance toward a

positive annual-mean C.

6. Discussion

a. Water budget closure

This study demonstrates that global and continental/

ocean basin, annual and monthly mean water balance

closure can be achieved with acceptably small residuals

and uncertainty (3.9% and 7.4% of precipitation, re-

spectively, for the global surface water budget and sig-

nificantly less than 10% in most other cases) based on

recent satellite and model derived datasets. Uncertainty

estimates provided with those datasets appear to be

sufficiently conservative, as the actual water budget re-

siduals are smaller than the predicted errors in all but a

few cases. Our optimization approach imposes terres-

trial, atmospheric, and oceanic water and energy budget

closure at continental, oceanic, and global scales, on a

mean monthly and mean annual basis. The uncertainty

in each element of the resulting dataset is smaller than

the original observation error estimate (an inherent

outcome of the approach), and in most cases both the

original and optimized error estimates are compatible

with the residuals of the original observation based

balance equations. Thus current quantitative under-

standing of the global water budget seems to meet or, in

many cases, exceed the initial accuracy targets of the

NEWS program (NSIT 2007). On the other hand, a

pessimist might argue that 6% uncertainty in global

ocean precipitation equates to more than half of the

world’s river discharge, sowe still have work to do before

we can claim to have a handle on the global water cycle.

In the following paragraphs, imbalances and closure er-

rors are presented as percentages of precipitation.

Assessing the surface water balance first, at the global

annual scale, the water budget closure error was pre-

dicted to be 12.5% of precipitation. The actual residual

of the observational estimates is 3.9%, and the estimated

uncertainty in the optimized global, annual surface water

budget is 7.4%. Over the global land surface, the pre-

dicted annual water budget closure error was 10.1%,

while the observed residual is 4.3%. After optimization,

the estimated uncertainty declines to 7.2%. For the

global ocean, the predicted closure error was 13.8%,

while the observed residual and optimized uncertainty

are 6.6% and 7.9%. Optimization increases GPCP’s

global ocean precipitation estimate by 4.7%, which is

nearly identical to the conclusion of Behrangi et al.

(2012, 2014) and the adjustment previously used by

Trenberth et al. (2009).

The global annual-scale atmospheric water budget

was predicted to have 13.6% closure error, but the ac-

tual observed residual is much smaller, 4.7%, and the

optimized error is 7.5%. The world land–atmosphere

water imbalance was predicted to be 8.6%, while the

observed residual is only 0.3% and the optimized error

estimate is 7.2%. The World Ocean–atmosphere water

imbalance was predicted to be 14.6%, while the ob-

served residual is 5.9% and the optimized closure un-

certainty is 7.8%. As previously noted, the observed

residuals and optimized error estimates in each of these

global, annual cases are better than the NEWS goal of

10% water balance uncertainty (NSIT 2007).

Predicted uncertainty in themonthlymeanwater budgets

over the global land surface ranged from12.5% inMarch to

16.1% in June, with an average of 14.1%. Observed re-

siduals range from 0.2% in December to 18.4% in June,

averaging 4.7%.Larger errors and residuals inMay–August

seem to arise from uncertainty in ET andQ. ET estimates

from the three sources, Princeton, MERRA, and GLDAS,

differ more during those months, and both ET and Q are

elevated during boreal summer, so there is more room for

error in absolute terms. Indeed, optimization reduces the

JuneQ estimate by 17% and the June ET estimate by 5%.

During a typical month, optimization changes those fluxes

by less than 5% and 2%, respectively. Optimized global

terrestrial water budget uncertainty is close to 11% in every

month. Predicted uncertainty in the monthly mean, global

land–atmosphere water balance ranged from 9.7% (Sep-

tember) to 12.4% (December), averaging 11.2%.Observed

residuals range from 0.9% in October to 8.0% in January,

with a mean of 3.6%. Optimized uncertainty is close to 8%

in all months. Thus, over the global land, with the exception

of the surface water budget during the boreal summer

months when globalQ and ET rise, the observed terrestrial

and atmospheric–terrestrial water budgets close with less

than 10% error, often much less, and the optimized water

budget uncertainty is around 8%–11% in all cases.

Among the continents, annual surface water balance

closure error was expected to be largest over Antarctica

(32.4%), Australia and the islands (16.1%), and Eurasia

(12.5%). Optimized uncertainty in Antarctica declines to

17.3%, but the Antarctic water budget is a weak point of

this study due to the lack of observed Q and a significant

dependence onMERRA.On the other hand, the fluxes are

relatively tiny in Antarctica, so that the errors are small in

absolute terms. The observed residual and optimized un-

certainty for Australia and the islands are 8.6% and 9.6%.

Those for Eurasia are 5.1% and 8.7%. Hence, aside from

Antarctica and the Australasian and Indonesian islands

when separated from Australia, all observed residuals
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and optimized errors for the annual, continental surface

water budgets are below the 10% target. The smallest

predicted and optimized errors are those of South

America (8.0% and 5.7%), and the smallest observed

surface water budget residual is that of Africa (2.1%),

although it should not be inferred that Africa’s water

cycle is therefore well observed and constrained. Despite

higher densities of meteorological observations in North

America and Eurasia, it is possible that water budget

closure is hindered by more complex hydrology (i.e.,

seasonal snow and ice).

The annual land–atmosphere closure error was pre-

dicted to be largest overAntarctica (30.9%) andAustralia

and the islands (14.8%). The observed residual and opti-

mized uncertainty for Antarctica are 16.3% and 17.2% of

precipitation, and they are 18.9%and 9.6%overAustralia

and the islands. Surprisingly, the residual is larger over

mainland Australia (24.9%) than over the islands

(17.3%). As described in section 5a, this seems to arise

from an overestimate of C from MERRA. The smallest

predicted error, observed residual, and optimized error

are found over the same two continents as above, Africa

(8.5%) and South America (1.3% and 5.7%).

The individual ocean basin surface water budgets are

not closed due to the lack of ocean transport observa-

tions. The annual ocean–atmosphere water imbalance

was predicted to be largest over the Arctic Ocean

(52.6%) and the Mediterranean Sea (37.7%). The ob-

served residuals are smaller (33.4% and 9.8%), as are

the optimized uncertainty estimates (15.8% and 29%).

The Black Sea has the largest observed residual as a

percentage, 51.5%, but in absolute terms it is not very

large. Expected errors for the major ocean basins other

than the Arctic were all in the range of 11%–19%, and

optimization reduces that range to 7%–15%. Observed

residuals over those ocean basins range from 3.2%

(North Atlantic) to 18.2% (South Atlantic).

The global ocean–atmosphere water balance was pre-

dicted to close with about 14% uncertainty during each

month of the year. Observed residuals vary between

2.9% in July and 9.5% inMarch. Optimized water budget

uncertainty is close to 10% in all months. Thus the ob-

served residuals and optimized errors for the annual and

monthly global ocean and individual ocean basin–

atmosphere water budgets satisfy the 10% target level

in the majority of cases, the most notable exceptions

being the large residual and optimized errors in the South

Atlantic.

b. Evaluation of metrics

Comparison of the optimized fluxes (Fig. 2) with those

of Trenberth et al. (2011, hereinafter T11) and Oki and

Kanae (2006, hereinafter OK06) reveals their global

fluxes mostly lie within our uncertainty ranges. Two

exceptions are the OK06 land precipitation value

(111 000 km3 yr21), which is slightly below the low end of

our range (116 500 6 5.1 km3 yr21), and the T11 runoff

estimate of 40 000km3 yr21, which is likewise below

our range (45 900 6 4.4 km3 yr21). It is notable that

the budget closure process causes our ocean P and E

to go from observed values that are smaller (385 300

and 409 500 km3 yr21) than both T11 (386 000 and

426000km3yr21) andOK06 (391000 and 436500km3yr21)

to optimized values that are quite a bit larger (403 600

and 449500km3yr21). Some of the discrepancies be-

tween the three studies may be attributed to the use of

different time periods (2002–08 in T11; data from mul-

tiple periods, mostly before 2000, are used in OK06) and

ocean/land masks. Indeed, T11 note that their GPCP-

based ocean P estimate was 1.8% higher for the period

1979–2000 than for 2002–08.

The optimization process increases our ocean pre-

cipitation number by about 4.7% over the observed

number (GPCP), which is well within theGPCP error bars

of 8%–10% for global ocean precipitation (Adler et al.

2012). The GPCP ocean magnitudes also compare well

(within a few percent) with TRMM climatology estimates

in the tropics (Adler et al. 2009; Wang et al. 2014). In ad-

dition, recent studies using TRMM plus CloudSat in-

formation by Behrangi et al. (2012, 2014) report ocean

precipitation that is 4.3% above GPCP, and Trenberth

et al. (2009) applied a 5% increase to GPCP ocean pre-

cipitation in their analysis. The energy balance compels

upward adjustments of ocean precipitation and evapora-

tion, in that turbulent heat fluxes that are significantly

larger than the initial estimates are required to balance net

radiation [seeL’Ecuyer et al. (2015) for further discussion].

Stephens et al. (2012) increased GPCP global (land plus

ocean) precipitation by 15% to balance surface radiation

in their study, which is far more than the 4.7% ocean ad-

justment and ,1% land adjustment applied in this study.

The energy balance–induced upward adjustment of

ocean evaporation is substantial, yet it supports our

observed runoff, ocean divergence, and land conver-

gence estimates, all of which exceed the T11 value of

40 000km3 yr21. Nevertheless, owing to our observed

and optimized runoff estimates being 24% and 15%

larger than T11 runoff, we performed sensitivity exper-

iments in which we halved and doubled the runoff un-

certainty used in the optimization process, and a third

experiment in which the input runoff was set to

40 000km3 yr21. These resulted in optimized runoff es-

timates of 48 000 6 2900, 44 000 6 5400, and 41 700 6
4400km3yr21, respectively. The results indicate that

even with the runoff uncertainty doubled the optimized

runoff is closer to our reported result than it is to T11.
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The upward adjustment of the runoff value from 40 000

to 41 700 km3 yr21 in the third experiment demonstrates

that other global water and energy fluxes call for a larger

value. Possible explanations for our runoff estimates

being larger than T11 include the impact of runoff from

theAustralasian and Indonesian islands, which are often

ignored in global water budget assessments, the in-

clusion of submarine groundwater discharge, which is

also frequently ignored, accounting for runoff down-

stream of river gauges, and higher runoff from the mon-

soon region of southeast Asia and southern South

America, both of which are poorly constrained by obser-

vations (Clark et al. 2015). Note that the OK06 runoff

value, 45500km3yr21, is very close to our 45900km3yr21.

At the continental scale, our optimized annual-mean

fluxes often differ considerably from those reported by

Trenberth and Fasullo (2013, hereinafter TF13). The

sources of the TF13 terrestrial water balance components

are GPCP for P, ERA-I for P and ET (averaged over

2003–10), Dai et al. (2009) for Q, and an off-the-shelf,

gridded GRACE product for dS (Landerer and Swenson

2012). The GPCP precipitation estimates in TF13 are

very close to our own, while TF13’s ERA-I precipitation

is significantly different (outside of the uncertainty range

of our estimates) in all five continents (TF13 omits Ant-

arctica): on the low side in North America, Eurasia, and

mainland Australia, and on the high side in South

America and Africa. The largest absolute difference is

from 5.15mmday21 (TF13) to 4.57mmday21 for South

America, and the largest percentage difference is 1.01–

1.42mmday21 for mainland Australia. TF13 evapo-

transpiration is significantly larger for all continents ex-

cept Eurasia, including 1.47 versus 0.93mmday21 for

mainland Australia and 1.44 versus 1.13mmday21 for

North America. Somewhat balancing those differences,

TF13 runoff is smaller in all cases, and significantly

smaller for North America, Eurasia, and Australia. Over

Eurasia the difference is 0.57 versus 0.82mmday21, and

over mainland Australia the difference is 0.15 versus

0.49mmday21. The use of different data sources, and to a

lesser extent different averaging periods, are the apparent

explanations for these discrepancies. In addition, TF13’s

continental water budget residuals (using ERA-I pre-

cipitation) are 15% of P for North America, 47% for

mainland Australia, and 5% or less for South America,

Eurasia, and Africa. Integrating those residuals into the

fluxes, as is done here via optimization, would meaning-

fully alter the water budgets of the former two continents.

Our second metric is a comparison of the initial and

optimized uncertainty estimates with the residuals of the

observed water budget equations. In most cases, the

predicted errors are smaller than the residuals (see

sections 5 and 6a). Further, the differences between the

observed and optimized estimates of most fluxes are

generally smaller than the associated uncertainties, even

in the cases of ocean P and E. Overall, our approach—

beginning with a foundation of observations and ad-

justing their magnitudes based on relative errors to

achieve water budget closure, and through the merger

with the energy budget—seems to provide reasonable,

balanced estimates of the components of both the global

and continental–basin water cycles.

c. Shortcomings

In addition to the coarse spatial and temporal resolu-

tions of this analysis, the way that certain variables are

lumped together (e.g., rainfall and snowfall), and a focus

on changes in terrestrial and ocean water storage with no

attempt to estimate the size of each reservoir (e.g.,

Shiklomanov and Rodda 2003), there remain sources of

possible error and other shortcomings relative to the ideal

global water budget analysis. Some result from deci-

sions made in framing the study. In particular, a major

objective was to rely on recent, observation-integrating

datasets, particularly those derived from satellite obser-

vations, which necessarily limited the use of in situ ob-

servations and prevented estimation of the sizes of

various stocks of water. Similarly, we gave preference to

datasets developed by members of the NEWS team in

order to ensure that 1) expertise would be available to

inform the optimization and to interpret the results and

2) decadal means over the defined continents and ocean

basins would be provided, along with uncertainty esti-

mates. As a consequence, other datasets that may in fact

have beenmore accuratewere intentionally omitted from

the analysis. For example, some evidence suggests that

model-based precipitation estimates may be better than

observations at high latitudes, but we chose to rely ex-

clusively on GPCP. Further, there are tens of global

evapotranspiration datasets available (e.g., Jiménez et al.
2011; Mueller et al. 2011) whose inclusion probably

would reduce uncertainty in our continental-scale esti-

mates, but we determined to use three that have a high

proportion of satellite-based inputs: one directly derived

from observations and two based on observation in-

tegrating models (one coupled, one land surface only).

We chose to examine the first decade of the new

millennium rather than developing a true climatology,

which is commonly taken to require at least 30 years

of data. That decision was made in part because the

2000s are the EOS era (thus it is a corollary of the first

decision/objective) and in part because it envisages fu-

ture routine decadal ‘‘state of the water cycle’’ studies,

with the goal of detecting water cycle shifts related to

climate change. Still, it would not be appropriate to use

the results presented herein exactly as one would use a
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climatology, nor would it be scientifically justifiable to

conclude that an observed shift or trend based on two or

three such studies is real and likely to continue, unless

accompanied by a well-vetted explanation of the

mechanism and other corroborating information. For

example, Australia experienced its worst drought in

over 100 years during 2001–09 (van Dijk et al. 2013).

As a result the continental Australian water fluxes de-

picted here are likely to be weaker than those of the

decade that follows, yet a wetting trend should not in the

future be inferred. As previously noted, the study period

coincides with an apparent hiatus in global warming

(Meehl et al. 2011), which suggests the period may be

anomalous. While that may complicate comparisons

with other global water cycle analyses, it provides ad-

ditional motivation for quantifying the water cycle on

shorter than climatological time scales going forward.

On the other hand, there are some real trends in ter-

restrial water storage as measured by GRACE that we

intentionally ignore. In particular, Greenland, Antarc-

tica, and the glaciers along the Gulf of Alaska have been

shedding ice at a total rate of 380 km3 yr21 (Luthcke

et al. 2013). Our estimates of dS are based on detrended

time series, and our Q estimates are based on conti-

nental water budgets with mean annual dS equal to zero.

While optimization of the water fluxes through the si-

multaneous constraint of budget equations across multi-

ple spatial and temporal scales is an important advance

that certainly improved the outcomes of this study, our

approach relies on assumptions that are unlikely to be

true in all cases. In particular, unbiased, Gaussian statis-

tics are assumed. Evidence to support that assumption is

limited to a study by Sardeshmukh et al. (2000), who

showed that rainfall is largely normally distributed at the

2.58 monthly scale for regions of mean upward motion

(i.e., substantial amounts of rain). However, structural

errors are likely to exist due to imperfect retrieval algo-

rithms and uneven sampling of the diurnal cycle. Biases in

our estimates and non-Gaussian or correlated errors

would reduce the efficacy of the optimization routine and

lead to less accurate flux estimates and associated un-

certainty ranges.Nevertheless, lacking better information

on the statistical distributions of the input datasets, little

can be done to quantify or control these potential de-

ficiencies. We recommend this as a potential area of im-

provement for future global water cycle closure analyses.

d. The value of modern datasets

EOS-era observations and output from data assimi-

lating models form the basis of this analysis. Without

them an accounting of the global water budget at the

turn of the century would rely heavily on incomplete

surface data and guesswork. While such an accounting

may be useful when global climate is stationary, it can-

not be used to quantify water cycle fluxes now and how

they change in the future. In situ and remote sensing

data complement each other. Ground-based meteoro-

logical or hydrological observations have been used to

anchor, calibrate, or inform all of the datasets used

herein in some way or other. Observations from satel-

lites, including those in theGOES series, TRMM,Terra,

and Aqua, are crucial for filling often extensive spa-

tial and temporal gaps in the surface observational re-

cord and for extending that record to the near-present.

Moreover, global data on terrestrial and oceanic water

storage change, long the missing link in water budget

closure studies, are a product of GRACE that cannot

feasibly be replicated by ground-based observations.

Data integrating models serve a similar gap-filling role

in this analysis, and also enable more and different types

of data to be incorporated as constraints. MERRA pro-

vides flux data for regions of the world that are poorly

monitored, including Antarctica and the Australasian

and Indonesian islands. MERRA and GLDAS evapo-

transpiration estimates are a valuable and independent

addition to observation-based ET, and together they

enable uncertainty to be assessed with a higher degree of

confidence. ERA-I, the new Japanese reanalysis of 55

years’ extent (JRA-55), and MERRA2 offer new input

sources that could be used in a similar water budget op-

timization study in the future. The ongoing development

of such data integrating models and reanalyses un-

doubtedly will benefit future water and energy budget

assessments and will be vital for maximizing the value of

Earth observing systems, a fact thatmust be considered in

budgeting future missions and planning the Global Earth

Observation System of Systems (GEOSS).

While the GOES satellites have been serving contin-

uously since 1975 and will extend their record with the

anticipated launch of GOES-R in 2016, it is notable that

Terra, Aqua, and GRACE all launched between 1999

and 2002 and are well beyond their design lifetimes.

Considering the importance of observational continuity

to any study of recent climate variability and change, it is

good that reinforcements are beginning to arrive. Terra’s

and Aqua’s observational capabilities have been aug-

mented (and eventually may be replaced) by NASA’s

Suomi National Polar-Orbiting Partnership satellite

(Suomi–NPP, launched in 2011), which carries CERES

and the Visible Infrared Imager Radiometer Suite

(VIIRS, a technology similar to MODIS), and by

JAXA’s Global Change Observation Mission–Water

(GCOM-W1), which carries the AMSR2 system.

TRMMhas been succeededby theNASA–JAXAGlobal

Precipitation Measurement mission (GPM), whose core

satellite launched on 28 February 2014. A successor to
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theGRACEmission, GRACEFollow-On, is planned to

launch in 2017. Other current and future Earth-

observing satellites that could help to constrain global

and regional water budgets include the European Space

Agency’s Soil Moisture Ocean Salinity satellite (SMOS,

launched in 2009), NASA’s Soil Moisture Active and

Passive satellite (SMAP, launched in 2015), and NASA’s

Surface Water Ocean Topography mission (SWOT,

proposed to launch in 2020). SWOTwould be particularly

valuable for water budget studies, as it promises to im-

prove estimates of river discharge in parts of the world

where such data are not made available for political

reasons and otherwise.

This analysis highlights deficiencies in our global

hydrologicalmeasurement portfolio that could potentially

be addressed by future satellitemissions.Major fluxes that

are poorly observed from space include runoff, transport

between ocean basins, atmospheric convergence–vapor

flux, and evaporation–transpiration. SWOT aims to ad-

dress the first of these. Ocean circulation models are in-

formed by remotely sensed data on ocean surface

topography, bottom pressure, temperature, salinity, color,

and winds (e.g., Fu and Morrow 2013), but it is unlikely

that direct measurement of interbasin water transport will

be possible from space anytime soon. Algorithms have

been developed for estimating atmospheric water vapor

fluxes based on satellite observations (e.g., Liu et al. 2006;

Hilburn 2009), but uncertainty is high because they do not

resolve the full three-dimensional structure of moisture

transports. TF13 concluded that convergence estimates

from reanalysis models are better than any current P2 E

estimates. A satellite mission dedicated to measuring

evaporation and transpiration would improve water

budget closure, and the basic retrieval algorithms were

derived two decades ago (e.g., Anderson et al. 1997;

Bastiaanssen et al. 1998). Our analysis also suggests that

cold land hydrology is not well constrained by obser-

vations, which underscores the need for a snow mea-

surement mission. Such a mission was a third tier

recommendation of the 2007 decadal survey for Earth

science (NRC 2007) that never came to fruition.

Next-generation Earth-observing satellites offer in-

triguing prospects for building on and improving the

analysis presented here and there is strong justification

for increasing the pace of mission approval and de-

ployment (NRC 2007). Further, the prospect of per-

forming similar studies at finer than monthly continental/

ocean basin scales, without greatly increasing reliance on

numerical models, would be improved by higher spatial

and temporal resolution of observations, meaning more

satellites and enhanced technologies. The path to that

goal is fairly direct, but requires technical innovation and

sustained funding.

e. Future directions

As noted above, the current study should be refined in

the future by increasing the spatial and temporal resolu-

tions, taking into account the oblateness of Earth, and

incorporating biases and other detailed error information

in the optimization process. Also, considering that the

water lost to the oceans from ice sheets, glaciers, and

certain aquifers is being quantified by GRACE, the as-

sumption that mean annual changes in water storage are

zero should be revisited. A second goal should be to ex-

tend the analysis forward in time and begin to describe

changes in the water budget from one period to the next.

For some time, it will be difficult to determine with cer-

tainty which changes are part of a real, long-term trend

and which are related to interdecadal natural variability,

but that should not discourage the effort. The analysis of

Robertson et al. (2014) is a step in that direction. Third, as

old satellites are decommissioned and new ones are

launched, it will be important to identify ensuing dis-

continuities in the data record (see, e.g., T11).

Another future direction will be to utilize oceano-

graphic measurements and ocean reanalyses to further

constrain thewater budgets of the global ocean and ocean

basins. The Argo program, consisting of more than 3000

free-floating profilers, provides information on salinity

variability on long time and space scales in open ocean

regions (Roemmich et al. 2009). This, in combination

with satellite sea surface temperature and salinities fields,

can be used to constrain the heat and freshwater budgets

of the ocean. More progress has been made on the global

ocean heat budget and its implications for regional and

global energy budgets than on the freshwater budget

(e.g., Willis et al. 2004; von Schuckmann and Le Traon

2011). Seasonal and longer time scale global and regional

variability of the salinity budget of the upper ocean is also

better described than the mean global freshwater surface

budget itself [see Durack and Wijffels (2010), Cravatte

et al. (2009), and von Schuckmann and Le Traon (2011)

for variability of the upper ocean salinity budget and its

relationship to the surface freshwater budget]. Assimila-

tion of in situ and satellite data into ocean circulation

models is an approach that is becoming more common,

particularly for regional variability (e.g., Douglass et al.

2010), and can help to constrain the advective conver-

gence of freshwater. However, as observed by Yu et al.

(2013), there is still significant inconsistency in the

transports from the various syntheses, and there is still

much work to be done before definitive results are pos-

sible from this approach. Nevertheless, future global

water budget analyses should attempt to take advantage

of the improvements in ocean observations andmodeling

that are currently ongoing.
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Many other follow-on studies are merited, including

partitioning of the water storages and fluxes, assessing di-

urnal cycles, investigating extremes, computing advanced

statistics, and improving on past assessments of the size of

each storage reservoir and associated residence times (e.g.,

Bodnar et al. 2013). Because of themany important ways in

which water and energy fluxes in Earth’s climate system

intersect with other disciplines, in ways both physical and

biogeochemical, there are likely numerous directions in

which the present study could be refined. More generally,

Trenberth andAsrar (2014) astutely summarize outstanding

challenges and opportunities in global water cycle science.

The current results should be applied toward the as-

sessment of global climate prediction models such as those

contributing to phase 5 of the Coupled Model In-

tercomparison Project (CMIP5; Taylor et al. 2012), whose

first goal is to ‘‘evaluate how realistic the models are in

simulating the recent past’’ (http://cmip-pcmdi.llnl.gov/

cmip5/). Our water and energy budget analysis, whose re-

sulting dataset is available online (http://disc.gsfc.nasa.gov/

hydrology), was performedwith that goal inmind, and such

comparisons are an essential step toward the NEWS ob-

jective of improving predictions of future climate change.
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APPENDIX

Implementation of Vectors F and R

The vector Fobs consists of eight parameters over eight

regions (seven continents and global ocean), one param-

eter over only continents, and two additional parameters

at the global scale, all derived from observations. The

regions are listed in Table 2. The parameters are the

component fluxes of the water and energy balance equa-

tions: convergence C, evaporation E, evapotranspiration

(ET), precipitation P, runoff Q, surface longwave down-

ward radiation (DLR), surface shortwave downward ra-

diation (DSR), surface longwave upward radiation

(ULW), surface shortwave upward radiation (USW), sur-

face sensible heat (SH), top-of-the-atmosphere (TOA) net

shortwave radiation (TSR), and TOA outgoing longwave

radiation (OLR). Subscripts refer to the seven continents

(e.g., ‘‘na’’ for North America and ‘‘sa’’ for South Amer-

ica), global ocean, and world, where world is a sum of all

regions. Since we do not have an observation forQocean, it

is set equal to Qland, which is the sum of Q over all conti-

nents. The one-dimensional vector Fobs is expressed in

groups below for demonstration purpose (but it is a col-

umn vector and not a two-dimensional matrix):

F
obs

5

(Cna
ET

na
P

na
Q

na
DLR

na
DSR

na
ULW

na
USW

na
SH

na

C
sa

ET
sa

P
sa

Q
sa

DLR
sa

DSR
sa

ULW
sa

USW
sa

SH
sa

..

.

C
ocean

E
ocean

P
ocean

DLR
ocean

DSR
ocean

ULW
ocean

USW
ocean

SH
ocean

TSR
world

OLR
world )

T

.

8>>>>><
>>>>>:

(A1)

Also, R is a column vector consisting of residuals of the

three balance equations over the seven continents and

global ocean and residuals of the two balance equations

that serve as global constraints,

R5

(dWna
dS

na
NET

na

dW
sa

dS
sa

NET
sa

..

.

dW
ocean

dS
ocean

NET
ocean

C
land

1C
ocean

NETA
world

)T

.

8>>>>>>>>><
>>>>>>>>>:

(A2)

The balance equations are defined in section 4b.
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