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Abstract
Motivated by an apparent contradiction regarding whether certain scheduling policies are sus-
tainable, we revisit the topic of sustainability in real-time scheduling and argue that the existing
definitions of sustainability should be further clarified and generalized. After proposing a formal,
generic sustainability theory, we relax the existing notion of (strongly) sustainable scheduling
policy to provide a new classification called weak sustainability. Proving weak sustainability
properties allows reducing the number of variables that must be considered in the search of a
worst-case schedule, and hence enables more efficient schedulability analyses and testing regimes
even for policies that are not (strongly) sustainable. As a proof of concept, and to better under-
stand a model for which many mistakes were found in the literature, we study weak sustainability
in the context of dynamic self-suspending tasks, where we formalize a generic suspension model
using the Coq proof assistant and provide a machine-checked proof that any JLFP scheduling
policy is weakly sustainable with respect to job costs and variable suspension times.
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1 What Really is Sustainability?

Since the seminal paper by Liu and Layland [13], the analysis and certification of real-time
systems has often relied on the fundamental notion of sustainability [5], which at a high level
expresses the idea that “if a system is proven to be safe under extreme conditions, then it will
remain safe if the conditions improve at runtime.” By allowing system designers to focus on
such extreme scenarios (rather than the entire state space of the system), sustainability plays
a fundamental role in the design, prototyping, analysis, and validation of real-time systems.

One common application of this principle is to determine the schedulability of the system
by identifying worst-case scheduling scenarios. For example, any schedulability analysis for
uniprocessor fixed-priority (FP) scheduling of sporadic tasks [14] that assumes that jobs
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26:2 On Strong and Weak Sustainability
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(a) EDF schedule of the original job set J . No jobs
are released after time 18.

T1

T2

T3

2 4 100 6 8 12 14 16 18

T1 T1 T1

T3

T2 T2 T2 T2

T1

Deadline miss!

(b) Scheduling anomaly represented by job set
Jbetter , generated by reducing the cost of task T3.
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(c) Alternative job set Jsusp with original costs and
shorter suspensions that is as hard to schedule as
Jbetter .

Figure 1 (adapted from [1]) Three schedules under the segmented suspension model showing
that the impact of the lack of sustainability tightly depends on the considered task model. Despite
the anomaly shown in schedule (b), there exists a harder schedule (c) with no anomaly that still
incurs a deadline miss. If we assume that the task model allows variable suspension times, then any
schedulability analysis that covers all possible scenarios would not claim the job set in (c) (and thus
the task set) to be schedulable, regardless of the anomaly present in schedule (b).

execute for their worst-case execution time (WCET) or arrive at maximum rate exploits
the fact that the FP scheduling policy for sporadic tasks is sustainable, i.e., the occurrence
of “better” job parameters (namely, larger inter-arrival times or lower execution times) at
runtime does not cause any deadline miss.

While precursors to this concept were already identified and proven in earlier papers [10,
11], the general concept of sustainability was first formalized by Baruah and Burns [5, 6]
and later refined by Baker and Baruah [2]. Although the definition by Baker and Baruah is
more rigorous than the original definition, we argue in this paper that there is still a need
for improvement in terms of clarity and precision.

To support our claim, in §1.1 and §1.2 we present an example in the context of uniprocessor
scheduling with self-suspending tasks [16], where we show a scheduling policy that can be
interpreted as both sustainable and not sustainable with respect to job execution times (also
called job costs hereafter). Both claims are correct according to the existing definitions of
sustainability and only depend on varying interpretations by the reader. This example shows
that, despite being a well-established concept, the theory of sustainability needs further
clarification and formalization.

1.1 Uniprocessor EDF Scheduling with Self-Suspensions is not
Sustainable w.r.t. Job Costs

Consider uniprocessor earliest-deadline-first (EDF) scheduling of self-suspending tasks under
the segmented suspension model. Self-suspending tasks are used to model workloads that may
have their execution suspended at given times, for example, to perform remote operations on
co-processors, acquire locks, wait for data, or synchronize with other tasks. The segmented
self-suspending task model can be formalized as follows.

I Definition 1 (Sporadic Task Model with Segmented Self-Suspensions). Let τ be a task set
and let J be a job set generated by τ . Each task Ti ∈ τ is defined by a period pi, deadline
di and a sequence of execution and suspension segments Si = [e1
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task parameters encode the constraints that any two jobs generated by Ti must be separated
by a minimum inter-arrival time pi. Each job released by Ti must finish its execution by a
relative deadline di, and alternates between execution and suspension segments as defined by
the sequence Si. The execution time of the k-th execution segment of job j is upper-bounded
by ek

i , and the suspension time of its k-th suspension segment is upper-bounded by sk
i .

Next, let us recall the definition of sustainable policy as proposed by Burns and Baruah [6].

I Definition 2 (Sustainable Policy – original definition from [6]). A scheduling policy and/or a
schedulability test for a scheduling policy is sustainable if any system deemed schedulable by
the schedulability test remains schedulable when the parameters of one or more individual
tasks are changed in any, some, or all of the following ways: (i) decreased execution
requirements; (ii) larger periods; (iii) smaller jitter; and (iv) larger relative deadlines.

As explained by Burns and Baruah [6], the interpretation of Definition 2 for scheduling
policies concerns the values of job parameters at runtime: “[...] a scheduling policy that
guarantees to retain schedulability if actual execution requirements during run-time are smaller
than specified WCET’s, and if actual jitter is smaller than the specified maximum jitters,
would be said to be sustainable with respect to WCET’s and jitter”.

Thus, in order to show that a scheduling policy is not sustainable with respect to execution
requirements (i.e., job costs), we must find a counterexample that shows a job set J that is
schedulable under that policy, along with a job set Jbetter with lower or equal job execution
times that is not schedulable under the same policy.

Fig. 1 depicts such a counterexample for uniprocessor EDF scheduling on the segmented
self-suspending task model, adapted from prior work by Abdeddaïm and Masson [1]. Fig. 1-(a)
shows the original EDF schedule of three tasks T1, T2 and T3, which contains no deadline
misses. Next, by reducing the cost of T3’s job by 1 time unit as shown in Fig. 1-(b), the
different interleaving of suspension times during the time interval [13, 16) increases the
interference incurred by task T1, causing a deadline miss at time 18.

This counterexample, which is simple enough to make the claim non-disputable, proves
that, according to Definition 2, EDF scheduling under the segmented suspension model is
not sustainable with respect to job costs.

1.2 Uniprocessor EDF Scheduling with Self-Suspensions is Sustainable
w.r.t. Job Costs

Consider the same platform, task model and scheduling policy as in §1.1, and recall the
definition of sustainable policy proposed by Baker and Baruah [2].

I Definition 3 (Sustainable Policy – original definition from [2]). Let A denote a scheduling
policy. Let τ denote any sporadic task system that is A-schedulable. Let J denote a
collection of jobs generated by τ . Scheduling policy A is said to be sustainable if and only if
A meets all deadlines when scheduling any collection of jobs obtained from J by changing
the parameters of one or more individual jobs in any, some, or all of the following ways: (i)
decreased execution requirements; (ii) larger relative deadlines; and (iii) later arrival times
with the restriction that successive jobs of any task Ti ∈ τ arrive at least pi time units apart.

Definition 3 is similar to Definition 2, except that it explicitly makes the difference
between the notion of jobs and tasks. It requires the job set J with original parameters to
be generated by a task set τ that is A-schedulable, i.e., all job sets generated by τ exhibit
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26:4 On Strong and Weak Sustainability

no deadline misses when scheduled by A. However, note that the modified job set obtained
from J (which we call Jbetter) does not have to be generated by τ .

Now, we must check whether the counterexample in Fig. 1 is still valid. At a first glance,
the job sets J and Jbetter depicted in Fig. 1-(a) and Fig. 1-(b) seem to prove that uniprocessor
EDF scheduling with segmented self-suspending tasks is not sustainable with respect to
job costs, according to Definition 3. After all, we can assume that job set J is generated
for instance by some task set τ = {(p1 = 12, d1 = 6, S1 = [2, 2, 2]), (p2 = 9, d3 = 7, S2 =
[2, 2, 2]), (p3 = 10, d3 = 10, S3 = [2])}.

However, let us consider the alternative job set Jsusp in Fig. 1-(c), in which the job of
task T3 has the original cost of 2 time units, and the suspension time of the second job of
task T2 is reduced by 1 time unit. Clearly, Jsusp can be generated by task set τ , since the
job costs are the same as in J and the suspension segments are no larger than those in J ,
which is allowed by the segmented suspension model. Moreover, we can observe that in the
schedule of Jsusp, task T1 again misses a deadline at time 18.

Since job set Jsusp generated by τ is not schedulable, it is clear that τ does not satisfy
the assumption of being A-schedulable (i.e., EDF-schedulable) required by Definition 3.
Therefore, job sets J and Jbetter in Fig. 1 are not a valid counterexample for establishing
that the policy is not sustainable. Since the counterexample is not valid, what can we really
say about the sustainability of this policy? Why do the two definitions disagree?

One aspect that is implicit but unclear in both definitions is whether all job parameters
other than the sustainable parameter (i.e., job costs) must remain constant. In fact, as
shown in Jsusp from Fig. 1-(c), in some cases we can vary the other parameters (i.e., job
suspension times) to compensate the increase in interference that would otherwise cause the
scheduling anomaly. Since this parameter variation is allowed by the task constraints, this
suggests that a task set that is schedulable for any possible job suspension times may in
effect be resilient to scheduling anomalies on job costs, even though individual schedulable
job sets are not.

In fact, by constructing job sets similar to Jsusp in the example above, we provide
a mechanized proof (i.e., a proof that is verified by the Coq proof assistant) in §4 that
establishes that uniprocessor job-level fixed priority (JLFP) scheduling of sporadic tasks
under the dynamic suspension model is, what we later define as, weakly sustainable with
respect to job costs and variable suspension times.

Note that this result does not make the counterexample of Abdeddaïm and Masson
incorrect. Their result is simply based on a different interpretation of sustainability where
nothing but the job parameter under consideration for the sustainability property can vary
between the compared schedules; thus, the results stated in §1.1 and §4 are both correct. In
§3, we will complement the existing sustainability theory with the notions of strong and weak
sustainability to distinguish those contradictory but correct interpretations of sustainability.

1.3 This Paper
The seemingly contradictory observations in §1.1 and §1.2 suggest the need for clarification
in the definitions of sustainability, which are currently restricted to the standard sporadic
task model and are not precise with respect to how parameters can vary across the original
and modified job sets J and Jbetter .

We believe that the solution to this problem lies in formalizing the abstract concepts
of real-time scheduling meta-theory such as “job and task parameters” in a rigorous way,
so that the different notions of sustainability can be stated precisely. Additionally, this
approach allows transcribing those concepts into a proof assistant such as Coq to formalize
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and mechanically prove key results [7]. With that in mind, we propose a formal sustainability
theory for real-time scheduling, which we present in §2.

Our goal in this paper is not only to clarify what sustainability means, but also to
provide a foundation for more efficient schedulability analyses for policies that are sustainable
with varying parameters (such as the suspension times in the example from §1.2), a new
concept that we call weakly sustainable policy. The exact definition and implications of weak
sustainability will be discussed in §3.

Finally, we apply this newly defined notion of weak sustainability in §4, where we formalize
self-suspending tasks in Coq and mechanically prove that uniprocessor, job-level fixed priority
(JLFP) scheduling of self-suspending tasks under the dynamic suspension model is weakly
sustainable with respect to job costs and varying suspension times.

To summarize, this paper makes the following contributions:
1. a formal theory of sustainability in real-time scheduling, with definitions of sustainable

policy [2, 6], sustainable analysis [2, 5, 6] and self-sustainable analysis [2] generalized to
any scheduling policy and any task and platform models (§2);

2. the definition of the new notions of strongly and weakly sustainable policies (§3), and the
corresponding composition rules (§3.2);

3. the first formalization of sustainability theory and real-time scheduling with self-suspensions
in a proof assistant (§4.1 and online appendix [15]); and

4. a mechanized proof of weak sustainability of uniprocessor JLFP scheduling of dynamic
self-suspending tasks with respect to job costs and varying suspension times (§4.2–§4.4
and online appendix [15]).

2 Formalization of Sustainability Theory

In this section, we formalize the theory of sustainability in real-time scheduling and char-
acterize the basic notions of sustainability proposed in the literature, namely sustainable
policy [2, 6], sustainable analysis [5, 6] and self-sustainable analysis [2].

Our motivation for developing this theory is twofold: we aim to (a) clarify and generalize
the existing notions of sustainability so that they become compatible with any scheduling
policy and any task and platform models, and (b) provide the theoretical support for defining
the new concept of weak sustainability, which will be covered in §3 and mechanically proven
in §4 for uniprocessor JLFP scheduling of dynamic self-suspending tasks.

Note that this section does not introduce fundamentally new concepts; rather, it spells
out precisely common implicit assumptions about the task and platform models and gives a
more formal presentation of the underlying real-time scheduling meta-theory, which will be
used to mechanically prove the results (see §4).

In order to distinguish the different nuances of sustainability, one must be able to correlate
the variation of job and task parameters with schedulability. Hence, we must formalize the
system model and present the basic definitions related to jobs and tasks.

2.1 Platform Model
We begin by stating assumptions about the platform model, in particular the notions of time
and platform parameters, which specify part of the scheduling problem to be solved. Note
that all definitions in this paper are compatible with both discrete and dense time.

I Definition 4 (Processor Platform). Let platform Π be the system on which jobs are
scheduled.

ECRTS 2018



26:6 On Strong and Weak Sustainability

I Definition 5 (Platform Parameter). Each platform Π has a finite set of parameters Pplat .

I Example 6 (Common Platforms). Examples of platforms include uniprocessor systems,
identical multiprocessors [9], and uniform multiprocessors [3]. Multiprocessor platforms
usually have an associated parameter m ∈ Pplat that indicates the number of processors.

Note that Definition 5 does not limit the set of parameters defining a platform to its
number of processors; in fact, the set of parameters Pplat could also express the heterogeneity
of the platform [4], its power consumption, or execution speed profiles [17]. We keep the set
of parameters unspecified in order to retain maximal generality and not limit our definitions
to a fixed subset of system models.

This approach is uncommon. Most works tend to limit their results to a specific system
model (e.g., task-level fixed priority scheduling of sequential tasks on single or multi-core
processors). Instead, we prefer generality to specificity, so that the concepts and properties
presented hereafter can be instantiated for any scheduling problem.

2.1.1 Jobs
After discussing the general aspects of the system model, we now define a job set.

I Definition 7 (Job Set). A job set J is a (potentially infinite) collection of jobs.

Next, in order to define sustainability without being restricted to a particular task model,
we generalize the notion of a job parameter.

I Definition 8 (Job Parameter). We denote as job parameters any finite set Pjob, where each
parameter p ∈ Pjob is a function over jobs.

I Example 9. Common job parameters include cost(j), the actual job execution time,
arrival(j), the absolute job arrival time, and deadline(j), the relative job deadline. They
may for instance also include the job suspension time in the case of self-suspending jobs, its
level of parallelism and/or its energy consumption if such properties are of interest.

Next, we define the notion of scheduling policy, which specifies the strategy for selecting
jobs to be scheduled, i.e., allocated to a processor at a given time.

I Definition 10 (Scheduling Policy). Given a platform Π and a job set J with job parameters
Pjob, we define a scheduling policy σ as any algorithm that determines whether a job j ∈ J
is scheduled at a given time t on a processor π ∈ Π.

For job sets that have associated deadlines, we can also define whether they are schedulable.

I Definition 11 (Schedulable Job Set). Assume that jobs have a deadline as one of their
parameters. Then we say that a job set J is schedulable on platform Π under policy σ iff
none of its jobs misses a deadline when scheduled on Π under policy σ.

To compare different job sets, we must also be able to express how job parameters can
vary across job sets (e.g., job costs may increase while their arrival times remain constant).
For that, we define whether two job sets differ only by a given set of parameters.

I Definition 12 (Varying Job Parameters in V ). Consider any subset of job parameters
V ⊆ Pjob, which we call variable parameters, and consider two enumerated job sets J =
{j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}. We say that J and J ′ differ only by V iff |J | = |J ′| and

∀i,∀p ∈ (Pjob \ V ), p(ji) = p(j′
i), where |J | denotes the cardinality of job set J .
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I Example 13. By stating that {j1, j2} and {j′
1, j

′
2} differ only by V = {cost}, we claim

that jobs j1 and j′
1 (respectively, j2 and j′

2), are identical in all parameters other than cost.
This is useful to formalize, for example, the idea that “schedulability is maintained when
reducing only the cost of a job.”

2.1.2 Tasks
While some notions of sustainability apply exclusively to job sets, one can also describe how
the variation of task parameters affects schedulability analysis results. To be able to reason
at the task level, we begin by defining task set and task parameters.

I Definition 14 (Task Set). A task set τ is as a finite collection of tasks {T1, . . . , Tn}.

From a mathematical point of view, tasks are opaque objects, elements of an enumerated
set. Their utility comes from defining task parameters and using them to constrain the sets
of jobs that can possibly be generated at runtime (see Definition 18 below).

I Definition 15 (Task Parameters). We call task parameters any finite set Ptask , where each
parameter p ∈ Ptask is a function over tasks.

I Example 16. Similar to the job parameters in Example 9, common task parameters
include, but are not limited to, WCET(Ti), the worst-case execution time of task Ti, and
period(Ti), the period or minimum inter-arrival time of task Ti.

Next, we define a task model, which determines how job sets are related to task sets.

I Definition 17 (Task Model). A task modelM is the collection of all task sets that can
be defined with given task parameters Ptask , along with a set of constraints relating job
parameters with task parameters.

I Definition 18 (Generated Job Sets). Every task set τ ∈M generates a (potentially infinite)
collection of job sets, denoted jobsets(τ) = {J1,J2, . . .}, with the condition that, for every
job set J ∈ jobsets(τ) and every job j ∈ J , (a) j belongs to an associated task in τ , denoted
task(j), and (b) the job parameters of j are constrained by the task parameters of task(j),
as determined byM.

One example of such a task model constraint is the upper bound on job execution times.

I Example 19 (Constraint on Job Execution Time). Let M be the sporadic task model.
Let the job parameter cost(j) denote the actual execution time of job j and let the task
parameter WCET (Ti) denote the WCET of task Ti. For every job set J generated byM,
the cost of each job j ∈ J is upper-bounded by the cost of its task, i.e.,

∀τ ∈M,∀J ∈ jobsets(τ),∀j ∈ J , cost(j) ≤WCET (task(j)).

Using the notion of generated job sets, we can now define whether a task set is schedulable.

I Definition 20 (Schedulable Task Set). A task set τ ∈ M is schedulable on platform Π
under scheduling policy σ iff every generated job set J ∈ jobsets(τ) is schedulable on Π
under σ.

Similarly to Definition 12, in order to relate parameters across task sets, we define whether
two task sets differ only by a given set of parameters.

I Definition 21 (Varying Task Parameters in V ). Consider any subset of task parameters
V ⊆ Ptask , which we call variable parameters, and consider two task sets τ = {T1, T2, . . .}
and τ ′ = {T ′

1, T
′
2, . . .}. We say that τ and τ ′ differ only by V iff |τ | = |τ ′| and ∀ i,∀ p ∈

(Ptask \ V ), p(Ti) = p(T ′
i ), where |τ | denotes the cardinality of task set τ .
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26:8 On Strong and Weak Sustainability

2.2 Generalized Sustainability Definitions
In this section, we use the basic concepts of jobs and tasks to formalize the notions of
sustainability found in the literature, namely sustainable policy (§2.2.1), sustainable analysis
(§2.2.2) and self-sustainable analysis (§2.2.3). Note that, differently from prior work [2, 5, 6],
our definitions are generic and compatible with different task and platform models.

2.2.1 Sustainable Scheduling Policy
We begin by generalizing the concept of a sustainable scheduling policy [2, 6], which was
briefly discussed in §1. The definition captures the idea that, if a policy is sustainable with
respect to a set of job parameters, having “better” values for those parameters (e.g., lower
job execution costs, larger periods, less jitter, etc.) at runtime does not cause any deadline
miss. We call this notion “strong sustainability,” for reasons that will be made clear in §3.

I Definition 22 (Strongly Sustainable Policy). Assume any scheduling policy σ and platform
Π, and consider any subset of job parameters S ⊆ Pjob, which we call sustainable parameters.
For each parameter p ∈ S, let �p be any partial order over job sets, such that J �p J ′ holds
iff every job in J has no worse parameter p than its corresponding job in J ′. Then we say
that the scheduling policy σ is strongly sustainable with respect to the job parameters in S
iff

∀ J s.t. J is schedulable on platform Π under policy σ,
∀ Jbetter s.t. J and Jbetter differ only by S and ∀p ∈ S, Jbetter �p J ,
Jbetter is schedulable on platform Π under policy σ.

Definition 22 states that, under a strongly sustainable scheduling policy σ, whenever we
compare two job sets and show that the job set with “worse parameters” does not miss any
deadline, then the job set with “better parameters” must also not miss any deadline.

Note that the relation �p is a crucial part of the specification and should be clearly
indicated in the sustainability claim, as shown in the next examples.

I Example 23 (Sustainability with Decreasing Job Costs). Let σ denote any uniprocessor
work-conserving, fixed-priority scheduling policy and let cost(j) denote the actual execution
time of job j. Given any job sets J = {j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}, we define the

relation J �cost J ′ as ∀i, cost(ji) ≤ cost(j′
i).

Using the relation �cost, we can instantiate Definition 22. This property expresses the
notion that, under policy σ, decreasing job execution times does not render the system
unschedulable. This property was proven by Ha and Liu [11] for various job models.

Similarly, one can also define sustainability with respect to job inter-arrival times. It just
requires a more nuanced partial order definition, as shown in the following example.

I Example 24 (Sustainability with Increasing Job Inter-Arrival Times). Let σ denote any work-
conserving, fixed-priority scheduling policy and let arrival(j) denote the absolute arrival
time of job j. Next, given any job sets J = {j1, j2, . . .} and J ′ = {j′

1, j
′
2, . . .}, we define the

relation �interarrival as

∀i,∀jprev,∀j′
prev s.t.

task(ji) = task(jprev) = task(j′
i) = task(j′

prev) and
arrival(jprev) < arrival(ji) and arrival(j′

prev) < arrival(j′
i),

arrival(ji)− arrival(jprev) ≥ arrival(j′
i)− arrival(j′

prev).



F. Cerqueira, G. Nelissen, and B. B. Brandenburg 26:9

This relation expresses that, if J �interarrival J ′, then the distance between two jobs of the
same task in J is no worse (i.e., no smaller) than in J ′.

Finally, note that Definition 22 differs from Definition 3 (in §1.2) due to Baker and
Baruah [2], as it does not require the original job set J to belong to some schedulable task
set τ . Thus, according to our definition, Figs. 1-(a) and 1-(b) are a valid counterexample for
establishing the non-sustainability (in the strong sense) of JLFP schedulers w.r.t. job costs
in the presence of self-suspensions, which agrees with Definition 2 in §1.1.

2.2.2 Sustainable Schedulability Analysis
Having discussed how sustainability applies to scheduling policies, we now present the
corresponding definitions for schedulability analyses, starting with the notion of sustainable
schedulability analysis [2, 5, 6]. Before we proceed, we must define schedulability analysis.

I Definition 25 (Schedulability Analysis). Let a schedulability analysis A for task modelM,
platform Π, and scheduling policy σ denote any algorithm that assesses whether a task set
τ ∈M is schedulable on Π under policy σ.

Now we state whether a given schedulability analysis A is sustainable. The intuition is
that, if analysis A is sustainable with respect to certain job parameters, then, if a task set τ
is deemed schedulable by A, any job set with “better” parameters than those of a job set
generated by τ does not miss any deadlines.

I Definition 26 (Sustainable Analysis). Consider any schedulability analysis A for task model
M, platform Π, and scheduling policy σ, and consider any subset of job parameters S ⊆ Pjob,
which we call sustainable parameters. For each parameter p ∈ S, let �p be any partial order
over job sets, such that J �p J ′ holds iff every job in J has no worse parameter p than its
corresponding job in J ′. Then we say that analysis A is sustainable with respect to S iff

∀ τ ∈M s.t. τ is deemed schedulable by A,
∀ J ∈ jobsets(τ),∀ Jbetter s.t.
J and Jbetter differ only by S and ∀p ∈ S,Jbetter �p J ,
Jbetter is schedulable on Π under policy σ.

Although the definitions of strongly sustainable policy (Definition 22) and sustainable
analysis (Definition 26) both refer to the runtime behavior of the policy, the two notions
are different. If the analyzed policy σ is strongly sustainable w.r.t. some parameters S, then
any sufficient or exact schedulability analysis for σ is also sustainable w.r.t. S. However,
even if σ is not strongly sustainable, it is possible to find sufficient schedulability analyses
that are sustainable. In fact, we argue this is exactly the case that an intuitive notion of
a “safe analysis” is trying to address: the underlying policy σ may exhibit various kinds
of scheduling anomalies, but if a specific task set is deemed schedulable by a sustainable
analysis, then no deadlines will be missed in the actual system even if some parameters turn
out to be “better in the real system than assumed during analysis.”

2.2.3 Self-Sustainable Analysis
Another type of sustainability that can be found in the literature, also related to schedulability
analysis, is the notion of self-sustainable analysis [2]. The intuition is that, if analysis A
is self-sustainable with respect to a set of task parameters, then, if a task set τ is deemed
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26:10 On Strong and Weak Sustainability

schedulable by analysis A, every task set with “better” parameters than τ will also be deemed
schedulable by A.

I Definition 27 (Self-Sustainable Analysis). Let A be any schedulability analysis for task
modelM, platform Π, and scheduling policy σ, and consider any subset of task parameters
S ⊆ Ptask . For each parameter p ∈ S, let �p be any partial order over task sets, such that
τ �p τ

′ holds iff every task in τ has no worse parameter p than its corresponding task in τ ′.
Then we say that schedulability analysis A is self-sustainable with respect to S iff

∀ τ ∈ M s.t. τ is deemed schedulable by A,
∀ τbetter s.t. τ and τbetter differ only by S and ∀p ∈ S, τbetter �p τ ,

τbetter is deemed schedulable by A. (1)

To clarify the definition, we provide an example.

I Example 28 (RTA is Self-Sustainable with respect to Decreasing Task Costs). Let A be some
response-time analysis (RTA) for the sporadic task model and let WCET (Ti) denote the worst-
case execution time of task Ti. Given any task sets τ = {T1, T2, . . .} and τ ′ = {T ′

1, T
′
2, . . .} with

the same number of tasks, we define the relation τ �WCET τ ′ as ∀i,WCET (Ti) ≤WCET (T ′
i ).

Based on the task parameter WCET and the relation �WCET , we can instantiate the
self-sustainability property as in Definition 27, which then expresses that, if the RTA claims
τ to be schedulable, then it must also claim task sets with lower WCETs to be schedulable.

Note that, despite their similarity, the notions of sustainable and self-sustainable analysis
are fundamentally different. While sustainability refers to job parameters, self-sustainability
concerns task parameters. Moreover, to prove that an analysis A is sustainable, one must
show that the job sets generated by a task set τ deemed schedulable by A do not have
any anomalies. On the other hand, proving that analysis A is self-sustainable is a purely
algorithmic property, akin to a notion of monotonicity, of the analysis procedure itself and has
nothing to do with the safety at runtime of a system under analysis. For example, to prove
the property in Example 28, one must show that, if the RTA computes a fixed point R for
given task costs, then it will compute a fixed point R′ ≤ R if lower task costs are provided.

3 Weakly Sustainable Scheduling Policies

Recall from §1.1 that uniprocessor EDF scheduling of self-suspending tasks was proven to
be not sustainable with respect to job costs [1], and as mentioned at the end of §2.2.1, this
result agrees with our notion of a strongly sustainable policy (Definition 22).

However, in §1.2, we also hinted (but did not prove) that this scheduling policy is still
sustainable to some extent with respect to job costs. As shown in Fig. 1-(c), by reducing
suspension times (i.e., a transformation that is compliant with the task model and its
constraints), we were able to construct a job set Jsusp ∈ jobsets(τ) that is as hard to schedule
as job set Jbetter. This suggests that any schedulability analysis A applied to task set τ
would deem it “not schedulable” anyway because of job set Jsusp.

Thus, the fact that Jbetter itself is not schedulable does not straightforwardly prove that
the uniprocessor EDF scheduling policy applied to self-suspending tasks is not sustainable in
some sense w.r.t. job costs, at least if self-suspension times may vary at runtime. In fact,
whether or not any parameters other than the sustainable parameters should be allowed to
vary at runtime is the cause of most confusion in the various interpretations of sustainability
found in the state of the art [2, 5, 6], and our motivation for formalizing the notion of varying
job and task parameters in Definitions 12 and 21.
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While the notion of strongly sustainable policy (Definition 22) expresses that the system
remains schedulable if we decrease job costs while maintaining all other parameters con-
stant, we believe that this is too strong an assumption in many settings, since most useful
schedulability analyses will consider that job parameters can vary freely and concurrently
across a range of possible values. The sustainability property that we are going to define
thus allows other parameters to vary, subject to the constraints defined by the given task
set. The rationale for this is that it allows for more efficient schedulability analyses if certain
job parameters can be assumed to have maximal values while others are considered variable.
The current sustainability theory does not allow such fine-grained categorization.

To develop a supporting theory for schedulability analyses based on this idea, in this
section we propose a new classification of sustainable scheduling policies that differentiates
between strong sustainability and weak sustainability.

3.1 Definition of Weakly Sustainable Policy
As suggested in the previous section, in order to define weak sustainability, we must be able
to infer that a collection of job sets remains schedulable when certain parameters are allowed
to vary. This idea is captured by the following definition.

I Definition 29 (Schedulable with Varying Job Parameters V ). Given a task set τ and a subset
of job parameters V ⊆ Pjob, we say that a job set J is schedulable with varying parameters
V subject to task set τ on platform Π under policy σ iff any job set Jother ∈ jobsets(τ) that
differs from J only by V is also schedulable on Π under policy σ.

To illustrate the definition, we provide an example.

I Example 30 (Schedulable with Varying Costs). Assume any scheduling policy σ and consider
the set of variable parameters V = {cost}. Given a job set J = {j1, j2} generated by task
set τ , we say that J is schedulable with varying costs subject to task set τ iff every job
set Jother generated by τ that has two jobs and the same parameters as J except for their
costs is schedulable. That is, any job set constructed by changing only the job costs of J (to
higher or lower values), without violating the constraints set forth by the parameters of task
set τ , must be schedulable.

In other words, one may understand this notion to mean that job set J is not only
schedulable itself, but also a “schedulability witness” for a whole family of related job sets
that are identical in all parameters except for those in V . Based on this concept, we can now
define precisely under which conditions a policy is weakly sustainable.

I Definition 31 (Weakly Sustainable Policy). Assume any platform Π, task model M,
and scheduling policy σ, and consider any disjoint subsets of job parameters S ⊆ Pjob
and V ⊆ Pjob, which we call sustainable and variable parameters, respectively. For each
sustainable parameter p ∈ S, let �p be any partial order over job sets, such that J �p J ′

holds iff every job in J has no worse parameter p than its corresponding job in J ′. Then
we say that scheduling policy σ is weakly sustainable with sustainable parameters S and
variable parameters V iff

∀ τ ∈M,∀ J ∈ jobsets(τ) s.t.
J is schedulable with varying V subject to τ on platform Π under policy σ,
∀ Jbetter s.t. J and Jbetter differ only by S and ∀ p ∈ S,Jbetter �p J ,

Jbetter is schedulable on platform Π under policy σ.
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The idea of weak sustainability is that, if we can determine that a job set is schedulable
for all variations of parameters in V (subject to the constraints imposed by its associated
task set), then all job sets with better parameters S must be schedulable. For clarity, we
provide the following example.

I Example 32 (Weak Sustainability w.r.t. Job Costs and Varying Suspension Times). Consider
a uniprocessor JLFP scheduling policy σ and the dynamic suspension model, i.e., jobs can
suspend at any time but the total suspension duration of each job is bounded by its task’s
maximum suspension time. Let susp(j) denote the total suspension time of job j and cost(j)
the execution time of job j.

By defining the sets of job parameters S = {cost} and V = {susp}, and the relation
�cost as in Example 23, one can instantiate Definition 31 and prove (as shown in §4) that,
for any task set τ ∈M, if job set J generated by τ is schedulable for all possible suspension
times (subject to the upper limit imposed by τ), then all job sets with lower or equal job
costs are also schedulable.

In the specific case where the set of varying parameters V is empty, we call the scheduling
policy strongly sustainable.

I Definition 33 (Strongly Sustainable Policy). We say that a policy is strongly sustainable
with respect to the job parameters in S iff it is weakly sustainable with respect to the
sustainable parameters in S and an empty set of variable parameters V = ∅.

Note that if V = ∅, proving that job set J is schedulable with varying parameters V is
the same as establishing that J itself is schedulable. That implies the following equivalence,
which connects the definitions of sustainable policy in §2 and §3.

I Corollary 34 (Equivalence of Strong Sustainability). The notion of strongly sustainable
policy as defined in Definition 33 is equivalent to Definition 22.

The weak sustainability property is useful for constraining the search space when develop-
ing schedulability analyses. As is already known, if some policy σ is strongly sustainable with
respect to the parameters in S, maximizing/minimizing such parameters enables constructing
worst-case scenarios (e.g., the critical instant for uniprocessor FP scheduling of sporadic
tasks [13]), so that only a single worst-case scenario must be analyzed (rather than the entire
space of all possible parameter combinations).

However, recall that policy σ might not be strongly sustainable with respect to S. But if we
are still able to prove that σ is weakly sustainable with respect to S and variable parameters
V , we can still maximize/minimize the parameters in S, as long as the schedulability analysis
covers all values of the parameters in V . In other words, establishing a weak sustainability
property can be thought of as a dimensionality reduction of the search space that must be
considered by a safe schedulability analysis.

For instance, having proven in Theorem 54 in §4.4 that uniprocessor JLFP scheduling of
self-suspending tasks is weakly sustainable with respect to job costs and variable suspension
times, we know that any schedulability analysis for that model may assume that all jobs
generated by the tasks execute for their maximum execution time, and must search only for
the worst-case assignments of job suspension times.

3.2 Composing Weak and Strong Sustainability Results
Although the definition of strong sustainability refers to a set S of multiple parameters,
one can still establish the sustainability of each parameter in isolation. In fact, the critical
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instant for the sporadic task model is obtained by composing worst-case assumptions about
individual job parameters: maximizing job costs, minimizing inter-arrival time, etc.

As will be shown in Theorem 38, this composition rule applies not only for strong
sustainability (as discussed in prior work [2]), but can also be extended to weak sustainability.
Before presenting the theorem, we first provide an alternative (but equivalent) definition of
weak sustainability based on the contrapositive of Definition 31, which simplifies the proof of
Theorem 38 below.

I Definition 35 (Weakly Sustainable Policy – alternative definition). Assume any platform Π,
task modelM and scheduling policy σ, and consider any disjoint subsets of job parameters
S ⊆ Pjob and V ⊆ Pjob, which we call sustainable and variable parameters, respectively.
For each sustainable parameter p ∈ S, let �p be any partial order over job sets, such that
J �p J ′ holds iff every job in J has no worse parameter p than its corresponding job in J ′.
Then we say that the scheduling policy is weakly sustainable with sustainable parameters S
and variable parameters V iff

∀ J s.t. J is not schedulable on platform Π under policy σ,
∀ τ ∈M, ∀Jworse ∈ jobsets(τ) s.t.

J and Jworse differ only by S and ∀p ∈ S,J �p Jworse,

∃ J ′
worse ∈ jobsets(τ) s.t.
Jworse and J ′

worse differ only by V and
J ′

worse is not schedulable on platform Π under policy σ.

Put differently, for any job set J that is not schedulable, if we can find another job set
Jworse that is generated by some task set τ and J is “better” than Jworse, then there exists
a member in Jworse’s “family” of related job sets that is also not schedulable.

For instance, recall that this is the same reasoning underlying the counterexample in §1.2:
given a job set J that is not schedulable (Fig. 1-(b)) and a job set Jworse with higher job
costs (Fig. 1-(a)), we were able to show that there exists a job set J ′

worse that only differs
from Jworse in its suspension times and that also misses a deadline (Fig. 1-(c)).

In addition, we must introduce the notion of independent sets of job parameters.

I Definition 36 (Independent Sets of Job Parameters). We say that subsets of job parameters
A ⊂ Pjob and B ⊂ Pjob are independent with respect to task model M iff for each task
parameter ptask defined byM, and for every pA ∈ A and pB ∈ B, if pA is constrained by
ptask according to modelM, then pB is not constrained by ptask according to modelM.

In most task models commonly considered in the real-time literature, job parameters are
usually independent of each other.

I Example 37 (Parameters Are Usually Independent). In the sporadic task model with
self-suspending tasks, the sets of job parameters A = {cost, arrival} and B = {susp}
have independent task constraints, since these job parameters are each constrained by a
different task parameter, namely, the task WCET, minimum inter-arrival time and maximum
suspension time. In contrast, in a hypothetical task model where every job j is split
into two execution sections of length cost1(j) and cost2(j) such that cost1(j) + cost2(j) ≤
WCET (task(j)), the parameters {cost1} and {cost2} are clearly not independent.

Using the definition of weak sustainability above (Definition 35) and the notion of
independent sets of job parameters (Definition 36), we establish the composition rule for
weakly sustainable policies.
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I Theorem 38 (Composition Rule: Weak – Weak). Consider any task modelM, scheduling
policy σ and processor platform Π. Let Sa, Va, Sb, Vb denote subsets of the job parameters
Pjob such that Sa ∩ Vb = ∅ and Sb ∩ Va = ∅, and such that either Sb is independent of
Pjob \ Sb, or Sa is independent of Pjob \ Sa, with respect to task model M. Assume that
(a) σ is weakly sustainable with respect to Sa and variable parameters Va, and that (b) σ
is weakly sustainable with respect to Sb and variable parameters Vb. Then (c) σ is weakly
sustainable with respect to Sa ∪ Sb and variable parameters Va ∪ Vb.

Proof. Consider a job set J that is not schedulable on platform Π under policy σ. Let τ
be any task set, and let Jworse ∈ jobsets(τ) be a job set that only differs from J by the
parameters in Sa ∪ Sb and that has no better parameters than J w.r.t. Sa ∪ Sb. Then,
according to Definition 35, we must prove that there exists a job set J ′

worse ∈ jobsets(τ) that
only differs from Jworse with respect to Va ∪ Vb and that is also not schedulable.

Using the independent parameters assumption, assume without loss of generality that it
is Sb that is independent of all other job parameters Pjob \ Sb, with respect to modelM. If
this is not the case, then by assumption we have that Sa is independent of other parameters
Pjob \ Sa and we can exchange the indices a and b in the remainder of the proof.

1. Step 1 – Construction of J ′
a from J . Let Ja be the same job set as J , but

with the same job parameters in Sa as Jworse. That is, let J = {j1, j2, . . .} and
Jworse = {jw

1 , j
w
2 , . . .} and recall that they have the same number of jobs. Then we

define Ja = {ja
1 , j

a
2 , . . .} with the same cardinality such that, for any index i, we have

∀p ∈ Sa, p(ja
i ) = p(jw

i ) and ∀p /∈ Sa, p(ja
i ) = p(ji).

Next, we construct a task set τa ∈ M such that, for every task parameter ptask that
constrains job parameters in Pjob \ Sb, the value of ptask in τa is the same as in τ , and
for every task parameter ptask that constrains job parameters in Sb, the value of ptask
in τa is the same to the task set that generated job set J . Since Ja only differs from
Jworse ∈ jobsets(τ) with respect to Sb, and Sb is independent of the other job parameters,
it follows that Ja ∈ jobsets(τa).
Since J is not schedulable, and J and Ja differ only by Sa, we can exploit the fact that
σ is weakly sustainable with Sa and varying Va. Thus, it follows that there exists a job
set J ′

a ∈ jobsets(τa) that differs from Ja only by the parameters in Va and that is not
schedulable on platform Π under policy σ.

2. Step 2 – Construction of J ′
ab from J ′

a. Let Jab be the same job set as J ′
a except

that the job parameters in Sb are the same as in Jworse. That is, let J ′
a = {ja′

1 , j
a′

2 , . . .}
and Jworse = {jw

1 , j
w
2 , . . .} and recall that they have the same number of jobs. Then

we define Jab = {jab
1 , jab

2 , . . .} with same cardinality such that, for any index i, we have
∀p ∈ Sb, p(jab

i ) = p(jw
i ) and ∀p /∈ Sb, p(jab

i ) = p(ja′

i ).
Note that by construction, Jab has the same job parameters as Jworse ∈ jobsets(τ),
except for those in Va, which were obtained when generating J ′

a via weak sustainability.
However, note that J ′

a is generated by task set τa, which has the same constraints for
Va as τ , since Va ∩ Sb = ∅. Thus, every job parameter of Jab is compatible with τ , i.e.,
Jab ∈ jobsets(τ).
Since J ′

a is not schedulable, and J ′
a and Jab differ only by Sb, we can exploit the fact

that σ is weakly sustainable with Sb and varying Vb. Thus, there must exist a job set
J ′

ab ∈ jobsets(τ) that differs from Jab only by the parameters in Vb and that is not
schedulable on platform Π under policy σ.

Since J has the same parameters as Jworse except for those in Sa ∪ Sb, and because Ja and
Jab were constructed from J by copying the parameters Sa and Sb from Jworse and varying
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the parameters in Va ∪ Vb, it follows that J ′
ab has the same parameters as Jworse, except

for the variable parameters Va and Vb. Moreover, since Sa ∩ Vb = ∅ and Sb ∩ Va = ∅, this
guarantees that Sa and Sb do not vary during the construction of J ′

a and J ′
ab, so for every

p ∈ Sa ∪ Sb, the order �p is preserved across the successive job set transformations.
Thus, there exists a job set J ′

worse = J ′
ab that belongs to jobsets(τ), that only differs from

Jworse with respect to Va ∪ Vb and is also not schedulable on platform Π under policy σ. J

Assuming Vb = ∅ yields a rule for combining strong and weak sustainability results.

I Corollary 39 (Composition Rule: Weak – Strong). Consider any scheduling policy σ and
processor platform Π. Let Sa, Va and Sb denote subsets of the job parameters Pjob such that
Sb ∩ Va = ∅, and such that either Sb is independent of Pjob \ Sb, or Sa is independent of
Pjob \ Sa, with respect to task model M. Assume that σ is weakly sustainable with respect
to Sa and variable Va and also strongly sustainable with respect to Sb. Then σ is weakly
sustainable with respect to Sa ∪ Sb and variable Va.

Finally, assuming Va = Vb = ∅ yields the composition rule for strong sustainability, which
was already proven by Baker and Baruah [2].

I Corollary 40 (Composition Rule: Strong – Strong). Consider any scheduling policy σ and
processor platform Π. Let Sa and Sb denote subsets of the job parameters Pjob, and such
that either Sb is independent of Pjob \ Sb, or Sa is independent of Pjob \ Sa, with respect to
task model M. Assume that σ is strongly sustainable with respect to Sa and also strongly
sustainable with respect to Sb. Then σ is strongly sustainable with respect to Sa ∪ Sb.

Note that, although necessary in the general case, the parameter independence constraint
in Corollary 40 was not explicitly stated in the original definition [2], since Baker and Baruah
only considered the sporadic task model, in which all parameters are independent.

4 Uniprocessor Scheduling of Dynamic Self-Suspending Tasks is
Weakly Sustainable w.r.t. Job Costs and Variable Suspensions

In this section, we prove that uniprocessor JLFP scheduling with dynamic self-suspending
tasks is weakly sustainable with respect to job costs and variable suspension times. Although
we could have focused on other real-time task models, we chose to study the sustainability of
self-suspending tasks for the following reasons.
1. Recent errors. This topic has faced many misconceptions in the past, with a considerable

number of unsound results being published [8]. We hope that our work on sustainability
introduces helpful formalism and a better understanding of the task model.

2. Future work on schedulability analysis. Proving weak sustainability of uniprocessor
JLFP scheduling of dynamic self-suspending tasks can provide directions for future work.
It enables more efficient schedulability analyses to be developed, by reducing the search
space to only the parameters that must be kept variable (i.e., suspension times), while
the others (i.e., execution times) can remain constant.

To address the issue of recent errors and increase the degree of confidence in the results,
our proof has been mechanized in Prosa [7], a library for the Coq proof assistant for formal
specification and machine-checked proofs of real-time scheduling theory. The specification
and proofs are available online [15] and can be checked independently with the CoqChk
tool. Simple step-by-step instructions are provided on the website.
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Note that, despite being phrased in terms of sporadic tasks for the sake of simplicity, this
proof is conceptually also compatible with other job arrival models (periodic, bursty, etc.).

The rest of this section is structured as follows. First, we present our formalization of the
dynamic suspension model, which is required for stating the theorems in Prosa. Next, we
provide an overview of our proof strategy based on schedule reductions, which can be reused
in other sustainability proofs. In the remaining subsections, we discuss the high-level steps
of the proof, which despite being specific for scheduling with self-suspensions, highlight key
steps necessary in a rigorous proof of sustainability.

4.1 A Generic Suspension Model
In order to instantiate the sustainability claim for real-time scheduling of self-suspending
tasks, we must formally define the concept of self-suspension.

I Definition 41 (Job Suspension Time). We define job suspension time as a function susp(j, s)
such that, for any job j and any value s ∈ N, susp(j, s) expresses the duration for which j
must suspend immediately after receiving s units of service.

The job suspension parameter is explained more clearly in the following example.

I Example 42 (Table of Suspension Durations). Job suspension times susp(j, s) can be
understood as a table containing the duration of the suspension intervals associated with
job j. For example, for a job j such that cost(j) = 5, we can define susp(j, s) to equal 0
except for susp(j, 3) = 2 and susp(j, 4) = 3.

This suspension table indicates that job j executes for 3 time units, then suspends for 2
time units, then executes for 1 more time unit, then suspends for 3 more time units and finally
completes its last time unit of execution. Note that this assignment is both an instance of
the dynamic suspension model (with total suspension time equal to 5) and of the segmented
suspension model (with execution segments [e1 = 3, s1 = 2, e2 = 1, s2 = 3, e3 = 1]).

By allowing arbitrary suspension durations between each unit of service, this model is
generic enough to represent any suspension pattern under discrete time. Thus, it supports
both segmented [16] and dynamic [12] suspension models, as shown in Example 42.

Next, by accumulating suspension durations, we define the total suspension time of a job.

I Definition 43 (Total Suspension Time). We define the total suspension time suspΣ(j) of job
j as the cumulative suspension time up to completion, i.e., suspΣ(j) =

∑
s<cost(j) susp(j, s).

After clarifying job suspension times, we now define task suspension times and show how
both are related under the dynamic suspension model.

I Definition 44 (Task Suspension Time). For any task Ti, we define the task suspension time
susp(Ti) as an upper-bound on the total suspension time of any job of Ti.

I Definition 45 (Suspension Time Constraints). The dynamic suspension model requires that
the total suspension time of any job is upper-bounded by the suspension time of its task, i.e.,

∀ τ ∈M,∀ J ∈ jobsets(τ),∀ j ∈ J , suspΣ(j) ≤ susp(task(j)).

Beside its suspension time, every task Ti is defined by a WCET, a minimum inter-arrival
time or period, and a deadline, as stated in Definition 1.
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Figure 2 Proof strategy for establishing weak sustainability with respect to job costs and variable
suspension times. Given a job ji that misses a deadline in schedule S of the original job set J ,
we construct a new job set J ′

worse and a new schedule S ′ where the corresponding job j′
i misses a

deadline. Note that in schedule S ′, job costs are no smaller than in S, suspension times can be
defined arbitrarily (within the bounds of the task set), and all other job parameters (i.e., arrival
time, deadline) remain unchanged.

4.2 Overview of the Proof Strategy
Having presented the main characteristics of the dynamic self-suspending task model, we
now explain our proof strategy for establishing weak sustainability of uniprocessor JLFP
scheduling of dynamic self-suspending tasks w.r.t. job costs and variable suspension times.
For simplicity, the proof is based on the alternative definition of weakly sustainable policy
(Definition 35). According to Definition 35, we must prove that

∀ J s.t. J is not schedulable under a uniprocessor JLFP scheduling policy σ,
∀ τ ∈M, ∀Jworse ∈ jobsets(τ) s.t.
J and Jworse differ only by S = {cost} and J �cost Jworse,

∃ J ′
worse ∈ jobsets(τ) s.t.
Jworse and J ′

worse differ only by V = {susp} and
J ′

worse is not schedulable under policy σ.

That is, first we consider any job set J that is not schedulable and any job set Jworse
that has “no better job costs” than J (and that is otherwise identical). Then we must show
that there exists a job set J ′

worse generated by the same task set as Jworse that differs from
Jworse only by its job suspension times and that it is not schedulable. In particular J and
Jworse have equal suspension times (but not necessarily equal execution costs), whereas
Jworse and J ′

worse have equal execution costs (but not necessarily equal suspension times).
Our proof begins by considering any job set J and its associated schedule S where some

job misses a deadline. Then we construct a job set J ′
worse together with its schedule S ′ where

some job also misses a deadline. This strategy is illustrated in Fig. 2.
In the next section, we present an algorithm for iteratively constructing schedule S ′

(and hence the associated job set J ′
worse) based on S. It is followed by the two main proof

obligations: (a) proving that some job misses a deadline in S ′ (§4.3.1) and (b) proving that
S ′ is a valid schedule of J ′

worse (§4.3.2). This proves that J ′
worse is not schedulable.

4.3 Constructing J ′
worse and Schedule S ′

Based on the strategy proposed in §4.2, we now present the algorithm to construct schedule
S ′ and the associated job set J ′

worse, based on the original schedule S. In the remainder
of this paper, whenever we want to refer to the same job before and after the parameter
transformation (i.e., from J to J ′

worse), we refer to them as corresponding jobs ji and j′
i.
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Before proceeding, we must first introduce the concept of job service.

I Definition 46 (Job Service). Given a schedule S, we define service(j, t) as the cumulative
amount of time during which job j executes in the interval [0, t).

Next, recall that jobs in J ′
worse have no better job costs than in J , i.e., for any corre-

sponding jobs ji and j′
i, cost(ji) ≤ cost(j′

i). Since they might have to execute for different
durations, we begin by defining the notion of added cost.

I Definition 47 (Added Cost). We define the added cost ∆cost(j′
i) of job j′

i in J ′
worse as the

difference between its original and inflated costs, i.e., ∆cost(j′
i) = cost(j′

i)− cost(ji) ≥ 0.

In order to guarantee that schedule S ′ becomes as hard as schedule S (i.e., so that jobs
still miss their deadlines) and at the same time easy to compare in terms of received job
service (i.e., the time for which a job executed since its release), we construct S ′ based on
the idea of “picking jobs that are late with respect to S,” where late is defined as follows.

I Definition 48 (Late job). We say that job j′
i is late in schedule S′ at time t iff the service

received by j′
i in S′ up to time t is less than the service received by the corresponding job ji

in schedule S (compensated by the added cost), i.e., service(j′
i, t) < service(ji, t) + ∆cost(j′

i).

We now present the algorithm used to iteratively build schedule S ′ and job set J ′
worse.

Algorithm 49 ensures that (i) every job j′
i ∈ J ′

worse executes for its total execution cost cost(j′
i)

(≥ cost(ji)), (ii) every job j′
i ∈ J ′

worse has a total suspension time susp(j′
i) upper-bounded

by the suspension time susp(ji) of its corresponding job in schedule S, and (iii) at least one
job of J ′

worse misses its deadline in S ′ (as proven in Sec 4.3.1).

I Algorithm 49 (Construction of Job Set J ′
worse and Schedule S ′). Consider any time t and

let J(t) denote the set that contains every job j′
i that is ready (i.e., released, not completed,

and not suspended) in schedule S ′ at time t and such that either (a) j′
i is late at time t or

(b) the corresponding job ji is scheduled in S at time t.
1. Schedule: We schedule in S′ at time t the highest-priority job in J(t), or idle the

processor if J(t) is empty.
2. Suspensions: Any job j′

i ∈ J ′
worse suspends in S ′ at time t iff the corresponding job ji

is suspended in S and j′
i is not late.

Note that Algorithm 49 not only picks late jobs, but also favors higher-priority jobs and
tries to copy schedule S if possible. While rule (a) ensures that the schedule respects the
JLFP policy, rule (b) provides a tie-breaking rule if there are multiple jobs that can be picked,
in which case we choose the same job as the job scheduled in S.

It only remains to be shown that schedule S ′ results in a deadline miss (Theorem 52)
and schedule S ′ does not violate any property of the scheduling policy, platform, and task
model, such as work conservation, priority enforcement, etc. (Theorem 53).

4.3.1 Proving that S ′ Misses a Deadline
In order to prove that some job j′

i ∈ J ′
worse misses a deadline in S ′, we establish the following

key invariant that relates the service in the two schedules S and S ′.

I Lemma 50 (Service Invariant). For any corresponding jobs ji ∈ J and j′
i ∈ J ′

worse, at any
time t, service(j′

i, t) ≤ service(ji, t) + ∆cost(j′
i).

Proof. Proven in Prosa [15]. Consider any pair of corresponding jobs ji and j′
i. The proof

follows by induction on time t.
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1. Base Case: At time t = 0, jobs have received no service, thus service(j′
i, 0) = 0 =

service(ji, t) ≤ service(ji, t) + ∆cost(j′
i).

2. Inductive Step: Assume as the induction hypothesis that, for some t, service(j′
i, t) ≤

service(ji, t)+∆cost(j′
i). Then we must prove service(j′

i, t+1) ≤ service(ji, t+1)+∆cost(j′
i).

First, consider the simple case where job j′
i is not scheduled in S ′ at time t. Then,

service(j′
i, t+ 1) = service(j′

i, t) (j′
i is not scheduled in S ′ at t)

≤ service(ji, t) + ∆cost(j′
i) (by induction hypothesis)

≤ service(ji, t+ 1) + ∆cost(j′
i). (by monotonicity of service)

Otherwise, assume that j′
i is scheduled in S ′ at time t. From the schedule construction

(Algorithm 49), it follows that either (a) S and S ′ schedule corresponding jobs at time t,
or (b) S ′ schedules a late job at time t. We analyze both cases.
a. Corresponding Jobs are Scheduled: The corresponding jobs scheduled in S and
S ′ at time t must be ji and j′

i, so

service(j′
i, t+ 1) = service(j′

i, t) + 1 (j′
i is scheduled in S ′ at time t)

≤ service(ji, t) + ∆cost(j′
i) + 1 (by induction hypothesis)

= service(ji, t+ 1) + ∆cost(j′
i) (ji is scheduled in S at time t).

b. Late Job: Job j′
i must be the highest-priority late job in S ′ at time t. By the definition

of late job (Definition 48), it follows that service(j′
i, t) < service(ji, t) + ∆cost(j′

i), so

service(j′
i, t+ 1) = service(j′

i, t) + 1 (j′
i is scheduled in S ′ at time t)

< service(ji, t) + ∆cost(j′
i) + 1 (by assumption)

≤ service(ji, t) + ∆cost(j′
i). (by converting < to ≤)

The claim holds in all cases, which concludes the proof by induction. J

Since we must prove that schedule S ′ results in a deadline miss, we use the service
invariant above to conclude that jobs complete earlier in S than in S ′.

I Corollary 51 (Jobs Complete Earlier in S). For any corresponding jobs ji ∈ J and j′
i ∈

J ′
worse, if j′

i has completed in schedule S ′ by time t, then ji has completed in S by time t.

Proof. Proven in Prosa [15]. Follows from Lemma 50, since ji receives enough service in S
to complete before the corresponding j′

i in S ′. J

Recall that we initially assumed that some job misses a deadline in S. We can thus
conclude that the corresponding job also misses a deadline in S ′.

I Theorem 52 (Deadline Miss). There exists a job j′
i ∈ J ′

worse that misses a deadline in S ′.

Proof. Proven in Prosa [15]. Recall from Corollary 51 that corresponding jobs complete
earlier in S than in S ′. Since by assumption there exists a job ji that misses a deadline in S,
the corresponding job j′

i must also miss a deadline in S ′. J

4.3.2 Proving that S ′ is a Valid Schedule
Although we have already established the non-schedulability of the generated schedule S ′, it
remains to be shown that schedule S ′ is valid and compatible with the task model.

I Theorem 53 (Valid Schedule). Schedule S ′ is a valid uniprocessor schedule of job set J ′
worse

assuming JLFP scheduling of sporadic, dynamic self-suspending tasks.

ECRTS 2018
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Proof. Proven in Prosa [15]. Follows from Algorithm 49, since suspension intervals in
schedule S ′ are no longer than those in S and the fact that the dynamic self-suspension
model imposes only an upper bound on total job suspension time, and since by construction
the derived schedule S ′ is work-conserving, respects self-suspensions, and respects job
priorities. J

4.4 Main Claim
Based on the strategy explained in §4.2, by combining Theorems 52 and 53, we prove that
the scheduling policy is weakly sustainable.

I Theorem 54 (Weak Sustainability). Uniprocessor JLFP scheduling of sporadic self-suspending
tasks under the dynamic suspension model is weakly sustainable with respect to job costs and
variable suspension times.

Proof. Proven in Prosa [15]. Instantiate Definition 35 with uniprocessor JLFP scheduling
of sporadic self-suspending tasks under the dynamic suspension model for S = {cost}
and V = {susp}. Theorems 52 and 53 imply that, for any schedule S of job set J that
contains a deadline miss, there exists a schedule S ′ of the transformed set J ′

worse that
also contains a deadline miss. J

We emphasize that Algorithm 49 builds a schedule S ′ and hence a job set J ′
worse that has

different suspension times than the original job set J . Therefore, the presented argument
indeed proves the weak (but not strong) sustainability of uniprocessor JLFP scheduling under
the dynamic self-suspending task model w.r.t. job costs and variable suspension times.

5 Conclusion and Future Work

Sustainability is a central aspect of real-time theory with many applications in the development
of real-time systems. By allowing system designers to target only extreme scheduling scenarios,
it simplifies the design, prototyping, and analysis of real-time systems. In addition, the use
of sustainable scheduling policies and analyses greatly aids the validation and certification
process, by ensuring that only a subset of execution scenarios must be checked, and that any
variation within the system’s specified bounds does not compromise safety.

In this paper, we have identified that the existing notions of sustainability in real-time
scheduling allow for multiple interpretations with regard to whether real-time scheduling
of self-suspending tasks is sustainable with respect to job costs. To resolve the issue, we
developed a precise sustainability theory for real-time scheduling that is compatible with any
task and platform model (§2), and also proposed the new notions of strongly and weakly
sustainable policies (§3), which can be used to derive more efficient schedulability analyses
for policies that were shown to not be strongly sustainable.

To better understand a model for which many mistakes were found in the literature [8],
we chose to study weak sustainability in the context of self-suspending tasks. For that, we
developed a generic model for self-suspensions (§4.1) that was formalized in the Coq proof
assistant and integrated into Prosa [15, 7]. Finally, we mechanically proved in Prosa that
uniprocessor JLFP scheduling of self-suspending tasks is weakly sustainable with respect to
job costs and variable suspension times (§4.2–§4.4).

In ongoing work, we are working towards leveraging the obtained weak sustainability
result to derive new, machine-checked schedulability tests for the dynamic suspension model.
In future work, it will be interesting to identify instances of weakly sustainable parameters in
other task models, platforms, and scheduling algorithms to improve the complexity of their
associated timing analyses and to lessen test coverage requirements.
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