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ABSTRACT 

Foods of high carbohydrate content such as sucrose or starch increase postprandial blood glucose

concentrations. The glucose absorption system in the intestine comprises two components: sodium-

dependent glucose transporter-1 (SGLT1) and glucose transporter 2 (GLUT2). Here five sappanin-type

(SAP) homoisoflavonoids were identified as novel potent GLUT2 inhibitors, with three of them

isolated from the fibrous roots of Polygonatum odoratum (Mill.) Druce. SAP homoisolflavonoids had

a stronger inhibitory effect on 25 mM glucose transport (41.6±2.5%, 50.5±7.6%, 47.5±1.9%,

42.6±2.4%, and 45.7±4.1% for EA-1, EA-2, EA-3, MOA, and MOB) than flavonoids (19.3±2.2%,

11.5±3.7%, 16.4±2.4%, 5.3±1.0%, 3.7±2.2%, and 18.1±2.4% for apigenin, luteolin, quercetin,

naringenin, hesperetin, and genistein) and phloretin (28.1±1.6%) at 15 μM. SAP homoisoflavonoids 

and SGLT1 inhibitors were found to synergistically inhibit the uptake of glucose using an in vitro

model comprising Caco-2 cells. This observed new mechanism of the glucose-lowering action of P.

odoratum suggests that SAP homoisoflavonoids and their combination with flavonoid monoglucosides

show promise as naturally functional ingredients for inclusion in foods and drinks designed to control

post-prandial glucose levels.

KEYWORDS: Polygonatum odoratum, homoisoflavonoids, GLUT2 inhibitors, synergy, glucose

control 
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 INTRODUCTION 

As a very common chronic disease, diabetes is becoming one of the greatest global health burdens

along with cancer, cardiovascular and cerebrovascular diseases because of its high prevalence,

morbidity and mortality1. The prevalence of diabetes for all adults worldwide was estimated to be 415

million in 2015 and this number is expected to increase to ca. 642 million by 20402-42-4. Diabetes is

characterized by hyperglycemia resulting from a defect in insulin secretion, insulin action, or both5.

Consumption of foods high in available carbohydrate such as sucrose or starch increases postprandial

blood glucose concentrations6. It has been reported that an elevated postprandial glucose level is

associated with the development of diabetes. Node et al.2 reported high post-prandial plasma glucose

‘‘spikes’’ are associated with an increased risk of developing type 2 diabetes. Controlling the post-meal

glucose level is known to be important in both diabetic patients as well as normal healthy subjects7, 8.

Unregulated glycemic excursions are undesirable, and any reduction or ‘‘blunting’’ of the post-prandial

glucose concentration in blood is potentially beneficial.

The glucose absorption system in the intestine comprises two components. One is a well-established

component mediated by the apically located, sodium-dependent glucose transporter-1 (SGLT1), a

high-affinity, low-capacity, active transport protein. The other component is glucose transporter 2

(GLUT2), a low-affinity, high-capacity, facilitated transport protein9, 10. Kellett et al.11 described the

potential interplay of these transporters during the consumption of a carbohydrate rich meal. We have

illustrated this interplay schematically in Figure S1. Before the meal, the concentration of free glucose

in the lumen of the intestine is low (<5 mM) and the apically expressed SGLT1 transporter actively

transports any available glucose into the enterocyte. GLUT2 transporters are also active on the

basolateral membrane of the enterocyte, transporting glucose from the blood into the cell to maintain
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cellular metabolism if required. During a meal, the local concentration of glucose begins to increase

(5–10 mM) and is transported from the intestinal lumen by SGLT1 and subsequently into the systemic

circulation via GLUT2. As a consequence of this initial glucose transport across the enterocyte,

intracellular stores of GLUT2 are mobilized and targeted to the apical membrane. Shortly after the

meal, very high local concentrations of glucose occur (25–100 mM) as the carbohydrate content of the

meal is broken down into monosaccharides by alpha-glycosidase enzymes located on the apical

enterocyte membrane. At these high levels of glucose, the high affinity, low capacity transporter

SGLT1 becomes saturated and the majority of glucose transport across the enterocyte is due to the low

affinity, high capacity GLUT2 transporters now present in the apical membrane12. Flavonoids, (a class

of polyphenols) that are widely distributed in food, especially fruits and vegetables, have been reported

to have GLUT2 inhibitory effects, including quercetin, isoquercitrin, myricetin, apigenin, luteolin,

hesperetin, and hesperidin, however, most of their glycosides are SGLT1 inhibitors13, 14.

Polygonatum odoratum (Mill.) Druce, a famous Yin-nourishing herb in traditional Chinese

medicine and an edible food, which grows wildly and is also cultivated in most areas of China, has

been used for hundreds of years to treat many diseases including diabetes15. Previous bioactivity

investigation of P. odoratum showed that the extracts or ingredients from its fibrous root had glucose-

lowering effects with the mechanisms of action involving increasing insulin sensitivity16, increasing

insulin-stimulated glucose uptake15, inhibiting advanced protein glycation17, or inhibiting alpha-

amylase/alpha-glycosidase enzymes18. Wang et al. 19reported that the ethanol extract of P. odoratum

showed potent intestinal glucose transport inhibitory effect. In this study, we investigated the chemical

constituents of ethanol extracts of P. odoratum and the potential glucose transport inhibitors. Bioassay-

directed fractionation led to the isolation of a series of homoisoflavonoids with novel potent GLUT2
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inhibitory activity. In addition, these homoisoflavonoids demonstrated synergistic inhibition of glucose

transport when combined with previously identified SGLT1-specific antagonists20.

 MATERIALS AND METHODS 

Materials. The reagents of sodium pyruvate solution, D-(+)-glucose, 2-Deoxyglucose, Lucifer

Yellow, and fetal bovine serum (FBS) were obtained from Sigma-Aldrich (St. Louis, MO).

DMEM+Glutamax-1, Non Essential Amino Acids and dimethyl sulfoxide was purchased from Merck

(Gibbstown, NJ). The Amplex Red Glucose/Glucose Oxidase Assay Kit was purchased from

Invitrogen (Carlsbad, CA). For cell culture, human epithelial colorectal adenocarcinoma (Caco-2) cells

were purchased from American Type Culture Collection (Manassas, VA).

Chemicals. Apigenin, luteolin, quercetin, naringenin, hesperetin, genistein, tectoridin, phloridzin,

and phloretin were obtained from Sigma-Aldrich (St. Louis, MO). Luteolin-7-glucoside, myrtillin

chloride, naringenin-7-O-glucoside, kaempferol-3-glucoside, and apigenin-8-C-glucoside were

purchased from Extrasynthese (Genay, France). Methylophiopogonanone A (MOA) and

Methylophiopogonanone B (MOB) were purchased from Shanghai PureOne, Biotechnology Co. Ltd.

(Shanghai, China)

Plant material Polygonatum odoratum (Mill.) Druce, rhizoma, dried were purchased from

Shanghai Kangqiao Pharmacy Co., Ltd. (authenticated by Prof. L.H. Wu at the Institute of Chinese

Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai), and deposited at

the Herbarium of the Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese

Medicine, Shanghai. The information includes the producing area (Jiangsu), lot number (111126), and

voucher specimen (yz12041211).
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Extraction and isolation. P. odoratum (1.0 kg) was extracted with an aqueous solution of 95%

ethanol for 2 h at a solid-liquid weight ratio of 1:4. The remaining plant root was then extracted with

an aqueous solution of 70% ethanol for 2 h at a solid-liquid weight ratio of 1:3. The two aqueous-

ethanol extracts were then combined, concentrated and vacuum dried to yield 333.1 g (yield rate 33.3%)

P. odoratum aqueous ethanol extract19.

The dried extract (333.1 g) was dissolved in water and partitioned sequentially with petroleum ether,

ethyl acetate and 1-butanol to obtain once dried 21.0 g petroleum ether extract (yield rate 6.3%), 4.33

g ethyl acetate extract (yield rate 1.3%), 29.3 g 1-butanol extract (yield rate 8.8%) and 216.5 g water

extract (yield rate 65.0%).

The ethyl acetate extract was further purified using a LC3000 semi-preparative HPLC system fitted

with a YMC-Pack-C18 column (250 mm × 10 mm, 5 μm). Compounds were eluted isocratically (60% 

acetonitrile, 40% water with 0.18% formic acid) and the signal was monitored at 280 nm at a flow rate

of 6 ml/min. This separation method provided two mixtures (EA-A and EA-B) and three pure

compounds, namely EA-1 (38.3 mg, yield rate 0.885%), EA-2 (59.0 mg, yield rate 1.362%), and EA-

3 (93.8 mg, yield rate 2.167%) (Figure S2a).

HR-ESI-MS were obtained on a Waters Premier QTOF mass spectrometer, coupled to an UPLC that

comprised of an Acquity Waters Ultra-Performance Liquid Chromatographic system equipped with a

Waters UPLC column (Acquity UPLC BEH C18, 2.1 × 50 mm, 1.7 μm,) and a Micromass ZQ 2000 

ESI mass spectrometer. NMR spectra were obtained on a Bruker AVANCE-III instrument (600 MHz)

for 1H and 13C, with tetramethylsilane as internal standard.

Glucose transport assay
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Cell culture. Caco-2 cells were cultured in Growth Medium consisting of Dulbecco’s modified 

Eagle's medium (containing Glutamax-1, 4.5 g/L D-glucose and 25 mM 4-(2-hydroxyethyl)-1-

piperazine ethanesulphonic acid (HEPES) (Invitrogen)), 10% FBS, 1% non-essential amino acids

(Invitrogen) and 1 mM sodium pyruvate (Sigma)). The cells were routinely passaged at approximately

80% confluence using TrypLE™ Express Stable Trypsin-Like Enzyme (Invitrogen) to detach the cells,

and seeded at approximately 114 cells/mm2 in fresh tissue culture flasks. Only cells between the

passage numbers 45 and 49 were used for these experiments21.

The method for the formation of differentiated monolayers with good membrane integrity was based

on the previous report of Yamashita et al.22 Corning® HTS Transwell® 96 well permeable insert

supports (Sigma) were collagen coated with 40 μL of 50 μg/mL collagen type I (BD Biosciences) in 

0.02 M acetic acid for one hour at room temperature under sterile conditions. The inserts were washed

twice in phosphate buffered saline (PBS (Invitrogen)) and the Caco-2 cells seeded into the inserts at

9.6 × 105 cell/mL (75 μL per insert) in Growth Medium and 30 mL of Growth Medium added to the 

feeder plate below. The cells were left to attach to the collagen matrix and form monolayers over 48 h

at 37 °C, 5% CO2. Both inserts and feeder plate were washed in PBS and the cells incubated with BD

Entero-STIM™ Enterocyte Differentiation Medium containing MITO+™ Serum Extender solution

(both BD Biosciences), 75 μL per insert and 30 mL in the feeder plate, for a further 48 h at 37 °C, 5% 

CO2.

Glucose transport inhibitor cell screening assay. Differentiated cell monolayers were washed gently

in Dulbecco's Phosphate Buffered Saline containing CaCl2 and MgCl2 (PBS(+) (Invitrogen)) and the

inserts transferred to a new Corning® HTS Transwell®-96 well receiver plate (Sigma). The cells were

incubated with fresh PBS(+) (75 μL per insert and 225 μL per well) for 45 min at 37 °C, 5% CO2.
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The PBS(+) was gently aspirated and replaced with 75 μL per insert of either 5 mM D-glucose 

(simulated fasting state) ± test compound or 25 mM D-glucose (simulated fed state) ± test compound

in triplicate and 225 μL per well of PBS(+) quickly added to each well. The 5 mM glucose wells and 

the 25 mM glucose wells were incubated at 37 °C, 5% CO2 for 15 min and 30 min, respectively. The

cell inserts were transferred to a new receiver plate, the supernatant gently aspirated from the cells and

replaced with 100 μL of a 100 μM Lucifer Yellow (Sigma) solution to confirm the integrity of the 

monolayers. 225 μL of PBS(+) was added to each well and incubated at 37 °C, 5% CO2 for 1 h. The

cell inserts were then discarded and the permeability of the membranes to Lucifer Yellow checked by

measuring the fluorescence of the samples at 485 nm (excitation) and 530 nm (emission) on a

Spectramax Gemini EM fluorescence microplate reader22. 300 μM Pz and 150 μM Pt were used as 

positive controls of simulated fasting and fed states, respectively.

Glucose assay. The amount of glucose transported across the cell monolayers was measured using

a glucose oxidase assay. Briefly, 50 μL of each test sample was transferred to a black sided/clear bottom 

96-well plate (Greiner Bio-One) to which 100 μL of reaction buffer (0.5 μL 10 mM Ampliflu Red, 1 

μL 10 U/mL Horse Radish peroxidase, 1 μL 100 U/mL glucose oxidase and 97.5 μL PBS (all Sigma)) 

was added. After 10 min incubation at room temperature, the fluorescence of the samples was

measured at 530 nm (excitation) and 590 nm (emission) on a Spectramax Gemini EM fluorescence

microplate reader and the glucose concentration extrapolated from a standard curve19, 23.

2-Deoxyglucose transport assay

Preparation of differentiated Caco-2 cell monolayers. Caco-2 cells were cultured and routinely

passaged as described in Glucose transport assay. Caco-2 cells were seeded into BioCoat HTS Fibrillar
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Collagen Multiwell Inserts (BD Biosciences) at 2.5 x 105 cell/ml (500 μl per insert) in Growth Medium 

and 30 ml of Growth Medium added to the feeder plate below. The cells were left to attach to the

collagen matrix and form monolayers over 24 h at 37 °C, 5% CO2. Both inserts and feeder plate were

washed in PBS and the cells incubated with BD Entero-STIM™ Enterocyte Differentiation Medium

containing MITO+™ Serum Extender solution (both BD Biosciences), 500 μl per insert and 30 ml in 

feeder plate, for a further 48 h at 37 °C, 5% CO2.

2-Deoxyglucose transport cell model. Differentiated cell monolayers were washed gently in

Dulbecco's Phosphate Buffered Saline containing CaCl2 and MgCl2 (PBS (+) (Invitrogen)) and the

inserts transferred to a new standard tissue culture 24-well plate. The cells were incubated with fresh

PBS (+) (500 μL per insert and 1 mL per well) for 45 min at 37 °C, 5% CO2. The PBS(+) was gently

aspirated and replaced with 500 μL per insert of 25 mM 2-Deoxyglucose ± test compound in triplicate 

and 1 mL per well of PBS(+) quickly added to each well. The wells were incubated at 37 °C, 5% CO2

for 30 min. The cell inserts were transferred to a new receiver plate, the supernatant gently aspirated

from the cells and replaced with 500 μL of a 100 μM Lucifer Yellow (Sigma) solution to confirm the 

integrity of the monolayers. The details of Lucifer Yellow assay was described in the glucose transport

assay section.

2-Deoxyglucose assay. A 200 μL sample from each well was added to 1 mL of 0.5 M 

NaBH4/dimethyl sulfoxide (DMSO). Acetic acid (100 μL) was added dropwise to reduce the 

abundance of NaBH4 after the reduction reaction (90 min at 40 °C). 100 μL of this solution was 

acetylated (10 min at 40 °C) after adding 200 μL of 1-methylimidazole and 1 mL of acetic anhydride. 

Subsequently, 2 mL of water was added to the extracts for 10 min at 40 °C, and the mixtures were

extracted with 2 mL of chloroform. The samples were centrifuged (4000×g for 10 min), and the
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aqueous layer was discarded. The samples were washed with 2 mL of water. The samples were dried

over 1 g sodium sulfate and taken for GC-MS. 25 mM arabinose (2 μL) was used as an internal standard 

in each 200 μL starting sample24.

GC-MS was performed using an Agilent 6890 gas chromatograph (USA) coupled with a mass

spectrometer (Agilent 5975, USA). A DB-5 capillary column (30 m × 0.25 mm × 0.25 μm, Agilent) 

was used with an inlet temperature of 275 °C. Column temperature was increased from an initial

140 °C to 185 °C (5 °C/min). It was then increased from 185 °C to 190 °C (1 °C/min), and 190 °C to

250 °C (10 °C/min). Helium was used as a carrier gas at a flow rate of 0.9 mL/min with split ratio 10:1

and 1 μL sample aliquots were injected. The mass spectrometer was operated in electron impact and 

full-scan monitoring modes (m/z 25–300). Source temperature, electron energy, and solvent delay were

set at 280 °C, 70 eV and 5 min respectively.

Synergy between SGLT1 inhibitors and homoisoflavonoids

Preparation of differentiated Caco-2 cell monolayers and glucose transport cell model. Caco-2 cell

culture and the method for the formation of differentiated monolayers were the same as the 2-

Deoxyglucose transport assay. Differentiated cell monolayers were washed gently in PBS(+) and the

inserts transferred to a new standard tissue culture 24-well plate. The cells were incubated with fresh

PBS(+) (500 μl per insert and 1 ml per well) for 30 min at 37 °C and 5% CO2. The PBS(+) was gently

aspirated and replaced with 250 μl per insert of 5 mM D-glucose ± test compound and 1 ml of PBS(+) 

quickly added to each well below before the cells were replaced in the incubator at 37 °C and 5% CO2.

After 15 min, the cell inserts were transferred to a new 24-well plate, and a further 250 μl of 45 mM 

D-glucose ± test compound was added to each insert (resulting in a final concentration of glucose of
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25 mM) and again 1 ml of PBS(+) added to the wells. After a further 15 min the inserts were transferred

to a new 24-well plate and this time only fresh PBS(+) was added to the wells below. This step was

repeated after another 15 min. The integrity of the monolayers was confirmed using Lucifer Yellow as

described previously.

Glucose assay. After the last incubation, all of the retained PBS(+) from each step (i.e. at 15, 30, 45

and 60 min) was assayed for glucose levels as described in Example 1, and the total cumulative glucose

transport calculated. The localized changes in luminal glucose concentrations described and illustrated

in example 1 are mimicked in-vitro through an initial short incubation of differentiated Caco-2 cells

with a low level of D-glucose (5 mM for 15 min) immediately followed by a sustained incubation with

a high level of D-glucose (final concentration of 25 mM for 45 min).

Statistical analysis. All data are expressed as mean ± standard error of the mean. Statistical analysis

was performed with one-way ANOVA using GraphPad Prism 5.01 (GraphPad Software, San Diego,

CA, USA). Treatment differences were subjected to Tukey’s multiple comparison tests. Differences

with p < 0.05 were considered statistically significant.

 RESULTS AND DISCUSSION

Isolation and structure elucidation of homoisoflavonoids from P. odoratum. To find a novel and

potent glucose transport inhibitor and further target for functional ingredient development, bioassay-

directed fractionation of the ethyl acetate fraction of the aqueous ethanol extract of a dried root part of

P. odoratum, by semi-preparative HPLC system as detailed in the experimental section was performed.

This led to the isolation of two mixtures (EA-A and EA-B) and three pure compounds, namely EA-1,

EA-2 and EA-3 (Figure S2a). EA-1, EA-2 and EA-3, with stronger glucose transport inhibitory effect
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than EA-A and EA-B (Figure S2b), were identified by comparing their spectroscopic data (1H, 13C-

NMR, MS) (Figure S3-S9) with those reported25,26. They are 5,7-dihydroxy-3-(4’-hydroxybenzyl)-6-

methylchroman-4-one (EA-1), 5,7-dihydroxy-3-(4’-hydroxybenzyl)-6-methyl-8-methoxychroman-4-

one (EA-2), and 5,7-dihydroxy-3-(4’-hydroxybenzyl)-6, 8-dimethylchroman-4-one (EA-3)

respectively. Zhang et al.15 reported that the ethyl acetate soluble fraction of a 90% methanol extract

of the fibrous roots of P. odoratum affected an insulin-stimulated glucose uptake in differentiated 3T3-

L1 adipocytes. Bioassay-guided fractionation yielded nine homoisoflavonoids, together with an

isoflavone glycoside and a flavanone glycoside, including EA-1, EA-2, EA-3 and tectoridin, which

indicated that homoisoflavonoids may be potential insulin sensitizers. However, we are not aware of

any reports about homoisoflavonoids having an effect on glucose transport. Previous phytochemical

investigations on P. odoratum resulted in the isolation of nineteen homoisoflavonoids (Figure 1)27, 28.

However, in our study, only three homoisoflavonoids (9: EA-1, 10: EA-2, 11: EA-3) were obtained by

the method of bioassay-directed fractionation. This specific assay may thus have not allowed the

isolation of other homoisoflavonoids of either lower concentration or activity. To expand the sample

size for our study of the bioactivity, mechanism and synergy, another two homoisoflavonoids, namely

methylophiopogonanone A (MOA) and methylophiopogonanone B (MOB), were purchased (Shanghai

PureOne, Biotechnology Co. Ltd); the other homoisoflavonoids are not commercial available. All five

homoisoflavonoids had similar structure (Figure 2).

P. odoratum extracts & homoisoflavonoids inhibit glucose transport. Table 1 shows that a crude

aqueous ethanol extract of P. odoratum can significantly inhibit glucose transport across a

differentiated monolayer of Caco-2 cells at both low (simulated fasted state) and high (simulated fed

state) glucose concentrations. Further sequential partition demonstrated a similar inhibition activity
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with both the petroleum ether (PE) and ethyl acetate (EA) fractions. However, the 1-butanol fraction

only exhibited significant glucose transport inhibition activity at the lowest glucose concentration and

no inhibitory activity was detected in the water fraction.

The EA fraction was chosen for further purification based on its high glucose transport inhibition

activity, yielding five sub-fractions, two of which were mixtures (EA-A and EA-B) and the rest which

were mainly single compounds (EA-1, EA-2 & EA-3). While EA-A only demonstrated significant

glucose transport inhibition at low glucose levels, the other sub-fractions all inhibited glucose transport

at both glucose concentrations. In addition, the commercially available homoisoflavonoids,

methylophiopogonanone A (MOA) and methylophiopogonanone B (MOB), also significantly

inhibited glucose transport at both low and high glucose concentrations (Table 1).

Homoisoflavonoids are potent GLUT2 inhibitors. Berry et al.20 suggested that a compound

with >20% inhibition of glucose transport at both low (5 mM) and high (25 mM) glucose

concentrations was indicative of a GLUT2-specific inhibitor. Since all five pure homoisoflavonoids

(EA-1, EA-2, EA-3, MOA and MOB) met this specification (Table 1), their GLUT2 specificity was

confirmed using 2-deoxyglucose, which is only transported by GLUT2 and not by SGLT113, 29. The

data showed that all five homoisoflavonoids, at 15 μM inhibited 2-deoxyglucose transport (25 mM) 

with the inhibition rate corresponding to the glucose transport inhibition rate (Figure 3A). In addition,

the well characterized GLUT2 specific inhibitor, phloretin11, demonstrated a similar pattern of

inhibition to the homoisoflavonoids suggesting that they are indeed GLUT2 inhibitors.

In our study, EA-1, EA-2, and EA-3 have good solubility in PBS(+) glucose solution, with IC50

values of 47.43 μM, 53.47 μM, and 21.14 μM at 25 mM glucose, respectively (Figure 3B). The low 
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IC50 values of EA-1, EA-2 and EA-3 demonstrates the potent glucose transport inhibitory activity of

these homoisoflavonoids. The IC50 values of MOA and MOB could not be obtained due to solubility

issues at higher concentrations. However, interestingly all five homoisoflavonoids have good solubility

at 15 μM, therefore the concentration of 15 μM was selected as the test concentration for the following 

studies. Surprisingly, at this concentration the five homoisoflavonoids (EA-1, EA-2, EA-3, MOA and

MOB) exhibited significantly enhanced glucose transport inhibitory activities than the GLUT2

inhibitor phloretin at high glucose concentrations (Figure 4). In addition, the homoisoflavonoids

showed stronger inhibitory effects on 25 mM glucose transport than flavonoid aglycones (apigenin,

luteolin, quercetin, naringenin, hesperetin, and genistein) (Figure 4) which have been widely identified

as effective GLUT2 inhibitors13, 14. Indeed, the IC50 on 25 mM glucose transport of EA-1, EA-2 and

EA-3 were lower than apigenin (259.5 μM), luteolin (62.4 μM), naringenin (295.1 μM), hesperetin 

(162.7 μM), and genistein (157.8 μM) and similar to quercetin (41.6 μM) (Table S1). 

Synergy between homoisoflavonoids and flavonoid monoglucosides. Berry et al. 20 demonstrated

the synergistic inhibition of glucose transport across a differentiated Caco-2 monolayer by combining

both SGLT1 and GLUT2 inhibitors in a cell model designed to mimic the local changes in glucose

concentration during the digestion of a carbohydrate rich meal. Figure 5 plots the total cumulative

glucose transport across a differentiated Caco-2 monolayers in the presence or absence of a SGLT1

inhibitor for the first 15 min in 5 mM D-glucose and subsequently in the presence or absence of a

GLUT2 inhibitor in 25 mM D-glucose for the remaining 45 min. To validate this cell system, Pz and

Pt were used as the widely accepted specific inhibitors of SGLT1 and GLUT2 respectively (Figure

5A). Pz shows a reduction in total Cumulative Glucose Transport (tCGT) when added from the

beginning of the cell system (Pz NC-horizontal striped bar), demonstrating the inhibition of SGLT1



15

which is the dominant active transporter at low glucose levels. However Pz exhibits no inhibition on

tCGT when added later with the high concentration of D-glucose (NC Pz -dotted bar) since the SGLT1

transporters are now saturated and glucose transport is now dependent on the high capacity GLUT2

transporters. Pt demonstrates a significant reduction in tCGT when added with the high concentration

of D-glucose as expected (NC Pt -diagonal striped bars). However a combination of 300 μM Pz at low 

glucose concentrations, followed by 125 μM Pt at the high glucose concentration appears to 

significantly and synergistically inhibit the tCGT. This synergy exploits the requirement of an initial

transport of glucose into the enterocyte by SGLT1 before the high-capacity GLUT2 can be targeted to

the apical membrane. Used in combination, both SGLT1 and GLUT2 inhibitors can synergistically

inhibit the localized uptake of glucose from the intestinal lumen and hence potentially reduce the high

'spikes' of postprandial blood glucose associated with the potential risk of developing type 2 diabetes.

Berry et al. 20 disclosed examples of SGLT1 inhibitors, all being flavonoid monoglucosides, such as

luteolin-7-glucoside, apigenin-7-glucoside, apigenin-8-c-glucoside, kaempferol-3-glucoside,

kaempferol-7-glucoside, quercetin-3-glucoside, quercetin-4-glucoside, naringenin-7-glucoside,

eriodictiol-7-glucoside, daidzein-8-C-glucoside, daidzein-7-glucoside, cyanidin-3-glucoside,

malvidin-3-O-glucoside, delphinidin-3-glucoside (myrtillin chloride) and pelargonidin-3-glucoside.

Indeed, the presence of an additional glucose moiety on the chemical structure removes this inhibitory

action as demonstrated by quercetin-3,4’-diglucoside. The specificity for a glucoside is confirmed by

the absence of SGLT1 inhibitory activity by other flavonoid glycosides tested, including cyanidin-3-

rutinoside and malvidin-3-O-galactoside. In addition, the lack of SGLT1 inhibitory activity shown by

the hydroquinone monoglucoside, arbutin, reinforces the importance of a flavonoid and

dihydrochalcone structures in the glucoside molecule. Tectoridin, a flavonoid monoglucoside present
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in P. odoratum15, might be a SGLT1 inhibitors as well, with a glucose transport inhibition rate at 5 mM

glucose of 29.41 ± 0.62% and 4.92 ± 2.08% at 25 mM glucose with 300 μM tectoridin.  

Figure 5 summarises the results using the above-mentioned Caco-2 assay with combinations of

selected homoisoflavonoids, as potent GLUT2 inhibitors and SGLT1 inhibitors (a variety of flavonoid

monoglucosides) and clearly shows that in combination, both SGLT1 inhibitors and

homoisoflavonoids can synergistically inhibit glucose transport. For example, the specific SGLT1

inhibitor tectoridin (isoflavone monoglucoside, 300 μM) was combined with the specific GLUT2 

inhibitor EA-1 (homoisoflavonoids, 10 μM) to demonstrate the synergistic inhibition of glucose 

transport across a differentiated Caco-2 cell monolayer (Figure 5B). Combining luteolin-7-glucoside

(flavone monoglucoside, 300 μM) & EA-1 (homoisoflavonoids, 10 μM) (Figure 5C), or myrtillin 

chloride (anthocyanin, 300 μM) & MOB (homoisoflavonoids, 5μM) (Figure 5D), or naringenin-7-O-

glucoside (flavanone monoglucoside, 300 μM) & MOB (homoisoflavonoids (Figure 5E), 5 μM), or 

kaempferol-3-glucoside (flavonol monoglucoside, 150 μM) & EA-2 (homoisoflavonoids, 10 μM) 

(Figure 5F), tectoridin (isoflavone monoglucoside, 300 μM) & MOA (homoisoflavonoids, 5 μM) 

(Figure 5G), or apigenin-8-C-glucoside (flavone monoglucoside, 300 μM) & EA-3 

(homoisoflavonoids, 2.5 μM) (Figure 5H), demonstrated the synergistic inhibition of glucose transport 

across a differentiated Caco-2 cell monolayer.

Discussion. Diabetes is characterized by hyperglycemia, which can cause diabetic complications

including cardiovascular disease, nephropathy, retinopathy, and neuropathy30. Disturbance of glucose

homeostasis is a major factor in the development of hyperglycemia. In type 2 diabetes, pancreatic beta

cells are damaged or become dysfunctional because of the persistently high glucose or lipid levels,

inflammatory mediators released from the adipose tissue and endoplasmic reticulum, or oxidative
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stress31, 32. Thus controlling the post-meal glucose level may be a strategic approach for the prevention

and treatment of diabetes7, 8. In our study, we demonstrated for the first time that homoisoflavonoids

have an inhibitory effect on glucose transport in intestinal cells. Fractions EA-1, EA-2, EA-3 were

isolated from the fibrous roots of P. odoratum; MOA and MOB were purchased from commercial

suppliers who had isolated them from the root tubers of Ophiopogon japonicus (Asparagaceae family).

Homoisoflavonoids, a subclass of flavonoids, are rarely found in nature: they have only been

identified in six plant families so far (Asparagaceae, Fabaceae, Polygonaceae, Portulacaceae,

Orchidaceae,and Gentianaceae)27. The majority of homoisoflavonoids have been reported from the

families of Asparagaceae (P. odoratum belongs to Asparagaceae family) and Fabaceae27. The

homoisoflavonoids are classified into five groups based on their structures: sappanin-type (I),

scillascillin-type (II), brazilin-type (III), caesalpin-type (IV), and protosappanin-type (V). EA-1, EA-

2, EA-3, MOA, and MOB were classed as sappanin-type homoisoflavonoids (SAP homoisoflavonoids)

bearing a 3-benzyl chromane skeleton, in which the benzopyran and aromatic rings are connected via

one carbon, however, the benzopyran and aromatic rings are connected directly for the structure of

flavonoids. As of 2014, 191 SAP homoisoflavonoids have been isolated and structurally elucidated27.

SAP homoisoflavonoids have shown significant activities in the regulation of insulin-stimulated

glucose uptake in differentiated 3T3-L1 adipocytes15, AMPK and acetyl-CoA carboxylase in IAR-20

cells33, and advanced glycation end product formation34. Moreover, the results in the present study

indicated that SAP homoisoflavonoids are potent GLUT2 inhibitors, with significantly higher glucose

transport inhibitory activities than phloretin at high glucose concentrations. In addition, the SAP

homoisoflavonoids showed stronger inhibitory effects on 25 mM glucose transport than flavonoid

aglycones (apigenin, luteolin, quercetin, naringenin, hesperetin, and genistein).
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P. odoratum is native to Europe, Caucasus, Siberia, Russian Far East, China, Mongolia, Korea and

Japan28. In China, it is cultivated in most areas, its rhizomes have been widely used as an

ingredient/supplement in food (e.g. functional/healthy food, flavours and tea preparation), and a well-

known traditional Chinese medicine for removing dryness, promoting secretion of fluid and quenching

thirst35. In our study, three SAP homoisoflavonoids (EA-1, EA-2, EA-3) were isolated from the fibrous

roots of P. odoratum; with potent GLUT2 inhibitory effects. Additionally, sixteen other SAP

homoisoflavonoids have been isolated from P. odoratum (Figure 1)27, 28. Interestingly, flavonoid

monoglucosides (SGLT1 inhibitors) were also isolated from P. odoratum (e.g. tectoridin, hesperidin

and 4’-demethylleucomin 7-O-β-D-glucopyranoside)15. Since both SAP homoisoflavonoids and

flavonoid glycosides are present in P. odoratum, they may show synergetic effects on glucose-lowering

in diabetic patients. These results suggest a new mechanism for the anti-diabetic action of P. odoratum

and suggest that consumption of P. odoratum (containing both SAP homoisoflavonoids and flavonoid

glycosides) may be beneficial for the reduction or ‘‘blunting’’ of post-prandial glucose concentration

in blood. However, the very low abundance of these flavonoid monoglucosides in P. odoratum may

prevent the efficient synergy with SAP homoisoflavonoids suggesting that a combination of P.

odoratum with a plentiful source of flavonoid monoglucosides would be a promising new nutraceutical

agent or functional food ingredient for controlling post-prandial blood glucose.

 ASSOCIATED CONTENT

Supporting information

Glucose transport inhibitory effect and IC50 of homoisoflavonoids and flavonoids; A model of the

glucose concentration timeline during a meal; Semi-preparative HPLC chromatogram of the ethyl
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acetate extract from P. odoratum aqueous ethanol extract detected at 280nm; Inhibitory rate of

phloridzin (Pz), phloretin (Pt), EA-A, EA-B, EA-1, EA-2, and EA-3 at 5 mM and 25mM glucose

transport, respectively, EA-A, EA-B, EA-1, EA-2, EA-3 were isolated from EA by Semi-preparative

HPLC chromatogram; QTOF-MS spectra, 1H NMR and 13C NMR of EA-1, EA-2 and EA-3; Details

chemical information of Peak EA-1, EA-2 and EA-3.
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 Abbreviations Used

GLUT2, glucose transporter 2; SGLT1, sodium-dependent glucose transporter-1; SAP, sappanin-

type; FBS, fetal bovine serum; HPLC, high performance liquid chromatography; HR-ESI-MS, high-

resolution electrospray ionization mass spectrometry; QTOF, quadrupole time-of-flight; UPLC,

ultra-performance liquid chromatography; NMR, nuclear magnetic resonance; GC-MS, gas

chromatography-mass Spectrometer; EA-1, 5,7-dihydroxy-3-(4’-hydroxybenzyl)-6-methylchroman-

4-one; EA-2, 5,7-dihydroxy-3-(4’-hydroxybenzyl)-6-methyl-8-methoxychroman-4-one; EA-3, 5,7-

dihydroxy-3-(4’-hydroxybenzyl)-6, 8-dimethylchroman-4-one; MOA, methylophiopogonanone A;

MOB, methylophiopogonanone B; PE, petroleum ether; EA: ethyl acetate; tCGT, total cumulative

glucose transport
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Figure captions

Figure 1. The chemical profile of the homoisoflavonoids in the Polygonatum odoratum, among of

them 9: EA-1, 10: EA-2, 11: EA-3.

Figure 2. The structures of SAP homoisoflavonoids. The code name indicates the notation used

throughout.

Figure 3. SAP homoisoflavonoids inhibition of glucose and 2-deoxyglucose transport. (A) Inhibitory

rate of EA-1, EA-2, EA-3, MOA, MOB and phloretin (Pt) on 25mM glucose and 25mM 2-

deoxyglucose transport at the concentration of 15μM (n=3, NS: no significant difference, *P<0.05); 

(B) SAP homoisoflavonoids inhibition of glucose transport at 25 mM glucose in Caco-2 cells (n=3).

Figure 4. Inhibitory rate of homoisoflavonoids (EA-1, EA-2, EA-3, MOA, and MOB), flavonoids

(apigenin (A), luteolin (L), quercetin (Q), naringenin (N), hesperetin (H), and genistein(G)) and

phloretin (Pt) on 25mM glucose transport at the concentration of 15μM (n=3), the significant 

differences between groups are indicated by different letters a-d at P < 0.05.

Figure 5. The total cumulative glucose transport across differentiated Caco-2 monolayers in the

presence or absence of a SGLT1 inhibitor for the first 15 min in 5 mM D-glucose and subsequently in

the presence or absence of a GLUT2 inhibitor in 25 mM D-glucose for the remaining 45 min. A:

Cumulative glucose transport by phloridzin (Pz, 300μM) & phloretin (Pt, 125μM); B: Cumulative

glucose transport by tectoridin (T, 300μM) & EA-1 (5μM); C: Cumulative glucose transport by

luteolin-7-glucoside (L7G, 300μM) & EA-1 (2.5μM); D: Cumulative glucose transport by myrtillin

chloride  (MC, 300μM) & MOB (5μM); E: Cumulative glucose transport by naringenin-7-O-

glucoside (N7G, 300μM) & MOB (5μM); F: Cumulative glucose transport by kaempferol-3-glucoside
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(K3G, 150μM) & EA-2 (10μM); G: Cumulative glucose transport by tectoridin (T, 300μM) & MOA 

(5μM); H: Cumulative glucose transport by apigenin-8-C-glucoside (A8G, 300μM) & EA-3 (2.5μM) , 

the significant differences between groups are indicated by different letters a-d at P < 0.05, (n=3)
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Table 1. Glucose transport inhibition of ethanol extract of P. odoratum and its bioassay directed

fractions

Samples (200 μg/mL) 
% Glucose transport inhibition

5 mM D-Glucose

% Glucose transport inhibition

25 mM D-Glucose

Ethanol extract (EE)

Petroleum ether Fraction (PE)

Ethyl acetate fraction (EA)

1-Butanol fraction (1-But)

Water fraction (Water)

EA-A

EA-B

EA-1

EA-2

EA-3

MOA

MOB

Phloridzin

Phloretin

71.1±3.2

75.4±0.2

98.9±0.5

48.0±2.6

7.4±1.3

29.6±2.3

65.4±2.2

90.7±1.4

89.9±0.1

91.2±0.5

39.3±2.2

46.2±2.0

31.4 ± 1.5

90.4 ± 2.2

48.6±3.3

51.8±1.1

58.6±3.6

17.2±0.1

3.3±1.5

7.4±3.0

41.9±7.6

66.6±5.2

63.0±2.9

67.4±5.9

27.7±3.7

30.6±3.2

14.2 ± 1.1

58.2 ± 1.8

Phloridzin and pure homoisoflavonoids were tested at 300 μM and Phloretin was tested at 150 μM. The other samples 

were tested at 200 μg/mL, EA-A, EA-B, EA-1, EA-2, EA-3 were isolated from EA. 
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Figure 1
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Code name R1 R2 R3

EA-1

EA-2

EA-3

MOA

MOB

H

OCH3

CH3

CH3

CH3

OH

OH

OH

R2-O-CH2-O- R3

OCH3

H

H

H

H

Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Graphical Abstract
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Supporting Information

Table S1. Glucose transport inhibitory effect and IC50 of homoisoflavonoids and flavonoids

Homoisoflavonoids IC50 (μM), 5 mM Glucose IC50 (μM), 25 mM Glucose 

EA-1

EA-2

EA-3

MOA

MOB

Apigenin

Luteolin

Quercetin

Naringenin

Hesperetin

Genistein

18.5

14.3

8.6

Unknown

Unknown

122.8

30.3

32.9

176.7

121.6

97.77

47.4

54.5

21.1

Unknown

Unknown

259.5

62.4

41.6

295.1

162.7

157.8



Figure S1. A model of the glucose concentration timeline during a meal
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Figure S2a Semi-preparative HPLC chromatogram of the ethyl acetate extract from P.

odoratum aqueous ethanol extract detected at 280nm.

Figure S2b Inhibitory rate of phloridzin (Pz), phloretin (Pt), EA-A, EA-B, EA-1, EA-2, and

EA-3 at 5 mM and 25mM glucose transport, respectively. Phloretin was tested at 150 μM and 

phloridzin was tested at 300 μM. The other samples were tested at 200 μg/mL, EA-A, EA-B, EA-1, 

EA-2, EA-3 were isolated from EA by Semi-preparative HPLC chromatogram.



Figure S3 QTOF-MS spectra for EA-1, EA-2 and EA-3.



Figure S4 1H NMR of EA-1 (ppm, 600MHz, CD3OD)



Figure S5 13C NMR of EA-1 (ppm, 600MHz, CD3OD)



Figure S6 1H NMR of EA-2 (ppm, 600MHz, CD3OD)



Figure S7 13C NMR of EA-2 (ppm, 600MHz, CD3OD)



Figure S8 1H NMR of EA-3 (ppm, 600MHz, CD3OD)



Figure S9 13C NMR of EA-3 (ppm, 600MHz, CD3OD)



Peak EA-1：

White yellow powder, C17H16O5, High Res. ESI-MS (40V): 299.0940 [M-H]-, 193.0511,

178.0282, 165.0555, 149.0612, 135.0087, 121.0296, 107.0498, 95.0141, 79.0190, 69.0346, 55.0193

(Figure S3A)；1H-NMR (600MHz, CD3OH, Figure S4): 1.92 (3H, s, 6-CH3), 2.79 (1H, m, H-3),

2.65 (1H, dd, H-9a), 3.00 (1H, dd, H-9b), 4.10 (1H, dd, H-2a), 4.24 (1H, dd, H-2b), 6.01 (1H, s, H-8),

6.81 (1H, d, H-3’,5’), 7.07 (1H, d, H-20,60), 12.35 (1 H, s, 5-OH). 13C NMR (600MHz, CD3OH,

Figure S5): 6.96 (C-6-CH3), 33.16 (C-9), 47.56 (C-3), 69.83 (C-2), 95.13 (C-8), 102.33 (C-4a),

105.32 (C-6), 116.23 (C-3’, 5’), 130.24 (C-2’, 6’), 155.77 (C-4’), 161.54(C-5, 8a), 165.34 (C-7),

200.10 (C-4). EA-1 was assigned as 5, 7-dihydroxy-3-(4’-10

hydroxybenzyl)-6-methylchroman-4-one, which was a sappanin-type homoisoflavonoid.

Peak EA-2：

Pale yellow powder, C18H18O6, High Res. ESI-MS (40V): 329.1028 [M-H]-, 208.0380,

193.0136, 180.0413, 165.0221, 152.0480, 137.0245, 124.0168, 109.0311, 96.0217, 79.0197 (Figure

S3B). 1H-NMR (600MHz, CD3OH, Figure S6): 1.99 (3H, s, 6-CH3), 2.81 (1H, m, H-3), 2.66 (1H,

dd, H-9a), 3.11 (1H, dd, H-9b), 3.74 (3H, s, 8-OCH3), 4.14 (1H, dd, H-2a), 4.30 (1H, dd, H-2b), 6.74

(1H, d, H-3’, 5’), 7.05 (1H, d, H-2’, 6’). 12.22 (1 H, s, 5-OH). 13C NMR (600MHz, CD3OH, Figure

S7): 7.24 (C-6-CH3), 33.23 (C-9), 48.17 (C-3), 61.57 (C-8-CH3), 70.39 (C-2), 102.38 (C-4a), 105.23

(C-6), 116.39 (C-3’, 5’), 129.08 (C-8), 130.13 (C-1’), 131.14 (C-2’, 6’), 152.92 (C-8a), 157.17 (C-4’),

158.60 (C-7), 158.96 (C-5), 199.60 (C-4) 。 EA-2 was assigned as

(5,7-dihydroxy-3-(4’-hydroxybenzyl)-6-methyl-8-methoxychroman-4-one), which was a

sappanin-type homoisoflavonoid.

Peak EA-3：

Pale yellow powder, C18H18O6, High Res. ESI-MS (40V): 313.1094 [M-1]-, 298.6669, 207.0671,

192.0433, 179.0791, 163.0404, 149.0257, 135.0455, 129.0570, 123.0460, 107.0512, 95.0156,

83.0521, 77.0409, 69.0363, 57.0362 (Figure S3C).1H NMR (600MHz, CD3OH, Figure S8): 1.94

(3H, s, 8-CH3), 2.06 (3H, s, 6-CH3), 2.61 (1H, dd, H-9a), 2.83 (1 H, m, H-3), 3.04 (1H, dd, H-9b),

4.09 (1H, dd, H-2a), 4.28 (1H, dd, H-2b), 6.75 (1H, d, H-3’,5’), 7.04 (1H, d, H-2’,6’). 13C NMR

(600MHz, CD3OH, Figure S9): 6.80 (C-8-CH3), 7.27 (C-6-CH3), 31.59 (C-9), 46.42 (C-3), 68.90

(C-2), 101.45 (C-4a), 102.55 (C-8), 103.56 (C-6), 115.33 (C-3’, 5’), 128.73 (C-1’), 130.06 (C-2’, 6’),

155.85 (C-8a), 157.78 (C-4’), 158.97 (C-7), 162.48 (C-5), 198.85 (C-4). EA-3 was assigned as (5,

7-dihydroxy-3-(4’-hydroxybenzyl)-6, 8-dimethylchroman-4-one), which was a sappanin-type

homoisoflavonoid.
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