L i 4
pE

VOLTDB
Using VoltDB

Abstract

This book explains how to use VoltDB to design, build, and run high performance applica-
tions.

V5.9

Using VoltDB

V5.9
Copyright © 2008-2015 VoltDB, Inc.

The text and illustrations in this document are licensed under the terms of the GNU Affero General Public License Version 3 as published by the
Free Software Foundation. See the GNU Affero General Public License (http://www.gnu.org/licenses/) for more details.

Many of the core VoltDB database features described herein are part of the VoltDB Community Edition, which islicensed under the GNU Affero
Public License 3 as published by the Free Software Foundation. Other features are specific to the VoltDB Enterprise Edition, which is distributed
by VoltDB, Inc. under acommercial license. Y our rights to access and use Vol tDB features described herein are defined by the license you received
when you acquired the software.

This document was generated on January 15, 2016.

http://www.gnu.org/licenses/

Table of Contents

ADOUL THIS BOOK ...ttt Xii
Lo OVEIVIBIW ettt ettt ettt ettt na s 1
1.1 WHEE IS VOIIDB? ...ttt e e e e 1

1.2. Who Should USE VOIEDBoiiiiiiiieiiiii et 1

1.3. HOW VOIIDB WOTKS .. .ceiiiieiiii ettt ettt 2
1.3.0. PartitiONING ..ceeveneeeitieeeei ettt e ettt ettt e e e e e een 2

1.3.2. Serialized (Single-Threaded) PrOCESSINGccvvveneiiiiiiieeiei e 2

1.3.3. Partitioned vs. Replicated Tablescovvviiiiiii e 3

1.3.4. Ease of Scaling to Meet Application NEeaSccouvuiiiiiiiiieiiiii e 4

1.4. Working with VOItDB EffeCtiVEYcooviiiiiiii e 4

2. INSEAING VOITDB ...t et ettt e e et e et e e e e e eee 5
2.1. Operating System and Software REQUIFEMENTSvvieviiiiiiiiie e 5
2.2.INSAlING VOIIDBcuiiiiiiii ettt et et e e 6
2.2.1. Upgrading From Older VEISIONSccouuiieiiiiiieeeiiie et 6

2.2.2. Ingtalling Standard System Packagesoooovviiiiiiiiiiie e 6

2.2.3. Building a New VoItDB Distribution Kitcoooviiiiiiiiiiieee e 7

2.3. Setting Up YOUr ENVIFONMENTuniiiiiiie ettt e e e e e 8

2.4. What is Included in the VOItDB Distributionccooiiiiiiiiiiii e 8

2.5. VoltDB in Action: Running the Sample AppliCationSoveiiiiiieiiiiii e 9

3. Starting the Dal@aSsecccuveieeiiii et 10
3.1 Initializing 8 VOItDB Dalahasec.uuueiiiiiieiiiii ettt 10

3.2. Initializing the Database 0N 8 CIUSIENuiiiiiiiie e 10

3.3. Updating Nodes 0N the CIUSIEToiiiieiieeiiii e 11

3.4. Stopping & VOIIDB Dal@haseccuuuieiiiiiieeieiie ettt 12

3.5. Restarting a VOItDB Datahaseuuiiieriiiiiiiiiieeeei et 12

3.6. Defining the Cluster ConfigUIationuiveieiuiieiiii e 13
3.6.1. Determining How Many Sites per HOSEc.uuiiiiiiiiiiiiiii e 13

3.6.2. Configuring Paths for RUNtime FEatUIeSccoovuiiiiiiiiiecii e 14

3.6.3. Verifying your Hardware Configurationcooveieeiinieiiiiinieiiiiineeeeieeees 15

4. Designing the Database SCNEMAccuuuuiiiiii e 16
4.1. How to Enter DDL SEABIEMENLSvvviiiiiiiiiiieiei et e e 17

4.2. Creating Tables and Primary KeYsSi oot 18

4.3. Analyzing Data Volume and Workloadooeeiiiiiiiiiiii e 19

4.4. Partitioning Database TabIESciiiiiiiiiiii e 20
4.4.1. Choosing a Column on which to Partition Table ROWSccooeviiiiiieiiiinnee, 20

4.4.2. Specifying Partitioned TableSccoouviiiiiiiiii e 21

4.4.3. Design Rules for Partitioning Tables ..o 21

4.5. Replicating Database TahlESiiiiiiiiiiei e 21
4.5.1. Choosing Replicated TableSuiiiiiiiiiiiii e 22

4.5.2. Specifying Replicated TableSviiiiiiiii e 22

4.6. Modifying the SChEMAccoiii e 22
4.6.1. Effects of Schema Changes on Data and CHentSoovevevviiiiiiinieiiiiineeeenns 23

4.6.2. Viewing the SCREMAcouuuiiiiiii e e 24

4.6.3. MOIfying TaDIEScoeiiieieii e 24

4.6.4. Adding and Dropping INAEXESccouuiiiiiiiiieiiiii e 26

4.6.5. Modifying Partitioning for Tables and Stored Procedurescooevvevevneeennnnns 27

5. Designing Stored Procedures to Access the Databasecoevvveeiiiiiiiciiii e 31
5.1. How Stored Procedures WOrKiiiiiiiiiiiiie ettt 31
5.1.1. VoltDB Stored Procedures are Transactionalocoveviieiiiiiineeiiiiieeeceiie, 31

5.1.2. VoItDB Stored Procedures are Deterministicc.vuveiiiiinieiiiiiieeeciieeeceie 31

5.2. The Anatomy of a VoItDB Stored ProCetureccuuviiiiiiiieiiiiie e 33

Using VoltDB

5.2.1. The Structure of the Stored ProCedureoooueuiieiiiiinieeiiii e 33

5.2.2. Passing Arguments to a Stored Procedurecooovvviveiiieiiiiiccieeeee e 35

5.2.3. Creating and Executing SQL Queriesin Stored Procedurescooevvvvevvnnennnnn. 36
5.2.4. Interpreting the Results of SQL QUENEScccviiiiiieiiiieiii e, 37
5.2.5. Returning Results from a Stored Procedureccoveviiiiiiiniiiiecieeceeeeiees 40
5.2.6. Rolling Back @ TranSaCtioncccuuviiuiieiiiieiiiieei e e e s e e e e e e e e eeen 41

5.3. Installing Stored Procedures into the Databasecoovvviviiiiiiiiii e 41
5.3.1. Compiling, Packaging, and Loading Stored Procedurescccccovvevineeennnnn. 42
5.3.2. Declaring Stored Procedures inthe Schema.........ccooveviviiiiiin e, 42
5.3.3. Partitioning Stored Proceduresinthe Schema..........cocccoeeviiiiiin i, 43

6. Designing VOItDB Client APPliCaHIONSoiiuniiiii i e 46
6.1. Connecting to the VOItDB DatabhaSecveiiiiiiiieiiii e 46
6.1.1. Connecting to MUItIPle SEIVEIScoviiii e 47
6.1.2. Using an Auto-Reconnecting Clentccooveiiiiiiiiiii e, 47

6.2. INVOKING StOred PrOCEAUIESccvuiiii e e e s 48
6.3. Invoking Stored Procedures ASynchronouSlYcocvuiiiiiiiiiiiiecieece e 48
6.4. CloSiNg the CONNECLIONuuiiiii i e e e e e e e e aaas 50
LRI o = o 1T a0 = £ PN 50
6.5.1. Interpreting EXECULION EITOrScouviiiiiiiii e e 50
6.5.2. HaNdliNg TIMEOULSuivuniiiiieiiie e e e e e e e e e e e e e e e e eaaeees 52
6.5.3. Writing a Status Listener to Interpret Other Errors..........cooevviveiiiieiiiiecineeennnn, 53

6.6. Compiling and Running Client AppliCatioNSoovvuieiiiieiii e 55
6.6.1. Starting the Client ApPliCationcouiiiiiiiii e 55
6.6.2. Running Clients from Outside the Clusterccooveiiiiiiiiiiii e, 56

7. Simplifying Application DeVEIOPMENTuiiiiiiiiiee e e e aaaas 57
7.1. Using Default ProCEAUIESccuuiiiiiiciiie e e e e e e e e e e e e e aes 57
7.2. Shorteut for Defining Simple Stored Proceduresoveviiieiiiieiii e 58
7.3. Verifying Expected QUEry RESUILSuiiiiieiii e e 59
7.4. Writing Stored Procedures Inling USiNG GrOOVYcevvuieiiiieiiiieiiiieeiieeea e eeieeeanns 60
8. Using VolItDB with Other Programming LanQUAgEScceuuieiiiieiiiieeiie e e e e e 62
8.1, Ctt CleNt INEITACE .vvvuieiiii e e e e e et e eeeataaaees 62
8.1.1. Writing VoltDB Client Applications in CH+coiiiiiiiiiiiicii e 62
8.1.2. Creating a Connection to the Database CIUStErcocovviiiiiiiiiiiiii e 63
8.1.3. Invoking Stored ProCeAUIEScc.uiiiiinieii e e e 63
8.1.4. Invoking Stored Procedures ASynchronouslyccovevuiiiiiiiiiiieeiineceeeeeiees 64
8.1.5. Interpreting the RESUILSccuviiiii e e 65

8.2. JISON HTTP INLEITACE .oieeieieiieii ettt e e eeeaanns 65
8.2.1. How the JSON Interface WOIKSccovuuiiiiiiiieeeee e 65
8.2.2. Using the JSON Interface from Client AppliCationscoocvvveiiiieiiineeineennnn. 67
8.2.3. How Parameters Are INterpretedo.vuvviiiiiiiieiie e 69
8.2.4. Interpreting the JSON RESUILSociviiiiii e 70
8.2.5. Error Handling using the JSON INterfacec.ccvveviiiiiiiiiiiieccieece e 71

8.3, IDBC INEEITACE ... et 72
8.3.1. Using JDBC to Connect to a VoItDB Databasec.cooevvviviviieiiiiecineeiieeen, 72
8.3.2. Using JDBC to Query aVoItDB Databaseovvvvnveeiiciiiieciie e 72

9. USING VOIIDB IN @ CIUSIESiiiiiiiieiieee e e e e e e e e e e e et e e e e aaes 74
9.1. Starting a Datahase ClIUSLENociiiiiiiiiieiii e e e e e e e aaeees 74
9.2. Updating the Cluster Configurationccoeuuieiiiieiiieci e e e e e e e e eees 74
9.2.1. Adding Nodes with Elastic SCalingccoveiiiiiiiiiiei e, 75
9.2.2. Configuring How VoltDB Rebalances New NOdESccccvvveviiiiiiiiiiiieecieee, 75

O N Y=] = o 1) Y PP 77
10.1. HOW K-Safety WOTKSiiiiiciieci et e e e e e e eeas 77
10.2. ENabling K-Saf@LYuuiiiiiiiii e e e e 78
10.2.1. What Happens When You Enable K-Safetyccocciveiiiiiiii i 79

Using VoltDB

10.2.2. Calculating the Appropriate Number of Nodes for K-Safetycocceveeennnnenn. 79
10.3. Recovering from System FaillUreScc.uieiiiiiiii e 80
10.3.1. What Happens When a Node Rejoinsthe Clustercccoovvviiiiiiiiiiinceine, 80
10.3.2. Where and When Recovery May Failccooeiiiiiiiiniiiii e, 81
10.4. Avoiding NEtWOrK Partitionsoveiuiiiiiiiciiii e e e 82
10.4.1. K-Safety and Network Partitionscccouiveiiiiiiiiiieieeci e 82
10.4.2. Using Network Fault ProteCtionooeeiuiiiiiiiiiin e 83
IR DT = o= S I o= o] o= o) o 85
11.1. How Database Replication WOIKSccouuiiiiiiiiii e 86
11.1.1. Starting Database ReEPlICAtiONcc.uviiiiiiiiii e 87
11.1.2. Database Replication, Availability, and Disaster RECOVENYcccvvvvevinneeinnnnnn. 88
11.1.3. Database Replication and Completenessc..ovvvviieiiiieiiii i 89
11.2. Using Passive Database ReEPlICatioNoeiviiiiiiiiiiiiiciie e e e 89
11.2.1. Specifying the DR Tablesinthe Schemaccoocoiviiiiiiiiin e, 20
11.2.2. Configuring the CIUSLErSoiiiiiiiii e e e e 20
11.2.3. Starting the CIUSLErSccvviiiii e e 91
11.2.4. Loading the Schema and Starting Replicationcccoovviiiiiinciiiiec e, 91
11.2.5. Stopping REPIICALONccevniiiiiciie e e 92
11.2.6. Database Replication and Read-only ClientScccveiiiiiiiiiieciiccie e, 94
11.3. Using Cross Datacenter REPlICaHIONoevviiiiiiiciiii e 94
11.3.1. Designing Your Schema for Active Replicationccoocciveiiiiiiiiniiiiieeiins 95
11.3.2. Starting the Database CIUSLEYSccuviiiiieiiiecc e e 96
11.3.3. Loading a Matching Schema and Starting Replicationcccoevvvveevin. 97
11.3.4. Stopping REPIICALIONccevniiiii e 98
11.3.5. Understanding Conflict RESOIULIONccovvniiiiiiiii e 98
11.4. Monitoring Database REPIICAIONccovuiiiiiiiiie e 104
S < o) Y PP 105
12.1. How Security WOrkS in VOIIDBcoouniiiiiiii e 105
12.2. Enabling Authentication and AUthOFZationcccceiiiiiiieiii e 105
12.3. Defining UsSers and ROIESuiiiiiiiii e 106
12.4. Assigning Access to Stored ProCedUrEScouueiiieiiiiici e e e 107
12.5. Assigning Access by Function (System Procedures, SQL Queries, and Default Proce-
(0 LU= PP 107
12.6. USiNg DEfaUlt ROIEScovviiiii e e 108
12.7. Integrating Kerberos Security With VOItDBcccviiiiiiiiiiiicie e 108
12.7.1. Installing and Configuring Kerberosccooviiiiiiii i, 109
12.7.2. Installing and Configuring the Java Security EXtENSIONScoocvvvviviineeinnnnns 109
12.7.3. Configuring the VoltDB Servers and CHentSccoeevviviiiiiiiiin v, 110
13. Saving & Restoring a VoItDB DatahaSecccuuiviiiiiiiiiciii e 112
13.1. Performing a Manual Save and Restore of a VoItDB Clustercoccevevviiviinenennnn. 112
13.1.1. How to Save the Contents of a VoItDB Databasecccevvveviiiiieeeiiinnenns 113
13.1.2. How to Restore the Contents of a VoltDB Database Manualy 113
13.1.3. Changing the Cluster Configuration Using Save and Restorecccccvveeeee. 114
13.2. Scheduling Automated SNapPShOLSuviiiiiiii e 115
13.3. Managing SNapShOLSccvuiiiii e 116
13.4. Special Notes Concerning Save and RESEOIEccevuieiiiiiiiiieiieeeeee e 116
14. Command Logging and RECOVETYiiuuiiiiieiii e e e e e e e e e e e e e et e e e e eaaaees 118
14.1. How Command Logging WOTKSiiiiiiiiiiiiii e eaa e 118
14.2. Controlling Command LOGOINGccuueiiuieiiieiiiieeiiiee e e e et e e e e e e esaneeaanes 119
14.3. Configuring Command Logging for Optimal Performancecc.ccceveviiiiviiieeinnn, 119
I B T o o TS = PP 120
14.3.2. LOQ FIEOUENCY . euiiniiiiiiie ittt e e aas 120
14.3.3. Synchronous vs. ASynchronous LOGGiNGuuevvvneriinieiiieiiieeaieeeeineeeaneeennnns 120
14.3.4. Hardware CONSIEratioNSccuvunieiiiiiieieiiiee et et e et e et e e 121

Using VoltDB

15. Importing and EXPOrting LiVe Dalalveiuuieiiiiiiiii e e e e e 123
15.1. Understanding EXPOIToivuniiiiieiiie e e e e e e e e e e e et e et e e 123
15.2. Planning your EXPOrt SLrat@OYcuuieerueeiiieriiieeeiieeeiieeeieeeaeeesineesaeesesessneesaneens 124
15.3. Identifying Export Tablesinthe Schemacooviiiiiiin i 126
15.4. Configuring Export in the Deployment Filec.ooiiiiiiiiii e 127
15.5. HOW EXPOIrt WOTKS ...coviiiiiicii et e e e et e e e e e e aaneees 128

15.5.1. EXPOrt OVETIOW ...cvviiiiicc e e e e 128
15.5.2. Persistence Across Databhase SESSIONSevveveieeiiiiieeeeiine e e e e e 129
15.6. The File CONMECLOTiivviiieiiii et e et e e e e e eaanns 129
15.7. ThE HTTP CONNECLOT ..uuiieitiiieeeitie et e ettt e e e e e e et e e e bt e e e e es 131
15.7.1. Understanding HTTP Propertiescouviiiii i e e 131
15.7.2. Exporting to Hadoop Via WEBHDFSccocoiiiiiii e, 133
15.7.3. Exporting to Hadoop Using Kerberos SECUrityccooveviiiiiiiiiiiiiciiineciees 134
15.8. The IDBEC COMNECION ...eevtiieeiiiiieeeiii s e e ettt s e e ettt s e e et s e e e et s e e e ett s e eeestnaeeeesenaeeeees 135
15.9. The KafKa COMNECIONuvuiiiiiiiee ettt e e e e e e e eeeat e e e e eaenneeeee 136
15.10. The RabbitMQ CONNECLONiiviiiiiieeei e e e e e e e e e e eaas 139
15.11. The Elasticsearch COMNECLONcceuuniiiiiii et e e e e e e e e e eeeaenaeeees 141
15.12. Understanding IMPOItccouniiiiiiiiie e e e e e e e et e e e e eens 142
15.12.1. One-Time Import Using Data Loading Utilitiescccococeeeiiiiiiinncinn, 142
15.12.2. Streaming Import Using Built-in Import Featurescooceeeeviieiineninns 143

A. Supported SQL DDL StAatEMENESuvieniiiiieiiieeieee e e e e e e e et e e et e et e eaneeaes 146
ALTER TABLE .oooiii ettt e e e e e e e e e e e e e aaaae 147
CREATE INDEX ..uiiiiiiiititite sttt s e e e ettt s e e e e e e e e aat e s e e e e e e e eastnaanaeeeaeeennees 149
CREATE PROCEDURE AS ... ittt a e e e e et s e e e e e e aeaana s 151
CREATE PROCEDURE FROM CLASS ..ottt ettt e et e e e e e e aaaannn s 153
CREATE ROLE ...uii ittt r e e e e e et n e e e e e e eeeeannas 155
L@ N I 17 = P 157
CREATE VIEW oeiiiiii ettt e e e e e e ettt e s e e e e e e e ba b n e e e e e e aeerenaes 161
DR TABLE ..ottt e e e e e e e e e e e e et aeaaaaaaaaa 162
(D@ = N 163
DROP PROCEDUREcottiiiiiiiie e ettt s e e e e et s e e e e e e et n e e e e e e e ae e e e e eeaees 164
[@ = (S 165
[@ I 1 I S 166
DROP VIEW ... ittt e sttt et ettt e e e e e et e e e e e e e e e bt e e e e e e e e e eaetaan e aaeees 167
g @ = 1A = PP 168
1] I O PP 169
PARTITION PROCEDUREuuutiiiiiiiiiiiiiiis s e e ettt e e e e e ettt e s e e e e eaeannnan e naee e 170
PARTITION TABLE ...ouiiiiiiiieee e e et e e e e e e e e 172
S 5 PSPPI 173

B. SUPPOrted SOL StAEEMENTSivvi et e e e e e e e e e e e e e e e e e et e e et e e e eeanns 174
] I PP 175
E NN S U 176
Sl PP 178
TRUNGCATE TABLE ..ottt e e et a e e e e e et e e e e e e 184
LU N I O SSSPPR 185
LU 186

LTS @ I ¥ o 1T PN 187
N = 1 P 189
APPROX_COUNT _DISTINCT() eieeeteteieiiiieieeeeeeeeeiiissseeeeesaesisinsseeeeesasssnsnnsaseaaeeenns 190
ARRAY _ELEMENT() 1rvvtttuiiieeetitieiiiie s e e ettt s st e e e e e et n s e e e e e s aantnt e s e e e aenaesnnennnneas 191
F Y A I N I T 192
AV G() oottt ettt e e e e e et ettt e e e e aaa 193
2 N PSR 194
2 S 1 T 195

Vi

Using VoltDB

BIT_SHIFT_RIGHT() v eveeeeeeeeeeeeeeeeeeeee ettt e et e e ettt e e, 196
BITAND() ettt e et eeee e ee et et et e et et et e et et et e e et et e e e et e st e e ee e es el 197
BITNOT() ettt eee et e e et ee e e ettt et e e e e e ee et et e et etesee e et ee s s neeeees 198
BITOR() e eeeeeeeeet e eeeeeee e e e e et e e et e et e et et e e et e et et ee et e et ettt e et et et es e e et es e eeeeees 199
BITXOR() . vveveveeereeeeeeeeeeeeeeeeeeetes s e e e e s e s ee e e et et s e et et et ee et et et e e e et et es e seeeenan 200
CAST() ettt ettt ettt ettt ettt ettt ettt 201
CEILING() vttt ettt ettt e ettt et ee et 202
CHAR() ettt ettt e ettt ettt ettt 203
CHAR _LENGTH() vt eeeeeeeee ettt ettt ee ettt 204
COALESCE() . vtveeeeeeeeeeeeeeee ettt e e et e ettt e ettt et 205
CONCAT() vttt ettt ettt ettt ettt ettt e ettt 206
COUNT) ettt eee ettt ettt et e et e et e st e e et et s e e et ee s 207
CURRENT _TIMESTAMP ..ottt ettt ettt 208
DATEADD() .ottt ettt ettt ettt ettt et ettt 209
DAY (), DAY OFMONTH() oot eeeeeeeeeeee e eeeees e e et et s et et s e et s e e 210
DAY OFWEEK() «.vvvveteeeeeeeeeeeeeeeeee et et s et eeeee st e et et et s e e et et e ee et et s e et 211
DAY OFYEAR(.. etveeeeetee ettt ee ettt ee et et s e e et et s et es et s ettt r e 212
DECODE() vt eeeeeeee et e e et et e e e et e et e et et e e et et et e ettt e et s 213
EXP() . eteeeeeeeeeee e eeee et et e et ettt ettt ettt ettt ettt 214
EXTRACT() «vveeteeeeeeeeeeeeeeeeeee et ee ettt e e e et e et e et et e et ee s e et et en e 215
FIELDU() v ettt ee et e ettt ee et ee et e e et s ettt s et e et eer e, 217
FLOOR() vttt s ettt ettt e et et e et e et e et e e, 219
FORMAT_CURRENCY () «.v.veteteteeeeeeeeeeeeeeeeeees s seeeeees s s et s s eeeetes s et esenseeend 220
FROM_UNIXTIMEQ) «.vveveveteeeeeeeee e eeeee et eveeeeeeeet s ee et s e eees et st es s 221
HEX() o vveeeeee e ee et e ettt et e e ee et ettt e ettt ettt 222
HOUR() vttt ettt ettt ettt e et et et e ettt e et e e e, 223
LEFT() +eveeeeeeeeeee et eee ettt et s e et ettt et et e e et et ettt 224
LINQ, LOG() vttt ettt ettt e ettt ettt 225
LOWER() vttt ee ettt ettt ettt e e ettt et e et s e, 226
IMAX() vttt ettt e ettt ettt ettt ettt ettt 227
IMINQ) ettt ettt ee e e e e ettt e et et e ettt n e, 228
IMINUTEQ vttt e ettt e ettt ettt e ettt ee s ee e en e, 229
IMOD() ettt ettt ettt ettt et ettt ettt ettt 230
IMONTHI) ettt e ettt ettt ettt e et e e ee et et e et et oo e e e et e er s neeees 231
NOW .ottt ee ettt e et ettt et et ettt ettt 232
OCTET_LENGTH() cvevevevteteeeeeeeee et eeeeet s ee et ee et s et s e e s sen s 233
OVERLAY () oottt et eee et ettt ettt e e et et e et et e et eeenns 234
PL(ettt ettt ettt ettt ettt ettt ettt ettt 235
POSITION() vttt teee ettt ee e ettt e et et e e et et et e e et e r et e et eeer e en e 236
POWER() .o eeeeeeeteteeeeeeeeeee et eeeee et et s e e et es e e e et es et en e e e e e e e e e e et et es e e e el 237
QUARTER() -ttt ettt ettt ettt ettt e et e ettt e et e e 238
REGEXP_POSITION() . veeteteeeeeeeeeeeeeeeetes e eeeee e e e et et es e ee e eeee e es e 239
REPEAT() vttt eeeeeeeeeee et eee et et s e et et e e et et s e e et et st e et et s e et ee s eeeenns 240
REPLACE() ..ttt et e et s e ee et eet et e et ee sttt ee e e eeeeenan 241
RIGHT() ettt ettt ettt ettt ettt e et et e et et e et et et e e e e es e eeeenns 242
SECOND() vttt ettt et ee ettt et ettt ettt 243
SET_FIELD() ettt et ee ettt et et e e ettt ettt e ettt 244
SINCE_EPOCH() . vevveveeeeeeeeeeeeeeeeeeeeet s e e te ettt e e tet sttt s e seet oo 246
SPACE() vttt ettt ettt 247
SORT() veveeteeeeeee et et e et et ettt et et ettt et et e ettt et ettt e ettt ettt 248
SUBSTRING() «..vveteeeeeeeeeeteeeeeeeee et e e ee e s e eeeteeeses e eee et s e e et see e es el 249
SUMU) ettt ettt ettt ettt ettt ettt 250
TO TIMESTAMP() vt eeeeeeeeeee ettt ettt ettt ettt en e, 251
TRIMO) vttt ee e eeee ettt e et et e e e e ettt et e et et e et et et e et en e e enenen. 252

Vii

Using VoltDB

TRUNGCATE() +ettevttueieieeeteteeeee st e e e e ettt e s e e e e et aaeta s a e e e eeaaestat s aaeaeaaessannnnaaaaeeeeenes 253
LU TSP 254
WEEK(), WEEKOFYEAR() +.evtttueieeeietieiitiie s e e e ettt s s e e e e e e eeataen s e s e e e naasaatnnseseeenaeees 255
WWEEK DAY () 1etuuieieieteeeittie et e ettt e s s e e e e e e ettt e e e e e e e e e tat e e e e e e e e e ettt aaeeeaeearrrnanan 256
D27 2 SRR 257
D. VOIIDB CLI COMMANGSuiiitiiiiiiieeiieeieee e e e e e e e e te e et e e e e e st e e st e e s e e et e e et erenaeeaes 258
(oY o= o = S PP 259
oo 1ex o= o = L 263
3 16 0 = o L= (N 266
S o | 1.1 N 269
170] = | 0 1T PN 273
17 o [TS 276
E. Deployment File (deployment.Xml)coouiiiiiiii e e 281
E.1 Understanding XIML SYNEBXcccvniiiiiieiiieiiiie e eee e ee e e e e e e e et e e e e eaas 281
E.2. The Structure of the Deployment Filecooouiiiiiiiiii e 281
F. VoItDB Datatype Compatibilityccouuiiiiiiiiiici e 285
F.1. Java and VoltDB Datatype Compatibilityccccoeiiiiiiiiiiii e 285
LTS Y= (= e (01010] =N 287
@ATHOC ... 288
L@ (L= T P 289
@EXPIAINPIOC ...viiii e e 290
@GELPAtItIONKEYSiiiieii e e e e 291
@] U PSSP 293
(@] 0] 100 (< 294
(L N 1= o= N 295
@RS 0 296
L@ V100 [0, o TN 297
@SNAPSNOIDEIELE ... iivecei e e 298
@SNAPSNOIRESIONE . ..tu it iee e e e e e e e e e e e et e e et e e e e e et 300
@ SNAPSNOLSAVE ...vuieei et e et e e e e e e e e e aaaa 302
(IS 01 g0 o o PN 306
@ SNAPSNOLSEALUS ... evvueiviieeii e e e et e e e e e e e e e e e e e e e et e e et e e et e e eaa e ean e e et e eeanaaeanaes 309
(@S 1 [311
(@S (o] o) N Lo [TSP 326
(Y (=141 0% = o o P 328
SV (=101 1o 017 1 o o PN 333
@UpdateAppliCatioNCatalogovvunieii i e e 335
(U001 O = S = P 338
(@B T0 e = (I 0T o 1 oo T 340

viii

List of Figures

1.1 Partitioning TaIEScoeiiieiei et 2
1.2, SEri@liZEU PrOCESSING ..oevtueiiettn ettt e et e e ettt e e ettt e e et et e e e ettt e et ettaeeeent e e eeentnaaaees 3
1.3. REPIICAING TADIES ...ttt 4
4.1. Components of a Database SCREMAuuiiiiiii e 16
4.2. Partitions Distribute Table Data and Stored Procedure ProCeSSiNgovevevvunrererineerernnnnns. 17
4.3. Diagram Representing the Flight Reservation Systemcooovviiiiiiiiiin e 19
5.1. Array of VOITEDIE SIIUCIUIESoovviieiiiii e 37
5.2. One VoltTable Structure is returned for each Queued SQL Statementccovvvevivieineiinnnnns 38
5.3. Stored Procedures Execute in the Appropriate Partition Based on the Partitioned Parameter

VAU Lttt eaaas 43
8.1. The Structure of the VOItDB JSON RESPONSEcccvutuiieiiiiiieeeiii et eeit e e eeni e 70
10.1. K-SAfELY 1N ACHON ..oeitiiieiii e ettt e et e e et e e e e e eees 78
10.2. NEWOIK Partitioneiieiiieiiiiie ettt et e et e e e e e 82
10.3. Network Fault ProteCtion in ACHONcoouuuuiiiiiii e e 84
11.1. Passive Database REPHCALIONocieiiiieiiiii et e 85
11.2. Cross Datacenter REPIICAIIONc.uuuiiiiiiie i 86
11.3. Replicating an EXisting Databaseoeieiiiieiiiiiee e 88
11.4. Promoting the REPIICAcoeutiieiiiii e 88
11.5. Read-Only AcCesS t0 the REPIICAuiiiiiii e 94
11.6. Transaction Order and Conflict RESOIULIONcoovvuiiiiiiiiiiciii e 98
14.1. Command Logging iN ACHIONoeiiiriieiiiiie et 118
14.2. RECOVENY IN ACHON .ottt et e e et e e e 119
15.1. Overview Of the EXPOrt PrOCESSuuuiiiiiiieieei ettt e 124
15.2. FHight Schema with EXPOrt Tablec.uuiiiiiiii e 125
E.1. Deployment XIML SHUCIUIEieeiieieii ettt e e 282

List of Tables

2.1. Operating System and Software REQUIFEMENTSoeiiuiiieiiiieeeei e 5
2.2. Components Installed Dy VOITDBcooiiiiiiieiiiiie et 8
4.1. Example Application WOrKIOadccouuiiiiiiiiiii e 19
5.1. Methods of the VOITTabIE ClaSSeSc.uuiiiiiiiieee e 39
8.1. Datatypes in the JISON INLEITACEuuniiiiiii e 69
11.1. Structure of the XDCR CONFIICE LOGS ... ceverrnieeiiiiieeeii ettt 103
12.1. Named Security PErMISSIONSuuiiieiieiiiii ettt e e e e 107
15.1. File EXPOIt PrOPEITIES ... ettt et e e e 130
15.2. HTTP EXPOrt PrOPEItIES ...ttt ettt e e et e eee e e eees 132
15.3. IDBC EXPOIT PrOPEITIES ..ottt sttt e e et e e e e b s 135
15.4. Kafka EXPOIT PrOPEITIES .. .ceveieiieii ettt ettt e et e e e ae s 138
15.5. RabbitMQ EXPOIt PrOPEITIES .. .cceveiiiiiiii ettt et e e 140
15.6. Elasticsearch EXPOrt ProOPErtiESiiieiieiiii ettt e 141
15.7. Kafka IMpOrt PrOPEITIES .. .coeuiiiieiii ettt e e 144
A.L SUPPOrted SQL DELBLYPES .. .ceeeruieeiiti ettt ettt e e et e e et ettt e e e et e e et e e e eab e eenes 157
C.1. Selectable Values for the EXTRACT FUNCLONcc.uuiiiiiiiiieeiiii e 215
E.1. Deployment File Elements and AttrDULESooiiiiiiiiii e 283
F.1. Java and VolItDB Datatype Compatibilityccoouuiiiiiiiiiieiiiie e 285
G.1. @SNAPSNOLSAVE OPLIONSceeeeieeeeeti ettt ettt e e et e et e et et e e et et e e e e b e e eaea s 302

List of Examples

4.1. DDL Example of a Reservation SChemacovuuiiiiiiiiii e
5.1. Components of a VoItDB Java Stored ProCEAUNeiieieiiiiiiii e
5.2. Cycles of Queue and Execute in @ Stored ProCeaUreuviviiiiiieiiiiie e
5.3. Displaying the Contents of VOITTabIE AITAYSooeiiiiieiiiie e

Xi

About This Book

Thisbook is acomplete guide to VoltDB. It describes what VoltDB is, how it works, and — more impor-
tantly — how to use it to build high performance, data intensive applications. The book is divided into

five parts:

Part 1: Getting Started

Explains what VolItDB is, how it works, how to install it, and how to
start using VoltDB. The chapters in this section are:

e Chapter 1, Overview
» Chapter 2, Installing VoltDB

» Chapter 3, Starting the Database

Part 2: Developing VoltDB Data-
base Applications

Describes how to design and develop applications using VoltDB. The
chaptersin this section are:

Chapter 4, Designing the Database Schema

Chapter 5, Designing Stored Procedures to Access the Database

L]

Chapter 6, Designing VoltDB Client Applications

Chapter 7, Smplifying Application Devel opment

» Chapter 8, Using VoltDB with Other Programming Languages

Part 3: Running VoltDB inaClus-
ter

Describesadditional featuresuseful for running adatabasein acluster.
The chaptersin this section are:

e Chapter 9, Using VoItDB in a Cluster
e Chapter 10, Availability
¢ Chapter 11, Database Replication

e Chapter 12, Security

Part 4: Managing the Data

Provides techniques for ensuring data durability and integrity. The
chaptersin this section are:

e Chapter 13, Saving & Restoring a VoltDB Database
¢ Chapter 14, Command Logging and Recovery

e Chapter 15, Importing and Exporting Live Data

Part 5: Reference Material

Provides reference information about the languages and interfaces
used by VoltDB, including:

« Appendix A, Supported SQL DDL Satements

* Appendix B, Supported SQL Satements

Appendix C, SQL Functions

» Appendix D, VoltDB CLI Commands

Xii

About This Book

« Appendix E, Deployment File (deployment.xml)

* Appendix G, System Procedures

Thisbook providesthe most complete description of the VoltDB product. It includesfeaturesfrom both the
open source Community Edition and the commercia Enterprise Edition. In general, the features described

in Parts 1 and 2 are available in both versions of the product. Several featuresin Parts 3 and 4 are unique
to the Enterprise Edition.

If you are new to VoltDB, the VoItDB Tutorial provides an introduction to the product and its features.
The tutorial, and other books, are available on the web from http://docs.voltdb.com/.

Xiii

http://docs.voltdb.com/tutorial/
http://docs.voltdb.com/

Chapter 1. Overview
1.1. What is VoltDB?

VoltDB isarevolutionary new database product. Designed from the ground up to be the best solution for
high performance business-critical applications, the VoltDB architectureisable to achieve 45 times higher
throughput than current database products. The architecture also allows VoltDB databases to scale easily
by adding processors to the cluster as the data volume and transaction requirements grow.

Current commercia database products are designed as general -purpose data management solutions. They
can be tweaked for specific application requirements. However, the one-size-fits-all architecture of tradi-
tional databases limits the extent to which they can be optimized.

Although the basic architecture of databases has not changed significantly in 30 years, computing has. As
have the demands and expectations of business applications and the corporations that depend on them.

VoltDB is designed to take full advantage of the modern computing environment:
» VoItDB uses in-memory storage to maximize throughput, avoiding costly disk access.

* Further performance gains are achieved by serializing all data access, avoiding many of the time-con-
suming functions of traditional databases such as locking, latching, and maintaining transaction logs.

 Scalability, reliability, and high availability are achieved through clustering and replication across mul-
tiple servers and server farms.

VoltDB isafully ACID-compliant transactional database, relieving the application developer from having
to develop code to perform transactions and manage rollbacks within their own application. By using
ANSI standard SQL for the schema definition and data access, VoltDB also reduces the learning curve
for experienced database designers.

1.2. Who Should Use VoltDB

VoltDB is not intended to solve all database problems. It is targeted at a specific segment of business
computing.

VoltDB focuses specifically on fast data. That is, applications that must process large streams of data
quickly. This includes financia applications, social media applications, and the burgeoning field of the
Internet of Things. The key requirementsfor these applications are scalability, reliability, high availability,
and outstanding throughput.

VoltDB is used today for traditional high performance applications such as capital markets data feeds, fi-
nancial trade, telco record streams and sensor-based distribution systems. It's also used in emerging appli-
cations like wireless, online gaming, fraud detection, digital ad exchanges and micro transaction systems.
Any application requiring high database throughput, linear scaling and uncompromising data accuracy
will benefit immediately from VoltDB.

However, VoltDB is not optimized for all types of queries. For example, VoltDB is not the optimal choice
for collecting and collating extremely large historical data sets which must be queried across multiple
tables. This sort of activity is commonly found in business intelligence and data warehousing solutions,
for which other database products are better suited.

Overview

To aid businesses that require both exceptional transaction performance and ad hoc reporting, VoltDB
includes integration functions so that historical data can be exported to an analytic database for larger
scale data mining.

1.3. How VoltDB Works

VolItDB is not like traditional database products. Each VoltDB database is optimized for a specific appli-
cation by partitioning the database tables and the stored procedures that access those tables across multiple
"sites’ or partitions on one or more host machines to create the distributed database. Because both the data
and the work is partitioned, multiple queries can be run in parallel. At the same time, because each site
operates independently, each transaction can run to completion without the overhead of locking individ-
ual records that consumes much of the processing time of traditional databases. Finally, VoltDB balances
the requirements of maximum performance with the flexibility to accommodate less intense but equally
important queries that cross partitions. The following sections describe these concepts in more detail.

1.3.1. Partitioning

In VoltDB, each stored procedure is defined as a transaction. The stored procedure (i.e. transaction) suc-
ceeds or rolls back as awhole, ensuring database consistency.

By analyzing and precompiling the data access logic in the stored procedures, VoltDB can distribute both
the data and the processing associated with it to the individual partitions on the cluster. In thisway, each
partition contains aunique "slice" of the data and the data processing. Each nodein the cluster can support
multiple partitions.

Figure 1.1. Partitioning Tables

Table

B Database
Table Table Schema
A C
AlB|C A |B|c A" |B"|C Run-Time
Partitioning
Server Server
X Z

1.3.2. Serialized (Single-Threaded) Processing

At run-time, calls to the stored procedures are passed to the appropriate partition. When procedures are
"single-partitioned” (meaning they operate on data within a single partition) the server process executes
the procedure by itself, freeing the rest of the cluster to handle other requestsin parallel.

By using serialized processing, VoltDB ensurestransactional consistency without the overhead of locking,
latching, and transaction logs, while partitioning |ets the database handle multiple requests at atime. Asa

Overview

1.3.3.

general rule of thumb, the more processors (and therefore the more partitions) in the cluster, the more trans-
actions VoltDB completes per second, providing an easy, ailmost linear path for scaling an application's
capacity and performance.

When a procedure does require data from multiple partitions, one node acts as a coordinator and hands out
the necessary work to the other nodes, collectsthe results and completes the task. This coordination makes
multi-partitioned transactions slightly slower than single-partitioned transactions. However, transactional
integrity is maintained and the architecture of multiple parallel partitions ensures throughput is kept at a
maximum.

Figure 1.2. Serialized Processing

Stored Proc.
Stored Proc. Workload

Stored Proc. Queue
Stored Proc.

|

Stored Proc.

Stored Proc. Stored Proc.

Stored Proc. Stored Proc. Stored Proc.
Stored Proc. Stored Proc. Stored Proc. Distributed,
Serialized
Server Server Pmcessmg

Y Z

It isimportant to note that the VV oltDB architectureisoptimized for throughput over latency. The latency of
any one transaction (the time from when the transaction begins until processing ends) issimilar in VoltDB
to other databases. However, the number of transactionsthat can be completed in asecond (i.e. throughput)
is orders of magnitude higher because VoltDB reduces the amount of time that requests sit in the queue
waiting to be executed. VoltDB achieves thisimproved throughput by eliminating the overhead required
for locking, latching, and other administrative tasks.

Partitioned vs. Replicated Tables

Tablesare partitioned in VoltDB based on acolumn that you, the devel oper or designer, specify. When you
choose partitioning columns that match the way the datais accessed by the stored procedures, it optimizes
execution at runtime.

To further optimize performance, VoltDB allows certain database tables to be replicated to all partitions
of the cluster. For small tables that are largely read-only, this allows stored procedures to create joins
between this table and another larger table while remaining a single-partitioned transaction. For example,
aretail merchandising database that uses product codes as the primary key may have one table that simply
correlates the product code with the product's category and full name, Since thistableis relatively small
and does not change frequently (unlikeinventory and orders) it can bereplicated to all partitions. Thisway
stored procedures can retrieve and return user-friendly product information when searching by product
code without impacting the performance of order and inventory updates and searches.

Overview

Figure 1.3. Replicating Tables

TﬁBble Database Schema
Table Table
A c
Table
D
ol e e arar Run-Time
Partitioning &
5 5 D Replication
X Fi

1.3.4. Ease of Scaling to Meet Application Needs

The VoltDB architectureis designed to simplify the process of scaling the database to meet the changing
needs of your application. Increasing the number of nodesin aVoltDB cluster both increases throughput
(by increasing the number of simultaneous queues in operation) and increases the data capacity (by in-
creasing the number of partitions used for each table).

Scaling up aVoltDB database is a simple process that doesn't require any changes to the database schema
or application code. Y ou can either:

 Save the database (using a snapshot or command logging), update the deployment file to identify the
number of nodesfor the resized cluster, then restart the database using either restore or recover to reload
the data.

* Add nodes "on the fly" while the database is running.

1.4. Working with VoltDB Effectively

It is possible to use VoltDB like any other SQL database, creating tables and performing ad hoc SQL
gueries using standard SQL statements. However, to take full advantage of VoltDB's capabilities, it is best
to design your schemaand your stored procedures to maximize the use of partitioned tablesand procedures.
There are also additional features of VoltDB to increase the availability and durability of your data. The
following sections explain how to work effectively with VoltDB, including:

» Chapters 2 and 3 explain how to install VoltDB and create a new database.

» Chapters 4 through 8 explain how to design your database, stored procedures, and client applications
to maximize performance.

» Chapters 9 through 12 explain how to create and use VoltDB clusters to increase scalability and avail-
ability.

 Chapters 13 through 15 explain how VoltDB ensures the durability of your data and how you can inte-
grate VoltDB with other data sources using export for complete business solutions

Chapter 2. Installing VoltDB

VoltDB is available in both an open source and an enterprise edition. The open source, or community,
edition provides basic database functionality with all the transactional performance benefits of VoltDB.
The enterprise edition provides additional features needed to support production environments, such as
high availability, durability, and dynamic scaling.

Depending on which version you choose, the VoltDB software comes as either pre-built distributions or
as source code. This chapter explains the system requirements for running VoltDB, how to install and
upgrade the software, and what resources are provided in the kit.

2.1. Operating System and Software Requirements

The following are the requirements for developing and running VoltDB applications.

Table 2.1. Operating System and Softwar e Requirements

Operating System

VoltDB requires a 64-bit Linux-based operating system. Kits are built and
qualified on the following platforms:

e CentOSversion 6.3 or later, including 7.0
¢ Red Hat (RHEL) version 6.3 or later, including 7.0
+ Ubuntu versions 10.04%, 12.04, and 14.04

Development builds are also available for Macintosh OS X 10.8 and |atert.

CPU « Dual core® x86_64 processor
e 64 bit
e 16GHz
Memory 4 Gbytes”
Java Java 7 or 8 — VolItDB supports JDKs from OpenJDK or Oracle/Sun

Required Software

NTP

Python 2.5 or later release of 2.x

Recommended Software

Eclipse 3.x (or other Java IDE)

Footnotes:

optimal performance.

1. Cent0S 6.3, CentOS 7.0, RHEL 6.3, RHEL 7.0, and Ubuntu 10.04, 12.04, and 14.04 are the only of-
ficialy supported operating systems for VVoltDB. However, VoltDB istested on several other POSIX-
compliant and Linux-based 64-bit operating systems, including Macintosh OS X 10.8.

2. Support for Ubuntu 10.04 is deprecated and will be removed in an upcoming release.

3. Dual core processors are a minimum requirement. Four or eight physical cores are recommended for

4. Memory requirements are very specific to the storage needs of the application and the number of nodes
in the cluster. However, 4 Gigabytes should be considered a minimum configuration.

5. NTP minimizes time differences between nodes in a database cluster, which is critical for VoltDB.
All nodes of the cluster should be configured to synchronize against the same NTP server. Using a
single local NTP server is recommended, but not required.

Installing VoltDB

2.2. Installing VoltDB

2.2.1.

2.2.2.

VoltDB is distributed as a compressed tar archive for each of the supported platforms. The file name
identifies the platform, the edition (community or enterprise) and the version number. The best way to
install VoltDB isto unpack the distribution kit as afolder in the home directory of your personal account,
like so:

$ tar -zxvf voltdb-ent-5.6.tar.gz -C $HOVE/

Installing into your personal directory gives you full access to the software and is most useful for devel-
opment.

If you are installing VoltDB on a production server where the database will be run, you may want to
install the software into a standard system location so that the database cluster can be started with the
same commands on all nodes. The following shell commands install the VoltDB software in the folder
/opt/vol tdb:

$ sudo tar -zxvf voltdb-ent-5.6.tar.gz -C /opt
$ cd /opt
$ sudo nmv voltdb-ent-5.6 voltdb

Note that installing asroot using the sudo command makes the installation fol ders read-only for non-priv-
ileged accounts. Which iswhy installing in $HOME is recommended for running the sample applications
and other development activities. Alternately, you can use standard installation packages for Linux sys-
tems, as described in Section 2.2.2, “Installing Standard System Packages’.

Upgrading From Older Versions

When upgrading from a previous version of VoltDB — especially with an existing database — there are
afew key steps you should take to ensure a smooth migration. The recommended steps for upgrading an
existing database are:

1. Place the database in admin mode (voltadmin pause).

2. Perform amanual snapshot of the database (voltadmin save).
3. Shutdown the database (voltadmin shutdown).

4. Upgrade VoltDB.

5. Create anew database using the voltdb create command, and starting in admin mode (specified in the
deployment file).

6. Restore the snapshot created in Step #2 (voltadmin restore).
7. Return the database to normal operations (voltadmin resume).

When using the Enterprise Manager, it is also recommended that you del ete the Enterprise Manager con-
figuration files (stored by default inthe. vol t db subfolder in the home directory of the current account)
when performing an upgrade.

Installing Standard System Packages

If you plan on making VVoltDB availableto all users of the system, you can use acommon system package
toinstall the VoltDB filesin standard locations. Installation packages are available for both Debian-based

Installing VoltDB

(deb) and Red Hat-based (rpm) systems. These packages simplify the installation process by placing the
VoltDB filesin standard system directories, making VoltDB available to all users of the system without
their having to individually configure their PATH variable.

The advantages of using an install package are:
» Theinstalation is completed in asingle command. No additional set up is required.
» VoItDB becomes available to all system users.

» Upgrades are written to the same location. Y ou do not need to modify your application scripts or move
files after each upgrade.

However, there are a few changes to behavior that you should be aware of if you install VoltDB using a
system package manager:

» The VolItDB libraries are installed in /ust/lib/voltdb. When compiling stored procedures, you must in-
clude thislocation in your Java classpath.

» The sample applications are installed into the directory / usr / shar e/ vol t db/ exanpl es/ . Be-
causethisisasystem directory, users cannot run the samplesdirectly in that location. Instead, first copy
the folder containing the sample application you want to run and paste a copy into your home directory
structure. Then run the sample from your copy. For example:

$ cp -r /usr/share/vol tdb/exanpl es/voter ~/
$ cd ~/voter
$ voltdb create

2.2.2.1. Installing the Debian Package

Toinstall the Debian package on Ubuntu or other Debian-based systems, download the package from the
VoltDB web site. Then, from an account with root access issue the following commands to install Open
JDK 7 and VolItDB:

$ sudo apt-get install openjdk-7-jdk
$ sudo dpkg -i voltdb_5.6-1_and64. deb

2.2.2.2. Installing the RPM Package

Toinstall the rpm package on compatible systems such as Red Hat or CentOS, download the package from
the VoltDB web site. Then, from an account with root access issue the following command:

$ sudo yum localinstall voltdb-5.6-1.x86_64.rpm

2.2.3. Building a New VoltDB Distribution Kit

If you want to build the open source VoltDB software from source (for example, if you want to test recent
development changes), you must first fetch the VoltDB source files. The VoltDB sources are stored in a
GitHub repository.

The VoltDB sources are designed to build and run on 64-bit Linux-based or 64-bit Macintosh platforms.
However, the build process has not been tested on all possible configurations. Attemptsto build the sources
on other operating systems may require changes to the build files and possibly to the sources as well.

Once you obtain the sources, use Ant 1.7 or later to build a new distribution kit for the current platform:

http://community.voltdb.com/downloads
http://community.voltdb.com/downloads
https://github.com/VoltDB/voltdb

Installing VoltDB

$ ant di st

Theresulting distribution kitiscreated asobj / r el ease/ vol t - n. n. nn. t ar. gz wheren.n.nniden-
tifies the current version and build numbers. Use thisfile to install VoltDB according to the instructions
in Section 2.2, “Installing VoltDB”.

2.3. Setting Up Your Environment

VoltDB comeswith shell command scripts that simplify the process of devel oping and deploying VoltDB
applications. These scripts are in the /bin folder under the installation root and define short-cut commands
for executing many VoltDB actions. To make the commands available to your session, you must include
the /bin directory as part your PATH environment variable.

Y ou can add the/ bi n directory to your PATH variable by redefining PATH. For example, the following
shell command adds / bi n to the end of the environment PATH, assuming you installed the VoltDB
Enterprise Edition as/ vol t db- ent - n. n in your $HOME directory:

$ export PATH="$PATH: $HOVE/ vol t db- ent - n. n/ bi n"

To avoid having to redefine PATH every time you create a new session, you can add the preceding com-
mand to your shell login script. For example, if you are using the bash shell, you would add the preceding
command to the SHOVE/ . bashr c file.

2.4. What is Included in the VoltDB Distribution

Table 2.2 lists the components that are provided as part of the VVoltDB distribution.

Table 2.2. ComponentsInstalled by VoltDB

Component Description

VoltDB Software & Runtime The VoltDB software comes as Javaarchives ((JAR
files) and a callable library that can be found in the
/ vol t db subfolder. Other software libraries that
VoltDB dependson areincludedinaseparate/ | i b
subfolder.

Example Applications VoltDB comes with several example applications
that demonstrate VoltDB capabilities and perfor-
mance. They can befound inthe/ exanpl es sub-
folder.

VoltDB Management Center VoltDB Management Center is a browser-based
management tool for monitoring, examining, and
querying a running VoltDB database. The Man-
agement Center is bundled with the VoltDB serv-
er software. You can start the Management Cen-
ter by connecting to the HTTP port of a running
VoltDB database server. For example, http://
vol t svr: 8080/ . Note that the httpd server and
JSON interface must be enabled on the server to be
able to access the Management Center.

Shell Commands The/ bi n subfolder contains executable scripts to
perform common VoltDB tasks, such as starting the
VoltDB server process and issuing database queries

Installing VoltDB

Component Description

from the command line using sglcmd, Add the /
bi n subfolder to your PATH environment variable
to use the following shell commands:

csvloader
jdbcloader
kafkal oader
sglemd
voltadmin
voltdb

Documentation Online documentation, including the full manuals
and javadoc describing the Java programming inter-
face, isavailableinthe/ doc subfolder.

2.5. VoltDB in Action: Running the Sample Appli-
cations

Once you install VoltDB, you can use the sample applications to see VoltDB in action and get a better
understanding of how it works. The easiest way to do this is to set directory to the / exanpl es folder
where VoltDB isinstalled. Each sample application hasits own subdirectory and arun.sh script to simplify
building and running the application. See the README fileinthe/ exanpl es subfolder for acomplete
list of the applications and further instructions.

Once you get ataste for what VVoltDB can do, we recommend following the VoltDB tutorial to understand
how to create your own applications using VoltDB.

http://docs.voltdb.com/tutorial/

Chapter 3. Starting the Database

This chapter describes the procedures for starting and stopping a VoltDB database and includes details
about configuring the database. The chapter contains the following sections:

» Section 3.1, “Initializing a VoltDB Database”

» Section 3.2, “Initializing the Database on a Cluster”
 Section 3.3, “Updating Nodes on the Cluster”

* Section 3.4, “ Stopping a VoltDB Database”

» Section 3.5, “Restarting a VoltDB Database”

 Section 3.6, “ Defining the Cluster Configuration”

3.1. Initializing a VoltDB Database

Use the voltdb command with the create action to start an empty, single-node database suitable for de-
veloping and testing a database and application:

$ voltdb create

Other database startup actionsinclude adding or rejoining nodesto the cluster, and recovering the database
from snapshots after the database stops. More startup arguments identify such information as a host to
manage startup in acluster, and adeployment file containing cluster configuration options. Therest of this
chapter covers these issues and more in detail.

| mportant

If the database you are working on has stopped, use voltdb recover to restart it. Do not rerun
the voltdb create command or your schema and data will be reinitialized to an empty database.
Later in this chapter we explain how to safely stop and restart a VoltDB database.

3.2. Initializing the Database on a Cluster

To start an empty VoltDB database on a cluster, you will need the following information for the voltdb
create command:

» Deployment filelocation: The deployment file defines the cluster configuration including the number
of nodes. The deployment file must be identical on all nodes for the cluster to start, so be sure you
copy the deployment file to all nodes of the cluster. We'll describe details about the deployment filein
Section 3.6, “ Defining the Cluster Configuration”.

» Host name: Provide the hosthame or | P address of the cluster’ shost node, which coordinates the startup
of dl the nodesin the cluster.

» Licensefilelocation: If you are using the VoltDB Enterprise Edition, provide alicense file on the host
node. Only the host node requires the license file when starting a cluster.

For each node of the cluster, log in and start the server process using the same command. For example,
the following voltdb create command starts the database cluster specifying the location and name of the

10

Starting the Database

deployment file and naming voltsvrl as the host node. Be sure the number of nodes on which you run the
command match the number of nodes defined in the deployment file.

$ voltdb create --depl oynment =depl oynent.xm --host=voltsvrl
Or you can also use shortened forms for the argument flags:
$ voltdb create -d deploynent.xm -H voltsvrl

VoltDB looks for the license file on the host as afilenamed | i cense. xm in three locations, in the
following order:

1. The current working directory

2. The directory where the VoltDB image files are installed (usually in the / vol t db subfolder of the
installation directory)

3. The current user's home directory

If the license fileis not in any of these locations, you must explicitly identify it when you run the voltdb
command on the host node using the - - | i cense or - | flag. For example, the command on the host
node might be:

$ voltdb create -d deploynment.xm -H voltsvrl \
-1 /usr/share/vol tdb-1icense. xn

When starting a VoltDB database on a cluster, the VoltDB server process performs the following actions:

1. If you are starting the database on the nodeidentified asthe host node, it waitsfor initialization messages
from the remaining nodes. The host can be any nodein the cluster and plays a special role during startup
by managing the cluster initiation process. It is important that all nodes in the cluster can resolve the
hostname or 1P address of the host node you specify.

2. If you are starting the database on a non-host node, it sends an initialization message to the host indi-
cating that it is ready. The database is not operational until the correct number of nodes (as specified
in the deployment file) have connected.

3. Onceadll the nodes have sent initialization messages, the host sends out amessage to the other nodes that
the cluster is complete. Once the startup procedure is complete, the host'sroleis over and it becomes a
peer like every other node in the cluster. It performs no further specia functions.

Manually logging on to each node of the cluster every time you want to start the database can be tedious.
Instead, you can use secure shell (ssh) to execute shell commands remotely. By creating an ssh script (with
the appropriate permissions) you can copy files and/or start the datab ase on each node in the cluster from
asingle script.

3.3. Updating Nodes on the Cluster

A cluster is a dynamic system in which nodes might be stopped either deliberately or by unforeseen cir-
cumstances, or nodes might be added to the cluster on-the-fly to scale the database for improved perfor-
mance. The voltdb command provides the following additional startup actions for nodes of a running
VoltDB database:

e Use the voltdb add command to start up and add a new node to the running database cluster. See
Section 9.2.1, “Adding Nodes with Elastic Scaling”.

11

Starting the Database

e Usethevoltdb reoin command to restart a node that was previously part of the cluster but had stopped
running. See Section 10.3, “Recovering from System Failures’.

3.4. Stopping a VoltDB Database

Oncethe VoltDB databaseis up and running, you can shut it down by stopping the VVoltDB server processes
on each cluster node. However, it is easier to stop the database as a whole on the entire cluster with a
single command. Y ou can do this either programmatically with the @Shutdown system procedure (from
any node) or interactively with the voltadmin shutdown command. Y ou do not have to issue commands
on each node. For example, entering the following command without specifying a host server will shut
down the database cluster the current system is part of.

$ vol tadm n shut down

To shutdown a remote database running on servers of a different cluster, usethe - - host , - - user, and
- - passwor d argumentsto access the remote database. For example, the following command shuts down
the VoltDB database that includes the server zeus:

$ voltadnm n shutdown --host=zeus

Because VoItDB is an in-memory database, once the database server process stops, the database schema
and the data itself are removed from memory. However, VoltDB saves the information to disk. To retain
the schema and data across sessions, VoltDB provides database snapshots and command logging. A snap-
shot is a point-in-time copy of the database contents written to disk. Command logging provides, in ad-
dition to periodic snapshots, alog of al stored procedures that are initiated at each partition. Command
logging is enabled by default to ensure your database is not lost. To learn more about how to save and
restore snapshots of the database, see Chapter 13, Saving & Restoring a VoltDB Database. To learn more
about using command logging and recovery to save and rel oad the database automatically, see Chapter 14,
Command Logging and Recovery.

You can pause the database using the @Pause system procedure or voltadmin pause to restrict clients
from accessing it while you perform changes in administration mode. Y ou resume the database using the
@Resume system procedure or the voltadmin resume command. See the VoltDB Administrator's Guide
for more about modes of operation.

3.5. Restarting a VoltDB Database

Torestart aVoltDB database use the voltdb command with the r ecover action. For example, thefollowing
command restarts a single-node database:

$ voltdb recover

To restart a database on a cluster, execute voltdb recover on each node and specify the deployment file
and the cluster’s host node. For example, assuming voltsvrl is the cluster’s host node, a command such
asthe following would be executed on all nodes of the cluster. Be sure the number of nodes on which you
run the command match the number of nodes defined in the deployment file:

$ vol tdb recover -d deploynent.xm -H voltsvrl

Remember that when executing the command on the host node, VoltDB needs to access the licensefile. If
thelicensefileisnot in any of the standard VVoltDB locations you must explicitly identify it. For example,
the command on the host node might be;

$ voltdb recover -d deployment.xm -H voltsvrl \

12

http://docs.voltdb.com/AdminGuide/

Starting the Database

-1 /usr/share/voltdb-1icense. xm

3.6. Defining the Cluster Configuration

An important aspect of a VoltDB database is the physical layout of the cluster that runs the database.
Y ou define the cluster configuration in the deployment file. The deployment file is an XML file, which
you specify when you start the database to establish the correct cluster topology. The basic syntax of the
deployment fileis as follows:

<?xm version="1.0"?>
<depl oynent >
<cl ust er hostcount="n"
kfactor="n"
/>
</ depl oynent >

Theattributes of the<cl ust er > tag define the physical layout of the hardware that will run the database.
The key attributes are:

 hostcount — specifies the number of nodesin the cluster.

» kfactor — specifies the K-safety value to use for durability when creating the database. The K-safety
value controls the duplication of database partitions. This attribute is optional, so if you do not specify
avalue the default is zero, which means there is no partition duplication. See Chapter 10, Availability
for more information about K-safety.

In the simplest case — when running on a single node with no special options enabled — you can skip the
deployment file altogether on the voltdb command line. If you do not specify a deployment file or host,
VoltDB defaults to one node, eight execution sites per host, and a K-safety value of zero.

The deployment file is used to enable and configure many other runtime options related to the database,
which are described later in this book. For example, the deployment file can specify:

» The number of execution sites per host on which partitions can be distributed. This setting defaults to
eight sites per host, which isappropriate for most situations. If you choose to tune the number of sites per
host, see Section 3.6.1, “ Determining How Many Sitesper Host” for how to determine the optimal value.

» Whether security is enabled and what users and passwords are needed to authenticate clients at runtime.
See Chapter 12, Security for more information.

* A schedule for saving automatic snapshots of the database. See Section 13.2, “ Scheduling Automated
Snapshots”.

 Control of network fault protection to avoid partition errors. See Section 10.4.2, “Using Network Fault
Protection”.

 Properties for exporting data to other databases. See Chapter 15, Importing and Exporting Live Data.

For the complete deployment file features, see Appendix E, Deployment File (deployment.xml).

3.6.1. Determining How Many Sites per Host

There is very little penalty for allocating more sites than needed for the partitions the database will use
(except for incremental memory usage). Consequently, VoltDB defaults to eight sites per node to provide
reasonable performance on most modern system configurations. This default does not normally need to be

13

Starting the Database

changed. However, for systemswith alarge number of available processes (16 or more) or older machines
with fewer than 8 processors and limited memory, you may wish to tunethe si t esper host attribute.

The number of sites needed per node is related to the number of processor cores each system has, the
optimal number being approximately 3/4 of the number of CPUs reported by the operating system. For
example, if you are using a cluster of dual quad-core processors (in other words, 8 cores per node), the
optimal number of partitionsislikely to be 6 or 7 sites per node.

<?xm version="1.0"?>
<depl oynent >
<cl uster
si t esperhost =" 6"
/>
</ depl oynent >

For systems that support hyperthreading (where the number of physical cores support twice as many
threads), the operating system reports twice the number of physical cores. In other words, a dual quad-
core system would report 16 virtual CPUs. However, each partition is not quite as efficient as on non-
hyperthreading systems. So the optimal number of sitesis more likely to be between 10 and 12 per node
in this situation.

Because there are no hard and set rules, the optimal number of sites per nodeis best calculated by actually
benchmarking the application to see what combination of cores and sites produces the best results. How-
ever, it isimportant to remember that all nodesin the cluster will use the same number of sites. So the best
performanceisachieved by using acluster with all nodes having the same physical architecture (i.e. cores).

3.6.2. Configuring Paths for Runtime Features

An important aspect of some runtime featuresisthat they make use of disk resourcesfor persistent storage
across sessions. For example, automatic snapshots need a directory for storing snapshots of the database
contents. Similarly, export uses disk storage for writing overflow dataif the export connector cannot keep
up with the export queue.

Y ou can specify individual paths for each feature, or you can specify aroot directory where VVoltDB will
create subfolders for each feature as needed. If you do not specify a root path or a specific feature path,
the root path defaults to ./voltdbroot in the current default directory and VoltDB creates the directory (and
subfolders) as needed.

To specify acommon root, usethe<vol t dbr oot > tag (asachild of <pat hs>) to specify whereVoltDB
will store disk files. If you specify aroot directory path, the directory must exist and the process running
VoltDB must have write accessto it. VoltDB does not attempt to create an explicitly named root directory
path if it does not exist. For example, the following <pat hs> tag specifies/ opt / vol t db as the root
directory:

<pat hs>
<vol tdbroot pat h="/opt/voltdb" />
</ pat hs>
You can aso identify specific path locations for individual features including:
» <conmandl og>

e <conmandl ogsnapshot >

e <exportoverfl ow>

14

Starting the Database

e <snapshot s>

If you name a specific feature path and it does not exist, VoltDB will attempt to create it for you. For
example, the <export over f | ow> path contains temporary data which can be deleted periodically.
The following excerpt from a deployment file specifies/ opt / vol t db as the default root but / opt /
over f | owasthe directory for export overflow.

<pat hs>
<vol tdbroot pat h="/opt/voltdb" />
<exportoverfl ow path="/opt/overflow' />
</ pat hs>

3.6.3. Verifying your Hardware Configuration

Thedeployment file definesthe expected configuration of your database cluster. However, thereare several
important aspects of the physical hardware and operating system configuration that you should be aware
of before running VoltDB:

» VoItDB can operate on heterogeneous clusters. However, best performance is achieved by running the
cluster on similar hardware with the same type of processors, number of processors, and amount of
memory on each node.

 All nodes must be able to resolve the | P addresses and host names of the other nodesin the cluster. That
means they must all have valid DNS entries or have the appropriate entries in their local hostsfile.

* You must run the Network Time Protocol (NTP) on all of the cluster nodes, preferably synchronizing
against the same local time server. If the time skew between nodes in the cluster is greater than 100
milliseconds, VoltDB cannot start the database.

* Itisstrongly recommended that you run NTP with the - x argument. Using nt pd - x stops the server
from adjusting time backwards for al but very large increments. If the server time moves backward,
VoltDB must pause and wait for time to catch up.

15

Chapter 4. Designing the Database
Schema

VoltDB is arelationa database product. Relational databases consist of tables and columns, with con-
straints, indexes, and views. VoltDB also uses standard SQL database definition language (DDL) state-
ments to specify the database schema. So designing the schemafor aV oltDB database uses the same skills
and knowledge as designing a database for Oracle, MySQL, or any other relational database product.

This guide describes the stages of application design by dividing the work into three chapters:

» Design the schema in DDL to define the database structure. Schema design is covered in this chapter.

» Design stored procedur esto access datain the database. Stored procedures provide client applications
an application programming interface (API) to the database. Stored procedures are coveredin Chapter 5,
Designing Stored Procedures to Access the Database.

» Design clients to provide business logic and also connect to the database to access data. Client appli-
cation design is covered in Chapter 6, Designing VoltDB Client Applications.

The database schema is a specification that describes the structure of the VoltDB database such as tables
and indexes, identifies the stored procedures that access data in the database, and defines the way tables
and stored procedures are partitioned for fast data access. When designing client applications to use the
database, the schema specifies the details needed about data types, tables, columns, and so on.

Figure 4.1. Components of a Database Schema

Schema
Stored
Procedures
o
Tables, :§ E
views, @ %
indexes, o=
etc.

Along with designing your database tables, an important aspect of VoltDB database design is partitioning,
which provides much more efficient access to data and processing. Partitioning distributes the rows of a
table and the processing to access the table across several, independent partitions instead of one. Y our
design requires coordinating the partitioning of both database tables and the stored procedures that access
the tables. At design time you choose a column on which to partition a table's rows. You aso partition
stored procedures on the same column if they use the column to identify which rows to operate on in the
table.

At runtime, VoltDB decides which cluster nodes and partitions to use for the table partitions and consis-
tently allocates rows to the appropriate partition. Figure 4.2, “ Partitions Distribute Table Data and Stored
Procedure Processing” shows how when data is inserted into a partitioned table, VoltDB automatically
allocates the data to the correct partition. Also, when a partitioned stored procedure is invoked, VoltDB
automatically executes the stored procedure in the single partition that has the data requested.

16

Designing the Database Schema

Figure 4.2. Partitions Distribute Table Data and Stored Procedur e Processing

Physical

Logical

Partition 1 Schema

Server 1

Pariion 2 - Procedure

-
- - . T
invocation

Partition 3

Partition 4

Server 2
information I

I Partitioning I

— — Ad hoc
Partition 5 L - sQL query

Server 3

)
@
o
o
D
n
®

Partition 6

The following sections of this chapter provide guidelines for designing VoltDB database schemas. Al-
though gathering business requirementsis a typical first step in database application design, it is outside
the scope of this guide.

4.1. How to Enter DDL Statements

Y ou use standard SQL DDL statements to design your schema. For afull list of valid VoltDB DDL, see
Appendix A, Supported SQL DDL Satements. The easiest way to enter your DDL statements is using
VoltDB's command line utility, sglcmd. Using sglcmd you can input DDL statementsin several ways.

* Redirect standard input from afile when you start sglemd:
$ sqlcmd < nyschema. sql
 Import from afile using the sglcmd file directive:

$ sqgl cnd
1> fil e nyschena. sql ;

» Enter DDL directly at the sglcmd prompt:

$ sqgl cnd

1>

2> CREATE TABLE Customer (

3> Custoner| D | NTEGER UNI QUE NOT NULL,
4> FirstName VARCHAR(15),

5> LastNane VARCHAR (15),

6> PRI MARY KEY(Cust oner | D)

7>);

» Copy DDL from another application and paste it into the sglcmd prompt:

$ sqgl cnd

1> CREATE TABLE Flight (

2> Flight1 D | NTEGER UNI QUE NOT NULL,
3> Depart Ti me Tl MESTAMP NOT NULL,

4> Origin VARCHAR(3) NOT NULL,

5> Destinati on VARCHAR(3) NOT NULL,
6> Nunber Of Seat s | NTEGER NOT NULL,

17

Designing the Database Schema

7> PRI MARY KEY(Flightl D)
8>);

The following sections show how to design and create schema objects. DDL statements and techniques
for changing a schema are described later in Section 4.6, “Modifying the Schema’.

4.2. Creating Tables and Primary Keys

The schema in this section is referred to throughout the design chapters of this guide. Let's assume you
are designing a flight reservation system. At its simplest, the application requires database tables for the
flights, the customers, and the reservations. Example 4.1, “DDL Example of aReservation Schema” shows
how the schemalooks as defined in standard SQL DDL. For the V oltDB-specific detailsfor creating tables,
see CREATE TABLE. When defining the data types for table columns, refer to Table A.1, “ Supported
SQL Datatypes’.

Example4.1. DDL Example of a Reservation Schema

CREATE TABLE Fl i ght (
Flight!I D | NTEGER UNI QUE NOT NULL,
Depart Ti ne Tl MESTAMP NOT NULL,
Oigin VARCHAR(3) NOT NULL,
Destinati on VARCHAR(3) NOT NULL,
Nunmber Of Seat s | NTEGER NOT NULL,
PRI MARY KEY(FI i ghtl D)

)

CREATE TABLE Reservation (
Reservel D | NTEGER NOT NULL,
Flight!I D | NTEGER NOT NULL,
Custoner| D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL,
Confirmed TINYI NT DEFAULT 'O’

)

CREATE TABLE Customer (
Custoner | D | NTEGER UNI QUE NOT NULL,
Fi rst Nanme VARCHAR(15),
Last Name VARCHAR (15),
PRI MARY KEY(Cust orer | D)

)

To satisfy entity integrity you can specify atable's primary key by providing the usual PRIMARY KEY
constraint on one or more of the table’'s columns. To create a ssimple key, apply the PRIMARY KEY
constraint to one of the table's existing columns whose values are unique and not null, as shown in Exam-
ple4.1, “DDL Example of a Reservation Schema’.

To create a composite primary key from a combination of columnsin atable, apply the PRIMARY KEY
constraint to multiple columns with typical DDL such as the following:

$ sql cnd

1> CREATE TABLE Customer (

2> FirstName VARCHAR(15),

3> LastName VARCHAR (15),

4> CONSTRAI NT pkey PRI MARY KEY (FirstNanme, LastNane)
5>);

18

Designing the Database Schema

4.3. Analyzing Data Volume and Workload

A schemaisnot all you need to define the database effectively. Y ou al so need to know the expected volume
and workload on the database. For our example, let's assume that we expect the following volume of data
at any giventime:

» Flights: 2,000
» Reservations: 200,000
e Customers: 1,000,000

This additional information about the volume and workload affects the design of both the database and
the client application, because it impacts what SQL queries need to be written for accessing the data and
what attributes (columns) to share between tables. Table 4.1, “ Example Application Workload” definesa
set of procedures the application must perform. The table also shows the estimated workload as expected
frequency of each procedure. Proceduresin bold modify the database.

Table4.1. Example Application Workload

Use Case Frequency
Look up aflight (by origin and destination) 10,000/sec
Seeif aflight isavailable 5,000/sec
Make areservation 1,000/sec
Cancel areservation 200/sec
Look up areservation (by reservation 1D) 200/sec
Look up areservation (by customer ID) 100/sec
Updateflight info LVsec
Take off (close reservations and ar chive associated recor ds) l/sec

Y ou can make your procedures that access the database transactional by defining them as VoltDB stored
procedures. This means each stored procedure call completes or rolls back if necessary, thus maintaining
data integrity. Stored procedures are described in detail in Chapter 5, Designing Stored Procedures to
Access the Database.

In our analysis we a so need to consider referential integrity, where relationships are maintained between
tables with shared columns that link tables together. For example, Figure 4.3, “ Diagram Representing the
Flight Reservation System” shows that the Flight table links to the Reservation table where FlightID is
the shared column. Similarly, the Customer table links to the Reservation table where CustomerID is the
common column.

Figure 4.3. Diagram Representing the Flight Reservation System

Flight [Reservation | Customer
FlightlD .—m ReservelD CustomerlD
< FlightlD on
CustomerlD >
A flight can have many A customer can have many
reservations but a reservation reservations but a reservation
is for only one flight. is for only one customer.

19

Designing the Database Schema

Since VoltDB stored procedures are transactional, you can use stored procedures to maintain referential
integrity between tablesas dataisadded or removed. For example, if acustomer record isremoved fromthe
Customer table, all reservations for that customer need to be removed from the Reservations table as well.

With VoltDB, you use all thisadditional information about volume and workload to configure the database
and optimize performance. Specifically, you want to partition the individual tables to ensure efficiency.
Partitioning is described next.

4.4. Partitioning Database Tables

This section discusses how to partition a database to maximize throughput, using the flight reservation case
study as an example. To partition atable, you choose a column of thetablethat VoltDB can useto uniquely
identify and distribute the rows into partitions. The goal of partitioning a database table is to ensure that
the most frequent transactions on the table execute in the same partition asthe data accessed. Wecall thisa
single-partitioned transaction. Thus the stored procedure must uniquely identify arow by the partitioning
columnvalue. Thisis particularly important for queries that modify the data, such as INSERT, UPDATE,
and DEL ETE statements.

Looking at the workload for the reservation system in the previous section, the important transactions to
focus on are:

* Look up aflight

» Seeif aflightisavailable
» Look up areservation

* Makeareservation

Of these transactions, only the last modifies the database.

4.4.1. Choosing a Column on which to Partition Table Rows

We will discuss the Flight table later, but first let's look at the Reservation table. Looking at the schema
alone (Example 4.1), Reservel D might look like a good attribute to use to partition the table rows. How-
ever, looking at the workload, there are only two transactions that are keyed to the Reservel D (“ Cancel
areservation” and “Look up a reservation (by reservation ID)"), each of which occur only 200 times a
second. Wheresas, “See if aflight is available” , which requires looking up reservations by the FlightID,
occurs 5,000 times a second, or 25 times as frequently. Therefore, the Reservation table is best partitioned
on the FlightID column.

. 5000/sec See if a flight is available (FlightID)
~ Reservation 1000/sec Make a reservation (FlightID, CustomeriD)
Eﬁsﬁ%em 200/sec Look up a reservation (ReservelD)
CugstomerID 200/sec Cancel a reservation (ReservelD)
100/sec

Look up a reservation (CustomerID)

Moving to the Customer table, CustomerID is used for most data access. Although customers might need
to look up their record by name, the first and last names are not guaranteed to be unique. Therefore,
CustomerID isthe best column to use for partitioning the Customer table.

CREATE TABLE Customer (
Custoner| D | NTEGER UNI QUE NOT NULL,
Fi rst Name VARCHAR(15),
Last Namre VARCHAR (15),

20

Designing the Database Schema

PRI MARY KEY(Cust oner | D)
)

4.4.2. Specifying Partitioned Tables

Once you choose the column to use for partitioning a database table, you define your partitioning choices
in the database schema. Specifying the partitioning along with the schema DDL helps keep al of the
database structural information in one place.

Y ou define the partitioning scheme using VoltDB's PARTITION TABLE statement, specifying the par-
titioning column for each table. For example, to specify FlightlID and CustomerID as the partitioning
columns for the Reservation and Customer tables, respectively, your database schema must include the
following statements:

$ sqlcnd
1> PARTI TI ON TABLE Reservati on ON COLUWN FlightlD;
2> PARTI TI ON TABLE Cust onmer ON COLUWN Custoner | D,

4.4.3. Design Rules for Partitioning Tables

The following are the rules to keep in mind when choosing a column by which to partition table rows:

» There can be only one partition column per table. If you need to partition a table on two columns
(for examplefirst and last name), add an additional column (fullname) that combines the values of the
two columns and use this new column to partition the table.

» If thetablehasa primary key, the partitioning column must beincluded in the primary key.

e Any integer or string column can identify the partition. VoltDB can partition rows on any column
that is an integer (TINYINT, SMALLINT, INTEGER, or BIGINT) or string (VARCHAR) datatype.
(Seeadso Table A.1, “Supported SQL Datatypes’.)

 Partition column values cannot be null. The partition columns do not need to have unique values, but
you must specify NOT NULL in the schema for the partition column. Numeric fields can be zero and
string or character fields can be empty, but the column cannot contain a null value.

The following are some additional recommendations:
 Choose acolumn with areasonabl e distribution of values so that rows of datawill be evenly partitioned.

» Choose a column that maximizes use of single-partitioned stored procedures. If one procedure uses
column A to lookup data and two procedures use column B to lookup data, partition on column B. The
goal of partitioning isto make the most frequent transactions single-partitioned.

« If you partition more than one table on the same column attribute, VoltDB will partition them together.

4.5. Replicating Database Tables

With VolItDB, tables are either partitioned or replicated across all nodes and sites of a VoltDB database.
Smaller, mostly read-only tables are good candidates for replication. Note also that if a table needsto be
accessed frequently by columns other than the partitioning column, the table should be replicated instead
because there is no guarantee that a particular partition includes the data that the query seeks.

The previous section describes how to partition the Reservation and Customer tabl es as exampl es, but what
about the Flight table? It is possible to partition the Flight table (for example, on the FlightID column).
However, not all tables benefit from partitioning.

21

Designing the Database Schema

4.5.1. Choosing Replicated Tables

Looking at the workload of the flight reservation example, the Flight table has the most frequent accesses
(at 10,000 asecond). However, these transactions are read-only and may involve any combination of three
columns: the departure time, the point of origin, and the destination. This makes it hard to partition the
table in away that would make the transaction single-partitioned because the lookup is not restricted to
one table column.

Flight 10000isec | 5ok up a flight (DepartTime, Origin, Destination)
FlightlD < lisec ypdate flight info (FlightID, DepartTime, Origin,
Destination, NumberOfSeats)

2000 records |=—2LSEC———Take off (FlightID)

Fortunately, the number of flights available for booking at any given timeis limited (estimated at 2,000)
and so the size of thetableisrelatively small (approximately 36 megabytes). In addition, the vast majority
of the transactions involving the Flight table are read-only except when new flights are added and at take-
off (when the records are deleted). Therefore, Flight is a good candidate for replication.

Note that the Customer table is also largely read-only. However, because of the volume of data in the
Customer table (amillion records), it is not agood candidate for replication, which iswhy it is partitioned.

4.5.2. Specifying Replicated Tables

In VoltDB, you do not explicitly state that atableisreplicated. If you do not specify a partitioning column
in the database schema, the table will by default be replicated.

So, in our flight reservation example, there is no explicit action required to replicate the Flight table.
However, it is very important to specify partitioning information for tables that you want to partition.
If not, they will be replicated by default, significantly changing the performance characteristics of your
application.

4.6. Modifying the Schema

You can use DDL to add, modify, or remove schema objects as the database is running. For alist of all
valid DDL you can use, see Appendix A, Supported SQL DDL Satements. Y ou can do the following types
of schema changes:

* Modifying Tables— Y ou can add, modify (alter), and remove (drop) table columns. Y ou can aso add
and drop table constraints. Finally, you can drop entire tables.

» Adding and Dropping Indexes — Y ou can add and remove (drop) named indexes.

* Modifying Partitioning for Tables and Stored Procedures — Y ou can un-partition stored procedures
and re-partition stored procedures on a different column, For tables you can change a table between
partitioned and replicated, and repartition a table on a different column,

» Modify roles and users— To learn about modifying roles and users, see Chapter 12, Security.

VoltDB safely handles sglcmd DDL entered by different users on different nodes of the cluster because
it manages sglcmd commands as transactions, just like stored procedures. Also, if database replication
is activated, VoltDB automatically communicates changes to the replica database to keep the databases
synchronized.

22

Designing the Database Schema

4.6.1.

For example, you can add the following table, Airport, to the fight reservation schema. The following
sections use this new table to demonstrate performing DDL changes:

CREATE TABLE Airport (
Airportl D integer NOT NULL,
Nanme varchar (15) NOT NULL,
City varchar(25),

Country varchar (15),
PRI MARY KEY (AirportlD)

)
Effects of Schema Changes on Data and Clients

You can make many schema changes on empty tables with few restrictions. However, be aware that if
a table has data, some schema changes are not allowed and other schema changes may modify or even
remove data. When working with test data in your database, you can use TRUNCATE TABLE to empty
the data from atable you are working on. Note that all DDL examples in this chapter assume the tables
are empty.

We can think of the effects of schema changes on data in three severity levels:

 Schema change compl etes without damage to data

 Schema change fails to complete to avoid damage to data

 Schema change destroys data

VoltDB error messages and the documentation can help you avoid schema change attempts that fail to
complete. For example, you cannot drop atable that has referencing procedures or views.

Obviously you need to be most aware of which schema changes cause data to be destroyed. In particular,
removing objects from the schemawill aso remove the datathey contain. Note that schema objects cannot
be renamed with DDL, but objects can be replaced by performing a DROP and then ADD. However, itis
important to realize that as aresult of a DROP operation, such as DROP TABLE, the data associated with
that table will be deleted before the new definition is added.

Plan and coordinate changes with client development. Stored procedures and ad hoc queries provide an
API that clients use to access the database correctly. Changesto the schema can break the stored procedure
calls client applications have developed, so use well-planned schedules to communicate database schema
changesto others. Client applications depend on many schemadefinition featuresincluding (but not limited
to):

» Table names

* Column names

» Column datatypes

» Primary key definitions

» Table partitions

» Stored procedure names

* Stored procedure partitioning

23

Designing the Database Schema

Plan and test carefully before making schema changesto a production database. Be aware that clients may
experience connection issues during schema changes, especially for changes that take longer to complete,
such as view or index changes.

Schema changes not only affect data, but the existence of data in the database affects the time it takes to
process schema changes. For example, when there are large amounts of data, some DDL statements can
block processing, resulting in anoticeable delay for other pending transactions. Examplesinclude adding
indexes, creating new table columns, and modifying views.

4.6.2. Viewing the Schema

4.6.3.

The VoltDB Management Center provides a web browser view of database information, including the
DDL schema source. Use aweb browser to view the VoltDB Management Center on port 8080 of one of
the cluster hosts (http://host-name:8080).

Y ou can aso use the sglcmd show directive to see alist of the current database tables and all procedures.
For additional details about the schema, execute the @SystemCatalog system procedure. Use any of the
following arguments to @SystemCatal og to obtain details about a component of the database schema:

 TABLES

COLUMNS

INDEXINFO

PRIMARYKEYS

PROCEDURES

PROCEDURECOLUMNS
For example:

$ sql cnd

1> SHOW TABLES;

2> SHOW PROCEDURES;
3> EXEC @yst enCat al og COLUMNS;

Modifying Tables

After creating a table in a database with CREATE TABLE, you can use ALTER TABLE to make the
following types of table changes:

* Altering a Table Column's Data Definition
» Adding and Dropping Table Columns
» Adding and Dropping Table Constraints

To drop an entire table, use the DROP TABLE DDL statement.

4.6.3.1. Altering a Table Column's Data Definition

Y ou can make the following types of aterations to atable column's data definition:

$ sql cnd

24

Designing the Database Schema

1> ALTER TABLE Airport ALTER COLUW Nanme VARCHAR(25); (1]
2> ALTER TABLE Airport ALTER COLUWN Country SET DEFAULT ' USA'; (2]
3> ALTER TABLE Airport ALTER COLUWN Nane SET NOT NULL; (3]

The examples are described as follows:

Change a column's data type. In our example we decided we needed more than 15 charactersfor the
Airport Name so we changed it to 25 characters.

If the table has no existing data, you can make any data type changes. However, if the table already
contains data, the new type must be larger than the old one. This restriction prevents corrupting
existing data values that might be larger than the size of the new data type (See also Table A.1,
“Supported SQL Datatypes’.)

Set or drop the column's DEFAULT value. In our example we assume the application is to be used
mostly for US domestic travel so we can set a default value for the Airport Country of 'USA'.

To remove a default, redefine the column data definition, for example:

ALTER TABLE Airport ALTER COLUWN Country VARCHAR(15);
Change whether the column isNULL or NOT NULL. In our example we set the Airportl D to be not
null because thisis arequired field.

If the table has existing data, you cannot change a column to not null.

4.6.3.2. Adding and Dropping Table Columns

$ sqlcmd

1> ALTER TABLE Airport ADD COLUWN Airport Code VARCHAR(3) (1]
2> BEFORE AirportlD;

3> ALTER TABLE Ai rport DROP COLUWN Airportl D (2]

The examples are described as follows:

(1]

Add table columns. In our example, we have decided not to use the integer AirportID for airport
identification but to instead add an AirportCode, which uses auniquethree-letter codefor any airport
as defined by the International Air Transport Association's airport codes.

Y ou cannot rename or overwrite acolumn but you can drop and add columns. When adding acolumn,
you must include the new column name and the data type. Options you may include are:

 DEFAULT value— If atable contains data, the values for the new column will be automatically
filled in with the default value.

* NOT NULL — If the table contains data, you must include a default value if you specify aNOT
NULL column.

¢ One of the following index type constraintsincluding PRIMARY KEY, UNIQUE, or ASSUME-
UNIQUE.

Note, werecommend that you not definethe UNIQUE or ASSUMEUNIQUE constraint directly on
acolumn definition when adding acolumn or creating atable. If you do, the constraint has no name
so you cannot drop the constraint without dropping the entire column. Instead, we recommend
you apply UNIQUE or ASSUMEUNIQUE by adding the constraint (see Section 4.6.3.3, “Adding
and Dropping Table Constraints’) or by adding an index with the constraint (see Section 4.6.4,
“Adding and Dropping Indexes’). Defining these constraints thisway names the constraint, which
makes it easier to drop later if necessary.

25

Designing the Database Schema

* BEFORE column-name — Table columns cannot be reordered but the BEFORE clause allows

you to place anew column in a specific position with respect to the existing columns of the table.

® Drop table columns. In our example we drop the AirportID column because we are replacing it with
the AirportCode column.

Y ou cannot remove a column that has a reference to it. You have to remove all references to the
column first. References to a column may include:

* A stored procedure
e Anindex

« Aview

4.6.3.3. Adding and Dropping Table Constraints

Y ou cannot alter atable constraint but you can add and drop table constraints. If the table contains existing
data, you cannot add UNIQUE, ASSUMEUNIQUE, or PRIMARY KEY constraints.

$ sqglcmd

1> ALTER TABLE Ai rport ADD CONSTRAI NT (1]
2> uni quecode UNI QUE (Airportcode);

3> ALTER TABLE Ai rport ADD PRI MARY KEY (Airport Code); (2]

The examples are described as follows:

©® Add named constraints UNIQUE or ASSUMEUNIQUE. In our example, we add the UNIQUE con-
straint to the AirportCode column. To drop a named constraint, include the name using the format
in the following example:

ALTER TABLE Ai rport DROP CONSTRAI NT uni quecode;

® Addunnamed constraints PRIMARY KEY or LIMIT PARTITION ROWS, each of which can apply
to atable only once. In our example, we add the PRIMARY KEY constraint to the new AirportCode
column.

When adding atable constraint, it must not conflict with the other columns of the table. For example,
only one primary key is allowed for a table so you cannot add the PRIMARY KEY constraint to
an additional column.

Todropthe PRIMARY KEY or LIMIT PARTITION ROWS constraint, include thetype of constraint
using the format in the following example;

ALTER TABLE Airport DROP PRI MARY KEY;

4.6.4. Adding and Dropping Indexes

Use CREATE INDEX to create anindex on one or more columns of atable. Use DROP INDEX to remove
an index from the schema. The following example modifies the flight reservation schema by adding an
index to the Flight table to improve performance when looking up flights.

$ sqlcnd
1> CREATE I NDEX flightTinmeldx ON Flight (departtine);

The CREATE INDEX statement explicitly creates an index. VoltDB creates an index implicitly when
you specify the table constraints UNIQUE, PRIMARY KEY, or ASSUMEUNIQUE. Use the ALTER

26

Designing the Database Schema

TABLE statement to add or drop these table constraints along with their associated indexes, as shown in
Section 4.6.3, “Modifying Tables’.

4.6.5. Modifying Partitioning for Tables and Stored Proce-
dures

Any changes to the schema must be carefully coordinated with the design and development of stored
procedures. This not only applies to column names, data types, and so on, but also to the partition plan.

How to partition tables and stored procedures using the PARTITION TABLE and PARTITION PROCE-
DURE statements is explained in Section 4.4, “Partitioning Database Tables’ and Section 5.3.3, “Parti-
tioning Stored Procedures in the Schema”.

Y ou can change the partitioning of stored procedures, and you can change atable to a replicated table or
repartition it on a different column. However, because of the intricate dependencies of partitioned tables
and stored procedures, this can only be done by dropping and re-adding the tables and procedures. Also,
you must pay close attention to the order in which objects are dropped and added.

The following DDL examples demonstrate some partitioning modifications to a table and stored proce-
dures.

» Un-partitioning a Stored Procedure

e Changing a Partitioned Table to a Replicated Table
» Re-partitioning a Table to a Different Column

» Updating a Stored Procedure

» Removing a Stored Procedure from the Database

The following DDL is added to the Flight reservation schema to help demonstrate the DDL partition
changes described in this section.

$ sql cnd

1> PARTI TI ON TABLE Ai rport ON COLUWN Nane;

2> CREATE PROCEDURE Fi ndAi r port CodeByName AS

3> SELECT TOP 1 AirportCode FROM Ai rport WHERE Nane=?;
4> PARTI TI ON PROCEDURE Fi ndAi r port CodeByNane

5> ON TABLE Ai rport COLUW Nare;

6> CREATE PROCEDURE Fi ndAi r port CodeByCity AS

7> SELECT TOP 1 AirportCode FROM Ai rport WHERE City=?;

The stored procedures are tested with the following sglcmd directives:

$ sqglcnd
1> exec Fi ndAi rport CodeByNanme ' Logan Airport';
2> exec FindAirport CodeByCity 'Boston';

4.6.5.1. Un-partitioning a Stored Procedure

Inthe simplest case, you can un-partition asingle-partitioned stored procedure by dropping and re-cresting
that procedure without including the PARTITION PROCEDURE statement. In this example we drop
the single-partitioned FindAirportCodeByName procedure and re-create it as multi-partitioned because it
needs to search all partitionsto find an airport code by name.

$ sql cnd

27

Designing the Database Schema

1>

DROP PROCEDURE Fi ndAi r por t CodeByNane;

2> CREATE PROCEDURE Fi ndAi r port CodeByNane AS

3>

SELECT TOP 1 AirportCode FROM Ai rport WHERE Nane=?;

4.6.5.2. Changing a Partitioned Table to a Replicated Table

I mportant

Y ou cannot change the partitioning of atablethat hasdatain it. To change a partitioned tableto a

replicated one, you drop and re-create the table, which del etes any data that might be in the table.

Before executing the following steps, save the existing schema so you can easily re-create the table. The

Volt

DB Management Center provides a view of the existing database schema DDL source, which you

can download and save.

$ s
1>
2>
3>
4>
5>
6>
7>
8>
9>
10>
11>
12>
13>
14>
15>

The
(1]

(2]

gl cnd
DROP PROCEDURE Fi ndAi r por t CodeByNane; o
DROP PROCEDURE Fi ndAi r port CodeByCity;
DROP TABLE Airport | F EXI STS CASCADE; (2]
CREATE TABLE Al RPORT ((3]
Al RPORTCODE var char (3) NOT NULL,
NAME var char (25),
CI TY varchar (25),
COUNTRY varchar (15) DEFAULT ' USA',
CONSTRAI NT UNI QUECODE UNI QUE (Al RPORTCODE) ,
PRI MARY KEY (Al RPORTCODE)
)
CREATE PROCEDURE Fi ndAi r port CodeByNane AS o
SELECT TOP 1 AirportCode FROM Ai rport WHERE Nane=?;
CREATE PROCEDURE Fi ndAi r port CodeByCity AS
SELECT TOP 1 AirportCode FROM Ai rport WHERE City=?;

exampleis described as follows:

Drop al stored procedures that reference the table. You cannot drop a table if stored procedures
referenceit.
Drop the table. Options you may include are:

e |F EXISTS — Use the IF EXISTS option to avoid command errors if the named table is already
removed.

* CASCADE — A table cannot be removed if it has index or view references. You can remove
the references explicitly first or use the CASCADE option to have VoltDB remove the references
along with the table.

Re-create the table. By default, a newly created tableis areplicated table.

Re-create the stored procedures that access the table. If the stored procedure is implemented with

Java and changes are required, modify and reload the code before re-creating the stored procedures.

For more, see Section 5.3, “Installing Stored Procedures into the Database”.

4.6.5.3. Re-partitioning a Table to a Different Column

I mportant

Y ou cannot change the partitioning of atable that has data in it. In order to re-partition a table
you have to drop and re-create the table, which deletes any data that might be in the table.

28

Designing the Database Schema

Follow these steps to re-partition atable:

1. Un-partition the table by following the instructions in Section 4.6.5.2, “Changing a Partitioned Table
to a Replicated Table’. The sub-steps are summarized as follows:

a. Drop all stored procedures that reference the table.
b. Drop thetable.

C. Re-create thetable.

d. Re-create the stored procedures that access the table.

2. Partition the table on the new column. In our example, it makes sense to partition the Airport table on
the AirportCode column, where each row must be unique and non null.

$ sqglcmd
1> PARTI TI ON TABLE Airport ON COLUWN Air port Code;

3. Re-partition stored proceduresthat should be single-partitioned. See Section 4.6.5.4, “ Updating a Stored
Procedure”.

4.6.5.4. Updating a Stored Procedure

This section describes how to update a stored procedure that has already been declared in the database with
the CREATE PROCEDURE statement. The stepsto update astored procedure are summarized asfollows:

1. If the procedure isimplemented in Java, update the procedure's code, recompile, and repackage the jar
file. For details, see Section 5.3, “Installing Stored Procedures into the Database”.

2. Ensure all tables and columns the procedure accesses are in the database schema.
3. Update the procedure in the database.

« If the procedure is implemented in Java, use the sglcmd load classes directive to update the class
in the database. For example:

$ sqgl cnd
1> | oad classes GetAirport.jar;

« |If the procedureisimplemented with SQL, usethe CREATE PROCEDURE AS command to update
the SQL.

4. If reguired, partition the stored procedure. If the procedure is currently multi-partitioned, use the
PARTITION PROCEDURE command to partition on the same column as the table being accessed.
Notethat if you previously re-partitioned atable, it required that you drop and then re-create the stored
procedures as multi-partitioned.

If the procedure is already single-partitioned but needs to be re-partitioned on a different column, do
the following steps:

a. Use DROP PROCEDURE to remove the stored procedure.
b. Use CREATE PROCEDURE to re-declare the stored procedure.

c. ¢. Use PARTITION PROCEDURE to partition on the new column.
29

Designing the Database Schema

In our example so far, we have three stored procedures that are adequate to access the Airport table, so
no additional procedures need to be partitioned:

» VolItDB automatically defined adefault select stored procedure, which is partitioned on the Airport-
Code column. It takes an AirportCode as input and returns atable structure containing the Airport-
Code, Name, City, and Country.

» The FindAirportCodeByName stored procedure should remain multi-partitioned because it needsto
search in all partitions.

» TheFindAirportCodeByCity stored procedure should also remain multi-partitioned because it needs
to search in al partitions.

4.6.5.5. Removing a Stored Procedure from the Database

If you've decided a stored procedure is no longer needed, use the following steps to remove it from the
database;

1. Drop the stored procedure from the database.

$ sqlcnd
1> DROP PROCEDURE Get Airport;

2. Removethe code from the database. If the procedure isimplemented with Java, use the sglcmd remove
classes directive to remove the procedure's class from the database.

2> renpve cl asses myapp. procedures. Get Ai rport;

30

Chapter 5. Designing Stored Procedures
to Access the Database

Asyou can see from Chapter 4, Designing the Database Schema, defining the database schema and the
partitioning plan go hand in hand with understanding how the data is accessed. The two must be coordi-
nated to ensure optimum performance. Y our stored procedures must use the same attribute for partitioning
as the table being accessed. Proper partitioning ensures that the table rows the stored procedure requests
are in the same partition in which the procedure executes, thereby ensuring maximum efficiency.

It doesn't matter whether you design the partitioning first or the data access first, as long as in the end
they work together. However, for the sake of example, we will use the schema and partitioning outlined
in Chapter 4, Designing the Database Schema when discussing how to design the data access.

5.1. How Stored Procedures Work

The key to designing the data access for VoltDB applications is that complex or performance sensitive
access to the database should be done through stored procedures. It is possible to perform ad hoc queries
onaVoltDB database. However, ad hoc queries do not benefit asfully from the performance optimizations
VoltDB specializesin and therefore should not be used for frequent, repetitive, or complex transactions.

Within the stored procedure, you access the database using standard SQL syntax, with statements such
as SELECT, UPDATE, INSERT, and DELETE. You can also include your own code within the stored
procedure to perform cal culations on the returned values, to evaluate and execute conditional statements,
or to perform many other functions your applications may need.

5.1.1. VoltDB Stored Procedures are Transactional

In VoItDB, a stored procedure and a transaction are one and the same. Thus when you define a stored
procedure, VoltDB automatically provides ACID transaction guarantees for the stored procedure. This
means that stored procedures fully succeed or automatically roll back asawholeif an error occurs (atom-
ic). When stored procedures change the data, the database is guaranteed to remain consistent. Stored pro-
cedures execute and access the database compl etely isolated from each other, including when they execute
concurrently. Finally, stored procedure changes to the database are guaranteed to be saved and available
for subsequent database access (durable).

Because the transaction is defined in advance as a stored procedure, there is no need for your application
to manage transactions using specific transaction commands such as BEGIN, ROLLBACK, COMMIT
or END.?

5.1.2. VoltDB Stored Procedures are Deterministic

To ensuredataconsistency and durability, VoltDB procedures must bedeterministic. That is, given specific
input values, the outcome of the procedureis consistent and predictable. Determinismiscritical becauseit
allows the same stored procedure to run in multiple locations and give the same results. It is determinism
that makes it possible to run redundant copies of the database partitions without impacting performance.
(See Chapter 10, Availability for more information on redundancy and availability.)

One side effect of transactions bei ng precompiled as stored procedures is that external transaction management frameworks, such as Spring or
JEE, are not supported by VoltDB.

31

Designing Stored Proce-
duresto Access the Database

5.1.2.1. Use Sorted SQL Queries

One key to deterministic behavior is avoiding ambiguous SQL queriesin stored procedures. Specifically,
performing unsorted queries can result in a nondeterministic outcome. VoltDB does not guarantee a con-
sistent order of results unless you use a tree index to scan the records in a specific order or you specify
an ORDER BY clausein the query itself. In the worst case, alimiting query, such as SELECT TOP 10
Enmp | D FROM Enpl oyees without an index or ORDER BY clause, can result in a different set of
rows being returned. However, even asimple query such as SELECT * fr om Enpl oyees can return
the same rowsin a different order.

The problem isthat even if anon-deterministic query is read-only, its results might be used as input to an
INSERT, UPDATE, or DELETE statement elsewherein the stored procedure. For clusterswith aK-safety
value greater than zero, this means unsorted query results returned by two copies of the same partition,
which may not match, could be used for separate update queries. If this happens, VoltDB detects the
mismatch, reportsit as potential datacorruption, and shutsdown the cluster to protect the database contents.

This is why VoltDB issues a warning for any non-deterministic queries in read-write stored procedures.
Thisisalso why use of an ORDER BY clause or atreeindex in the WHERE constraint is strongly recom-
mended for all SELECT statements that return multiple rows.

5.1.2.2. Avoid Introducing Non-deterministic Values from External Func-

tions

Another key to deterministic behavior isavoiding callswithin your stored procedures to external functions
or procedures that can introduce arbitrary data. External functions include file and network 1/0 (which
should be avoided any way because they can impact latency), as well as many common system-specific
procedures such as Date and Time.

However, this limitation does not mean you cannot use arbitrary datain VoltDB stored procedures. It just
means you must either generate the arbitrary data before the stored procedure call and pass it in as input
parameters or generate it in adeterministic way. For example, if you need to load a set of records from a
file, you can open the filein your application and pass each row of datato a stored procedure that loadsthe
datainto the VoltDB database. Thisis the best method when retrieving arbitrary data from sources (such
asfiles or network resources) that would impact latency.

The other alternative is to use data that can be generated deterministically. For two of the most common
cases, timestamps and random values, VoltDB provides methods for this:

» Vol t Procedur e. get Transacti onTi nme() returnsatimestamp that can be used in place of the
Java Date or Time classes.

* Vol t Procedur e. get SeededRandom\unber Gener at or () returns a pseudo random number
that can be used in place of the Java Util.Random class.

These procedures use the current transaction 1D to generate a deterministic value for the timestamp and
the random number. See the VoltDB Java Stored Procedure API for more.

5.1.2.3. Stored Procedures have no Persistence

Finally, even seemingly harmless programming techniques, such as static variables can introduce nonde-
terministic behavior. VoltDB provides no guarantees concerning the state of the stored procedure class
instance across invocations. Any information that you want to persist across invocations must either be
stored in the database itself or passed into the stored procedure as a parameter.

32

http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Proce-
duresto Access the Database

5.2. The Anatomy of a VoltDB Stored Procedure

Y ou can write VoltDB stored procedures as Java classes. The following code sampleillustrates the basic
structure of aVoltDB java stored procedure.

i mport org.voltdb. *;
public class Procedure-nanme extends VoltProcedure {
/!l Declare SQ statenents ...
public datatype run (argunents) throws Volt Abort Exception {

/1 Body of the Stored Procedure ...

}

The key points to remember areto:

1. Import the VoltDB classesfrom or g. vol t db. *

2. Include the class definition, which extends the abstract class Vol t Pr ocedur e

3. Definethemethod r un(') , which performsthe SQL queriesand processing that make up thetransaction

Itisimportant to understand the details of how to design and devel op stored proceduresfor your application

as described in the following sections. However, for simple data access, the following techniques may

suffice for some of your stored procedures:

» VoItDB defines default stored procedures to perform the most common table access such as inserting,
selecting, updating, and deleting records based on a specific key value. See Section 7.1, “Using Default
Procedures’ for more.

» You can create stored procedures without writing any Java code by using the DDL statement CREATE
PROCEDURE AS, where you define asingle SQL query asastored procedure. See Section 7.2, “ Short-
cut for Defining Simple Stored Procedures”.

The following sections describe the components of a stored procedure in more detail.

5.2.1. The Structure of the Stored Procedure

The stored procedures themselves are written as Java classes, each procedure being a separate class. Ex-
ample 5.1, “Components of aVoltDB Java Stored Procedure” shows the stored procedure that looks up a
flight to seeif there are any available seats. The callouts identify the key components of aVVoltDB stored
procedure.

33

Designing Stored Proce-
duresto Access the Database

Example 5.1. Components of a VoltDB Java Stored Procedure

package fadvi sor. procedures;

i mport org.vol tdb. *; (1]
public class HowManySeats extends Vol tProcedure { (2]
public final SQStnt GetSeatCount = new SQLSt nt ((3]

"SELECT Number Of Seats, COUNT(ReservelD) " +
"FROM Flight AS F, Reservation AS R" +

"WHERE F.FlightI D=R Flight!D AND R FlightID=? " +
"GROUP BY Nunber Of Seat's; ") ;

public long run(int flightid) o
t hrows Vol t Abort Exception {

| ong nunof seat s;
| ong seat si nuse;
Vol t Tabl e[] queryresults;

vol t QueueSQL(Get Seat Count, flightid); (5]
gueryresults = vol t Execut eSQL(); (6]
Vol t Tabl e result = queryresults[0]; (7]
if (result.getRowCount() < 1) { return -1; }

nunof seat s result.fetchRow0).getLong(0); (8]
seat si nuse result.fetchRow(0).getLong(l);
nunof seat s nunof seats - seat si nuse;

return nunofseats; // Return avail able seats o

© Stored procedures are written as Java classes. To access the VoltDB classes and methods, be sure
toi nport org.vol tdb. *.

Although VoltDB stored procedures must be written in Java and the primary client interface is Java
(asdescribed in Chapter 6, Designing VoltDB Client Applications), it ispossibleto write client appli-
cations using other programming languages. See Chapter 8, Using VoltDB with Other Programming
Languages for more information on alternate client interfaces.

® Each stored procedure extends the generic class Vol t Pr ocedur e.

©® Within the stored procedure you access the database using ANS|-standard SQL statements. To do
this, you declare the statement as a special Javatype caled SQLSt nt .

In the SQL statement, you insert a question mark (?) everywhere you want to replace a value by a
variable at runtime. In this example, the query GetSeatCount has one input variable, FlightID. (See
Appendix B, Supported SQL Satements for details on the supported SQL statements.)

To ensure the stored procedure code is single partitioned, queries must filter on the partitioning
columnfor asinglevaue (using equal, =). Filtering for arange of valueswill not be single-partitioned
because the code will haveto look up in al the partitions to ensure the entire range is found.

O Thebulk of the stored procedureisther un() method, whoseinput specifiestheinput argumentsfor
the stored procedure. See Section 5.2.2, “ Passing Arguments to a Stored Procedure” next for details.

34

Designing Stored Proce-
duresto Access the Database

5.2.2.

Note that the r un() method throws the exception Vol t Abor t Except i on if any exceptions are
not caught. Vol t Abor t Except i on causesthe stored procedure transaction to rollback. (See Sec-
tion 5.2.6, “Rolling Back a Transaction” for more information about rollback.)

© To peform database queries, you queue SQL statements, specifying both the SQL statement and
the variables it requires, using thevol t QueueSQ.() method. More details are described in Sec-
tion 5.2.3, “Creating and Executing SQL Queriesin Stored Procedures’.

O After you queue al of the SQL statements you want to perform, use vol t Execut eSQL() to
execute the statements in the queue.

@ Each statement returnsitsresultsinaVol t Tabl e structure. Because the queue can contain multiple
queries, vol t Execut eSQL() returns an array of Vol t Tabl e structures, one array element for
each query. More details are described in Section 5.2.4, “Interpreting the Results of SQL Queries’.

® Inadditionto queueing and executing queries, stored procedures can contain custom code. However,
you should limit the amount of custom code in stored procedures to only that processing that is
necessary to complete the transaction, so as not to delay subsequent transactions.

© Stored procedures can return along integer, a Vol t Tabl e structure, or an array of Vol t Tabl e
structures. For more details, see Section 5.2.5, “ Returning Results from a Stored Procedure’”.

Passing Arguments to a Stored Procedure

Y ou specify the number and type of the argumentsthat the stored procedure acceptsinther un() method.
For example, the following is the declaration of ther un() method foranl ni ti al i ze() stored pro-
cedure from the voter sample application. This procedure accepts two arguments: an integer and a string.
public long run(int maxContestants, String contestants) {

VoltDB stored procedures can accept parameters of any of the following Java and VVoltDB datatypes:

Integer types byte, short, int, long, Byte, Short, Integer, and Long
Floating point types float, double, Float, Double

Fixed decimal types BigDecimal

String and binary types | String and byte][]

Timestamp types org.voltdb.types. TimestampType
javautil.Date, java.sgl.Date, java.sgl.Timestamp
VoltDB type VoltTable

The arguments can be scalar objects or arrays of any of the preceding types. For example, the following
run() method defines three arguments: a scalar long and two arrays, one array of timestamps and one
array of Strings:

i mport org.voltdb. *;
public class LogMessagesByEvent extends Vol tProcedure {

public long run (
| ong event Type,
org.vol tdb. types. Ti mest anpType[] event Ti neSt anps,
String[] event Messages
) throws Vol tAbortException {

The calling client application can use any of the preceding datatypes when invoking the cal | Pr oce-
dur e() method and, where necessary, VoltDB makes the appropriate type conversions (for example,

35

Designing Stored Proce-
duresto Access the Database

from int to String or from String to Doubl€e). See Section 6.2, “Invoking Stored Procedures’ for more on
usingthecal | Procedur e() method.

5.2.3. Creating and Executing SQL Queries in Stored Proce-
dures

The main function of the stored procedure is to perform database queries. In VoltDB thisis done in two
steps:

1. Queuethe queries using thevol t QueueSQL() function
2. Execute the queue and return the resultsusing the vol t Execut eSQL() function

Queuing SQL Statements Thefirst argumentto vol t QueueSQL() isthe SQL statement to be executed.
The SQL statement is declared using a specia class, SQLSt nt , with question marks as placeholders for
values that will be inserted at runtime. The remaining arguments to vol t QueueSQL() are the actua
valuesthat VoltDB insertsinto the placeholders. For example, if you want to perform aSELECT of atable
using two columns in the WHERE clause, your SQL statement might look something like this:

SELECT Customer| D FROM Cust oner WHERE Fi r st Name=? AND Last Nanme=7?;

At runtime, you want the questions marks replaced by values passed in as arguments from the calling
application. So the actual vol t QueueSQL() invocation might look like this:

public final SQStnt getcustid = new SQLStnt (
"SELECT Customerl D FROM Custoner " +
"WHERE First Nanme=? AND Last Nane=7?;");

vol t QueueSQL(getcustid, firstnm Ilastnm;

Y our stored procedure can call vol t QueueSQL() more than once to queue up multiple SQL statements
before they are executed. Queuing multiple SQL statements improves performance when the SQL queries
execute because it minimizes the amount of network traffic within the cluster. Once you have queued all
of the SQL statements you want to execute together, you then process the queue using the vol t Exe-
cut eSQL() function.

Vol t Tabl e[] queryresults = volt Execut eSQL();

Cycles of Queue and Execute

Y our procedure can queue and execute SQL statements in as many cycles as necessary to complete the
transaction. For example, if you want to make a flight reservation, you may need to access the database
and verify that the flight exists before creating the reservation in the database. One way to do thisisto
look up the flight, verify that avalid row was returned, then insert the reservation, like so:

36

Designing Stored Proce-
duresto Access the Database

Example 5.2. Cycles of Queue and Executein a Stored Procedure

final String getflight = "SELECT Flightl D FROM Fl i ght WHERE Fl i ghtl D=?;"; (1]
final String makeres = "I NSERT | NTO Reservation (?,?,?,?,?);";

public final
public final

SQLStnt getflightsgl = new SQ.Stnt (getflight);
SQLStmt makeressqgl = new SQLSt nt (makeres);

public VoltTable[] run(int reservenum int flightnum int customernum) (2]
t hrows Vol t Abort Exception {

/1 Verify flight ID
vol t QueueSQL(getflightsql, flightnum; (3]
Vol t Tabl e[] queryresults = volt Execut eSQL();

/1

If there is no matching record, rollback

if (queryresults[0].getRowCount() == 0) throw new Vol t Abort Exception(); (4]

5.24.

/1 Make reservation
vol t QueueSQL(nmaker essql, reservenum flightnum custonmernum O, 0); (5]
return vol t Execut eSQL();

This stored procedure code to make areservation is described as follows:

(1]

(2]

Define the SQL statements to use. The getflight string contains an SQL statement that verifies the
flight 1D, and the makeres string contains the SQL statement that makes the reservation.
Definether un() method for the stored procedure. This stored procedure takes as input arguments
the reservation number, the flight number, and the customer number.

Queue and execute an SQL statement. Inthisexamplethevol t Execut eSQ.() method processes
thesingleget f I i ght sqgl () function, which executesthe SQL statement specified in the getflight
string.

Process results. If the flight is not available, the exception Vol t Abor t Except i on aborts the
stored procedure and rolls back the transaction.

The second SQL statement to make the reservation is then queued and executed. The vol t Ex-
ecut eSQL() method processes the single maker essql () function, which executes the SQL
statement specified in the makeres string.

Interpreting the Results of SQL Queries

Withthevol t Execut eSQ.() cal, theresultsof all the queued SQL statementsarereturned in an array
of Vol t Tabl e structures. The array contains one Vol t Tabl e for each SQL statement in the queue.
TheVol t Tabl e structures are returned in the same order as the respective SQL statementsin the queue.

The Vol t Tabl e itself consists of rows, where each row contains columns, and each column has the
column name and a value of afixed datatype. The number of rows and columns per row depends on the
specific query.

Figure5.1. Array of VoltTable Structures

Column-name, value e Column-name, value

]]

37

Designing Stored Proce-
duresto Access the Database

For example, if you queue two SQL SELECT statements, one looking for the destination of a specific
flight and the second looking up the Reservel D and Customer name (first and last) of reservations for that
flight, the code for the stored procedure might look like the following:

public final SQStnt getdestsql = new SQLSt nt (
"SELECT Destinati on FROM Fl i ght WHERE Fl i ghtlD=?;");
public final SQStnt getressql = new SQLStnt (
"SELECT r.Reservel D, c.FirstNane, c.LastName " +
"FROM Reservation AS r, Customer AS c " +
"WHERE r. FlightlD=? AND r. Custoner| D=c. Custoner|D;");

vol t QueueSQL(get destsql, flightnuny;
vol t QueueSQL(getressql,flightnum;
Vol t Tabl e[] results = volt Execut eSQL();
The array returned by vol t Execut eSQL() will have two elements:

e Thefirst array elementisaVol t Tabl e with one row (FlightID is defined as unique) containing one
column, because the SELECT statement returns only one value.

e Thesecond array elementisaVol t Tabl e with as many rows as there are reservations for the specific
flight, each row containing three columns. Reservel D, FirstName, and LastName.

Assuming the stored procedure call input was a FlightID value of 134, the data returned for the second
array element might be represented as follows:

Figure5.2. One VoltTable Structureisreturned for each Queued SQL Statement

FlightID, 134 ReservelD, 4747 FirstName, Will LastName, Poger

ReservelID, 9879 FirstName, Janice | LastName, Josly
ReserveID, 3456 FirstName, Holly LastName, Eagan
ReserveID, 1098 FirstName, Ralph LastName, Finess

VoltDB provides a set of convenience methods for accessing the contents of the Vol t Tabl e array. Ta
ble5.1, “Methods of the VoltTable Classes’ lists some of the most common methods. (See a so Java Stored
Procedure API.)

38

http://docs.voltdb.com/javadoc/procedure-api/
http://docs.voltdb.com/javadoc/procedure-api/

Designing Stored Proce-
duresto Access the Database

Table5.1. Methods of the VoltTable Classes

Method

Description

int fetchRow(int index)

Returns an instance of the VoltTableRow class for
the row specified by index.

int getRowCount()

Returns the number of rows in the table.

int getColumnCount()

Returns the number of columns for each row in the
table.

Type getColumnType(int index)

Returns the datatype of the column at the specified
index. Typeis an enumerated type with the follow-
ing possible values:

BIGINT
DECIMAL
FLOAT
INTEGER
INVALID
NULL
NUMERIC
SMALLINT
STRING
TIMESTAMP
TINYINT
VARBINARY
VOLTTABLE

String getColumnName(int index)

Returns the name of the column at the specified in-
dex.

double getDouble(int index)

long getL ong(int index)

String getString(int index)

BigDecimal getDecimal AsBigDecimal(int index)
double getDecimal AsDoubl&(int index)

Date getTimestampAsTimestamp(int index)

long getTimestampAsLong(int index)

byte[] getVarbinary(int index)

Methods of VoltTable.Row

Return the value of the column at the specified index
in the appropriate datatype. Because the datatype of
the columnsvary depending onthe SQL query, there
is no generic method for returning the value. You
must specify what datatype to use when fetching the
value.

Itisalso possibleto retrieve the column values by name. Y ou can invoke any of the getDatatype() methods
and pass a string argument specifying the name of the column, rather than the numeric index. Accessing
the columns by name can make code easier to read and less susceptible to errors due to changes in the
SQL schema (such as changing the order of the columns). On the other hand, accessing column values by
numeric index is potentially more efficient under heavy load conditions.

Example 5.3, “Displaying the Contents of VoltTable Arrays’ shows a generic routine for “walking”
through the return results of a stored procedure. In this example, the contents of the Vol t Tabl e array

are written to standard outpuit.

39

Designing Stored Proce-
duresto Access the Database

Example 5.3. Displaying the Contents of VoltTable Arrays

public void displayResults(VoltTable[] results) {
int table = 1;
for (VoltTable result : results) {
Systemout.printf("*** Table % ***\n",tabl et++);
di spl ayTabl e(resul t);

}

public void displayTabl e(VoltTable t) {

final int col Count = t.get Col umCount();
i nt rowCount = 1;
t.reset RowPosition();
while (t.advanceRowm)) {
Systemout.printf("--- Row % ---\n", rowCount ++);

for (int col=0; col<col Count; col ++) {
Systemout.printf("%: ",t.getColumNane(col));
switch(t. get Col umType(col)) {
case TINYINT: case SMALLI NT: case Bl G NT: case | NTEGER
Systemout.printf("%\n", t.getLong(col));
br eak;
case STRI NG
Systemout.printf("%\n", t.getString(col));
br eak;
case DECI MAL:
Systemout.printf("%\n", t.getDeciml AsBi gDeci nal (col));
br eak;
case FLOAT:
Systemout.printf("%\n", t.getDouble(col));
br eak;

For further details on interpreting the VoltTable structure, see the Java documentation that is provided
onlineinthedoc/ subfolder for your VoltDB installation.

5.2.5. Returning Results from a Stored Procedure

Stored procedures can return the following types:
» Long integer

* SingleVoltTable

» Array of VoltTable structures

Y ou canreturn all of the query results by returning the Vol t Tabl e array, or you can return ascalar value
that is the logical result of the transaction. (For example, the stored procedure in Example 5.1, “ Compo-
nents of a VoltDB Java Stored Procedure” returns a long integer representing the number of remaining
seats available in the flight.)

40

Designing Stored Proce-
duresto Access the Database

5.2.6.

Whatever value the stored procedure returns, make sure the r un() method includes the appropriate
datatype in its definition. For example, the following two definitions specify different return datatypes,
the first returns along integer and the second returns the results of a SQL query asa Vol t Tabl e array.

public long run(int flightid)
public VoltTable[] run (String |lastname, String firstnane)

Note that you can interpret the results of SQL queries either in the stored procedure or in the client appli-
cation. However, for performance reasons, it is best to limit the amount of additional processing done by
the stored procedure to ensure it executes quickly and frees the queue for the next stored procedure. So
unless the processing is necessary for subsequent SQL queries, it isusualy best to return the query results
(in other words, the Vol t Tabl e array) directly to the calling application and interpret them there.

Rolling Back a Transaction

Finally, if a problem arises while a stored procedure is executing, whether the problem is anticipated or
unexpected, it isimportant that the transaction rolls back. Rollback means that any changes made during
the transaction are undone and the database isleft in the same state it was in before the transaction started.

VoltDB is a fully transactional database, which means that if a transaction (stored procedure) fails, the
transaction isautomatically rolled back and the appropriate exception is returned to the calling application.
Exceptions that can cause arollback include the following:

» Runtime errorsin the stored procedure code, such as division by zero or datatype overflow.

* Violating database constraintsin SQL queries, such asinserting a duplicate value into acolumn defined
as unique.

The atomicity of the stored procedure depends on VoltDB being able to roll back incomplete database
changes. VoltDB relies on Java exception handling outside the stored procedure to perform the roll back.
Therefore, you should not attempt to alter any exceptions thrown by the voltExecuteSqgl method. If your
procedure code does catch exceptions thrown as a result of executing SQL statements, make sure that the
exception handler re-throws the exception to allow VoltDB to perform the necessary roll back activities
before the stored procedure returns to the calling program.

Onthe other hand, there may be situations where an exception occursin the program logic. Theissue might
not be one that is caught by Java or VoltDB, but still there is no practical way for the transaction logic to
complete. In these situations, you can force a rollback by explicitly throwing the Vol t Abor t Excep-
t i on exception. For example, if aflight ID does not exist, you do not want to create a reservation so the
stored procedure can force arollback like so:

if (!flightid) { throw new VoltAbortException(); }

See Section 7.3, “Verifying Expected Query Results’ for another way to roll back procedureswhen queries
do not meet necessary conditions.

5.3. Installing Stored Procedures into the Database

When your stored procedure code is ready, you need to get the procedures into the database and ready to
use. You first compile the procedure code, create ajar file, and load the resulting jar file into the database.
Then you need to declare in the schema which procedures are stored procedures. Finally, depending on
which table each stored procedure accesses, you need to partition each procedure to match the table par-
titioning. These processes are covered in the following sections:

41

Designing Stored Proce-
duresto Access the Database

» Compiling, Packaging, and Loading Stored Procedures
» Declaring Stored Procedures in the Schema
* Partitioning Stored Procedures in the Schema

These sections show how to use DDL to declare and partition stored procedures in the database schema.
If you find you need to modify the schema, see Section 4.6, “Modifying the Schema”.

5.3.1. Compiling, Packaging, and Loading Stored Procedures

5.3.2.

The VoltDB stored procedures are written as Java classes, so you compile them using the Java compiler.
Anytime you update your stored procedure code, remember to recompile, package, and reload it into the
database using the following steps:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \ o
-d ./obj \
*.java
$jar cvf nyproc.jar -C obj . (2]
$ sqglcnmd (3]

1> | oad cl asses nyproc.jar;
2> show cl asses;

The steps are described as follows:
©® Usethejavac command to compile the procedure Java code.

You include libraries by using the - cl asspat h argument on the command line or by defining the
environment variable CLASSPATH. Y ou must include the VoltDB librariesin the classpath so Java
can resolve references to the VoltDB classes and methods. This example assumes that the VoltDB
software has been installed in the folder / opt / vol t db. If you installed VoltDB in a different
directory, you need to include your installation path. Also, if your client application depends on other
libraries, they need to be included in the classpath as well.

Usethe - d flag to specify an output directory in which to create the resulting classfiles.
® Usethejar command to package your Javaclassesinto a Java archive, or JAR file.

The JAR file must have the same Java package structure as the classesin the JAR file. For example,
if a class has a structure such as nyapp. pr ocedur es. Pr ocedur eFoo, then the JAR file has
to have myapp/ pr ocedur es/ Pr ocedur eFoo. cl ass asthe class structure for thisfile.

The JAR filemust include any inner classes or other dependent classes used by the stored procedures.
©® Usethesglemd load classes directive to load the stored procedure classes into the database.

You can use the show classes command to display information about the classes installed in the
cluster.

Before a stored procedure can be called by aclient application, you need to declare it in the schema, which
is described next.

Declaring Stored Procedures in the Schema

To make your stored procedures accessible in the database, you must declare them in the schema using
the CREATE PROCEDURE statement. Be sure to identify all of your stored procedures or they will not
be available to the client applications at runtime. Also, before you declare a procedure, ensure the tables
and columns the procedure accesses are in the schema.

42

Designing Stored Proce-
duresto Access the Database

5.3.3.

The following DDL statements declare five stored procedures, identifying them by their class name:

$ sqglcnmd

1> CREATE PROCEDURE FROM CLASS fadvi sor.
2> CREATE PROCEDURE FROM CLASS f advi sor.
3> CREATE PROCEDURE FROM CLASS f advi sor.
4> CREATE PROCEDURE FROM CLASS f advi sor.
5> CREATE PROCEDURE FROM CLASS f advi sor.

procedures.
procedures.
procedures.
procedures.
procedures.

LookupFl i ght;
HowMany Seat s;
MakeReser vati on;
Cancel Reservati on;
RenoveFl i ght;

For some situations, you can create stored procedures directly in the schema using SQL instead of loading
Javacode. See how to usethe CREATE PROCEDURE A S statement in Section 7.2, “ Shortcut for Defining
Simple Stored Procedures’.

For more about modifying a schemawith DDL, see Section 4.6, “Modifying the Schema’.

Partitioning Stored Procedures in the Schema

Wewant the most frequently used stored proceduresto be single-partitioned. This meansthat the procedure
executes in the one partition that also has the data it needs. Single-partitioned stored procedures do not
have the overhead of processing across multiple partitions and servers, wasting time searching through the
data of the entire table. To ensure single-partitioned efficiency, the parameter the stored procedure usesto
identify its required data must be the same as the column on which the table rows are partitioned.

Remember that in our sample application the RESERVATION table is partitioned on FLIGHTID. Let's
say you create a stored procedure, MakeReservation(), with two arguments, flight_id and customer_id.
The following figure shows how the stored procedure will automatically execute in the partition that has
the requested row.

Figure 5.3. Stored Procedures Execute in the Appropriate Partition Based on the
Partitioned Parameter Value

j exec MakeReservation, 145, 35791

exec MakeReservation, 321, 23650 ':

FlightlD CustomerlD FlightlD CustomerlD FlightlD CustomerlD
145 35791 687 45678 321 23650
145 46785 135 50987 487 36016
156 67093 . .

43

Designing Stored Proce-
duresto Access the Database

If you do not declare a procedure as single-partitioned, it is assumed to be multi-partitioned by default.
The advantage of multi-partitioned stored procedures is that they have full access to al of the datain
the database, across all partitions. However, the real focus of VoltDB, and the way to achieve maximum
throughput for your application, is through the use of single-partitioned stored procedures.

5.3.3.1. How to Declare Single-Partition Procedures
Before declaring a single-partitioned procedure, ensure the following prerequisites:

1. Thetable that the stored procedure accesses has been partitioned in the schema. See Section 4.4, “ Par-
titioning Database Tables’.

2. If the procedureisimplemented with Javacode, it isloaded into the database. See Section 5.3.1, “Com-
piling, Packaging, and Loading Stored Procedures’.

3. The stored procedure has been declared in the schemawith either of the CREATE PROCEDURE state-
ments. See Section 5.3.2, “ Declaring Stored Procedures in the Schema”.

When you declare a stored procedure as single-partitioned, you must specify both the associated table and
the column on which it is partitioned using the PARTITION PROCEDURE statement in the schema. The
following example usesthe RESERVATION table and the FLIGHTID column as the partitioning column.
For example:

PARTI TI ON PROCEDURE MakeReservati on ON TABLE Reservati on COLUW FlightlD;

The PARTITION PROCEDURE statement assumes that the partitioning column value is aso the first
parameter to the stored procedure. Suppose you wish to partition a stored procedure on the third parameter
such as the procedure Get Cust oner Det ai | s(), where the third parameter is a customer_id. You
must specify the partitioning parameter using the PARAMETER clause and an index for the parameter
position. Theindex is zero-based so the third parameter would be "2" and the PARTITION PROCEDURE
statement would be as follows:

PARTI Tl ON PROCEDURE Get CustonerDetail s
ON TABLE Custoner COLUWN Custonerl D
PARAMETER 2;

5.3.3.2. Queries in Single-Partitioned Stored Procedures

Single-partitioned stored procedures are special because they operate independently of other partitions,
which is why they are so fast. At the same time, single-partitioned stored procedures operate on only a
subset of the entire data, that is, only the data within the specified partition.

Caution

It is the application developer's responsibility to ensure that the queries in a single-partitioned
stored procedure are truly single-partitioned. VoltDB does not warn you about SELECT or
DELETE statements that might return incompl ete results. For example, if your single-partitioned
procedure attempts to operate on a range of values for the partitioning column, the range isin-
complete and includes only a subset of the table data that is in the current partition.

VoltDB does generate a runtime error if you attempt to INSERT arow that does not belong in
the current partition.

After you partition a procedure, your stored procedure can operate on only those recordsin the partitioned
table that are identified by the partitioning column, in this example the RESERVATION table identified

44

Designing Stored Proce-
duresto Access the Database

by aFLIGHTID. Your stored procedure can operate on records in replicated tables because all partitions
have the same copy of areplicated table. However, for other partitioned tables, the stored procedure can
only operate on those records if both tables are partitioned on the same attribute. In this example that
would be FLIGHTID.

In other words, the following rules apply:
» Any SELECT, UPDATE, or DELETE queries must use the constraint, WHERE i denti fi er =?

The question mark is replaced at runtime by the input value that identifies the row of datain the table.
In our example, queries on the RESERVATION table must use the constraint, WHERE FLI GHTI D=7

» SELECT statements can join the partitioned table to replicated tables, aslong asthe preceding WHERE
constraint is also applied.

» SELECT statements can join the partitioned table to other partitioned tables as long as the following
aretrue:

» Thetwo tables are partitioned on the same attribute or column (in our example, FLIGHTID).
e Thetablesare joined on the shared partitioning column.

e The following WHERE constraint is also used: WHERE partiti oned-table. identifi-
er =? In thisexample, WHERE RESERVATI ON. FLI GHTI D="

For example, the RESERVATION table can be joined with the FLIGHT table (which isreplicated). How-
ever, the RESERVATION table cannot be joined with the CUSTOMER tablein asingle-partitioned stored
procedure because the two tables use different partitioning columns. (CUSTOMER is partitioned on the
CUSTOMERID column.)

The following are examples of invalid SQL queries for a single-partitioned stored procedure partitioned
on FLIGHTID:

e INVALID: SELECT * FROM reservati on WHERE r eservati oni d=?

The RESERVATION table is being constrained by a column (RESERVATIONID) which is not the
partitioning column.

e INVALID: SELECT c. | astname FROM reservation AS r, custoner AS ¢ WHERE
r.flightid=? AND c.customerid = r.custonerid

The correct partitioning column is being used in the WHERE clause, but the tables are being joined on
adifferent column. As aresult, not all CUSTOMER rows are available to the stored procedure since
the CUSTOMER table is partitioned on a different column than RESERVATION.

45

Chapter 6. Designhing VoltDB Client
Applications

After you design and partition your database schema (Chapter 4, Designing the Database Schema), and
after you design the necessary stored procedures (Chapter 5, Designing Stored Procedures to Access the
Database), you areready to writethe client application logic. The client code containsall the business-spe-
cific logic required for the application, including business rule validation and keeping track of constraints
such as proper data ranges for arguments entered in stored procedure calls.

The three steps to using VoltDB from aclient application are:

1. Creating a connection to the database

2. Cdling stored procedures

3. Closing the client connection

The following sections explain how to perform these functions using the standard VoltDB Java client
interface. (SeeVoltDB JavaClient API.) TheVoltDB JavaClient isathread-safe classlibrary that provides

runtime access to VoltDB databases and functions.

It is possible to call VoltDB stored procedures from programming languages other than Java. However,
reading this chapter is still recommended to understand the processfor invoking and interpreting the results
of aVoltDB stored procedure. See Chapter 8, Using VoltDB with Other Programming Languagesfor more
information about using VoltDB from client applications written in other languages.

6.1. Connecting to the VoltDB Database

The first task for the calling program is to create a connection to the VVoltDB database. Y ou do this with
the following steps:

org.voltdb.client.Client client = null;
CientConfig config = null;

try {
config = new dientConfig("advent", "xyzzy"); o
client = dientFactory.createCient(config); 2]
client.createConnection("myserver.xyz.net"); (3]

} catch (java.io.lCOException e) {
e.printStackTrace();
Systemexit(-1);

© Definethe configuration for your connections. Initssimplest form, theCl i ent Conf i g class spec-
ifiesthe username and password to use. It is not absolutely necessary to create a client configuration
object. For example, if security is not enabled (and therefore a username and password are not need-
ed) a configuration object is not required. But it is a good practice to define the client configuration
to ensure the same credentials are used for all connections against asingle client. It is also possible
to define additional characteristics of the client connections as part of the configuration, such asthe
timeout period for procedure invocations or a status listener. (See Section 6.5, “Handling Errors’.)

46

http://docs.voltdb.com/javadoc/java-client-api/

Designing VoltDB Client Applications

Create an instance of the VoltDB Cl i ent class.

Call the cr eat eConnecti on() method. After you instantiate your client object, the argument
tocr eat eConnecti on() specifiesthe database node to connect to. Y ou can specify the server
node as a hostname (as in the preceding example) or as an IP address. Y ou can also add a second
argument if you want to connect to a port other than the default. For example, the following cr e-
at eConnecti on() cal attemptsto connect to the admin port, 21211

()

client.createConnection("nyserver.xyz.net", 21211);

If security is enabled and the username and password inthe Cl i ent Conf i g() call do not match
auser defined in the deployment file, the call to cr eat eConnect i on() will throw an exception.
See Chapter 12, Security for more information about the use of security with VoltDB databases.

When you are done with the connection, you should make sure your application callsthecl ose() method
to clean up any memory allocated for the connection. See Section 6.4, “ Closing the Connection”.

6.1.1. Connecting to Multiple Servers

Y ou can create the connection to any of the nodes in the database cluster and your stored procedure will
be routed appropriately. In fact, you can create connections to multiple nodes on the server and your
subsequent requests will be distributed to the various connections. For example, the following Java code
creates the client object and then connects to all three nodes of the cluster. In this case, security is not
enabled so no client configuration is needed:

try {
client = dientFactory.createCient();

client.createConnection("serverl.xyz.net");
client.createConnection("server2.xyz.net");
client.createConnection("server3.xyz.net");
} catch (java.io.lCException e) {
e.printStackTrace();
Systemexit(-1);
}

Creating multiple connections has three major benefits:

» Multiple connections distribute the stored procedure regquests around the cluster, avoiding a bottleneck
where all requests are queued through asingle host. Thisis particularly important when using asynchro-
nous procedure calls or multiple clients.

 For Javaapplications, the VoltDB Javaclient library uses client affinity. That is, the client knowswhich
server to send each request to based on the partitioning, thereby eliminating unnecessary network hops.

» Finally, if aserver fails for any reason, when using K-safety the client can continue to submit requests
through connections to the remaining nodes. This avoids a single point of failure between client and
database cluster. See Chapter 10, Availability for more.

6.1.2. Using an Auto-Reconnecting Client

If the client application loses contact with a server (either because the server goes down or a temporary
network glitch), the connection to that server is closed. Assuming the application has connections to mul-
tiple serversin the cluster, it can continue to submit stored procedures through the remaining connections.
However, the lost connection is not, by default, restored.

47

Designing VoltDB Client Applications

The application can use error handling to detect and recover from broken connections, as described in
Section 6.5.2, “Handling Timeouts’. Or you can enable auto-reconnecting when you initialize the client
object. You set auto-reconnecting in the client configuration before creating the client object, as in the
following example:

org.voltdb.client.Client client = null;

CientConfig config = new dientConfig("","");
confi g. set Reconnect OnConnecti onLoss(true);
try {

client = dientFactory.createdient(config);
client.createConnection("serverl.xyz.net");
client.createConnection("server2.xyz.net");
client.createConnection("server3.xyz.net");

When set Reconnect OnConnecti onLoss() issettotrue, theclient library will attempt to reestab-
lish lost connections, attempts starting every second and backing off to every eight seconds. As soon asthe
connection is reestablished, the reconnected server will begin to receive its share of the procedure calls.

6.2. Invoking Stored Procedures

After your client createsthe connection to the database, it isready to call the stored procedures. Y ouinvoke
astored procedure using the cal | Pr ocedur e() method, passing the procedure name and variables as
arguments. For example:

Vol t Tabl e[] results;

try { results = client.callProcedure("LookupFlight", o
origin,
dest,
departtine).get Resul ts(); [>)
} catch (Exception e) { (3]

e.printStackTrace();
Systemexit(-1);

©® Thecal | Procedure() method takes the procedure name and the procedure's variables as argu-
ments. The LookupFl i ght () stored procedure requires three variables: the originating airport,
the destination, and the departure time.

® Onceasynchronous call completes, you can evaluate the results of the stored procedure. Thecal | -
Pr ocedur e() methodreturnsaCl i ent Response abject, whichincludesinformation about the
success or failure of the stored procedure. To retrieve the actual return values you use the get Re-
sul t s() method. See Section 5.2.4, “Interpreting the Results of SQL Queries’ for more informa-
tion about interpreting the results of VoltDB stored procedures.

® Notethat sincecal | Procedur e() canthrow an exception (such asVol t Abort Excepti on)
itisagood practice to perform error handling and catch known exceptions.

6.3. Invoking Stored Procedures Asynchronously

Calling stored procedures synchronously simplifiesthe program logic because your client application waits
for the procedure to complete before continuing. However, for high performance applications looking to
maximize throughput, it is better to queue stored procedure invocations asynchronously.

48

Designing VoltDB Client Applications

Asynchronous Invocation

To invoke stored procedures asynchronoudly, use the cal | Pr ocedur e() method with an additional
first argument, a callback that will be notified when the procedure completes (or an error occurs). For ex-
ample, toinvokeaNewCust omrer () stored procedure asynchronoudly, thecall tocal | Pr ocedur e()
might look like the following:

client.call Procedure(new MyCal | back(),
"NewCust oner ",
firstname,
| ast nane,
cust | D};

The following are other important points to note when making asynchronous invocations of stored pro-
cedures:

» Asynchronous calls to cal | Procedur e() return control to the calling application as soon as the
procedure call is queued.

« |If the database server queueisfull, cal | Procedur e() will block until it is able to queue the proce-
dure call. Thisisacondition known as backpressure. This situation does not normally happen unlessthe
database cluster is not scaled sufficiently for theworkload or there are abnormal spikesin the workload.
See Section 6.5.3, “Writing a Status Listener to Interpret Other Errors’ for more information.

» Oncethe procedureis queued, any subsequent errors (such as an exception in the stored procedureitself
or loss of connection to the database) are returned as error conditions to the callback procedure.

Callback Implementation

Thecallback procedure (MyCal | back() inthisexample) isinvoked after the stored procedure compl etes
on the server. The following is an example of a callback procedure implementation:

static class MyCal |l back inpl ements ProcedureCall back {
@verride
public void clientCallback(C ientResponse clientResponse) ({
if (clientResponse.getStatus() != CientResponse. SUCCESS) ({
Systemerr.println(clientResponse.getStatusString());
} else {
nmyEval uat eResul t sProc(cl i ent Response. get Resul ts());
}
}
}

The callback procedureispassed thesame Cl i ent Response structurethat isreturned in asynchronous
invocation. Cl i ent Response contains information about the results of execution. In particular, the
methodsget St at us() andget Resul t s() letyour calback procedure determine whether the stored
procedure was successful and evaluate the results of the procedure.

The VoltDB Java client is single threaded, so callback procedures are processed one at a time. Conse-
quently, it isagood practice to keep processing in the callback to aminimum, returning control to themain
thread as soon as possible. If more complex processing is required by the callback, creating a separate
thread pool and spawning worker methods on a separate thread from within the asynchronous callback
is recommended.

49

Designing VoltDB Client Applications

6.4. Closing the Connection

When the client application is done interacting with the VoltDB database, it isagood practiceto closethe
connection. This ensures that any pending transactions are completed in an orderly way. The following
example demonstrates how to close the client connection:

try {
client.drain();

client.close();

} catch (InterruptedException e) {
e.printStackTrace();

}

There are two steps to closing the connection:;

1. Cdldrai n() tomakesureal asynchronous calls have completed. Thedr ai n() method pausesthe
current thread until all outstanding asynchronous calls (and their callback procedures) complete. This
call is not necessary if the application only makes synchronous procedure calls. However, there is no
penalty for calling dr ai n() and so it can beincluded for completenessin all applications.

2. Call cl ose() tocloseall of the connections and release any resources associated with the client.

6.5. Handling Errors

A special situation to consider when calling VoltDB stored proceduresiserror handling. TheVoltDB client
interface catches most exceptions, including connection errors, errors thrown by the stored procedures
themselves, and even exceptions that occur in asynchronous callbacks. These error conditions are not
returned to the client application as exceptions. However, the application can still receive notification and
interpret these conditions using the client interface.

The following sections explain how to identify and interpret errors that occur when executing stored pro-
cedures and in asynchronous callbacks. These include:

* Interpreting Execution Errors
» Handling Timeouts

» Writing a Status Listener to Interpret Other Errors

6.5.1. Interpreting Execution Errors

If an error occurs in a stored procedure (such as an SQL constraint violation), VoltDB catches the error
and returns information about it to the calling application as part of the Cl i ent Response class. The
C i ent Response class provides several methods to help the calling application determine whether
the stored procedure completed successfully and, if not, what caused the failure. The two most important
methods areget St at us() andget Stat usString().

static class MyCal |l back i npl ements ProcedurecCall back {
@verride
public void clientCallback(C ientResponse clientResponse) ({
final byte AppCodeWarm = 1;
final byte AppCodeFuzzy = 2;
if (clientResponse.getStatus() != CientResponse. SUCCESS) ({ o

50

Designing VoltDB Client Applications

Systemerr.println(clientResponse.getStatusString()); (2]
} else {
if (clientResponse. get AppStatus() == AppCodeFuzzy) { (3]

b

Systemerr.println(clientResponse. get AppStatusString());

nyEval uat eResul t sProc(cl i ent Response. get Resul ts());

Theget St at us() method tells you whether the stored procedure completed successfully and, if
not, what type of error occurred. It is good practice to always check the status of the Cl i ent Re-
sponse before evaluating the results of aprocedure call, because if the status is anything but SUC-
CESS, there will not be any results returned. The possible values of get St at us() are:

e CONNECTION_LOST — Thenetwork connection was|ost beforethe stored procedure returned
statusinformation to the calling application. The stored procedure may or may not have completed
successfully.

e CONNECTION_TIMEOUT — The stored procedure took too long to return to the calling ap-
plication. The stored procedure may or may not have completed successfully. See Section 6.5.2,
“Handling Timeouts’ for more information about handling this condition.

e GRACEFUL_FAILURE — An error occurred and the stored procedure was gracefully rolled
back.

« RESPONSE_UNKNOWN — This is a rare error that occurs if the coordinating node for the
transaction fails before returning a response. The node to which your application is connected
cannot determine if the transaction failed or succeeded before the coordinator was lost. The best
course of action, if you receive this error, is to use a new query to determine if the transaction
failed or succeeded and then take action based on that knowledge.

e SUCCESS — The stored procedure completed successfully.

e UNEXPECTED_FAILURE — An unexpected error occurred on the server and the procedure
failed.

« USER_ABORT — The code of the stored procedure intentionally threw a UserAbort exception
and the stored procedure was rolled back.

If aget St at us() call identifies an error status other than SUCCESS, you can use the get St a-

tusString() method to return atext message providing moreinformation about the specific error

that occurred.

If you want the stored procedureto provide additional information to the calling application, thereare

two more methodsto the Cl i ent Response that you can use. The methods get AppSt at us()

andget AppSt at usSt ri ng() actlikeget St at us() andget Stat usStri ng(), but rather

than returning information set by VoltDB, get AppSt at us() and get AppSt at usStri ng()

return information set in the stored procedure code itself.

In the stored procedure, you can use the methods set AppSt at usCode() and set AppSt a-
tusString() to setthe values returned to the calling application by the stored procedure. For
example:

/* stored procedure code */

51

Designing VoltDB Client Applications

final byte AppCodeVarm = 1;
final byte AppCodeFuzzy = 2;

set AppSt at usCode(AppCodeFuzzy) ;
set AppStatusString("l'mnot sure about that...");

6.5.2. Handling Timeouts

One particular error that needs specia handling isif a connection or a stored procedure call times out. By
default, the client interface only waits a specified amount of time (two minutes) for a stored procedure to
complete. If no responseisreceived from the server before the timeout period expires, the client interface
returns control to your application, notifying it of the error. For synchronous procedure calls, the client
interface returns the error CONNECTION_TIMEOUT to the procedure call. For asynchronous calls, the
client interface invokes the callback including the error informationinthecl i ent Response object.

It is important to note that CONNECTION_TIMEOUT does not necessarily mean the synchronous pro-
cedurefailed. In fact, it is very possible that the procedure may complete and return information after the
timeout error is reported. The timeout is provided to avoid locking up the client application when proce-
dures are delayed or the connection to the cluster hangs for any reason.

Similarly, if no response of any kind is returned on a connection (even if no transactions are pend-
ing) within the specified timeout period, the client connection will timeout. When this happens, the
connection is closed, any open stored procedures on that connection are closed with a return status of
CONNECTION_LOST, and then the client status listener callback method connect i onLost () isin-
voked. Unlike a procedure timeout, when the connection times out, the connection no longer exists, so
your client application will receive no further notifications concerning pending procedures, whether they
succeed or fail.

CONNECTION_LOST does not necessarily mean a pending asynchronous procedure failed. It ispossible
that the procedure completed but was unable to return its status due to a connection failure. The goal of
the connection timeout is to notify the client application of alost connection in atimely manner, even if
there are no outstanding procedures using the connection.

There are several things you can do to address potential timeouts in your application:

» Change the timeout period by calling either or both the methods set Pr ocedur eCal | Ti meout ()
and set Connect i onResponseTi meout () ontheC i ent Confi g object. The default timeout
periodis 2 minutesfor both procedures and connections. Y ou specify the timeout period in milliseconds,
where avalue of zero disables the timeout altogether. For example, the following client code resets the
procedure timeout to 90 seconds and the connection timeout period to 3 minutes, or 180 seconds:

config = new dientConfig("advent", "xyzzy");
config. set ProcedureCal | Ti meout (90 * 1000);

confi g. set Connecti onResponseTi neout (180 * 1000);
client = dientFactory.createdient(config);

 Catch and respond to the timeout error as part of the response to a procedure call. For example, the
following code excerpt from a client callback procedure reports the error to the console and ends the
callback:

static class MyCal |l back inplements ProcedureCallback {

@verride
public void clientCallback(Cd ientResponse response) {

52

Designing VoltDB Client Applications

if (response.getStatus() == Cient Response. CONNECTI ON_TI MEQUT) {
Systemout. println("A procedure invocation has tinmed out.");

return;

b

if (response.getStatus() == Cdient Response. CONNECTI ON_LOST) ({
System out. printl n("Connection | ost before procedure response.");
return;

b

» Set a status listener to receive the results of any procedure invocations that complete after the client
interfacetimesout. Seethefollowing Section 6.5.3, “Writing a Status Listener to Interpret Other Errors’
for an example of creating a status listener for delayed procedure responses.

6.5.3. Writing a Status Listener to Interpret Other Errors

Certain types of errors can occur that the Cl i ent Response class cannot notify you about immediately.
In these cases, an error happensand is caught by the client interface outside of the normal stored procedure
execution cycle. If you want your application to address these situations, you need to create a listener,
which isaspecial type of asynchronous callback that the client interface will notify whenever such errors
occur. The types of errorsthat alistener addresses include:

Lost Connection

If a connection to the database cluster is lost or times out and there are outstanding asynchronous
requests on that connection, the Cl i ent Response for those procedure calls will indicate that the
connection failed before areturn status was received. This means that the procedures may or may not
have completed successfully. If no requests were outstanding, your application might not be notified
of the failure under normal conditions, since there are no callbacks to identify the failure. Since the
loss of aconnection can impact the throughput or durability of your application, it isimportant to have
amechanism for general notification of lost connections outside of the procedure callbacks.

Backpressure
If backpressure causes the client interface to wait, the stored procedure is never queued and so your
application does not receive control until after the backpressure is removed. This can happen if the
client applications are queuing stored procedures faster than the database cluster can process them.
The result is that the execution queue on the server gets filled up and the client interface will not let
your application queue any more procedure calls. Two waysto handl e this situation programmatically
areto:

* Let the client pause momentarily to let the queue subside. The asynchronous client interface does
this automatically for you.

» Create multiple connectionsto the cluster to better distribute asynchronous calls across the database
nodes.

Exceptions in a Procedure Callback
Anerror can occur in an asynchronous callback after the stored procedure compl etes. These exceptions
are also trapped by the VoltDB client, but occur after the Cl i ent Response is returned to the
application.

Late Procedure Responses
Procedure invocations that time out in the client may later complete on the server and return results.
Sincetheclient application can no longer react to thisresponseinline (for example, with asynchronous
procedure calls, the associated callback has already received a connection timeout error) the client
may want away to process the returned results.

53

Designing VoltDB Client Applications

For the sake of example, the following status listener does little more than display a message on standard
output. However, in real world applications the listener would take appropriate actions based on the cir-

cumstances.
/*
* Declare the status |istener
*/
Client StatusLi stenerExt nylistener = new Cient StatusLi stenerExt () o
{
@verride
public void connectionLost(String hostnane, int port, (2]
i nt connectionsLeft,
Di sconnect Cause cause)
{
Systemout.printf("A connection to the database has been |l ost."
+ "There are %l connections renmai ning.\n", connectionsLeft);
}
@verride
public void backpressure(bool ean st atus)
{
System out. printl n("Backpressure fromthe database "
+ "is causing a delay in processing requests.");
}
@verride
public void uncaught Excepti on(ProcedureCal | back cal | back
Cl i ent Response r, Throwabl e e)
{
Systemout.println("An error has occurred in a callback "
+ "procedure. Check the follow ng stack trace for details.");
e.printStackTrace();
}
@verride
public void | ateProcedur eResponse(Cl i ent Response response,
String hostname, int port)
{
Systemout.printf("A procedure that tined out on host %: %"
+ " has now responded.\n", hostnane, port);
}
b
/*

* Declare the client configuration, specifying
* a usernane, a password, and the status |istener

*/

CientConfig myconfig = new CientConfig("usernanme", (3]
"password”,
nmyl i stener);

/*

* Create the client using the specified configuration.

*/

Cient nyclient = CientFactory.createCient(myconfig); o

By performing the operationsin the order as described here, you ensure that all connectionsto the VoltDB
database cluster use the same credentials for authentication and will notify the status listener of any error
conditions outside of normal procedure execution.

54

Designing VoltDB Client Applications

O Declaread i ent St at usLi st ener Ext listener callback. Define the listener before you define
the VoltDB client or open a connection.

® Thed ientStatusLi stener Ext interface has four methods that you can implement, one for
each type of error situation:

e connecti onLost ()
e backpressure()
e uncaught Exception()

e | at eProcedur eResponse()
® Definetheclient configuration Cl i ent Conf i g object. After you declareyour Ol i ent St at us-
Li st ener Ext, you definea d i ent Conf i g object to use for all connections, which includes
the username, password, and status listener. This configuration is then used to define the client next.
O Create aclient with the specified configuration.

6.6. Compiling and Running Client Applications

VoltDB client applications written in Java compile and run like other Java applications. (See Chapter 8,
Using VoltDB with Other Programming Languages for more on writing client applications using other lan-
guages.) To compile, you must include the VoltDB librariesin the classpath so Java can resolve references
to the VoltDB classes and methods. It is possible to do this manually by defining the environment variable
CLASSPATH or by using the - cl asspat h argument on the command line. If your client application
depends on other libraries, they need to be included in the classpath aswell. Y ou can also specify whereto
create theresulting classfilesusing the - d flag to specify an output directory, asin the following example:

$ javac -classpath "./:/opt/voltdb/voltdb/*" \
-d ./obj \
*.java

The preceding example assumes that the VoltDB software has been installed in the folder / opt / vol t -
db. If you installed VoltDB in a different directory, you need to include your installation path in the -
cl asspat h argument.

If you are using Apache Maven to manage your application development, the VoltDB Java client library
is available from the central Maven repository. So rather than installing VoltDB locally, you can simply
include it as a dependency in your Maven project object model, or pom.xml, like so:

<dependency>
<gr oupl d>or g. vol t db</ gr oupl d>
<artifactld>voltdbclient</artifactld>
<versi on>5. 1</ ver si on>

</ dependency>

6.6.1. Starting the Client Application

Before you start your client application, the VoltDB database must be running. When you start your client
application, you must ensure that the VoltDB library JAR file isin the classpath. For example:

$ java -classpath "./:/opt/voltdb/voltdb/*" MO ientApp

If you develop your application using one of the sample applications as a template, the r un. sh file
manages this dependency for you.

55

Designing VoltDB Client Applications

6.6.2. Running Clients from Outside the Cluster

If you are running the database on a cluster and the client applications on separate machines, you
do not need to include al of the VoltDB software with your client application. The VoltDB distribu-
tion comes with two separate libraries. vol t db-n. n. nn. jar andvol tdbclient-n.n.nn.jar
(wheren.n.nn isthe VoltDB version number). Thefirst fileisacomplete library that isrequired for build-
ing and running a VoltDB database server.

Thesecondfile, vol t dbcl i ent-n. n. nn. jar,isasmaler library containing only those components
neededto runaclient application. If you aredistributing your client applications, you only need to distribute
the client classes and the VoltDB client library. You do not need to install all of the VoltDB software
distribution on the client nodes.

56

Chapter 7. Simplifying Application
Development

The previous chapter (Chapter 6, Designing VoltDB Client Applications) explains how to develop your
VoltDB database application using the full power and flexibility of the Java client interface. However,
some database tasks — such as inserting records into a table or retrieving a specific column value — do
not need all of the capabilities that the Java API provides.

Now that you know how the VVoltDB programming interface works, VoltDB has featuresto simplify com-
mon tasks and make your application development easier. Those features include:

 Using Default Procedures

« Shortcut for Defining Simple Stored Procedures
 Verifying Expected Query Results

 Writing Stored Procedures Inline Using Groovy

The following sections describe each of these features separately.

7.1. Using Default Procedures

Although it is possible to define quite complex SQL queries, often the simplest are also the most common.
Inserting, selecting, updating, and del eting records based on a specific key value are the most basic opera-
tionsfor a database. Another common practice is upsert, where if arow matching the primary key already
exists, the record is updated — if not, a new record is inserted. To simplify these operations, VoltDB
defines these default stored procedures for tables.

Thedefault stored procedures use astandard naming scheme, where the name of the procedureiscomposed
of the name of the table (in all uppercase), a period, and the name of the query in lowercase. For example,
the Hello World tutorial (doc/ t ut ori al s/ hel | owor | d) contains a single table, HELLOWORLD,
with three columns and the partitioning column, DIALECT, as the primary key. As aresult, five default
stored procedures are included in addition to any user-defined procedures declared in the schema. The
parameters to the procedures differ based on the procedure.

VoltDB defines a default insert stored procedure when any table is defined:

HELLOWORLD.insert |The parameters are the table columns, in the same order as defined in the
schema.

VoltDB defines default update, upsert, and delete stored proceduresiif the table has a primary key:

HELLOWORLD.update | The parameters are the new column values, in the order defined by the schema,
followed by the primary key column values. This means the primary key col-
umn values are specified twice: once as their corresponding new column val-
ues and once as the primary key value.

HELLOWORLD.upsert | The parameters are the table columns, in the same order as defined in the
schema.

HELLOWORLD.delete | The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

57

Simplifying Application Development

VoltDB defines adefault select stored procedure if the table has a primary key and the table is partitioned:

HELLOWORLD.select | The parameters are the primary key column values, listed in the order they
appear in the primary key definition.

Usethe sglcmd command show procedurestollist al the stored procedures availabl eincluding the number
and type of parametersrequired. Use @yst entCat al og wi t h t he PROCEDURECOLUMNS selector
to show more details about the order and meaning of each procedure's parameters.

The following code example uses the default procedures for the HELLOWORLD table to insert, retrieve
(select), update, and delete a new record with the key value "American":

Vol t Tabl e[] results;

client.call Procedure("HELLOAORLD. i nsert",
"Anmerican", "Howdy", "Earth");

results = client.call Procedure("HELLOAORLD. sel ect",
"Anerican"). get Resul ts();

client.call Procedure("HELLOAORLD. updat e",
"Anmerican", " Yo", "Bi osphere",
"Anerican");

client.call Procedure("HELLOADRLD. del ete",
"Anerican");

7.2. Shortcut for Defining Simple Stored Proce-
dures

Sometimes al you want is to execute a single SQL query and return the results to the calling application.
In these simpl e cases, writing the necessary Java code can be tedious, so VoltDB provides a shortcut. For
very simple stored procedures that execute a single SQL query and return the results, you can define the
entire stored procedure as part of the database schema.

Recall from Section 5.3.2, “Declaring Stored Procedures in the Schema”, that normally you use the CRE-
ATE PROCEDURE statement to specify the class name of the Java procedure you coded, for example:

CREATE PROCEDURE FROM CLASS MakeReservati on;
CREATE PROCEDURE FROM CLASS Cancel Reservati on;

However, to create procedures without writing any Java, you can simply insert the SQL query in the AS
clause:

CREATE PROCEDURE Count Reservations AS
SELECT COUNT(*) FROM RESERVATI ON;

VoItDB creates the procedure when you include the SQL query in the CREATE PROCEDURE AS state-
ment. Note that you must specify a unique class name for the procedure, which is unique among all stored
procedures, including both those declared in the schema and those created as Java classes. (Y ou can use
the sglcmd command show proceduresto display alist of al stored procedures.)

It is also possible to pass arguments to the SQL query in simple stored procedures. If you use the ques-
tion mark placeholder in the SQL, any additional arguments you pass in client applications through the
cal | Procedur e() method are used to replace the placeholders, in their respective order. For example,
the following simple stored procedure expects to receive three additional parameters:

CREATE PROCEDURE MyReservationsByTrip AS
SELECT R RESERVEI D, F. FLIGHTI D, F. DEPARTTI ME

58

Simplifying Application Development

FROM RESERVATION AS R, FLIGHT AS F
WHERE R CUSTOMERID = ?

AND R. FLIGHTI D = F. FLI GHTI D

AND F. ORI G N=? AND F. DESTI NATI ON=?;

Finally, you can also specify whether the simple procedure is single-partitioned or not. By default, simple
stored procedures are assumed to be multi-partitioned. But if your procedure should be single-partitioned,
specify its partitioning in a PARTITION PROCEDURE statement. In the following example, the stored
procedure is partitioned on the FLIGHTID column of the RESERVATION table using the first parameter
as the partitioning key.

CREATE PROCEDURE Fet chReservations AS

SELECT * FROM RESERVATI ON WHERE FLI GHTI D=7?;
PARTI TI ON PROCEDURE Fet chReservati ons

ON TABLE Reservation COLUWN flightid;

7.3. Verifying Expected Query Results

The automated default and simple stored procedures reduce the coding needed to perform simple queries.
However, another substantial chunk of stored procedure and client application code is often required to
verify the correctness of the results returned by the queries. Did you get the right number of records? Does
the query return the correct value?

Rather than you having to write the code to validate the query results manually, VoltDB provides a way
to perform several common validations as part of the query itself. The Java client interface includes an
Expect at i on object that you can useto definethe expected results of aquery. Then, if the query doesnot
meet those expectations, the executing stored procedure automatically throwsaVol t Abor t Excepti on
and rolls back.

Y ou specify the expectation as the second parameter (after the SQL statement but before any arguments)
when queuing the query. For example, when making areservation in the Flight application, the procedure
must make sure there are seats available. To do this, the procedure must determine how many seats the
flight has. This query can also be used to verify that the flight itself exists, because there should be one
and only one record for every flight ID.

Thefollowing code fragment usesthe EXPECT_ONE_ROW expectation to both fetch the number of seats
and verify that the flight itself exists and is unique.

i mport org.voltdb. Expectation;

public final SQStnt GetSeats = new SQSt nt (
"SELECT nunber of seats FROM Fl i ght WHERE flightid=?;");

vol t QueueSQL(Get Seats, EXPECT_ONE ROW flightid);
Vol t Tabl e[] recordset = voltExecuteSQ();
Long nunofseats = recordset[0].asScal arLong();

By using the expectation, the stored procedure code does not need to do additional error checking to verify
that there is one and only one row in the result set. The following table describes all of the expectations
that are available to usein stored procedures.

Expectation Description
EXPECT_EMPTY The query must return no rows.

59

Simplifying Application Development

Expectation Description

EXPECT_ONE_ROW The query must return one and only one row.

EXPECT_ZERO OR _ONE_ROW The query must return no more than one row.

EXPECT_NON_EMPTY The query must return at least one row.

EXPECT_SCALAR The query must return asingle value (that is, one row with one
column).

EXPECT_SCALAR_LONG The query must return a single value with a datatype of Long.

EXPECT_SCALAR MATCH(long) |The query must return a single value equal to the specified
Long value.

7.4. Writing Stored Procedures Inline Using
Groovy
Note

Use of embedded Groovy stored procedures is supported for compiled catalogs only. See the ap-
pendix on Using Application Catal ogsin the VoltDB Administrator's Guide for moreinformation.

Writing stored procedures as separate Java classes is good practice; Javais a structured language that en-
courages good programming habits and helps modularize your code base. However, sometimes — espe-
cialy when prototyping — you just want to do something quickly and keep everything in one place.

Y ou can write simple stored procedures directly in the schema by embedding the procedure code using
the Groovy programming language (http:// groovy.codehaus.org/). Groovy is an object-oriented language
that dynamically compiles to Java Virtual Machine (JVM) byte code. Groovy is not as strict as Java and
promotes simpler coding through implicit typing and other shortcuts. It isimportant to note that Groovy is
an interpreted language. It is very useful for quick coding and prototyping. However, Groovy procedures
do not perform as well as the equivalent compiled Java classes. For optima performance, Java stored
procedures are recommended.

Y ou embed a Groovy stored procedure in the schemaby including the codein the CREATE PROCEDURE
AS statement, enclosed by a special marker — three pound signs (###) — before and after the code.
For example, the following DDL usesthe CREATE PROCEDURE AS statement to implement the Insert
stored procedure from the Hello World tutorial (doc/ t ut ori al s/ hel | owor | d) using Groovy:

CREATE PROCEDURE | nsert AS ### o
sgl = new SQLSt nt ((2]

"1 NSERT | NTO HELLOAORLD VALUES (?, 2, ?);")
transactOn = { String | anguage, (3]

String hello,

String world ->
vol t QueueSQL.(sqgl, hello, world, |anguage)
vol t Execut eSQL()

}
##t# LANGUAGE GROOVY; o

Some important things to note when using embedded Groovy stored procedures:

© Begin with three pound signs (##) before the code. The definitions for Vol t Types, Vol t Pr o-
cedur e,and Vol t Abor t Except i on areautomatically included and can be used without explicit
import statements.

60

http://docs.voltdb.com/AdminGuide/AppCatalog.php
http://docs.voltdb.com/AdminGuide/
http:// groovy.codehaus.org/

Simplifying Application Development

® Aswith Javastored procedures, you must declare all SQL queriesas SQLSt nt objects at the begin-
ning of the Groovy procedure.

® You must also define a closure called t r ansact On, which is invoked the same way the run()
method isinvoked in aJavastored procedure. This closure performsthe actual work of the procedure
and can accept any arguments that the Javarun method can accept. It can alsoreturnaVol t Tabl e,
an array of Vol t Tabl e, or along value.

O Endthe DDL statement with three pound signs (###) after the Groovy code.

In addition, VoltDB provides specia wrappers, t upl er at or () and bui | dTabl e(), that help you
access Vol t Tabl e results and construct Vol t Tabl e structures from scratch. For example, the follow-
ing code fragment shows the Cont est ant W nni ngSt at es() stored procedure from the V oter sam-
ple application (exanpl es/ vot er) written in Groovy:

transactOn = { int contestantNunmber, int max ->
vol t QueueSQL(resul tStnt)

results =[]
state = ""

tupl erat or (vol t Execut eSQL()[0]). eachRow {
isWnning = state = it[1]
state = it[1]

if (isWnning & it[0] == contestant Nunber) {
results << [state: state, votes: it[2]]
}

}

if (max > results.size) max = results. size
bui | dTabl e(state: STRING numvotes: Bl G NT) {
results.sort { a,b -> b.votes - a.votes }[0..<max].each {
rowit.state, it.votes
}

61

Chapter 8. Using VoltDB with Other
Programming Languages

VoltDB stored procedures are written in Java and the primary client interface also uses Java. However,
that is not the only programming language you can use with VoltDB.

It is possible to have client interfaces written in almost any language. These client interfaces allow pro-
grams written in different programming languages to interact with a VVoltDB database using native func-
tions of the language. The client interface then takes responsibility for trandating those requests into a
standard communication protocol with the database server as described in the VoltDB wire protocol.

Some client interfaces are developed and packaged as part of the standard VoltDB distribution kit while
othersare compiled and distributed as separate client kits. Asof thiswriting, thefollowing client interfaces
are available for VoltDB:

. Ct
o Ct++

» Erlang

+ Go

» Java (packaged with VoltDB)
» JDBC (packaged with VoltDB)
» JSON (packaged with VoltDB)
* Nodejs

« PHP

* Python

* Ruby

The JSON client interface may be of particular interest if your favorite programming languageisnot listed
above. JSON is a data format, rather than a programming interface, and the JSON interface provides a
way for applications written in any programming language to interact with VoltDB via JSON messages
sent across a standard HTTP protocaol.

The following sections explain how to use the C++, JSON, and JDBC client interfaces.

8.1. C++ Client Interface

VoltDB provides aclient interface for programs written in C++. The C++ client interface is available pre-
compiled asaseparatekit from the VoltDB web site, or in source format from the V oltDB github repository
(http://github.com/V oltDB/voltdb-client-cpp). Thefollowing sections describe how to write VVoltDB client
applicationsin C++.

8.1.1. Writing VoltDB Client Applications in C++

When using the VoltDB client library, aswith any C++ library, it isimportant to include all of the neces-
sary definitions at the beginning of your source code. For VoltDB client applications, this includes defin-

62

http://voltdb.com/
http://github.com/VoltDB/voltdb-client-cpp

Using VoltDB with Oth-
er Programming Languages

itions for the VoltDB methods, structures, and datatypes as well as the libraries that VoltDB depends on
(specifically, boost shared pointers). For example:

#define __ STDC_CONSTANT MACRCS
#define _ STDC LI M T_MACROS

#i ncl ude <vector>

#i ncl ude <boost/shared ptr. hpp>
#include "dient.h"

#i ncl ude "Tabl e. h"

#i nclude "Tabl elterator.h"

#i ncl ude " Row. hpp"

#i ncl ude "WreType. h"

#i ncl ude "Paraneter. hpp"

#i ncl ude " Paranet er Set . hpp"

#i ncl ude "ProcedureCal | back. hpp"

Once you have included al of the necessary declarations, there are three steps to using the interface to
interact with VoltDB:

1. Create and open aclient connection
2. Invoke stored procedures
3. Interpret the results

The following sections explain how to perform each of these functions.

8.1.2. Creating a Connection to the Database Cluster

8.1.3.

Beforeyou can call VoltDB stored procedures, you must create aclient instance and connect to the database
cluster. For example:

vol tdb:: dientConfig config("nyusernane", "mypassword");
voltdb::ient client = voltdb::dient::create(config);
client.createConnection("nyserver");

As with the Java client interface, you can create connections to multiple nodes in the cluster by making
multiple cals to the createConnection method specifying a different | P address for each connection.

Invoking Stored Procedures

The C++ client library provides both a synchronous and asynchronous interface. To make a synchronous
stored procedure call, you must declare objects for the parameter types, the procedure call itself, the para
meters, and the response. Note that the datatypes, the procedure, and the parameters need to be declared
in a specific order. For example:

/* Declare the nunber and type of parameters */

std::vector<vol tdb:: Paraneter> paraneterTypes(3);

par amet er Types|[0] vol t db: : Paranet er (vol tdb: : WRE_TYPE_BI G NT) ;
par amet er Types|[1] vol tdb: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;
par amet er Types| 2] vol tdb: : Paranet er (vol tdb: : WRE_TYPE_STRI NG ;

/* Declare the procedure and paraneter structures */
vol tdb: : Procedure procedure("AddCustoner", paraneterTypes);

63

Using VoltDB with Oth-
er Programming Languages

8.1.4.

vol t db: : Paranet er Set* parans = procedure. parans();

/* Declare a client response to receive the status and return val ues */
vol tdb: : I nvocat i onResponse response;

Once you instantiate these objects, you can reuse them for multiple callsto the stored procedure, inserting
different valuesinto params each time. For example:

par ans- >addl nt 64(13505) . addString("W/lliani').addString("Smth");
response = client.invoke(procedure);

par ams- >addl nt 64(13506) . addString("Mary").addString("WI1liams");
response = client.invoke(procedure);

par ans- >addl nt 64(13507) . addString("Bill").addString("Smyt he");
response = client.invoke(procedure);

Invoking Stored Procedures Asynchronously

To make asynchronous procedure calls, you must also declare a callback structure and method that will
be used when the procedure call completes.

cl ass AsyncCal | back : public voltdb:: ProcedureCal |l back

{
public:
bool call back
(vol tdb: : I nvocati onResponse response)
throw (vol tdb: : Exception)
{
/*
* The work of your call back goes here..
*/
}
1

Then, when you go to make the actual stored procedure invocation, you declare an callback instance and
invoke the procedure, using both the procedure structure and the callback instance:

boost :: shared_ptr<AsyncCal | back> cal | back(new AsyncCal | back());
client.invoke(procedure, call back);

Note that the C++ interface is single-threaded. The interface is not thread-safe and you should not use
instances of the client, client response, or other client interface structures from within multiple concurrent
threads. Also, the application must release control occasionaly to give the client interface an opportunity
to issue network requests and retrieve responses. Y ou can do this by calling either the run() or runOnce()
methods.

The run() method waits for and processes network requests, responses, and callbacks until told not to.
(That is, until acallback returns avalue of false)

The runOnce() method processes any outstanding work and then returns control to the client application.

In most applications, you will want to create a loop that makes asynchronous requests and then calls
runOnce(). This allows the application to queue stored procedure requests as quickly as possible while
also processing any incoming responses in atimely manner.

Another important difference when making stored procedure calls asynchronously is that you must make
sureall of the procedure calls compl ete before the client connection is closed. The client objects destructor

64

Using VoltDB with Oth-
er Programming Languages

automatically closes the connection when your application |eaves the context or scope within which the
client is defined. Therefore, to make sure all asynchronous calls have completed, be sure to call thedrain
method until it returns true before leaving your client context:

while (!client.drain()) {}

8.1.5. Interpreting the Results

Both the synchronous and asynchronous invocations return a client response object that contains both the
status of the call and the return values. Y ou can use the status information to report problems encountered
while running the stored procedure. For example:

if (response.failure())

{

std::cout << "Stored procedure failed.
exit(-1);

<< response.toString();

}

If the stored procedure is successful, you can use the client response to retrieve the results. The results
are returned as an array of VoltTable structures. Within each VoltTable object you can use an iterator to
walk through the rows. There are also methods for retrieving each datatype from the row. For example,
the following example displays the results of asingle VoltTable containing two strings in each row:

/* Retrieve the results and an iterator for the first volttable */
std::vector<voltdb:: Table> results = response.results();
voltdb:: Tablelterator iterator = results[O].iterator();

/* lterate through the rows */
while (iterator.hasNext())
{
voltdb:: Row row = iterator.next();

std::cout << row.getString(0) << ", " << row.getString(l) << std::endl;

}

8.2. JSON HTTP Interface

JSON (JavaScript Object Notation) is not a programming language; it is a data format. The JSON "inter-
face" to VoltDB isactually aweb interface that the V oltDB database server makes availablefor processing
requests and returning datain JSON format.

The JSON interface lets you invoke VoltDB stored procedures and receive their results through HTTP
requests. To invoke a stored procedure, you pass V oltDB the procedure name and parameters as aquerys-
tring to the HTTP request, using either the GET or POST method.

Although many programming languages provide methods to simplify the encoding and decoding of JSON
strings, you still need to understand the data structures that are created. So if you are not familiar with
JSON encoding, you may want to read more about it at ht t p: / / www. j son. or g.

8.2.1. How the JSON Interface Works

To use the VoltDB JSON interface, you must first enable JSON in the deployment file. Y ou do this by
adding the following tags to the deployment file:

<ht t pd>

65

http://www.json.org/

Using VoltDB with Oth-
er Programming Languages

<j sonapi enabl ed="true"/>
</ httpd>

With JSON enabled, when aVoltDB database starts it opens port 8080 on the local machine as asimple
web server. Any HTTP requests sent to the location /api/1.0/ on that port areinterpreted as requeststo run
a stored procedure. The structure of the request is:

URL http://<server>:8080/api/1.0/

Arguments Procedure=<procedure-name>
Parameters=<procedure-parameters>

User=<username for authentication>
Password=<password for authentication>
Hashedpassword=<Hashed password for authentication>
admin=<truelfal se>

jsonp=<function-name>

The arguments can be passed either using the GET or the POST method. For example, the following URL
uses the GET method (where the arguments are appended to the URL) to execute the system procedure
@Systemlnformation on the VoltDB database running on node voltsvr.mycompany.com:

http://vol tsvr. myconpany. com 8080/ api /1. 0/ ?Pr ocedur e=@yst em nf or mati on

Note that only the Pr ocedur e argument is required. Y ou can authenticate using the User and Pass-
wor d (or Hashedpasswor d) argumentsif security isenabled for the database. Use Passwor d to send
the password as plain text or Hashedpasswor d to send the password as an encoded string. (The hashed
password must be either a 40-byte hex-encoding of the 20-byte SHA-1 hash or a 64-byte hex-encoding
of the 32-byte SHA-256 hash.)?

Y ou can also include the parameters on the request. However, it isimportant to note that the parameters —
and the response returned by the stored procedure— are JSON encoded. The parametersare an array (even
if thereisonly one element to that array) and therefore must be enclosed in square brackets. Also, athough
there is an upper limit of 2 megabytes for the entire length of the parameter string, large parameter sets
must be sent using POST to avoid stricter limitations on allowable URL lengths.

The adm n argument specifies whether the request is submitted on the standard client port (the default)
or the admin port (when you specify adni n=t r ue). When the database is in admin mode, the client
port is read-only; so you must submit write requests with adm n=t r ue or else the request is rejected
by the server.

The j sonp argument is provided as a convenience for browser-based applications (such as Javascript)
where cross-domain browsing is disabled. When you include thej sonp argument, the entire response is
wrapped as a function call using the function name you specify. Using this technique, the response is a
complete and valid Javascript statement and can be executed to create the appropriate language-specific
object. For example, caling the @Statistics system procedure in Javascript using the jQuery library looks
likethis:

$.get JSON(' http://myserver: 8080/ api/ 1.0/ ?Procedure=@pt atistics' +
" &Par anmet er s=[" MANAGEVENT", 0] & sonp=?",
{}, MyCal | Back) ;

LY ou can specify an alternate port for the JSON interface when you start the VoltDB server by including the port number as an attribute of the
<httpd> tag in the deployment file. For example: <ht t pd port ="{port - nunber}">.

’Hashi ng the password stops the text of your password from being detectable from network traffic. However, it does not make the database access
any more secure. To secure the transmission of credentials and data between client applications and VoltDB, use an SSL proxy server in front of
the database servers.

66

Using VoltDB with Oth-
er Programming Languages

Perhaps the best way to understand the JSON interfaceisto seeit in action. If you build and start the Hello
World example application that is provided in the VoltDB distribution kit (including the client that loads
data into the database), you can then open a web browser and connect to the local system through port
8080, to retrieve the French trandlation of "Hello World". For example:

http://1 ocal host: 8080/ api/ 1. 0/ ?Pr ocedur e=Sel ect &Par anet er s=["French"]
Theresulting display is the following:

{"status":1, "appstatus":-128,"statusstring":null,"appstatusstring":null,
"exception":null,"results":[{"status":-128,"schema": [{"name":"HELLO",
"type": 9}, {"name":"WORLD", "type":9}],"data":[["Bonjour","Mnde"]]}]}

Asyou can see, the results (which are a JSON-encoded string) are not particularly easy to read. But then,
the JSON interface is not really intended for human consumption. It's real purposeisto provide ageneric
interface accessible from almost any programming language, many of which already provide methods for
encoding and decoding JSON strings and interpreting their results.

8.2.2. Using the JSON Interface from Client Applications

The general process for using the JSON interface from within a programiis:
1. Encode the parameters for the stored procedure as a JSON-encoded string

2. Instantiate and execute an HTTP request, passing the name of the procedure and the parameters as
arguments using either GET or POST.

3. Decode the resulting JSON string into alanguage-specific data structure and interpret the results.

The following are examples of invoking the Hello World Insert stored procedure from severa different
languages. In each case, the three arguments (the name of the language and the words for "Hello" and
"World") are encoded as a JSON string.

PHP

/1 Construct the procedure nane, paraneter list, and URL.

$vol tdbserver = "http:// myserver:8080/api/1.0/";
$proc = "Insert";

$a = array("Croatian", "Pozdrav", "Svijet");

$parans = json_encode($a);

$paranms = url encode($parans);

$querystring = "Procedure=$proc&Par anet er s=$par ans";

/1 create a new cURL resource and set options
$ch = curl _init();
curl _setopt ($ch, CURLOPT_URL, $voltdbserver);
curl _setopt ($ch, CURLOPT_HEADER, 0);
curl _setopt ($ch, CURLOPT_FAI LONERROR, 1);
curl _setopt ($ch, CURLOPT_POCST, 1);
curl _setopt ($ch, CURLOPT_POSTFI ELDS, $querystring);
curl _setopt ($ch, CURLOPT_RETURNTRANSFER, true);

/1 Execute the request

67

Using VoltDB with Oth-
er Programming Languages

Python

Perl

C#

$resultstring = curl _exec($ch);

inmport urllib
i mport urllib2
i mport json

Construct the procedure nanme, paraneter |ist, and URL.
url = "http://nmyserver: 8080/ api/1.0/"
vol t parans = json. dunps(["Croatian", "Pozdrav", "Svijet"])
httpparanms = urllib.urlencode({
"Procedure': 'Insert',
' Parameters' : voltparans
})
print httpparans
Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.l|oads(data)

use LWP:: Si mpl e;
ny $server = 'http://nmyserver:8080/api/1l.0/";

Insert "Hello Wrld" in Croatian

ny $proc = 'lInsert’;
ny $parans = '["Croatian", "Pozdrav","Svijet"]";
ny $url = $server . "?Procedur e=$pr oc&Par anet er s=$par ans"”;

ny $content = get $url;
die "Couldn't get $url" unless defined $content;

usi ng System

usi ng System Text;
usi ng System Net;
using System1Q

nanespace hel |l ovol t

{
cl ass Program
{
static void Main(string[] args)
{
string Vol tDBServer = "http://nyserver:8080/api/1.0/";
string VoltDBProc = "Insert";
string VoltDBParanms = "[\"Croatian\",\"Pozdrav\",\"Svijet\"]";
string Ul = Vol tDBServer + "?Procedure=" + Vol tDBProc

+ " &Par anet ers=" + Vol t DBPar arrs;

68

Using VoltDB with Oth-
er Programming Languages

string result = null;
WebResponse response = nul | ;
StreanReader reader = null;

try
{
Ht t pebRequest request = (HttpWbRequest)WbRequest. Create(Url);
request. Method = "GET";
response = request. CGet Response();
reader = new StreanReader (response. Get ResponseSt rean(), Encodi ng. UTF8) ;
result = reader. ReadToEnd();

}
catch (Exception ex)
{ /1 handle error
Consol e. WitelLi ne(ex. Message);
}
finally
{
if (reader != null)reader.C ose();
if (response != null) response.C ose();
}

}
}
}

8.2.3. How Parameters Are Interpreted

When you pass arguments to the stored procedure through the JSON interface, VoltDB does its best to
map the data to the datatype required by the stored procedure. Thisisimportant to make sure partitioning
values are interpreted correctly.

For integer values, the JSON interface maps the parameter to the smallest possible integer type capable of
holding the value. (For example, BY TE for values less than 128). Any values containing a decimal point
are interpreted as DOUBLE.

String values (those that are quoted) are handled in several different ways. If the stored procedure is ex-
pecting a BIGDECIMAL, the JSON interface will try to interpret the quoted string as a decimal value.
If the stored procedure is expecting a TIMESTAMP, the JSON interface will try to interpret the quoted
string as a JDBC-encoded timestamp value. (You can aternately pass the argument as an integer value
representing the number of microseconds from the epoch.) Otherwise, quoted strings are interpreted as
astring datatype.

Table 8.1, “Datatypes in the JSON Interface” summarizes how to pass different datatypes in the JSON
interface.

Table 8.1. Datatypesin the JSON Interface

Datatype How to Pass Example

Integers (Byte, Short, Integer,|An integer value 12345
Long)

69

Using VoltDB with Oth-
er Programming Languages

Datatype How to Pass Example
DOUBLE A value with a decimal point 123.45
BIGDECIMAL A quoted string containing avalue|"123.45"
with a decimal point
TIMESTAMP Either aninteger value or aquoted| 12345
string containing a JDBC-encod-
ed date and time "2010-07-01 12:30:21"
String A quoted string "l am astring"

8.2.4. Interpreting the JSON Results

Making the request and decoding the result string are only the first steps. Once the request is compl eted,
your application needs to interpret the results.

When you decode a JSON string, it is converted into alanguage-specific structure within your application,
composed of objects and arrays. If your request is successful, VoltDB returns a JSON-encoded string that
represents the same ClientResponse object returned by callsto the call Procedure method in the Javaclient
interface. Figure 8.1, “The Structure of the VoltDB JSON Response” shows the structure of the object
returned by the JSON interface.

Figure8.1. The Structure of the VoltDB JSON Response

{ appstatus (i nteger, bool ean)

appstatusstring (string)

exception (i nteger)
results (array)

[(obj ect, VoltTabl e)
{ data (array)
][(any type)

schena (array)

[name (string)
type (integer, enunerated)

]

st at us (i nteger, bool ean)
}
]
status (i nteger)
statusstring (string)

}
The key components of the JSON response are the following:

appstatus Returns additional information, provided by the application developer, about the success
or failure of the stored procedure. The values of appstatus and appstatusstring can be
set programmatically in the stored procedure. (See Section 6.5.1, “Interpreting Execution
Errors’ for details.)

results An array of objects representing the data returned by the stored procedure. Thisisan array
of VoltTable objects. If the stored procedure does not return avalue (i.e. is void or null),
then results will be null.

data Within each VoltTable object, data is the array of values.

70

Using VoltDB with Oth-
er Programming Languages

8.2.5.

schema Within each VoltTable, object schema isan array of objects with two elements: the name
of the field and the datatype of that field (encoded as an enumerated integer value).

status Indicates the success or failure of the stored procedure. If statusisfalse, statusstring con-
tains the text of the status message..

It is possible to create a generic procedure for testing and evaluating the result values from any VoltDB
stored procedure. However, in most cases it is far more expedient to evaluate the values that you know
the individual procedures return.

For example, again using the Hello World examplethat is provided with the VVoltDB software, itispossible
to usethe JSON interfaceto call the Select stored procedure and return the valuesfor "Hello" and "World"
in a specific language. Rather than evaluate the entire results array (including the name and type fields),
we know we are only receiving one VoltTable object with two string elements. So we can simplify the
code, as in the following python example:

import urllib

i mport urllib2
i mport json

i mport pprint

Construct the procedure nanme, paraneter |ist, and URL.
url = "http://1ocal host:8080/api/1.0/"'
vol t parans = json. dunmps(["French"])
httpparans = urllib.url encode({
"Procedure': 'Select',
"Paraneters' : voltparans

19)

Execute the request
data = urllib2.urlopen(url, httpparans).read()

Decode the results
result = json.loads(data)

Get the data as a sinple array and di splay them
foreignwords = result[u'results'][0][u' data'][0]

print foreignwords[0], foreignwords[1]

Error Handling using the JSON Interface

There are anumber of different reasonswhy a stored procedure request using the JSON interface may fail:
the VoltDB server may be unreachable, the database may not be started yet, the stored procedure name
may be misspelled, the stored procedure itself may fail... When using the standard Java client interface,
these different situations are handled at different times. (For example, server and database access issues
are addressed when instantiating the client, whereas stored procedure errors can be handled when the
procedures themselves are called.) The JSON interface simplifies the programming by rolling all of these
activitiesinto asingle call. But you must be more organized in how you handle errors as a consequence.

When using the JSON interface, you should check for errorsin the following order:

1. First check to seethat the HT TP request was submitted without errors. How thisisdone depends on what
language-specific methodsyou usefor submitting the request. In most cases, you can usethe appropriate
programming language error handlers (such as try-catch) to catch and interpret HTTP request errors.

71

Using VoltDB with Oth-
er Programming Languages

2. Next check to seeif VoltDB successfully invoked the stored procedure. Y ou can do this by verifying
that the HTTP request returned a valid JSON-encoded string and that its status is set to true.

3. If theVoltDB server successfully invoked the stored procedure, then check to seeif the stored procedure
itself succeeded, by checking to see if appstatusistrue.

4. Finally, check to seethat the results are what you expect. (For example, that the data array is non-empty
and contains the values you need.)

8.3. JDBC Interface

JDBC (Java Database Connectivity) is aprogramming interface for Java programmers that abstracts data-
base specifics from the methods used to access the data. JDBC provides standard methods and classes
for accessing a relational database and vendors then provide JDBC drivers to implement the abstracted
methods on their specific software.

VoltDB providesa JDBC driver for those who would prefer to use JDBC asthe data access interface. The
VoltDB JDBC driver supportsad hoc queries, prepared statements, calling stored procedures, and methods
for examining the metadata that describes the database schema.

8.3.1. Using JDBC to Connect to a VoltDB Database

The VoltDB driver is a standard class within the VoltDB software jar. To load the driver you use the
Class.forName method to load the class org.voltdb.jdbc.Driver.

Once the driver isloaded, you create a connection to a running VoltDB database server by constructing
a JDBC url using the "jdbc:" protocol, followed by "voltdb://", the server name, a colon, and the port
number. In other words, the complete JDBC connection url is"jdbc:voltdb://{ server} :{ port}". To connect
to multiple nodes in the cluster, use a comma separated list of server names and port numbers after the
"jdbc:voltdb://" prefix.

For exampl e, the following code loads the VoltDB JDBC driver and connectsto the servers svrl and svr2
using the default client port:

Cl ass. forName("org.vol tdb.jdbc. Driver");
Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212");

If security is enabled for the database, you must aso provide a username and password. Set these as
properties using the setProperty method before creating the connection and then pass the properties as a
second argument to getConnection. For example, the following code uses the username/password pair of
"Hemingway" and "KeyWest" to authenticate to the VoltDB database:

Cl ass. forName("org.vol tdb.jdbc. Driver");

Properties props = new Properties();

props. set Property("user", “Hem ngway");

props. set Property("password", “KeyWst");

Connection ¢ = DriverManager. get Connecti on(
"jdbc:voltdb://svrl:21212, svr2:21212", props);

8.3.2. Using JDBC to Query a VoltDB Database

Once the connection is made, you use the standard JDBC classes and methods to access the database. (See
the JDBC documentation at ht t p: / / downl oad. or acl e. conl j avase/ 6/ docs/ t echnot es/

72

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc

Using VoltDB with Oth-
er Programming Languages

gui des/ j dbc for details.) Note, however, when running the JDBC application, you must make sure
both the VoltDB software jar and the Guavallibrary are in the Java classpath. Guavaisathird party library
that is shipped as part of the VoltDB kit in the /lib directory. Unless you include both components in the
classpath, your application will not be able to find and load the necessary driver class.

The following is a complete example that uses JDBC to access the Hello World tutorial that comes with
the VoltDB software in the subdirectory / doc/ t ut ori al s/ hel | owor | d. The IDBC demo program
executes both an ad hoc query and a call to the VoltDB stored procedure, Select.

i mport java.sql.*;
i mport java.io.*;

public class JdbcDenmo {
public static void main(String[] args) {

String driver = "org.voltdb.jdbc.Driver";

String url = "jdbc:voltdb://Iocal host:21212";
String sql = "SELECT di al ect FROM hel | owor| d";
try {

/1 Load driver. Create connection.
G ass. forName(driver);
Connection conn = DriverManager. get Connection(url);

/] create a statenent
Statenment query = conn.createStatenent();
Resul t Set results = query. executeQuery(sql);
while (results.next()) {

System out. println("Language is

+ results.getString(l));
}

/1 call a stored procedure
Cal | abl eSt at enent proc = conn. prepareCall ("{call Select(?)}");
proc.setString(1, "French");
results = proc. executeQuery();
while (results.next()) {
Systemout.printf("%, %!\n", results.getString(1),
results.getString(2));

/1 Cl ose statenents, connections, etc.
query. cl ose();
proc.cl ose();
results.close();
conn. cl ose();

} catch (Exception e) {
e.printStackTrace();
}

73

http://download.oracle.com/javase/6/docs/technotes/guides/jdbc

Chapter 9. Using VoltDB in a Cluster

ItispossibletorunVoltDB on asingle server and still get all the advantages of parallelism because VoltDB
creates multiple partitions on each server. However, there are practical limits to how much memory or
processing power any one server can sustain.

One of the key advantages of VoItDB is its ease of expansion. Y ou can increase both capacity and pro-
cessing (i.e. the total number of partitions) simply by adding serversto the cluster to achieve amost linear
scalability. Using VolItDB in acluster also gives you the ability to increase the availability of the database
— protecting it against possible server failures or network glitches.

This chapter explains how to create a cluster of VoltDB servers running asingle database. It also explains
how to expand the cluster when additional capacity or processing power isneeded. The following chapters
explain how to increase the availability of your database through the use of K-safety and database repli-
cation, aswell as how to enable security to limit access to the data.

9.1. Starting a Database Cluster

Asdescribed in Chapter 3, Sarting the Database, starting aVoltDB cluster issimilar to starting VoltDB on
asingle server — you use the same commands. Starting asingle server database, you simply usethevoltdb
create command by itself. Or, to customize database features, you can specify a deployment file as well.

To start acluster you must:
» Specify the number of nodes in the cluster in the deployment file using the hostcount attribute:
<cluster hostcount="5" />

» Choose one of the nodes as the lead or "host" node and specify that node using the --host argument on
the start command

* |ssuethe start command on all nodes of the cluster

For example, if you are creating a new five node cluster and choose node server3 as the host, you would
issue acommand like the following on all five nodes:

$ voltdb create --host=server3 --depl oynent =depl oynment . xml

To restart a cluster using commands logs or automatic snapshots, you repeat this process replacing the
create action with recover:

$ voltdb recover --host=server3 --depl oynment=depl oynent. xm

In both casesyou choose one node, any node, to act astheleader for initiating the cluster. Oncethe database
cluster is running the leader's specia role is complete and al nodes are peers.

9.2. Updating the Cluster Configuration

If you choose to change the configuration of your cluster — adding or removing nodes or changing the
K-safety value or number of partitions per server — you can save the database as a snapshot, shutdown,
edit the deployment file, restart with the new number of servers, and restore the database. (See Chapter 13,
Saving & Restoring a VoltDB Database for information on using save and restor €).When doing bench-
marking, where you need to change the number of partitions or other runtime options, this is the correct
approach.

74

Using VoltDB in a Cluster

However, if you are simply adding nodes to the cluster to add capacity or increase performance, you can
add the nodes while the database is running. Adding nodes "on the fly" is also known as elastic scaling.

9.2.1. Adding Nodes with Elastic Scaling

When you are ready to extend the cluster by adding one or more nodes, you simply start the VoltDB
database process on the new nodes using the voltdb add command specifying the name of one of the
existing cluster nodes asthe host. For example, if you are adding node ServerX to a cluster where ServerA
is already a member, you can execute the following command on ServerX:

nme@erver X: ~$ voltdb add -1 ~/license.xm --host=ServerA
Oncethe add action isinitiated, the cluster performs the following tasks:

1. Thecluster acknowledges the presence of a new server.

2. The active application catalog and deployment settings are sent to the new node.

3. Once sufficient nodes are added, copies of al replicated tables and their share of the partitioned tables
are sent to the new nodes.

4. Asthe data is redistributed (or rebalanced), the added nodes begin participating as full members of
the cluster.

There are some important notes to consider when expanding the cluster using elastic scaling:

» You must add a sufficient number of nodes to create an integral K-safe unit. That is, K+1 nodes. For
example, if the K-safety value for the cluster is two, you must add three nodes at a time to expand the
cluster. If the cluster is not K-safe (in other words it has a K-safety value of zero), you can add one
node at atime.

» When you add nodes to a K-safe cluster, the nodes added first will complete steps #1 and #2 above,
but will not complete steps #3 and #4 until the correct number of nodes are added, at which point all
nodes rebalance together.

» Whilethecluster isrebalancing (Step #3), the database continuesto handleincoming requests. However,
depending on the workload and amount of data in the database, rebalancing may take a significant
amount of time,

* When using database replication (DR), the master and replica databases must have the same configu-
ration. If you use elasticity to add nodes to the master cluster, replication stops. Once rebalancing is
complete on the master database, you can restart the replica with additional nodes matching the new
master cluster configuration and restart replication.

9.2.2. Configuring How VoltDB Rebalances New Nodes

Once you add the necessary number of nodes (based on the K-safety value), VoltDB rebal ancesthe cluster,
moving data from existing partitions to the new nodes. During the rebalance operation, the database re-
mains available and actively processing client requests. How long the rebal ance operation takes is depen-
dent on two factors: how often rebalance tasks are processed and how much data each transaction moves.

Rebalancetasks are fully transactional, meaning they operate within the database's ACID-compliant trans-
actional model. Because they involve moving data between two or more partitions, they are also mul-
ti-partition transactions. This means that each rebalance work unit can incrementally add to the latency
of pending client transactions.

75

Using VoltDB in a Cluster

Y ou can control how quickly the rebal ance operation compl etes versus how much rebalance work impacts
ongoing client transactions using two attributes of the <el ast i ¢> element in the deployment file:

» The duration attribute sets a target value for the length of time each rebalance transaction will take,
specified in milliseconds. The default is 50 milliseconds.

» The throughput attribute sets a target value for the number of megabytes per second that will be
processed by the rebalance transactions. The default is 2 megabytes.

When you change the target duration, VoltDB adjusts the amount of datathat is moved in each transaction
to reach the target execution time. If you increase the duration, the volume of data moved per transaction
increases. Similarly, if you reduce the duration, the volume per transaction decreases.

When you change the target throughput, VoltDB adjuststhe frequency of rebalance transactionsto achieve
the desired volume of data moved per second. If you increase the target throughout, the number of rebal-
ance transactions per second increases. Similarly, if you decrease the target throughout, the number of
transactions decreases.

The <elastic> element isachild of the <systemsettings> element. For example, the following depl oyment
file sets the target duration to 15 milliseconds and the target throughput to 1 megabyte per second before
starting the database:

<depl oynent >

<systensettings>
<el astic duration="15" throughput="1"/>
</ systensettings>
</ depl oyment >

76

Chapter 10. Availability

10.1.

Durability is one of the four key ACID attributes required to ensure the accurate and reliable operation of
atransactional database. Durability refers to the ability to maintain database consistency and availability
in the face of external problems, such as hardware or operating system failure. Durability is provided by
four features of VVoltDB: snapshots, command logging, K-safety, and disaster recovery through database
replication.

» Snapshots are a "snapshot” of the data within the database at a given point in time written to disk. You
can use these snapshot filesto restore the database to a previous, known state after afailure which brings
down the database. The snapshots are guaranteed to be transactionally consistent at the point at which
the snapshot was taken. Chapter 13, Saving & Restoring a VoltDB Database describes how to create
and restore database snapshots.

« Command Logging isafeature where, in addition to periodic snapshots, the system keeps alog of every
stored procedure (or "command") asit is invoked. If, for any reason, the serversfail, they can "replay"
the log on startup to reinstate the database contents completely rather than just to an arbitrary point-
in-time. Chapter 14, Command Logging and Recovery describes how to enable, configure, and replay
command logs.

» K-safety refers to the practice of duplicating database partitions so that the database can withstand the
loss of cluster nodes without interrupting the service. For example, aK value of zero means that there
isno duplication and losing any serverswill result in aloss of data and database operations. If there are
two copies of every partition (a K value of one), then the cluster can withstand the loss of at least one
node (and possibly more) without any interruption in service.

» Database Replication issimilar to K-safety, sinceit involvesreplicating data. However, rather than cre-
ating redundant partitions within a single database, database replication involves creating and maintain-
ing a complete copy of the entire database. Database replication has a number of uses, but specifically
in terms of durability, replication lets you maintain two copies of the database in separate geographic
locations. In case of catastrophic events, such as fires, earthquakes, or large scale power outages, the
replica can be used as a replacement for adisabled cluster.

Subsequent chapters describe snapshots and command logging. The next chapter describes how you can
use database replication for disaster recovery. This chapter explains how K-safety works, how to configure
your VoltDB database for different values of K, and how to recover in the case of a system failure.

How K-Safety Works

K-safety involves duplicating database partitions so that if a partition is lost (either due to hardware or
software problems) the database can continue to function with the remaining duplicates. In the case of
VoltDB, the duplicate partitions are fully functioning members of the cluster, including all read and write
operations that apply to those partitions. (In other words, the duplicates function as peers rather than in
amaster-slave relationship.)

Itisalsoimportant to notethat K-safety isdifferent than WAN replication. In replication the entire database
cluster isreplicated (usually at aremote location to provide for disaster recovery in case the entire cluster
or site goes down due to catastrophic failure of some type).

In replication, the replicated cluster operates independently and cannot assist when only part of the active
cluster fails. The replicate is intended to take over only when the primary database cluster fails entirely.
So, in caseswhere the database is mission critical, it is not uncommon to use both K-safety and replication
to achieve the highest levels of service.

77

Availability

To achieve K=1, it is necessary to duplicate all partitions. (If you don't, failure of a node that contains a
non-duplicated partition would cause the database to fail.) Similarly, K=2 requires two duplicates of every
partition, and so on.

What happens during normal operations is that any work assigned to a duplicated partition is sent to all
copies (asshown in Figure 10.1, “K-Safety in Action”). If anode fails, the database continues to function
sending the work to the unaffected copies of the partition.

Figure 10.1. K-Safety in Action

W

10.2. Enabling K-Safety

You specify the desired K-safety value as part of the cluster configuration in the VoltDB deployment
file for your application. By default, VoltDB uses a K-safety value of zero (no duplicate partitions). You
can specify alarger K-safety value using the kfactor attribute of the <cluster> tag. For example, in the
following deployment file, the K-safety value for a 6-node cluster with 4 partitions per node is set to 2:

<?xm version="1.0"?>
<depl oynent >
<cl ust er hostcount="6"
si t esper host ="4"
kfact or="2"
/>
</ depl oyment >

When you start the database specifying a K-safety value greater than zero, the appropriate number of
partitions out of the cluster will be assigned as duplicates. For example, in the preceding case where there
are 6 nodes and 4 partitions per node, there are atotal of 24 partitions. With K=1, half of those partitions
(12) will be assigned as duplicates of the other half. If K isincreased to 2, the cluster would be divided
into 3 copies consisting of 8 partitions each.

78

Availability

The important point to note when setting the K value is that, if you do not change the hardware configu-
ration, you are dividing the avail able partitions among the duplicate copies. Therefore performance (and
capacity) will be proportionally decreased as K-safety is increased. So running K=1 on a 6-node cluster
will be approximately equivalent to running a 3-node cluster with K=0.

If you wish to increase reliability without impacting performance, you must increase the cluster size to
provide the appropriate capacity to accommodate for K-safety.

10.2.1. What Happens When You Enable K-Safety

Of course, to ensure a system failure does not impact the database, not only do the partitions need to be
duplicated, but VVoltDB must ensure that the duplicates are kept on separate nodes of the cluster. To achieve
this, VoltDB calculates the maximum number of unique partitions that can be created, given the number
of nodes, partitions per node, and the desired K-safety value.

When the number of nodes is an integral multiple of the duplicates needed, thisis easy to calculate. For
example, if you have asix node cluster and choose K=1, VoltDB will create two instances of three nodes
each. If you choose K=2, VoltDB will create three instances of two nodes each. And so on.

If the number of nodesis not amultiple of the number of duplicates, VoltDB doesits best to distribute the
partitions evenly. For example, if you have a three node cluster with two partitions per node, when you
ask for K=1 (in other words, two of every partition), VoltDB will duplicate three partitions, distributing
the six total partitions across the three nodes.

10.2.2. Calculating the Appropriate Number of Nodes for K-
Safety

By now it should be clear that there is a correlation between the K value and the number of nodes and
partitionsin the cluster. Ideally, the number of nodesisamultiple of the number of copies needed (in other
words, the K value plus one). Thisis both the easiest configuration to understand and manage.

However, if the number of nodes is not an exact multiple, VoltDB distributes the duplicated partitions
across the cluster using the largest number of unique partitions possible. Thisis the highest whole integer
where the number of unique partitions is equal to the total number of partitions divided by the needed
number of copies:

Uni que partitions = (nodes * partitions/node) / (K + 1)

Therefore, when you specify a cluster size that is not a multiple of K+1, but where the total number of
partitionsis, VoltDB will use all of the partitions to achieve the required K-safety value.

Note that the total number of partitions must be a whole multiple of the number of copies (that is, K+1).
If neither the number of nodes nor the total number of partitions is divisible by K+1, then VoltDB will
not let the cluster start and will display an appropriate error message. For example, if the deployment file
specifiesathree node cluster with 3 sites per host and aK-safety value of 1, the cluster cannot start because
the total number of partitions (3X3=9) is not a multiple of the number of copies (K+1=2). To start the
cluster, you must either increase the K-safety value to 2 (so the number of copiesis 3) or change the sites
per host to 2 or 4 so the total number of partitionsisdivisible by 2.

Finally, if you specify aK value higher than the available number of nodes, it is not possible to achieve the
requested K-safety. Even if there are enough partitions to create the requested duplicates, VoltDB cannot
distribute the duplicates to distinct nodes. For example, if you have a 3 node cluster with 4 partitions per
node (12 total partitions), there are enough partitions to achieve a K value of 3, but not without some
duplicates residing on the same node. In this situation, VoltDB issues an error message. Y ou must either
reduce the K-safety or increase the number of nodes.

79

Availability

10.3. Recovering from System Failures

When running without K-safety (in other words, a K-safety value of zero) any node failure is fatal and
will bring down the database (since there are no longer enough partitions to maintain operation). When
running with K-safety on, if a node goes down, the remaining nodes of the database cluster log an error
indicating that a node has failed.

By default, these error messages are logged to the console terminal. Since the loss of one or more nodes
reducesthereliability of the cluster, you may want to increase the urgency of these messages. For example,
you can configure a separate L og4J appender (such as the SMTP appender) to report node failure mes-
sages. To do this, you should configure the appender to handle messages of classHOST and severity level
ERROR or greater. See the chapter on Logging in the VoltDB Administrator's Guide for more information
about configuring logging.

When a node fails with K-safety enabled, the database continues to operate. But at the earliest possible
convenience, you should repair (or replace) the failed node.

Toreplace afailed nodeto arunning VoltDB cluster, you restart the VoltDB server process specifying the
deployment file, rejoin asthe start action, and the address of one of the remaining nodes of the cluster as
the host. For example, to regjoin a node to the VoltDB cluster where myclusternode5 is one of the current
member nodes, you use the following command:

$ voltdb rejoin --host=mycl usternode5 \
- - depl oynment =nmydepl oynent . xm

Note that the node you specify may be any active cluster node; it does not have to be the node identified as
the host when the cluster was originally started. Also, the deployment file you specify must bethe currently
active deployment settings for the running database cluster.

10.3.1. What Happens When a Node Rejoins the Cluster

When you issue the rejoin command, the node first rejoinsthe cluster, then retrieves a copy of the database
schema and the appropriate data for its partitions from other nodes in the cluster. Rejoining the cluster
only takes seconds and once this is done and the schema is received, the node can accept and distribute
stored procedure requests like any other member.

However, the new node will not actively participate in the work until a full working copy of its partition
datais received. The rejoin process can happen in two different ways: blocking and "live".

During a blocking rejoin, the update process for each partition operates as a single transaction and will
block further transactions on the partition which is providing the data. While the node is rejoining and
being updated, the cluster continues to accept work. If the work queue gets filled (because the update is
blocking further work), the client applications will experience back pressure. Under normal conditions,
this means the calls to submit stored procedures with the callProcedure method (either synchronously or
asynchronously) will wait until the back pressure clears before returning control to the calling application.
Thetimethis update process takes varies in length depending on the volume of datainvolved and network
bandwidth. However, the process should not take more than afew minutes.

During a live rgjoin, the update separates the rejoin process from the standard transactional workflow,
allowing the database to continue operating with aminimal impact to throughput or latency. The advantage
of alivergjoin isthat the database remains available and responsive to client applications throughout the
rejoin procedure. The deficit of aliverejoin isthat, for large datasets, the rgjoin process can take longer
to complete than with a blocking rejoin.

80

http://docs.voltdb.com/AdminGuide/ChapLogging.php
http://docs.voltdb.com/AdminGuide/

Availability

By default, VoltDB performsliveregoins, allowing the work of the database to continue. If, for any reason,
you choose to perform ablocking rejoin, you can do thisby using the - - bl ocki ng flag on the command
line. For example, the following command performs a blocking rejoin to the database cluster including
the node myclusternodeb:

$ voltdb rejoin --blocking --host=nycl usternode5 \
- -depl oynent mnydepl oynent . xm

In rare cases, if the database is near capacity in terms of throughput, alive rejoin cannot keep up with the
ongoing changes madeto the data. If this happens, VoltDB reportsthat the live rejoin cannot complete and
you must wait until database activity subsides or you can safely perform a blocking rejoin to reconnect
the server.

Itisimportant to remember that the cluster isnot fully K-safeuntil therestorationiscomplete. For example,
if the cluster was established with a K-safety value of two and one node failed, until that node rejoins and
is updated, the cluster is operating with a K-safety value of one. Once the node is up to date, the cluster
becomes fully operational and the original K-safety is restored.

10.3.2. Where and When Recovery May Fail

It is possible to rejoin any appropriately configured node to the cluster. It does not have to be the same
physical machine that failed. This way, if a node fails for hardware reasons, it is possible to replace it
in the cluster immediately with a new node, giving you time to diagnose and repair the faulty hardware
without endangering the database itself.

Itisalso possible, when doing blocking rejoins, to rejoin multiple nodes simultaneously, if multiple nodes
fail. That is, assuming the cluster is till viable after the failures. Aslong as there is at least one active
copy of every partition, the cluster will continue to operate and be available for nodes to rejoin. Note that
with live rgjoin, only one node can rejoin at atime.

There are afew conditions in which the rejoin operation may fail. Those situationsinclude the following:
* Insufficient K-safety

If the database is running without K-safety, or more nodesfail simultaneously than the cluster is capable
of sustaining, the entire cluster will fail and must be restarted from scratch. (At a minimum, aVoltDB
database running with K-safety can withstand at least as many simultaneous failures as the K-safety
value. It may be able to withstand more node failures, depending upon the specific situation. But the K-
safety value tells you the minimum number of node failures that the cluster can withstand.)

» Mismatched deployment file

If the deployment file that you specify when issuing the rejoin command does not match the current
deployment configuration of the database, the cluster will refuse to et the node rejoin.

» More nodes attempt to rejoin than have failed

If one or more nodes fail, the cluster will accept rejoin regquests from as many nodes as failed. For
example, if onenodefails, thefirst node requesting to rejoin will be accepted. Oncethe cluster isback to
the correct number of nodes, any further requeststo rejoin will berejected. (Thisisthe same behavior as
if you tried to add more nodes than specified in the deployment filewhen initially starting the database.)

» Thergjoining node does not specify a valid username and/or password

When rejoining a cluster with security enabled, you must specify avalid username and password when
issuing the rejoin command. The username and password you specify must have sufficient privilegesto

81

Availability

execute system procedures. If not, the rejoin request will be rejected and an appropriate error message
displayed.

10.4. Avoiding Network Partitions

VoltDB achieves scalability by creating a tightly bound network of servers that distribute both data and
processing. When you configure and manage your own server hardware, you can ensure that the cluster
resides on asingle network switch, guaranteeing the best network connection between nodes and reducing
the possibility of network faults interfering with communication.

However, there are situations where this is not the case. For example, if you run VoltDB "in the cloud”,
you may not control or even know what is the physical configuration of your cluster.

The danger is that a network fault — between switches, for example — can interrupt communication
between nodes in the cluster. The server nodes continue to run, and may even be able to communicate
with others nodes on their side of the fault, but cannot "see" the rest of the cluster. In fact, both halves of
the cluster think that the other half has failed. This condition is known as a network partition.

10.4.1. K-Safety and Network Partitions

When you run aVoltDB cluster without availability (in other words, no K-safety) the danger of anetwork
partition is simple: loss of the database. Any node failure makes the cluster incomplete and the database
will stop, Y ou will need to reestablish network communications, restart VoltDB, and restore the database
from the last snapshot.

However, if you are running acluster with K-safety, it is possible that when anetwork partition occurs, the
two separate segments of the cluster might have enough partitions each to continue running, each thinking
the other group of nodes has failed.

For example, if you have a 3 node cluster with 2 sites per node, and a K-safety value of 2, each nodeisa
separate, self-sustaining copy of the database, as shown in Figure 10.2, “Network Partition”. If a network
partition separates nodes A and B from node C, each segment has sufficient partitions remaining to sustain
the database. Nodes A and B think node C has failed; node C thinks that nodes A and B have failed.

Figure 10.2. Network Partition

Server
A

Server
o]

Network Partition

Server
B

The problem isthat you never want two separate copies of the database continuing to operate and accepting
requests thinking they are the only viable copy. If the cluster is physically on a single network switch,

82

Availability

the threat of a network partition is reduced. But if the cluster is on multiple switches, the risk increases
significantly and must be accounted for.

10.4.2. Using Network Fault Protection

VoltDB provides a mechanism for guaranteeing that a network partition does not accidentally create two
separate copies of the database. The feature is called network fault protection.

Because the consequences of a partition are so severe, use of network partition detection is strongly rec-
ommended and VoltDB enables partition detection by default. In addition it is recommended that, wher-
ever possible, K-safe clusters be configured with an odd number of nodes.

However, it is possible to disable network fault protection in the deployment file, if you choose. You
enable and disable partition detection using the <partition-detection> tag. The <partition-detection> tag is
achild of <deployment> and peer of <cluster>. For example:

<depl oynent >
<cl uster hostcount="4"
si t esper host =" 2"
kfactor="1" />
<partition-detection enabled="true">
<snapshot prefix="netfault"/>
</partition-detection>
</ depl oyment >

If a partition is detected, the affected nodes automatically do a snapshot of the current database before
shutting down. Y ou can use the <snapshot> tag to specify the file prefix for the snapshot files. If you do
not explcitly enable partition detection, the default prefix is "partition_detection”.

Network partition snapshots are saved to the same directory as automated snapshots. By default, thisis
a subfolder of the VoltDB root directory as described in Section 3.6.2, “Configuring Paths for Runtime
Features’. However, you can select a specific path using the <paths> tag set. For example, the following
exampl e sets the path for snapshotsto/ opt / vol t db/ snapshot s/ .

<partition-detection enabl ed="true">

<snapshot prefix="netfaul tsave"/>
</partition-detection>
<pat hs>

<snapshots pat h="/opt/vol tdb/ snapshots/" />
</ pat hs>

When network fault protection is enabled, and a fault is detected (either due to a network fault or one or
more servers failing), any viable segment of the cluster will perform the following steps:

1. Determine what nodes are missing
2. Determineif the missing nodes are also a viable self-sustained cluster. If so...
3. Determine which segment is the larger segment (that is, contains more nodes).

« If the current segment is larger, continue to operate assuming the nodes in the smaller segment have
failed.

« If the other segment is larger, perform a snapshot of the current database content and shutdown to
avoid creating two separate copies of the database.

83

Availability

For example, in the case shown in Figure 10.2, “ Network Partition”, if anetwork partition separates nodes
A and B from C, the larger segment (nodes A and B) will continue to run and node C will write a snapshot
and shutdown (as shown in Figure 10.3, “Network Fault Protection in Action”).

Figure 10.3. Network Fault Protection in Action

Network Partition

If a network partition creates two viable segments of the same size (for example, if a four node cluster
is split into two two-node segments), a specia case is invoked where one segment is uniquely chosen
to continue, based on the internal numbering of the host nodes. Thereby ensuring that only one viable
segment of the partitioned database continues.

Network fault protection is avery valuable tool when running VoltDB clustersin adistributed or uncon-
trolled environment where network partitions may occur. The one downside isthat there is no way to dif-
ferentiate between network partitions and actual node failures. In the case where network fault protection
isturned on and no network partition occurs but alarge number of nodes actually fail, the remaining nodes
may believe they are the smaller segment. In this case, the remaining nodes will shut themselves down
to avoid partitioning.

For example, in the previous case shown in Figure 10.3, “Network Fault Protection in Action”, if rather
than a network partition, nodes A and B fail, node C is the only node still running. Although node C
is viable and could continue because the cluster was started with K-safety set to 2, if fault protection is
enabled node C will shut itself down to avoid a partition.

Intheworst case, if half the nodes of acluster fail, the remaining nodes may actually shut themselves down
under the special provisions for a network partition that splits a cluster into two equal parts. For example,
consider the situation where atwo node cluster with ak-safety value of one has network partition detection
enabled. If one of the nodes fails (half the cluster), thereis only a 50/50 chance the remaining node is the
"blessed" node chosen to continue under these conditions. If the remaining node is not the chosen node, it
will shut itself down to avoid a conflict, taking the database out of servicein the process.

Because this situation — a 50/50 split — could result in either a network partition or a viable cluster
shutting down, VoltDB recommends always using network partition detection and using clusters with an
odd number of nodes. By using network partitioning, you avoid the dangers of a partition. By using an
odd number of servers, you avoid even the possibility of a 50/50 split, whether caused by partitioning or
node failures.

Chapter 11. Database Replication

There are times when it is useful to create multiple copies of a database. Not just a snapshot of a moment
intime, but live, constantly updated copies.

K-safety maintains redundant copies of partitions within a single VoltDB database, which helps protect
the database cluster against individua node failure. Database replication also creates a copy. However,
database replication creates and maintains copiesin separate, often remote, databases.

VoltDB supports two forms of database replication:
* One-way (Passive)
» Two-way (Cross Datacenter)

Passive replication copies the contents from one database, known as the master database, to the other,
known as the replica. In passive replication, replication occurs in one direction: from the master to the
replica. Clients can connect to the master database and perform all normal database operations, including
INSERT, UPDATE, and DELETE statements. As shown in Figure 11.1, “Passive Database Replication”
changes are copied from the master to the replica. To ensure consistency between the two databases, the
replicais started as a read-only database, where only transactions replicated from the master can modify
the database contents.

Figure 11.1. Passive Database Replication

==t
ww

Clients
EE H B B E E E EHE BE BB BB ’ E E
Cluster 1 Cluster 2
Master Replica

CrossDatacenter Replication (XDCR), or active replication, copies changesin both directions. It ispos-
sible for client applicationsto perform read/write operations on either cluster and changes in one database
are then copied and applied to the other database. Figure 11.2, “ Cross Datacenter Replication” shows how
XDCR can support client applications attached to each database instance.

85

Database Replication

11.1.

Figure 11.2. Cross Datacenter Replication

Q. QA
oy o

Clients Clients
:: H B B HE E HE BE N B R B ECHN ’ = =
am HE B EEEEEEENUENUNOI EgQ
Cluster 1 Cluster 2
Active Active

Database replication (DR) provides two key business advantages. The first is protecting your business
data against catastrophic events, such as power outages or natura disasters, which could take down an
entire cluster. Thisis often referred to as disaster recovery. Because the two clusters can be in different
geographic locations, both passive DR and XDCR allow one of the clusters to continue unaffected when
the other becomes inoperable. Because the replicais available for read-only transactions, passive DR also
allows you to offload read-only workloads, such as reporting, from the main database instance.

The second business issue that DR addresses is the need to maintain separate, active copies of the data-
base in two separate locations. For example, XDCR allows you to maintain copies of a product inventory
database at two separate warehouses, close to the applications that need the data. This feature makes it
possible to support massive numbers of clients that could not be supported by a single database instance
or might result in unacceptabl e latency when the database and the users are geographically separated. The
databases can even reside on separate continents.

It is important to note, however, that database replication is not instantaneous. The transactions are com-
mitted locally, then copied to the other database. So when using XDCR to maintain two active clustersyou
must be careful to design your applications to avoid possible conflicts when transactions change the same
record in the two databases at approximately the same time. See Section 11.3.5, “Understanding Conflict
Resolution” for more information about conflict resolution.

The remainder of this chapter discusses the following topics:
» Section 11.1, “How Database Replication Works’

* Section 11.2, “Using Passive Database Replication”

» Section 11.3, “Using Cross Datacenter Replication”

» Section 11.4, “Monitoring Database Replication”

How Database Replication Works

Database replication (DR) involves duplicating the contents of selected tables between two database clus-
ters. In passive DR, the contents are copied in one direction: from master to replica. In active or cross
datacenter DR, changes are copied in both directions.

Y ou identify which tables to replicate in the schema, by specifying the table namein aDR TABLE state-
ment. For example, to replicate all tables in the voter sample application, you would execute three DR
TABLE statements when defining the database schema:

86

Database Replication

DR TABLE cont estants;
DR TABLE vot es;
DR TABLE area_code_state;

11.1.1. Starting Database Replication

Y ou enable DR by including the <dr > tag in the deployment files of the two databases. The<dr > element
identifies the unique cluster I D for each database (a number between 0 and 127) and the connection source
of replication as the host name or |P address of one or more nodes from the other producer database. For

example:
<dr id="2">

<connecti on source="serverAl, server A2" />
</ dr>

Each cluster must have aunique ID. For passive DR, only thereplicaneedsa<connect i on> element,
since replication occurs in only one direction. For active or cross datacenter replication (XDCR), both
clusters must include the <connect i on> element pointing at each other.

Finally, for XDCR, you must include the DDL statement SET DR=ACTI VE; as part of the schema on
both clusters before DR begins. For passive DR, you must start the replica database with the- - r epl i ca
flag on the command line to ensure the replica is in read-only mode. Once the clusters are configured
properly and the schema of the DR tables match in both databases, replication starts.

The actual replication processis performed in multiple parallel streams; each unique partition on one clus-
ter sends abinary log of completed transactions to the matching partition on the other cluster. Replicating
by partition has two key advantages:

» Theprocessisfaster — Because the replication process uses abinary log of the results of the transaction
(rather than the transaction itself), the receiving cluster (or consumer) does not need to reprocess the
transaction; it simply applies the results. Also, since each partition replicates autonomously, multiple
streams of data are processed in parallel, significantly increasing throughout.

» The process is more durable — In a K-safe environment, if a server fails on either cluster, individua
partition streams can be redirected to other nodes or a stream can wait for the server to rejoin — without
interfering with the replication of the other partitions.

If data already exists in one of the clusters before database replication starts for the first time, that data-
base sends a snapshot of the existing data to the other, as shown in Figure 11.3, “Replicating an Existing
Database” . Once the snapshot isreceived and applied (and the two clusters are in sync), the partitions start
sending binary logs of transaction results to keep the clusters synchronized.

87

Database Replication

Figure 11.3. Replicating an Existing Database

Q) b
S
Existing @-e' ég
Data ‘5?)
==QQOOOD%IIIII’==
HE HE
Cluster 1 Cluster 2

For passive DR, only the master database can have existing data before starting replication for the first
time. The replica's DR tables must be empty. For XDCR, only one of the two databases can have datain
the DR tables. If both clusters contain data, replication cannot start. Once DR has started, the databases
can stop and recover using command logging without having to restart DR from the beginning.

11.1.2. Database Replication, Availability, and Disaster Re-
covery

Once replication begins, the DR process is designed to withstand normal failures and operational down-
time. When using K-safety, if a node fails on either cluster, you can rejoin the node (or a replacement)
using the voltdb rejoin command without breaking replication. Similarly, if either cluster shuts down,
you can use voltdb recover to restart the database and restart replication where it left off, assuming you
are using command logging.

If unforeseen events occur that make either database unreachable, database replication lets you replace the
missing database with its copy. Thisprocessisknown asdisaster recovery. For cross datacenter replication
(XDCR), you simply need to redirect your client applications to the remaining cluster. For passive DR,
there is an extra step. To replace the master database with the replica, you must issue the voltadmin
promote command on the replicato switch it from read-only mode to a fully operational database.

Figure 11.4. Promoting the Replica

Qo
(ww

|} |

| |

| | |
Cluster1 Cluster 2
Master Replica

$ voltadmin promote

88

Database Replication

See Section 11.2.5.3, “Promoting the Replica When the Master Becomes Unavailable” for moreinforma-
tion on promoting the replica database.

11.1.3. Database Replication and Completeness

11.2

It is important to note that, unlike K-safety where multiple copies of each partition are updated simulta-
neously, database replication involves shipping the results of completed transactions from one database
to another. Because replication happens after the fact, there is no guarantee that the contents of the two
clustersareidentical at any given point intime. Instead, the receiving database (or consumer) "catches up"
with the sending database (or producer) after the binary logs are received and applied by each partition.

Also, because DR occurs on a per partition basis, changes to partitions may not occur in the same order
on the consumer, since one partition may replicate faster than another. Normally this is not a problem
because the results of all single-partitioned transactions are atomic in the binary log. Also, any changesto
replicated tables are handled as atomic in the binary logs, to ensure all copies of the table on the consumer
remain consistent. However, changes to partitioned tables from within amulti-partitioned transaction will
result in separate logs that can arrive at the consumer's partitions at different times.

If the producer cluster crashes, there is no guarantee that the consumer has managed to retrieve al the
logs that were queued. Therefore, it is possible that some transactions that completed on the producer are
not reflected on the consumer. More importantly, if any multi-partitioned transactions update partitioned
tables, you should be aware of the possibility that all of the results of that transaction did not arrive si-
multaneously. Y ou may need to check the contents of the consumer to see if any such transactions were
interrupted in flight.

Fortunately, using command logging and the voltdb recover command to restart the failed cluster, any
unacknowledged transactionswill be replayed from the failed cluster's disk-based DR cache, allowing the
two clustersto recover and resume DR where they left off. However, if the failed cluster does not recover,
you will need to decide how to proceed. You can choose to restart DR from scratch or, if you are using
passive DR, you can promote the replica to replace the master.

The decision whether to promote the replica or wait for the master to return (and hopefully recover all
transactions from the command log) is not an easy one. Promoting the replica and using it to replace the
original master may involve losing one or more transactions per partition. However, if the master cannot
be recovered or cannot not be recovered quickly, waiting for the master to return can result in significant
business loss or interruption.

Your own business requirements and the specific situation that caused the outage will determine which
choice to make — whether to wait for the failed cluster to recover or to continue operations on the re-
maining cluster only. The important point is that database replication makes the choice possible and sig-
nificantly eases the dangers of unforeseen events.

Using Passive Database Replication

The following sections provide step-by-step instructions for setting up and running passive replication
between two VolItDB clusters. The steps include:

1. Specifying what tables to replicate in the schema
2. Configuring the master and replica clusters for DR
3. Starting the databases

4. Loading the schema

89

Database Replication

The remaining sections discuss other aspects of managing passive DR, including:
* Stopping database replication
» Promoting the replica database

» Using thereplicafor read-only transactions

11.2.1. Specifying the DR Tables in the Schema

First, you must identify which tables you wish to copy from the master to the replica. Only the selected
tables are copied. You identify the tables in both the master and the replica database schema with the
DR TABLE statement, For example, the following statements identify two tables to be replicated, the
Customer and Order tables:

CREATE TABLE customer (
custonmer| D | NTEGER NOT NULL,
firstname VARCHAR(128),
| ast name VARCHAR(128)

);

CREATE TABLE order (

order| D | NTEGER NOT NULL,
custonmer| D | NTEGER NOT NULL,
pl aced TI MESTAMP

)

DR TABLE cust oner;

DR TABLE order;

Y ou can identify any regular table, whether partitioned or not, asa DR table, aslong asthetableis empty.
That is, the table must have no datain it when you issue the DR TABLE statement.

The important point to remember is that the schemafor both databases must contain matching table defi-
nitionsfor any tablesidentified as DR tables, including the associated DR TABLE declarations. Although
it is easiest to have the master and replica databases use the exact same schema, that is not necessary. The
replica can have a subset or superset of the tablesin the master, aslong asit contains matching definitions
for all of the DR tables. The replica schema can even contain additional objects not in the master schema,
such asadditional views. Which can be useful when using thereplicafor read-only or reporting workloads,
just aslong as the DR tables match.

11.2.2. Configuring the Clusters

The next step isto properly configure the master and replica clusters. First, the two database clusters must
have the same physical configuration — that is, the same number of nodes, sites per host, and K factor.
Y ou must also configure DR in the deployment file for both clusters.

You enable DR in the deployment file using the <dr > element, including a unique cluster ID for each
database cluster. The ID is a number between 0 and 127 which VoltDB uses to uniquely identify each
cluster as part of the DR process. For example, you could assign ID=1 for the master cluster and ID=2
for the replica. On the replica, you must also include a<connect i on> sub-element that points to the
master database. For example:

Master Cluster <dr id="1" />
Replica Cluster <dr id="2">
<connecti on source="Master Svr A, Master SvrB" />
</dr>

90

Database Replication

11.2.3. Starting the Clusters

The next step isto start the databases. Y ou start the master database as normal, specifying the DR-enabled
deployment file. If you create a new database, you can then load the schema, including the necessary DR
TABLE statements. Or you can recover a previous database instance if desired. Once the master database
starts, it isready and can interact with client applications.

For the replica database, when you first start DR, you must creste a new database using the voltdb create
command. You must also use the - - r epl i ca flag and specify your customized deployment file. For
example:

$ voltdb create --replica --depl oynent=dr-depl oy. xn

When you specify the- - r epl i ca argument, the database is marked asread-only. Y ou can execute DDL
statements to load the database schema, but you cannot perform any data manipulation queries such as
INSERT, UPDATE, or DELETE.

The sour ce attribute of the <connect i on> tag in the deployment file identifies the hostname or IP
address (and optionally port number) of one or more serversinthe master cluster. Y ou can specify multiple
servers so that DR can start even if one of the listed servers on the master cluster is currently down.

Itisusually convenient to specify the connection information when starting the database. But this property
can be changed after the database starts, in case you do not know the address of the master cluster nodes
before starting. (Note, however, that the cluster ID cannot be changed once the database starts.)

11.2.4. Loading the Schema and Starting Replication

As soon as the replica database starts with DR enabled, it will attempt to contact the master database to
start replication. The replica will issue warnings that the schema does not match, since the replica does
not have any schemadefined yet. Thisis normal. The replicawill periodically contact the master until the
schemafor DR objects on the two databases match. This gives you time to load a matching schema.

Assoon asthe replicadatabase has started, you can load the appropriate schema. L oading the same schema
as the master database is the easiest and recommended approach. The key point is that once a matching
schemais loaded, replication will begin automatically.

When replication starts, the following actions occur:

1. Thereplicaand master databases verify that the two clusters have the same physical configuration and
that the DR tables match on both clusters.

2. If dataaready existsin the DR tables on the master, the master sends a snapshot of the current contents
to the replicawhere it is restored into the appropriate tables.

3. Oncethe snapshot, if any, isrestored, the master starts sending binary logs of changesto the DR tables
to thereplica

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique
partition and, in aK safe environment, the DR process becomes durable across node failures and rejoins
and other non-fatal events.

If either the master or the replica database crashes and needs to restart, it is possible to restart DR where
it left off, assuming the databases are using command logging for recovery. If the master fails, you can
perform a voltdb recover action to restart the master database. The replica will wait for the master to
recover. The master will then replay any DR logs on disk and resume DR where it | ft off.

91

Database Replication

If thereplicafails, the master will queuethe DR logsto disk waiting for thereplicato return. If you perform
avoltdb recover action, including the --replica flag, on the replica cluster, the replica will perform the
following actions:

1. Restart the replica database, restoring both the schema and the data, and placing the database in read-
only mode.

2. Contact the master cluster and attempt to re-establish DR.

3. If both clusters agree on where (that is, what transaction), DR was interrupted, DR will resume from
that point, starting with the DR logs that the master database has queued in the interim.

Note that you must use the --r eplica flag when recovering the replica database if you want to resume DR
where it left off. For example:

$ voltdb recover --replica --depl oynment =dr-depl oy. xm

If you do not include the --r eplica flag, the database will resume as a normal, read/write database and not
attempt to contact the master database. Also, if the clusters do not agree on where DR stopped during step
#3, the replica database will generate an error and stop replication. For example, if you recover from an
asynchronous command log where the last few DR logs were ACKed to the master but not written to the
command log, the master and the replicawill bein different states when the replica recovers.

If this occurs, you must restart DR from the beginning, by creating a new, empty replica database and
reloading a compatible schema. Similarly, if you are not using command logging, you cannot recover the
replica database and must start DR from scratch.

11.2.5. Stopping Replication

If, for any reason, you wish to stop replication of a database, there are two ways to do this: you can stop
sending data from the master or you can "promote” the replica to stop it from receiving data. Since the
individual partitions are replicating data independently, if possible you want to make sure all pending
transfers are completed before turning off replication.

So, under the best circumstances, you should perform the following steps to stop replication:

1. Stop write transactions on the master database by putting it in admin mode using the voltadmin pause
command.

2. Wait for all pending DR log transfersto be completed.
3. Reset DR on the master cluster using the voltadmin dr reset command.

4. Depending on your goals, either shut down the replica or promote it to a fully-functional database as
described in Section 11.2.5.3, “Promoting the Replica When the Master Becomes Unavailable”.

11.2.5.1. Stopping Replication on the Master if the Replica Becomes Un-
available

If the replica becomes unavailable and is not going to be recovered or restarted, you should consider
stopping DR on the master database, to avoid consuming unnecessary disk space.

TheDR processisresilient against network glitchesand node or cluster failures. Thisdurability isachieved
by the master database continually queueing DR logs in memory and — if too much memory is required
— todisk whileit waitsfor the replicato ACK the last message. Thisway, when the network interruption

92

Database Replication

or other delay is cleared, the DR process can pick up where it |eft off. However, the master database has
no way to distinguish a temporary network failure from an actual stoppage of DR on the replica.

Therefore, if the replica stops unexpectedly, it is a good idea to restart the replica and re-initiate DR as
soon as convenient. Or, if you are not going to restart DR, you should reset DR on the master to cancel
the queuing of DR logs and to delete any pending logs. To reset the DR process on the master database,
use the voltadmin dr reset command. For example:

$ voltadnm n dr reset --host=serverA

Of course, if you do intend to recover and restart DR on the replica, you do not want to reset DR on the
master. Resetting DR on the master will delete any queued DR logs and make restarting replication where
it left off impossible and force you to start DR over from the beginning.

11.2.5.2. Database Replication and Disaster Recovery

If unforeseen events occur that make the master database unreachabl e, database replication | ets you replace
the master with the replicaand restore normal business operationswith aslittle downtime as possible. You
switch the replica from read-only to a fully functional database by promoting it. To do this, perform the
following steps:

1. Make sure the master is actually unreachable, because you do not want two live copies of the same
database. If it is reachable but not functioning properly, be sure to pause or shut down the master
database.

2. Promote the replicato a read/write mode using the voltadmin promote command.
3. Redirect the client applications to the newly promoted database.

Figure 11.4, “Promoting the Replica’ illustrates how database replication reduces the risk of major disas-
ters by alowing the replicato replace the master if the master becomes unavailable.

Once the master is offline and the replica is promoted, the data is no longer being replicated. As soon as
normal business operations have been re-established, it isagood ideato also re-establish replication. This
can be done using any of the following options:

« If the original master database hardware can be restarted, take a snapshot of the current database (that
is, the original replica), restore the snapshot on the original master and redirect client traffic back to the
original. Replication can then be restarted using the original configuration.

» An alternative, if the original database hardware can be restarted but you do not want to (or need to)
redirect the clients away from the current database, is to use the original master hardware to create
areplica of the newly promoted cluster — essentially switching the roles of the master and replica
databases — as described in Section 11.2.5.4, “Reversing the Master/Replica Roles’.

« If the original master hardware cannot be recovered effectively, create a new database cluster in athird
location to use as areplica of the current database.

11.2.5.3. Promoting the Replica When the Master Becomes Unavailable

If the master database becomes unreachable for whatever reason (such as catastrophic system or network
failure) it may not be possible to turn off DR in an orderly fashion. In this case, you may choose to “turn
on” the replicaas afully active (writable) database to replace the master. To do this, you use the voltad-
min promote command. When you promote the replica database, it exits read-only mode and becomes
afully operational VoltDB database. For example, the following Linux shell command uses voltadmin
to promote the replica node serverB:

93

Database Replication

$ voltadm n promote --host=serverB

11.2.5.4. Reversing the Master/Replica Roles

If you do promote the replicaand start using it as the primary database, you will likely want to establish a
new replica as soon as possible to return to the original production configuration and level of durability.
You can do this by creating a new replica cluster and connecting to the promoted database as described
in Section 11.2.3, “ Starting the Clusters’. Or, if the master database can be restarted, you can reuse that
cluster as the new replica, by modifying the deployment file to include the necessary <connect i on>
element and starting the database cluster with voltdb create --replica.

11.2.6. Database Replication and Read-only Clients

While database replication is occurring, the only changes to the replica database come from the binary
logs. Client applications can connect to the replica and use it for read-only transactions, including read-
only ad hoc queries and system procedures. However, any attempt to perform a write transaction from a
client application returns an error.

There will always be some delay between a transaction completing on the master and its results being
applied on thereplica. However, for read operationsthat do not require real-time accuracy (such as report-
ing), the replica can provide a useful source for offloading certain less-frequent, read-only transactions
from the master.

Figure 11.5. Read-Only Accessto the Replica

=Sl
=g n

(read-only)
== E B E E EEEEEENEBENEENETZBR * = =
1 | [} |
Cluster1 Cluster 2
Master Replica

11.3. Using Cross Datacenter Replication

The following sections provide step-by-step instructions for setting up and running cross datacenter repli-
cation (XDCR) between two VoltDB clusters. The sections describe how to:

1. Design your schema, including:
e Enabling XDCR, or active DR
* ldentifying the DR tables
2. Configure the database clusters, including:

» Choosing unique cluster IDs

94

Database Replication

* |dentifying the DR connections
3. Start the databases
4. Load the schemaand start replication
Later sections discuss other aspects of managing XDCR, including:
* Stopping database replication

* Resolving conflicts

I mportant

XDCR isaseparately licensed feature. If your current VoltDB license does not include akey for
XDCR you will not be able to compl ete the tasks described in this section. See your VoltDB sales
representative for more information on licensing XDCR.

11.3.1. Designing Your Schema for Active Replication

If you plantouse XDCR or active DR, you need to design your database schemaappropriately. Specifically
you must:

» Enablethe use of XDCR

o |dentify the tables that will be replicated

11.3.1.1. Enabling Active Replication in the Schema

To manage XDCR, VoltDB stores asmall amount (8 bytes) of extra metadata with every row of data that
is shared. To allocate this additional space, you must tell VoltDB you will be using active DR. You do
thiswith the SET DR=ACTIVE statement in your schema:

SET DR=ACTI VE;

You must execute the SET DR=ACTIVE before there is any data in the tables that will be replicated.
Consequently, it is easiest to include it at the beginning of your schema. However, it can be executed at
any time — even after one or more tables are declared as DR tables with the DR TABLE statement —
aslong asthe DR tables are empty.

11.3.1.2. Identifying the DR Tables in the Schema

Next, you must identify which tables you wish to share between the two databases. Only the sel ected tables
are copied. You identify the tables in the schema for both databases with the DR TABLE statement. For
example, the following statements identify two tables to be replicated, the Customer and Order tables:

SET DR=ACTI VE;

CREATE TABLE custoner (
custoner| D | NTEGER NOT NULL,
firstname VARCHAR(128),
LASTNAME var char (128)

);

CREATE TABLE order (
order | D | NTEGER NOT NULL,

95

Database Replication

custoner| D | NTEGER NOT NULL,
pl aced TI MESTAMP

)
DR TABLE cust oner;
DR TABLE order;

Y ou can identify any regular table, whether partitioned or not, asa DR table, aslong asthe tableis empty.
That is, the table must have no datain it when you issue the DR TABLE statement. The important point
to remember is that the schema definitions for the tables participating in DR, including the DR TABLE
statements, must be identical on the two clusters.

11.3.2. Starting the Database Clusters

Thenext stepisto start the databases. The two database clusters must have the same physical configuration
— that is, the same number of nodes, sites per host, and K factor. Y ou must also enable and configure
DR in the deployment file, including:

» Choosing aunique ID for each cluster

* ldentifying the DR connections

11.3.2.1. Choosing Unique IDs

Y ou enable DR in the deployment file using the <dr > element and including aunique cluster 1D for each
database cluster.

To manage the DR process VoltDB needs to uniquely identify the clusters. Y ou provide this unique iden-
tifier as a number between 0 and 127 when you configure the clusters. For example, if we assign ID=1
to acluster in New York and ID=2 to another in Chicago, their respective deployment files must contain
the following <dr > elements:

New York Cluster
<dr id="1" />
Chicago Cluster

<dr id="2" />

11.3.2.2. Identifying the DR Connections

For each database cluster, you must also the specify the source of replicationinthe<connect i on> sub-
element. You do this by pointing each cluster at the other, specifying one or more servers on the other
cluster in the source attribute.

For example, say the New York cluster has nodes NY serverA, NY serverB, and NY serverC. While the
Chicago cluster has CHIserverX, CHIserverY, and CHIserverZ. The deployment filesfor the two clusters
might look like this:

New York Cluster
<dr id="1">

<connection source="CH server X, CH serverY" />
</ dr>

Chicago Cluster

96

Database Replication

<dr id="2">
<connection sour ce="NYserver A NYser ver B, NYserverC' />
</ dr>

Note that both clusters must have a connection defined for active replication to start. Once the deployment
files have the necessary declarations, you can start the database clusters. However, it isimportant to note
that as soon as both databases start, they will attempt to contact each other, verify that the DR table schema
match, and then start the DR process.

So often the easiest method for starting the databasesis to:

1. Start one cluster

2. Load the schema (including the DR table declarations) on that cluster

3. Oncethefirst cluster isfully configured, start the second cluster and load the schema

Using this approach, DR will not start until step #3 is complete and both clusters are fully configured. An
alternative approach is to start both databases leaving the source attribute of the <connection> element
empty. For example:

<dr id="2">
<connecti on source="" />
</ dr>

You can then load the schema on both databases and perform any other preparatory work you require.
Then edit the deployment files filling in the source attribute for each cluster to point at the other. Then use
the voltadmin update command to update the deployment files on the running databases. As soon as the
source attribute is defined and the schema match, the DR process will begin.

Note

Although the source attribute can be modified on arunning database, the unique cluster ID cannot
be changed after the database starts. So it isimportant to include the <dr> element with the unique
ID intheinitial deployment file when starting the databases.

11.3.3. Loading a Matching Schema and Starting Replication

As soon as the databases start with DR enabled, they will attempt to contact the cooperating database to
start replication. Each cluster will issue warnings until the schemafor both databases match. Thisisnormal
and gives you time to load a matching schema. The key point is that once matching schema are loaded on
both databases, replication will begin automatically.

When replication starts, the following actions occur:

1. The clusters verify that they have the same physical configuration and that the DR tables match on
both clusters.

2. If data already exists in the DR tables on one of the databases, that cluster sends a snapshot of the
current contents to the other cluster where it is restored into the appropriate tables.

3. Once the snapshoat, if any, is restored, both databases start sending binary logs of changes to any DR
tables to the other cluster.

If any errors occur during the snapshot transmission, replication stops and must be restarted from the
beginning. However, once the third step is reached, replication proceeds independently for each unique

97

Database Replication

partition and, in aK safe environment, the DR process becomes durable across node failures and rejoins
aswell as cluster shutdowns and recoveries.

11.3.4. Stopping Replication

If, for any reason, you need to break replication between the two databases, all you need to do is issue
the voltadmin dr reset command to either cluster. For example, if one cluster goes down and will not be
brought back online for an extended period, you will want to issue avoltadmin dr reset command on the
remaining cluster to tell it to stop queuing binary logs. If not, the logs will be saved on disk, waiting for
the other cluster to recover, until you run out of disk space.

For similar reasons, if you break replication while both databases are running, you should issue the voltad-
min dr reset command to both clusters. Although using dr reset on one cluster is sufficient to break the
DR process, the cluster that does not receive the reset command will continue to queue binary logs until
it, too, isreset.

11.3.5. Understanding Conflict Resolution

One aspect of database replication that is unique to cross datacenter replication (XDCR) is the need to
prepare for and manage conflicts between the two databases. Conflict resolution is not an issue for passive
replication since changes travel in only one direction. However, with XDCR it is possible for changes to
be made to the same data at approximately the same time on the two databases. Those changes are then
sent to the other database, resulting in possible inconsistencies or invalid transactions.

For example, say clusters A and B are processing transactions as shown in Figure 11.6, “ Transaction
Order and Conflict Resolution”. Cluster A executes a transaction that modifies a specific record and this
transaction is included in the binary log A;. By the time cluster B receives the binary log and processes
A4, cluster B has aready processed its own transactions B, and B». Those transactions may have modified
the same record as the transaction in A1, or another record that would conflict with the changein A1, such
as amatching unique index entry.

Figure 11.6. Transaction Order and Conflict Resolution

. .

Cluster A Cluster B
) —Bi—
I
Bi— «+ TRA T/
As— B:—
A4 _ BA:

Under these conditions, cluster B cannot simply apply the changes in A4 because doing so could violate
the uniqueness constraints of the schema and, more importantly, is likely to result in the content of the
two database clusters diverging. Instead, cluster B must decide which change takes priority. That is, what
resolution to the conflict is most likely to produce meaningful results or match the intent of the business
application. This decision making processis called conflict resolution.

No matter what the resolution, it isimportant that the database administrators are notified of the conflict,
why it occurred, and what action was taken. The following sections explain:

98

Database Replication

11.3.5.1.

How to avoid conflicts
How VoltDB resolves conflicts when they do occur
What types of conflicts can occur

How those conflicts are reported

Designing Your Application to Avoid Conflicts

VoltDB uses well-defined rules for resolving conflicts. However, the best protection against conflicts and
the problems they can cause is to design your application to avoid conflictsin the first place. There are at
least two things you can do in your client applications to avoid conflicts:

11.3.5.2.

Use Primary Keys

It is best, wherever possible, to define a primary key for al DR tables. The primary key index greatly
improves performance for finding the matching row to apply the change on the consumer cluster. It is
also required if you want conflicts to be resolved using the standard rules described in the following
section. Any conflicting action without a primary key is rejected.

Apply related transactionsto the same cluster

Another tactic for avoiding conflicts isto make sure any autonomous set of transactions affecting a set
of rows are al applied on the same cluster. For example, ensuring that all transactions for a single user
session, or associated with a particular purchase order, are directed to the same cluster.

How Conflicts are Resolved

Even with the best application design possible, errorsin program logic or operation may occur that result
in conflicting records being written to the two databases. When a conflict does occur, VoltDB follows
specific rules for resolving the issue. The conflict resolution rules are:

Conflicts are resolved on a per action basis. That is, resolution rules apply to the individual INSERT,
UPDATE, or DELETE operation on a specific tuple. Resolutions are not applied to the transaction as
awhole.

The resolution is that the incoming action is accepted (that is, applied to the receiving database) or
rejected.

Only actions involving a table with a primary key can be accepted, al other conflicting actions are
rejected.

Accepted actions are applied as a whole — the entire record is changed to match the result on the
producer cluster. That meansfor UPDATE actions, all columnsarewritten not just the columns specified
in the SQL statement.

For tables with primary keys, the rules for which transaction wins are, in order:
1. DELETE transactions always win

2. If neither action isa DELETE, the last transaction (based on the timestamp) wins

Let'slook at asimple example to see how these rules work. Assume that the database stores user records,
using a numeric user ID as the primary key and containing columns for the user's name and password. A
user logs on simultaneously in two locations and performs two separate updates: one on cluster A changing

99

Database Replication

their name and one on cluster B changing the password. These updates are almost simultaneous. However,

cluster A timestamps its transaction as occurring at 10:15.00.003 and cluster B timestamps its transaction
at 10:15.00.001.

The binary logs from the two transactions include the type of action, the contents of the record before
and after the change, and the timestamps — both of the last previous transaction and the timestamp of the
new transaction. (Note that the timestamp includes both the time and the cluster ID where the transaction
occurred.) So the two binary logs might look like the following.

Binary Log A1:

Action: UPDATE
Current Tinestanp: 1, 10:15.00. 003
Previ ous Tinmestanp: 1, 06:30.00.000

Before After
User | D 12345 User | D 12345
Nane: Joe Smith Nane: Joseph Snmith
Passwor d: abal one Passwor d: abal one
Binary Log By:

Action: UPDATE
Current Tinmestanp: 2, 10:15.00.001
Previ ous Timestanp: 1, 06:30.00.000

Before After
User | D: 12345 User | D: 12345
Name: Joe Snmith Nane: Joe Smth
Passwor d: abal one Passwor d: fl ounder

When the binary log A, arrives at cluster B, the DR process performs the following steps:
1. Usesthe primary key (12345) to look up the current record in the database.
2. Compares the current timestamp in the database with the previous timestamp in the binary log.

3. Because the transaction in B4 has aready been applied on cluster B, the time stamps do not match. A
conflict is recognized.

4. A primary key exists, so cluster B attempts to resolve the conflict by comparing the new timestamp,
10:15.00.003, to the current timestamp, 10:15.00.001.

5. Becausethe new timestamp isthe later of the two, the new transaction "wins' and the change is applied
to the database.

6. Finaly, the conflict and resolution is logged. (See Section 11.3.5.4, “Reporting Conflicts’ for more
information about how conflicts are reported.)

Note that when the UPDATE from A is applied, the change to the password in B is overwritten and
the password is reset to "abalone". Which at first looks like a problem. However, when the binary log B
arrives at cluster A, the same steps are followed. But when cluster A reaches steps #4 and 5, it finds that
the new timestamp from B is older than the current timestamp, and so the action isrejected and the record
is left unchanged. As a result both databases end up with the same value for the record. Essentially, the
password change is dropped.

100

Database Replication

If the transaction on cluster B had been to delete the user record rather than change the password, then
the outcome would be different, but still consistent. In that case, when binary log A, reaches cluster B, it
would not be able to find the matching record in step #1. Thisis recognized as a DELETE action having
occurred. Since DELETE awayswins, theincoming UPDATE isrejected. Similarly, when binary log B,
reaches cluster A, the previous timestamps do not match but, even though the incoming action in B, has
an older timestamp than the UPDATE action in A1, B; "wins' because it is a delete action and the record
isdeleted from cluster A. Again, the result is consistent across the two databases.

The real problem with conflicts is when there is no primary key on the database table. Primary keys
uniquely identify arecord. Without a primary key, thereisno way for VoltDB to tell, even if there are one
or more unique indexes on the table, whether two records are the same record modified or two different
records with the same unique key values.

As aresult, if there is a conflict between two transactions without a primary key, VoltDB has no way to
resolve the conflict and simply rejects the incoming action. Going back to our example, if the user table
had a unique index on the user 1D rather than a primary key, and both cluster A and cluster B update the
user record at approximately the same time, when binary log A1 arrives at cluster B, it would look for the
record based on al columnsin the record and fail to find a match.

However, when it attemptsto insert therecord, it will encounter a constraint violation on the unique index.
Again, since thereisno primary key, VoltDB cannot resolve the conflict and rejects the incoming action,
leaving the record with the changed password. On cluster A, the same process occurs and the password
changein By getsrejected, leaving cluster A with a changed name column and database B with a changed
password column — the databases diverge.

11.3.5.3. What Types of Conflict Can Occur

The preceding section uses a simple case of conflicting UPDATE transactions to illustrate the steps in-
volved in conflict resolution. However, there are several different types of conflict that can occur. First,
there are three possible actions that the binary log can contain: INSERT, UPDATE, or DELETE. There
are a'so three types of conflicts that can be generated:

* Missing row — The affected row is missing from the consumer database.

» Timestamp mismatch — The affected row exists in the consumer database, but has a different time-
stamp than expected (in other words, it has been modified).

» Congtraint violation — Applying theincoming action would result in one or more constraint violations
on unique indexes.

A missing row means that the binary log contains an UPDATE or DELETE action, but the affected row
cannot befound in the consumer database. (A missing row conflict cannot occur for INSERT actions, since
INSERT assumes no such row exists.) In the case of amissing row conflict, VoltDB assumes a DELETE
action has removed the affected row. Since the rule isthat DEL ETE wins, this means the incoming action
isrejected.

Note that if the table does not have aprimary key, the assumption that a DEL ETE action removed the row
is not guaranteed to be true, since it is possible an UPDATE changed the row. Without a primary key,
there isno way for the DR process to find the matching row when some columns may have changed, so it
assumes it was deleted. As aresult, an UPDATE could occur on one cluster and a DELETE on the other.
Thisiswhy assigning primary keysis recommended for DR tables when using XDCR.

If the matching primary key is found, it is still possible that the contents of the row have been changed.
In which case, the timestamps will not match and a timestamp mismatch conflict occurs. Again, this can
happen for UPDATE and DEL ETE actionswhere an existing row isbeing modified. If theincoming action

101

Database Replication

is a DELETE, it takes precedence and the row is deleted. If not, if the incoming action has the later of
the two timestamps, it is accepted. If the existing record has the later timestamp, the incoming action is
rejected.

Finally, whether the timestamps match or not, with an INSERT or UPDATE action, it is possible that
applying the action would violate one of more unique index constraints. This can happen because another
row has been updated with matching values for the unique index or another record has been inserted
with similar values. Whatever the cause, VoltDB cannot apply the incoming action so it is rejected. Note
that for a single action there can be more than one unique index that applies to the table, so there can
be multiple constraint violations as well as a possible incorrect timestamp. When a conflict occurs, all
conflicts associated with the action are included in the conflict log.

To summarize, the following chart shows the conflicts that can occur with each type of action and the
result for tables with a primary key.

Action Possible Conflict Result for Tableswith Primary Key
INSERT Constraint violation Rejected
UPDATE Missing row Rejected
Timestamp mismatch Last transaction wins
Constraint violation Rejected
DELETE Missing row Accepted (no op)
Timestamp mismatch Accepted

11.3.5.4. Reporting Conflicts

VoltDB makes arecord of every conflict that occurs when processing the DR binary logs. These conflict
logs include:

* Theintended action

e Thetype of conflict

» Thetimestamp and contents of the row before and after the action from the binary log

» Thetimestamp and contents of the row(s) in the consumer database that caused the conflict

By default, these logs are written as comma-separated value (CSV) files on the cluster where the
conflicts occur. These files are usually written to a subfolder of the voldbroot directory (vol t db-
root/ xdcr_confli cts)usingthefileprefix LOG However, you can configure thelogsto be written
to different destinations or locations using the VoltDB export deployment settings.

The DR process writes the conflicts as export data to the export stream VOLTDB_XDCR_CONFLICTS.
You do not need to explicitly configure export — the DR process automatically declares the necessary
export tables, establishes a default export configuration for the file connector, and enables the export
stream. However, if you want the datato be sent to adifferent location or using adifferent export connector,
you can do this by configuring the export stream yourself.

For example, if you want to export the XDCR conflicts to a Kafka stream where they can be used
for automatic notifications, you can change the export configuration in the deployment file. The
following deployment file code writes the conflict logs to the Kafka topic sysops on the broker
kafkabroker.mycompany.com:

<export>
<configuration enabl ed="true" type="kafka"

102

Database Replication

strean¥" VOLTDB_XDCR_CONFLI CTS" >
<property nane="br oker">kaf kabr oker. nyconpany. conx/ pr operty>
<property nane="topi c">sysops</property>
</ configuration>
</ export >

Each action in the binary log can generate one or more conflicts. When this occurs, VoltDB logs the
conflict(s) as multiple rows in the conflict report. Each row is identified by the type of action (INSERT,
UPDATE, DELETE) aswell asthe type of information the row contains:

* EXISTING (EXT) — The timestamp and contents of an existing row in the consumer database that
caused a conflict. There can be multiple existing row logs, if there are multiple conflicts.

* EXPECTED (EXP) — The timestamp and contents of the row that is expected before the action is
applied (from the binary log).

* NEW (NEW) — The new timestamp and contents for the row once the action is applied (from the
binary log).

For an INSERT action, thereisno EXPECTED row and for aDELETE action thereisno NEW row. The
order of the rows in the report is as follows:

1. The EXISTING row, if thereis atimestamp mismatch

2. The EXPECTED row, if there is atimestamp mismatch

3. One or more EXISTING rows, if there are any constraint violations
4. The NEW row, for all actions but DELETE

Table 11.1, “ Structure of the XDCR Conflict Logs’ describes the structure and content of the conflict log
records in the export stream.

Table 11.1. Structure of the XDCR Conflict L ogs

Column Name Datatype Description
ROW_TYPE 3 Bytestring The type of row, specified as:
EXT — existing
EXP — expected
NEW— new
ACTION_TYPE 1 Byte string The type of action, specified as:
| —insert
U— update
D— delete
CONFLICT_TYPE 4 Byte string The type of conflict, specified as:
M SS — missing row
MSMI' — timestamp mismatch
CNST — constraint violation
CONFLICTS ON TINYINT Whether aconstraint violation is associated with the
_PRIMARY_KEY primary key. 1 for true and O for false.
DECISION 1 Bytestring How the conflict was resolved, specified as:

103

Database Replication

Column Name Datatype Description

A — the incoming action is accepted
R — the incoming action is rejected

CLUSTER_ID TINYINT The DR cluster ID of the cluster that last modified
the row

TIMESTAMP BIGINT The timestamp of the row.

DIVERGENCE 1 Bytestring Whether the resulting action could cause the two

cluster to diverge, specified as:

C — the clusters are consistent

D — the cluster may have diverged
TABLE_NAME String The name of the table.

TUPLE JSON-encoded string The contents of the row, as a JSON-encoded string.

11.4. Monitoring Database Replication

Database replication runs silently in the background. To ensure replication is proceeding effectively, Volt-
DB provides statistics on both the producer and consumer clusters that help you understand the current
state of the DR process. Specifically, the statistics can tell you:

» The amount of DR data waiting to be sent from the producer
e Thetimestamp and unique ID of the last transaction received by the consumer
» Whether any partitions are "falling behind" in processing DR data

This information is available from the @Statistics system procedure using the "DR" selector on the pro-
ducer database and "DRCONSUMER" on the consumer. For one-way (passive) DR, the master database
acts as the producer and the replica acts as the consumer. For two-way (cross datacenter) replication, both
clusters act as both producer and consumer and can provide statistics on both roles:

* On the producer database, the @Statistics DR procedure includes columns for the transaction ID and
timestamp of the last queued transaction and for the last transaction ACKed by the consumer. The
difference between these two events can tell you the approximate latency between the two databases.

» On the consumer database, the @Statistics DRCONSUMER procedure includes statistics, on a per par-
tition basis, showing whether it has an identified "host" server from the producer cluster "covering" it,
or in other words, providing it DR logs. The system procedure results also include columns listing the
ID and timestamp of the last received transaction. If a consumer partition is not covered, it means it
has lost contact with the server on the producer database that was providing it logs (possibly due to a
node failure). It is possible for the partition to recover, once the covering server rejoins. However, the
difference between the last received timestamp of that partition and the other partitions may give you
an indication of how long the interruption has persisted and how far behind that partition may be.

104

Chapter 12. Security

12.1.

12.2.

Security is an important feature of any application. By default, VoltDB does not perform any security
checks when a client application opens a connection to the database or invokes a stored procedure. This
is convenient when devel oping and distributing an application on a private network.

However, on public or semi-private networks, it isimportant to make sure only known client applications
are interacting with the database. VoltDB lets you control access to the database through settings in the
schema and deployment files. The following sections explain how to enable and configure security for
your VoltDB application.

How Security Works in VoltDB

When an application creates aconnection to aV oltDB database (using ClientFactory.clientCreate), it pass-
es ausername and password as part of the client configuration. These parameters identify the client to the
database and are used for authenticating access.

At runtime, if security is enabled, the username and password passed in by the client application are vali-
dated by the server against the users defined in the deployment file. If the client application passesinavalid
username and password pair, the connection is established. When the application calls a stored procedure,
permissions are checked again. If the schema identifies the user as being assigned arole having access to
that stored procedure, the procedure is executed. If not, an error is returned to the calling application.

Note

VoltDB uses hashing rather than encryption when passing the username and password between
the client and the server. The Java and C++ clients use SHA-2 hashing while the older clients
currently use SHA-1. The passwords are also hashed within the database. For an encrypted solu-
tion, you can consider implementing Kerberos security, described in Section 12.7, “Integrating
Kerberos Security with VoltDB”.

There are three steps to enabling security for aVoltDB application:

1. Addthe<security enabl ed="t rue"/ > tagto the deployment file to turn on authentication and
authorization.

2. Define the users and roles you need to authenticate.
3. Define which roles have access to each stored procedure.

The following sections describe each step of this process, plus how to enable access to system procedures
and ad hoc queries.

Enabling Authentication and Authorization

By default VoltDB does not perform authenti cation and client applications have full accessto the database.
To enable authentication, add the <security> tag to the deployment file:

<depl oynent >
<security enabl ed="true"/>

</ depl oyment >

105

Security

12.3. Defining Users and Roles

The key to security for VoltDB applicationsis the users and roles defined in the schema and deployment
files. You define usersin the deployment file and roles in the schema.

Thissplit isdeliberate becauseit allows you to define the overall security structure globally in the schema,
assigning permissions to generic roles (such as operator, dbuser, apps, and so on). Y ou then define spe-
cific users and assign them to the generic roles as part of the deployment. This way you can create one
configuration (including cluster information and users) for development and testing, then move the data-
base to a different configuration and a different set of users for production by changing only onefile: the
deployment file.

Y ou define users within the <users> ... </users> tag set in the deployment file. The syntax for defining
usersisasfollows.

<depl oynent >
<user s>
<user nanme="user - nanme"
passwor d="passwor d-stri ng"
rol es="rol e-name[,...]" />

[...]

</ users>
</ depl oynent >
Include a <user> tag for every username/password pair you want to define.

Then within the schema you define the roles the users can belong to. Y ou define roles with the CREATE
ROLE statement.

CREATE ROLE rol e- nane;

Y ou specify which roles a user belongs to as part of the user definition in the deployment file using the
roles attribute to the <user> tag. For example, the following code defines three users, assigning operator
and devel oper the opsrole and devel oper and clientapp the dbuser role. When a user is assigned more than
one role, you specify the role names as a comma-delimited list.

<depl oynent >
<user s>
<user nane="operator" password="mech" rol es="ops" />
<user nane="devel oper" password="tech" rol es="ops, dbuser" />
<user nane="clientapp" password="xyzzy" rol es="dbuser" />
</ users>

</ depl oynent >
Two important notes concerning the assignment of users and roles:

» Users must be assigned at least one role, or else they have no permissions. (Permissions are assigned
by role.)

» There must be a corresponding role defined in the schemafor any roles listed in the deployment file.

106

Security

12.4. Assigning Access to Stored Procedures

Onceyou definethe users and roles you need, you assign them accessto individual stored proceduresusing
the ALLOW clause of the CREATE PROCEDURE statement in the schema. In the following example,
usersassigned therolesdbuser and ops are permitted accessto both the MyProcl and MyProc2 procedures.
Only users assigned the ops role have access to the MyProc3 procedure.

CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProcl,;
CREATE PROCEDURE ALLOW dbuser, ops FROM CLASS MyProc?2;
CREATE PROCEDURE ALLOW ops FROM CLASS MyProc3;

Usually, when security isenabled, you must specify accessrightsfor each stored procedure. If aprocedure
declaration does not include an ALLOW clause, no accessis allowed. In other words, calling applications
will not be able to invoke that procedure.

12.5. Assigning Access by Function (System Proce-
dures, SQL Queries, and Default Procedures)

It isnot always convenient to assign permissions one at atime. Y ou might want a special role for accessto
all user-defined stored procedures. Also, there are special capabilities available within VoltDB that are not
called out individually in the schema so cannot be assigned using the CREATE PROCEDURE statement.

For these specia cases VoltDB provides named permissions that you can use to assign functions as a
group. For example, the ALLPROC permission grants arole access to all user-defined stored procedures
so the role does not need to be granted access to each procedure individually.

Severa of the special function permissions have two versions: a full access permission and a read-only
permission. So, for example, DEFAULTPROC assigns accessto all default procedures while DEFAULT-
PROCREAD allows accessto only the read-only default procedures; that is, the TABLE.select procedures.
Similarly, the SQL permission alows the user to execute both read and write SQL queries interactively
while SQLREAD only allows read-only (SELECT) queries to be executed.

One additional functional permission isaccessto the read-only system procedures, such as @Statistics and
@Systeminformation. This permission is specia in that it does not have a name and does not need to be
assigned; al authenticated users are automatically assigned read-only access to these system procedures.

Table 12.1, “Named Security Permissions’ describes the named functional permissions.

Table 12.1. Named Security Permissions

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures
(TABLE.sdlect)
DEFAULTPROC Access to al default procedures (TABLE.select,| DEFAULTPROCREAD
TABLE.insert, TABLE.delete, TABLE.update, and
TABLE.upsert)
SQLREAD Accessto read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Accessto al ad hoc SQL queries, including datade- | SQLREAD, DEFAULT-
finitionlanguage (DDL) statements and default pro-| PROC
cedures

107

Security

Permission Description Inherits
ALLPROC Access to al user-defined stored procedures
ADMIN Full accesstoall system procedures, all user-defined| ALLPROC, DEFAULT-
procedures, aswell as default procedures and ad hoc| PROC, SQL
SQL
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

In the CREATE ROLE statement you enable access to these functions by including the permission name
in the WITH clause. (The default, if security is enabled and the keyword is not specified, is that the role
is not allowed access to the corresponding function.)

Note that the permissions are additive. So if a user is assigned one role that allows access to SQLREAD
but not DEFAULTPROC, but that user is also assigned another role that allows DEFAULTPROC, the
user has both permissions.

The following example assigns full access to members of the ops role, access to interactive SQL queries
(and default procedures by inheritance) and all user-defined procedures to members of the developer role,
and no specia access beyond read-only system procedures to members of the appsrole.

CREATE RCOLE ops W TH admi n;
CREATE RCOLE devel oper WTH sql, allproc;
CREATE ROLE apps;

12.6. Using Default Roles

To simplify the development process, VoltDB predefines two roles for you when you enable security:
administrator and user. Administrator has ADMIN permissions: accessto all functionsincluding interac-
tive SQL queries, DDL, system procedures, and user-defined procedures. User has SQL and ALLPROC
pemissions: access to ad hoc SQL, DDL, and all default and user-defined stored procedures.

These predefined roles areimportant, because when you start the database thereis no schemaand therefore
no user-defined roles available to assign to users. So you should always include at least one user who is
assigned the Administrator role when starting a database with security enabled. Y ou can use this account
to then load the schema — including additional security roles and permissions — and then update the
deployment file to add more users as necessary.

12.7. Integrating Kerberos Security with VoltDB

For environments where more secure communication isrequired than hashed usernames and passwords, it
ispossiblefor aVoltDB database to use Kerberos to authenticate clients and servers. Kerberosis apopular
network security protocol that you can use to authenticate the Java client processes when they connect to
VoltDB database servers. Use of Kerberosis supported for the Java client library only.

To use Kerberos authentication for VoltDB security, you must perform the following steps:
1. Set up and configure Kerberos on your network, servers, and clients.

2. Ingtall and configure the Java security extensions on your VoltDB servers and clients.

3. Configurethe VoltDB cluster and client applications to use Kerberos.

The following sections describe these steps in detail.

108

Security

12.7.1. Installing and Configuring Kerberos

Kerberos is a complete software solution for establishing a secure network environment. It includes net-
work protocols and software for handling authentication and authorization in a secure, encrypted fashion.
Kerberos requires one or more servers known as key distribution centers (KDC) to authenticate and au-
thorize services and the users who access them.

To use Kerberos for VoltDB authentication you must first set up Kerberos within your network environ-
ment. If you do not already have aKerberos KDC, you will need to create one. Y ou will also need to install
the Kerberos client libraries on al of the VoltDB servers and clients and set up the appropriate principals
and services. Because Kerberos is a complete network environment rather than a single platform applica-
tion, it is beyond the scope of this document to explain how to install and configure Kerberosiitself. This
section only provides notes specific to configuring Kerberos for use by VoltDB. For complete information
about setting up and using Kerberos, please see the Kerberos documentation.

Part of the Kerberos setup is the creation of a configuration file on both the VoltDB server and client
machines. By default, the configuration fileislocated in /etc/krb5.conf (or /private/etc/krb5.conf on Mac-
intosh). Be sure this file exists and points to the correct realm and KDC.

Once a KDC exists and the nodes are configured correctly, you must create the necessary Kerberos ac-
counts— known as"user principals' for the accountsthat run the VoltDB client applicationsand a"service
principal" for the VoltDB cluster. For example, to create the service keytab file for the VoltDB database,
you can issue the following commands on the Kerberos KDC:

$ sudo kadnin. | ocal
kadm n. | ocal : addprinc -randkey service/voltdb
kadm n. | ocal : ktadd -k vol tdb. keytab service/vol tdb

Then copy the keytab file to the database servers, making sure it is only accessible by the user account
that starts the database process:

$ scp vol tdb. keytab vol tadm n@ol t svr:vol t db. keyt ab
$ ssh vol tadm n@ol tsvr chnod 0600 vol t db. keyt ab

12.7.2. Installing and Configuring the Java Security Exten-

sions

Thenext stepistoinstall and configure the Java security extension known as Java Cryptography Extension
(JCE). JCE enables the more robust encryption required by Kerberos within the Java Authentication and
Authorization Service (JAAS). Thisis necessary because VoltDB uses JAASto interact with Kerberos.

The JCE that needs to be installed is specific to the version of Java you are running. See the the Javaweb
site for details. Again, you must install JCE on both the VoltDB servers and client nodes

Once JCE isinstalled, you create a JAAS login configuration file so Java knows how to authenticate the
current process. By default, the JAAS login configuration fileis $HOVE/ . j ava. | ogi n. confi g.On
the database servers, the configuration file must define the VoltDBService module and associate it with
the keytab created in the previous section.

Server JAAS Login Configuration File

Vol t DBSer vi ce {
com sun. securi ty. aut h. nodul e. Kr b5Logi nMbdul e required
useKeyTab=t rue keyTab="/hone/vol tadm n/voltdb. keyt ab"

109

http://web.mit.edu/kerberos/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Security

doNot Pr onpt =t r ue
princi pal ="servi ce/ vol t db@WCOVPANY. LAN" st or eKey=t r ue;

b

On the client nodes, the JAAS login configuration defines the VoltDBClient module.

Client JAAS Login Configuration File

Vol tDBd i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required
useTi cket Cache=true renewlGI=t rue doNot Pronpt =t r ue;

1
12.7.3. Configuring the VoltDB Servers and Clients

Finally, once Kerberos and the Java security extensions are installed and configured, you must configure
the VoltDB database cluster and client applications to use Kerberos.

On the database servers, you enable Kerberos security using the <security> element in the deployment
file, specifying "kerberos" as the provider. For example:

<?xm version="1.0"?>
<depl oynent >
<security enabl ed="true" provider="kerberos"/>

</ depl oyment >

Y ou then assign rolesto individual users as described in Section 12.3, “ Defining Users and Roles”, except
in place of generic usernames, you specify the Kerberos user — or "principal" — names, including their
realm. Since Kerberos uses encrypted certificates, the password attribute is ignored and can be filled in
with arbitrary text. For example:

<?xm version="1.0"7?>
<depl oynent >
<security enabl ed="true" provider="kerberos"/>

<user s>
<user name="ntwai n@GWCOVPANY. LAN' password="n/a" rol e="admn"/>
<user name="cdi ckens @WCOVWPANY. LAN' password="n/a" rol e="dev"/>
<user name="hbal zac@WCOVPANY. LAN' password="n/a" rol e="adhoc"/>
</ users>
</ depl oynent >

Having configured Kerberos in the deployment file, you are ready to start the VoltDB cluster. When
starting the VoltDB process, Java must know how to access the Kerberos and JAAS login configu-
ration files created in the preceding sections. If the files are not in their default locations, you can
override the default location using the VOLTDB_OPTS environment variable and setting the flags
java.security. krb5. conf andj ava. security. aut h. | ogi n. confi g, respectively.!

In the client application, you specify Kerberos as the security protocol when you create the client connec-
tion, using the enableK erberosA uthentication method as part of the configuration. For example:

i mport org.voltdb.client.d ientConfig;

on Macintosh systems, you must always specify thej ava. security. kr b5. conf property.

110

Security

i mport org.voltdb.client.dientFactory;

ClientConfig config = new CientConfig();
/1 specify the JAAS | ogi n nodul e
confi g. enabl eKer ber osAut hentication("VoltDBO ient");

VoltClient client = CientFactory.createCient(config);
client.createConnection("voltsvr");

Note that the VoltDB client automatically picks up the Kerberos cached credentials of the current process,
the user'sKerberos"principal”. So you do not need to — and should not — specify ausername or password
as part of the VoltDB client configuration.

It isalso important to note that once the cluster starts using Kerberos authentication, only Java clients can
connect to the cluster and they must al so use K erberos authentication, including the CLI command sglcmd.
To authenticate to a VoltDB server with Kerberos security enabled using sqlcmd, you must include the
- - ker ber os flag identifying the name of the Kerberos client service module. For example:

$ sqlcmd --kerberos=Vol t DBC i ent

Again, if the configuration files are not in the default location, you must specify their location on the
command line;

$ sqglcnd --kerberos=VoltDBC i ent -J-Djava.security. krb5. conf=/etc/krb5. conf

Y ou cannot use clients in other programming languages or CLI commands other than sglcmd to access
a cluster with Kerberos security enabled.

111

Chapter 13. Saving & Restoring a VoltDB
Database

There are times when it is necessary to save the contents of aVVoltDB database to disk and then restore it.
For example, if the cluster needs to be shut down for maintenance, you may want to save the current state
of the database before shutting down the cluster and then restore the database once the cluster comes back
online. Performing periodic backups of the data can also provide afallback in case of unexpected failures
— either physical failures, such as power outages, or logic errors where a client application mistakenly
corrupts the database contents.

VoltDB provides shell commands, system procedures, and an automated snapshot feature that help you
perform these operations. Thefollowing sections explain how to save and restorearunning VoltDB cluster,
either manually or automatically.

13.1. Performing a Manual Save and Restore of a
VoltDB Cluster

Manually saving and restoring a VoltDB database is useful when you need to do maintenance on the
database itself or the cluster it runs on. The normal use of save and restore, when performing such a
maintenance operation, is as follows:

1. Stop database activities (using pause).

2. Use save to write a snapshot of the current datato disk.

3. Shutdown the cluster.

4. Make changes to the VVoltDB schema, cluster configuration, and/or deployment file as desired.
5. Restart the cluster in admin mode.

6. Optionally, reload the schema and stored procedures

7. Restore the previous snapshot.

8. Restart client activity (using resume).

The key isto make sure that all database activity is stopped before the save and shutdown are performed.
Thisensuresthat no further changes to the database are made (and therefore | ost) after the save and before
the shutdown. Similarly, it isimportant that no client activity starts until the database has started and the
restore operation completes.

Also note that Step #6, reloading the schema, is optional. If you are going to reuse the same schema and
there are no tables currently defined in the database, the restore operation will automatically load the
schema from the snapshot itself. If you want to modify the schemain any way, such as changing indexes
or tables and columns, you should load the modified schema before restoring the datafrom the snapshot. If
tablesaredefined, only the dataisloaded from the snapshot. See Section 13.1.3.2, “Modifying the Database
Schemaand Stored Procedures’ for more information on modifying the schemawhen restoring snapshots.

Save and restore operations are performed either by calling VoltDB system procedures or using the cor-
responding voltadmin shell commands. In most cases, the shell commands are simpler since they do not

112

Saving & Restoring
aVoltDB Database

require program code to use. Therefore, this chapter uses voltadmin commands in the examples. If you
are interested in programming the save and restore procedures, see Appendix G, System Procedures for
more information about the corresponding system procedures.

When you issue a save command, you specify a path where the data will be saved and a unique identifier
for tagging the files. VoltDB then saves the current data on each node of the cluster to a set of files at the
specified location (using the unique identifier as a prefix to the file names). This set of files is referred
to as a snapshot, since it contains a complete record of the database for a given point in time (when the
save operation was performed).

The - - bl ocki ng option lets you specify whether the save operation should block other transactions
until it completes. In the case of manual saves, it is a good idea to use this option since you do not want
additional changes made to the database during the save operation.

Note that every node in the cluster uses the same absolute path, so the path specified must be valid, must
exist on every node, and must not aready contain data from any previous saves using the same unique
identifier, or the save will fail.

When you issue a restore command, you specify the same absolute path and unique identifier used when
creating the snapshot. VoltDB checks to make sure the appropriate save set exists on each node, then
restores the datainto memory.

13.1.1. How to Save the Contents of a VoltDB Database

To save the contents of a VoltDB database, use the voltadmin save command. The following example
creates a snapshot at the path /tmp/voltdb/backup using the unique identifier TestShapshot.

$ vol tadm n save --bl ocking /tnp/voltdb/backup "Test Shapshot"

In this exampl e, the command tellsthe save operation to block all other transactions until it completes. Itis
possible to save the contents without blocking other transactions (which is what automated snapshots do).
However, when performing a manual save prior to shutting down, it is normal to block other transactions
to ensure you save a known state of the database.

Notethat it is possible for the save operation to succeed on some nodes of the cluster and not others. When
you issue the voltadmin save command, VoltDB displays messages from each partition indicating the
status of the save operation. If there are any issues that would stop the process from starting, such as a
bad file path, they are displayed on the console. It is a good practice to examine these messages to make
sure al partitions are saved as expected.

13.1.2. How to Restore the Contents of a VoltDB Database
Manually

The easiest way to restore asnapshot isto let VoltDB do it for you as part of the recover operation. If you
are not changing the cluster configuration you can use an automated snapshot or other snapshot saved into
thevol t dbr oot / snapshot s directory by ssimply restarting the cluster nodes using thevoltdb recover
command. With the recover action VoltDB automatically starts and restores the most recent snapshot. This
approach has the added benefit that VoltDB automatically |oads the previous schema as well as part of
the snapshot.

However, you cannot use voltdb recover to restore asnapshot or command log if the cluster configuration
has changed, if you updated the VoltDB software itself, or if you want to restore an earlier snapshot or a
snapshot stored in an alternate location. In these cases you must do a manual restore.

113

Saving & Restoring
aVoltDB Database

To manually restore a VoltDB database from a snapshot previously created by a save operation, you use
the voltadmin restore command. Y ou must specify the same pathname and unique identifier used during
the save.

The following example restores the snapshot created by the examplein Section 13.1.1.
$ voltadm n restore /tnp/voltdb/backup "Test Snapshot"

Aswith save operations, it isalwaysagood ideato check the statusinformation displayed by the command
to ensure the operation completed as expected.

13.1.3. Changing the Cluster Configuration Using Save and
Restore

Between a save and arestore, it is possible to make changes to the the database and cluster configuration.
Y ou can:

» Modify the schema and/or stored procedures
+ Add or remove nodes from the cluster

» Change the number of sites per host

» Change the K-safety value

To make these changes, you must make appropriate modifications to the schema, restart the cluster as an
empty database, reload the schema and stored procedures, and then perform the restore. The following
sections discuss these steps in more detail.

13.1.3.1. Adding and Removing Nodes from the Database

To add nodes to the cluster, use the following procedure:
1. Savethe database.

2. Edit the deployment file, specifying the new number of nodesin the hostcount attribute of the <cluster>
tag.

3. Restart the cluster (including the new nodes).
4. |ssue arestore command.

When the snapshot is restored, the database (and partitions) are redistributed over the new cluster config-
uration.

It is also possible to remove nodes from the cluster using this procedure. However, to make sure that no
dataislost in the process, you must copy the snapshot files from the nodes that are being removed to one
of the nodes that is remaining in the cluster. This way, the restore operation can find and restore the data
from partitions on the missing nodes.

13.1.3.2. Modifying the Database Schema and Stored Procedures

To modify the database schema or stored procedures between a save and restore, make the appropriate
changes to the source files (that is, the database DDL and the stored procedure Java source files). If you
modify the stored procedures, be sure to repackage any Java stored procedures into a JAR file. Then you
can:

114

Saving & Restoring
aVoltDB Database

13.2

1. Restart the cluster as an empty database.

2. Reload the schema.

3. Reload the stored procedures using the sglcmd load classes directive.

4. |ssue the restore command.

Two points to note when modifying the database structure before restoring a snapshot are:

» When existing rows are restored to tables where new columns have been added, the new columns are
filled with either the default value (if defined by the schema) or nulls.

» When changing the datatypes of columns, it is possible to decrease the datatype size (for example, going
froman INT toan TINYINT). However, if any existing values exceed the capacity of the new datatype
(such asan integer value of 5,000 where the datatype has been changed to TINY INT), the entire restore
will fail.

If you remove or modify stored procedures (particularly if you change the number and/or datatype of the
parameters), you must make sure the corresponding changes are made to all client applications as well.

Scheduling Automated Snapshots

Save and restore are useful when planning for scheduled down times. However, these functions are also
important for reducing the risk from unexpected outages. VoltDB assists in contingency planning and
recovery from such worst case scenarios as power failures, fatal system errors, or data corruption due to
application logic errors.

In these cases, the database stops unexpectedly or becomes unreliable. By automatically generating snap-
shots at set intervals, VoltDB gives you the ability to restore the database to a previous valid state.

Y ou schedule automated snapshots of the database as part of the deployment file. The <snapshot> tag lets
you specify:

» Thefreguency of the snapshots. Y ou can specify any whole number of seconds, minutes, or hours (using
the suffix "s", "m", or "h", respectively, to denote the unit of measure). For example "3600s", "60m",
and "1h" are all equivalent. The default frequency is 24 hours.

» Theuniqueidentifier to use as a prefix for the snapshot files. The default prefix is"AUTOSNAP".

» Thenumber of snapshotsto retain. Snapshots are marked with atimestamp (as part of the file names), so
multiple snapshots can be saved. Ther et ai n attribute lets you specify how many snapshots to keep.
Older snapshots are purged once thislimit is reached. The default number of snapshots retained istwo.

Thefollowing example enables automated snapshots every thirty minutes using the prefix "flightsave" and
keeping only the three most recent snapshots.

<snapshot prefix="flightsave"
frequency="30nt
retain="3"

/>

By default, automated snapshots are stored in a subfolder of the VoltDB default path (as described in
Section 3.6.2, “ Configuring Pathsfor Runtime Features”). Y ou can save the snapshotsto a specific path by
adding the <snapshots> tag within to the <paths>...</paths> tag set. For example, the following example
defines the path for automated snapshotsas/ et ¢/ vol t db/ aut obackup/ .

115

Saving & Restoring
aVoltDB Database

13.3

<pat hs>
<snapshots pat h="/etc/vol t db/ aut obackup/" />
</ pat hs>

Managing Snapshots

VoltDB does not delete snapshots after they are restored; the snapshot files remain on each node of the
cluster. For automated snapshots, the oldest snapshot files are purged according to the settings in the
deployment file. But if you create snapshots manually or if you change the directory path or the prefix for
automated snapshots, the old snapshots will also be left on the cluster.

To simplify maintenance, it is agood idea to observe certain guidelines when using save and restore:
 Create dedicated directories for use as the paths for VoltDB snapshots.

» Use separate directories for manual and automated snapshots (to avoid conflictsin file names).

* Do not store any other filesin the directories used for VoltDB snapshots.

* Periodically cleanup the directories by deleting obsolete, unused snapshots.

Y ou can delete snapshots manually. To delete a snapshot, use the unique identifier, which is applied as
afilename prefix, to find al of the files in the snapshot. For example, the following commands remove
the snapshot with the ID TestSave from the directory /etc/voltdb/backup/. Note that VoltDB separates the
prefix from the remainder of the file name with a dash for manual snapshots:

$ rm/etc/vol tdb/ backup/ Test Save- *

However, it is easier if you use the system procedures VoltDB provides for managing snapshots. If you
delete snapshots manually, you must make sure you execute the commands on all nodes of the cluster.
When you use the system procedures, VoltDB distributes the operations across the cluster automatically.

VoltDB provides severa system procedures to assist with the management of snapshots:

* @SnapshotStatus provides information about the most recently performed snapshots for the current
database. The response from SnapshotStatus includes information about up to ten recent snapshots, in-
cluding their location, when they were created, how long the save took, whether they completed suc-
cessfully, and the size of the individual files that make up the snapshot. See the reference section on
@SnapshotStatus for details.

* @SnapshotScan listsall of the snapshots availablein a specified directory path. Y ou can use this system
procedure to determine what snapshots exist and, as a consequence, which ought to be deleted. See the
reference section on @SnapshotScan for details.

* @SnapshotDelete deletes one or more snapshots based on the paths and prefixes you provide. The
parameters to the system procedure are two string arrays. Thefirst array specifies one or more directory
paths. The second array specifiesone or moreprefixes. Thearray el ementsaretakenin pairsto determine
which snapshots to delete. For example, if the first array contains paths A, B, and C and the second
array contains the unique identifiers X, Y, and Z, the following three snapshots will be deleted: A/X,
B/Y, and C/Z. See the reference section on @SnapshotDelete for details.

13.4. Special Notes Concerning Save and Restore

The following are special considerations concerning save and restore that are important to keep in mind:

116

Saving & Restoring
aVoltDB Database

Save and restore do not check the cluster health (whether all nodes exist and are running) before exe-
cuting. The user can find out what nodes were saved by looking at the messages displayed by the save
operation.

Both the save and restore calls do a pre-check to see if the action islikely to succeed before the actual
savelrestore is attempted. For save, VoltDB checks to see if the path exists, if there is any data that
might be overwritten, and if it has write access to the directory. For restore, VoltDB verifies that the
saved data can be restored completely.

Y ou should use separate directories for manual and automated snapshots to avoid naming conflicts.

It is possible to provide additional protection against failure by copying the automated snapshots to
remote locations. Automated snapshots are saved locally on the cluster. However, you can set up a
network process to periodically copy the snapshot files to a remote system. (Be sure to copy the files
from all of the cluster nodes.) Another approach would be to save the snapshots to a SAN disk that is
aready set up to replicate to another location. (For example, using iSCSI.)

117

Chapter 14. Command Logging and
Recovery

By executing transactions in memory, VoltDB, freesitself from much of the management overhead and 1/
O costs of traditional database products. However, accidents do happen and it isimportant that the contents
of the database be safeguarded against loss or corruption.

Snapshots provide one mechanism for safeguarding your data, by creating a point-in-time copy of the
database contents. But what happens to the transactions that occur between snapshots?

Command logging provides a more complete solution to the durability and availability of your VoltDB
database. Command logging keeps arecord of every transaction (that is, stored procedure) asit is execut-
ed. Then, if the servers fail for any reason, the database can restore the last snapshot and "replay” the
subsequent logs to re-establish the database contents in their entirety.

The key to command logging is that it logs the invocations, not the consegquences, of the transactions. A
single stored procedure can include many individual SQL statements and each SQL statement can modify
hundreds or thousands of table rows. By recording only the invocation, the command logs are kept to a
bare minimum, limiting the impact the disk 1/O will have on performance.

However, any additional processing canimpact overall performance, especially whenitinvolvesdisk 1/0.
So it is important to understand the tradeoffs concerning different aspects of command logging and how
it interacts with the hardware and any other options you are utilizing. The following sections explain how
command logging works and how to configure it to meet your specific needs.

14.1. How Command Logging Works

When command logging is enabled, VoltDB keeps a log of every transaction (that is, stored procedure)
invocation. At first, the log of the invocations are held in memory. Then, at a set interval the logs are
physically written to disk. Of course, at a high transaction rate, even limiting the logs to just invocations,
the logs begin to fill up. So at a broader interval, the server initiates a snapshot. Once the snapshot is
complete, the command logging processis ableto free up — or "truncate” — thelog keeping only arecord
of procedure invocations since the last snapshot.

This process can continue indefinitely, using snapshots as a baseline and loading and truncating the com-
mand logs for all transactions since the last snapshot.

Figure 14.1. Command Logging in Action

; AN
aatae MMM sesceces MMM

S 7
]

Frequency

Snapshots @ @

The frequency with which the transactions are written to the command log is configurable (as described in
Section 14.3, “ Configuring Command Logging for Optimal Performance”). By adjusting thefrequency and

118

Command Logging and Recovery

14.2.

14.3.

type of logging (synchronous or asynchronous) you can balance the performance needs of your application
against the level of durability desired.

Inreverse, whenitistimeto "replay" thelogs, if you start the database with ther ecover action (asdescribed
in Section 3.5, “Restarting a VoltDB Database”) once the server nodes establish a quorum, they start by
restoring the most recent snapshot. Once the snapshot is restored, they then replay all of the transactions
in the log since that snapshot.

Figure 14.2. Recovery in Action

N A

VolDB | N\ start | \
database / Recover /
) |/ b /
) Repiay
Command [IO
Logs ‘ .
Restore

Snapshots @

Controlling Command Logging

Command logging is enabled by default in the VoltDB Enterprise Edition. Using command logging is
recommended to ensure durability of your data. However, you can choose whether to have command
logging enabled or not using the <commandl og> element in the deployment file. For example:

<depl oynent >
<cl uster hostcount="4" sitesperhost="2" kfactor="1" />
<comuand| og enabl ed="true"/>

</ depl oynent >

Initssimplest form, the <conmand| og/ > tag enables or disables command logging by setting the en-
abl ed attributeto "true" or "false". Y ou can a so use other attributes and child el ementsto control specific
characteristics of command logging. The following section describes those options in detail .

Configuring Command Logging for Optimal

Performance

Command logging can provide complete durability, preserving arecord of every transaction that is com-
pleted before the database stops. However, the amount of durability must be balanced against the perfor-
mance impact and hardware requirements to achieve effective /0.

VoltDB provides three settings you can use to optimize command logging:
» The amount of disk space allocated to the command logs

» The frequency between writes to the command logs

» Whether logging is synchronous or asynchronous

The following sections describe these options. A fourth section discusses the impact of storage hardware
on the different logging options.

119

Command Logging and Recovery

14.3.1. Log Size

The command log size specifies how much disk space is preallocated for storing the logs on disk. The
logs are divided into three "segments’ Once a segment is full, it is written to a snapshot (as shown in
Figure 14.1, “Command Logging in Action”).

For most workloads, the default log size of one gigabyte is sufficient. However, if your workload writes
large volumes of data or uses large strings for queries (so the procedure invocationsinclude large parame-
ter values), the log segments fill up very quickly. When this happens, VoltDB can end up snapshotting
continuously, because by the time one snapshot finishes, the next log segment is full.

Toavoid thissituation, you can increase thetotal 1og size, to reduce the frequency of snapshots. Y ou define
the log size in the deployment file using the |l ogsi ze attribute of the <command| og> tag. Specify the
desired log size as an integer number of megabytes. For example:

<conmandl og enabl ed="true" | ogsize="3072" />

Whenincreasing thelog size, be awarethat the larger thelog, thelonger it may take to recover the database
since any transactions in the log since the last snapshot must be replayed before the recovery is complete.
So, while reducing the frequency of snapshots, you also may be increasing the time needed to restart.

The minimum log size is three megabytes. Note that the log size specifies the initial size. If the existing
segments are filled before a snapshot can truncate the logs, the server will allocate additional segments.

14.3.2. Log Frequency

The log frequency specifies how often transactions are written to the command log. In other words, the
interval between writes, as shown in Figure 14.1, “Command Logging in Action”. You can specify the
frequency in either or both time and number of transactions.

For example, you might specify that the command log is written every 200 milliseconds or every 500
transactions, whichever comes first. You do this by adding the <f r equency> element as a child of
<comand| og> and specifying the individual frequencies as attributes. For example:

<comuand| og enabl ed="true">
<frequency tine="200" transactions="500"/>
</ command| og>

Time frequency is specified in milliseconds and transaction frequency is specified as the number of trans-
actions. Y ou can specify either or both types of frequency. If you specify both, whichever limit is reached
first initiates awrite.

14.3.3. Synchronous vs. Asynchronous Logging

If the command logs are being written asynchronously (which is the default), results are returned to the
client applications as soon as the transactions are completed. This allows the transactions to execute un-
interrupted.

However, with asynchronous logging there is always the possibility that a catastrophic event (such as a
power failure) could cause the cluster to fail. In that case, any transactions completed since the last write
and before the failurewould be lost. The smaller the frequency, the less datathat could belost. Thisishow
you "dial up" the amount of durability you want using the configuration options for command logging.

In some cases, no loss of datais acceptable. For those situations, it isbest to use synchronouslogging. When
you select synchronous logging, no results are returned to the client applications until those transactions

120

Command Logging and Recovery

are written to the log. In other words, the results for all of the transactions since the last write are held on
the server until the next write occurs.

The advantage of synchronouslogging isthat no transaction is"complete”" and reported back to the calling
application until it is guaranteed to be logged — no transactions are lost. The obvious disadvantage of
synchronous logging isthat theinterval between writes (i.e. the frequency) while theresults are held, adds
to the latency of the transactions. To reduce the penalty of synchronous logging, you need to reduce the
frequency.

When using synchronouslogging, it isrecommended that the frequency be limited to between 1 and 4 mil-
liseconds to avoid adding undue latency to the transaction rate. A frequency of 1 or 2 milliseconds should
have little or no measurable affect on overall latency. However, low frequencies can only be achieved
effectively when using appropriate hardware (as discussed in the next section, Section 14.3.4, “Hardware
Considerations”).

To select synchronous logging, usethe synchr onous attribute of the <command| og> tag. For exam-
ple:

<commandl og enabl ed="true" synchronous="true" >
<frequency tinme="2"/>
</ command| og>

14.3.4. Hardware Considerations

Clearly, synchronous logging is preferable since it provides complete durability. However, to avoid neg-
atively impacting database performance you must not only use very low frequencies, but you must have
storage hardware that is capable of handling frequent, small writes. Attempting to use aggressively low
log frequencies with storage devices that cannot keep up will also hurt transaction throughput and latency.

Standard, uncached storage devices can quickly become overwhel med with frequent writes. So you should
not use low frequencies (and therefore synchronous logging) with slower storage devices. Similarly, if the
command logs are competing for the device with other disk 1/0, performance will suffer. So do not write
the command logsto the same devicethat isbeing used for other 1/0, such as snapshots or export overflow.

On the other hand, fast, cached devices such as disks with a battery-backed cache, are capable of handling
frequent writes. So it isstrongly recommended that you use such devices when using synchronous logging.

To specify where the command logs and their associated snapshots are written, you use tags within the
<pat hs>...</ pat hs> tag set. For example, the following example specifies that the logs are written to
/ fast di sk/ vol t dbl og and the snapshots are writtento/ opt / vol t db/ cndsnaps:

<pat hs>
<commandl og pat h="/faskdi sk/voltdblog/" />
<command| ogsnapshot pat h="/opt/vol tdb/cndsnaps/" />
</ pat hs>

Note that the default paths for the command logs and the command log snapshots are both subfolders of
the voltdbroot directory. To avoid overloading a single device on production servers, it is recommended
that you specify an explicit path for the command logs, at a minimum, and preferably for both logs and
snapshots.

To summarize, the rules for balancing command logging with performance and throughput on production
databases are;

 Use asynchronous logging with slower storage devices.

121

Command Logging and Recovery

» Write command logs to a dedicated device. Do not write logs and snapshots to the same device.
» Uselow (1-2 milisecond) frequencies when performing synchronous logging.

» Use moderate (100 millisecond or greater) frequencies when performing asynchronous logging.

122

Chapter 15. Importing and Exporting Live
Data

15.1.

VoltDB is an in-memory, transaction processing database. It excels at managing large volumes of trans-
actionsin real-time.

However, transaction processing is often only one aspect of the larger business context and data needs to
transition from system to system as part of the overall solution. The process of moving from one database
to another as data moves through the system is often referred to as Extract, Transform, and Load (ETL).
VoltDB supports ETL through the ability to selectively export data as it is committed to the database, as
well as the ahility to import data through multiple standard protocols.

Exporting data differs from save and restore (as described in Chapter 13, Saving & Restoring a VoltDB
Database) in severa ways:

» You only export selected data (as required by the business process)
» Export is an ongoing process rather than a one-time event

» The outcome of exporting datais that information is used by other business processes, not as a backup
copy for restoring the database

Thetarget for exporting datafrom VoltDB may be another database, arepository (such as asequential log
file), or a process (such as a system monitor or accounting system). No matter what the target, VoltDB
helps automate the process for you. This chapter explains how to plan for and implement the exporting
of live datausing VVoltDB.

For import, VVoltDB supports both one-timeimport through dataloading utilities and ongoing import as part
of the database process. The following sections describe how to use VoltDB export and import in detail.

Understanding Export

VoltDB lets you automate the export process by specifying certain tables in the schema as sources for
export. At runtime, any data written to the specified tables is sent to the selected export connector, which
gueues the data for export. Then, asynchronously, the connector sends the queued export data to the se-
lected output target. Which export connector runs depends on the target you choose when configuring
export in the deployment file. Currently, VoltDB provides connectors for exporting to files, for exporting
to other business processes via a distributed message queue or HTTP, and for exporting to other databases
viaJDBC. The connector processes are managed by the database servers themselves, helping to distribute
the work and ensure maximum throughput.

Figure 15.1, “Overview of the Export Process’ illustrates the basic export procedure, where Tables B and
D are specified as export tables.

123

Importing and Exporting Live Data

Figure 15.1. Overview of the Export Process

Table
A Table | {7,

B |

'~.‘“;j~.~ Export

Table > Connector :> Target
c A

Table |

D
Table
E

Note that you do not need to modify the schema or the client application to turn exporting of live data on
and off. The application's stored proceduresinsert datainto the export-only tables; but it isthe deployment
file that determines whether export actually occurs at runtime.

When astored procedure usesan SQL INSERT statement to write datainto an export-only table, rather than
storing that data in the database, it is handed off to the connector when the stored procedure successfully
commits the transaction. Export-only tables have several important characteristics:

» Export-only tableslet you limit the export to only the datathat is required. For example, in the preceding
example, Table B may contain a subset of columns from Table A. Whenever a new record is written to
Table A, the corresponding columns can be written to Table B for export to the remote database.

 Export-only tables|et you combine fields from several existing tablesinto a single exported table. This
technique is particularly useful if your VoltDB database and the target of the export have different
schema. The export-only table can act as a transformation of VoltDB data to a representation of the
target schema.

» Export-only tableslet you control when datais exported. Again, in the previous example, Table D might
be an export-only table that is an exact replicaof Table C. However, therecordsin Table C are updated
frequently. The client application can choose to copy records from Table C to Table D only when all
of the updates are completed and the data is finalized, significantly reducing the amount of data that
must pass through the connector.

Of course, there are restrictions to export-only tables. Since they have no storage associated with them,
they arefor INSERT only. Any attempt to SELECT, UPDATE, or DEL ETE data from export-only tables
will result in an error.

15.2. Planning your Export Strategy
The important point when planning to export data, is deciding:
* What datato export

» When to export the data

MThereisno guarantee on the latency of export between the connector and the export target. The export function istransactionally correct; no export
occursif the stored procedure rolls back and the export dataisin the appropriate transaction order. But the flow of export datafrom the connector to
the target is not synchronous with the completion of the transaction. There may be several seconds delay before the export data reaches the target.

124

Importing and Exporting Live Data

* Whereto export datato

It is possible to export al of the datain a VoltDB database. Y ou would do this by creating export-only
replicas of all tablesin the schemaand writing to the export-only table whenever you insert into the normal
table. However, this means the same number of transactions and volume of data that is being processed
by VoltDB will be exported through the connector. Thereis a strong likelihood, given a high transaction
volume, that the target database will not be able to keep up with theload VoltDB is handling. As a conse-
guence you will usually want to be more sel ective about what data is exported when.

If you have an existing target database, the question of what datato export islikely decided for you (that is,
you need to export the data matching the target's schema). If you are defining both your VoltDB database
and your target at the same time, you will need to think about what information is needed "downstream"
and create the appropriate export-only tables within VVoltDB.

The second consideration is when to export the data. For tables that are not updated frequently, inserting
the datato acomplementary export-only table whenever dataisinserted into thereal tableisthe easiest and
most practical approach. For tables that are updated frequently (hundreds or thousands of times a second)
you should consider writing a copy of the data to an export-only table at an appropriate milestone.

Using the flight reservation system as an example, one aspect of the workflow not addressed by the appli-
cation described in Chapter 6, Designing VoltDB Client Applications is the need to archive information
about the flights after takeoff. Changes to reservations (additions and cancellations) are important in real
time. However, once the flight takes off, all that needs to be recorded (for billing purposes, say) is what
reservations were active at the time.

In other words, the archiving database needs information about the customers, the flights, and the final
reservations. According to theworkload in Table 4.1, “ Example Application Workload”, the customer and
flight tables change infrequently. So data can be inserted into the export-only tables at the same time asthe
"live" flight and reservation tables. (It isagood ideato give the export-only copy of the table ameaningful
name so its purposeis clear. In this example we identify the export-only tables with the export_ prefix or,
in the case of the reservation table which is not an exact copy, the _final suffix.)

The reservation table, on the other hand, is updated frequently. So rather than export all changes to a
reservation to the export-only reservation table in real-time, a separate stored procedure is invoked when
aflight takes off. This procedure copies the final reservation data to the export-only table and deletes the
associated flight and reservation records from the VVoltDB database. Figure 15.2, “ Flight Schemawith Ex-
port Table” shows the modified database schema with the added export-only tables, EXPORT_FLIGHT,
EXPORT_CUSTOMER, and RESERVATION_FINAL.

Figure 15.2. Flight Schema with Export Table

flight reservation customer
Flight ID Customer ID
Flight ID
export reservafion export
_flight _final _customer

125

Importing and Exporting Live Data

153

This design adds a transaction to the VoltDB application, which is executed approximately once a second
(when aflight takes off). However, it reduces the number of reservation transactions being exported from
1200 a second to less than 200 a second. These are the sorts of trade offs you need to consider when adding
export functionality to your application.

The third decision iswhere to export the data to. As described in Section 15.4, “ Configuring Export in the
Deployment File”, you can export the data through multiple different protocols: files, HTTP. JDBC, etc.
Y our choice of protocol will depend on the ultimate target destination for your exported data.

Y ou can a'so export to multiple destinations at once. When you declare an export table, you assign it to a
specific stream. If you want different tables to be exported to different destinations, you can declare the
tables to belong to different streams. Then in the deployment file you can configure each stream to be
exported to a different destination.

Identifying Export Tables in the Schema

Once you decide what data to export and define the appropriate tables in the schema, you are ready to
identify them as export-only tables. As mentioned before, export-only tables are defined in the database
schemajust like any other table. So in the case of the flight application, we need to add the export tablesto
our schema. Thefollowing exampl eillustrates (in bol d) the addition of an export-only tablefor reservations
with a subset of columns from the normal reservation table.

CREATE TABLE Reservation (

Reservel D | NTEGER UNI QUE NOT NULL,
Flight!I D | NTEGER NOT NULL,

Cust oner| D | NTEGER NOT NULL,

Seat VARCHAR(5) DEFAULT NULL,
Confirmed TI NYI NT DEFAULT 'O0',

PRI MARY KEY(Reservel D)

);

CREATE TABLE Reservation_final (
Reservel D | NTEGER UNI QUE NOT NULL,
Flight!I D | NTEGER NOT NULL,

Cust oner| D | NTEGER NOT NULL,
Seat VARCHAR(5) DEFAULT NULL

)

Again, itisagood ideato distinguish export-only tables by their table name, so anyone reading the schema
understands their purpose. Once you add the necessary tables to the schema, you then need to define them
as export-only tables and assign them to a stream. Y ou do this by adding an EXPORT TABLE statement
for each table to the schema. For example:

EXPORT TABLE export_customer TO STREAM ar chi ve;
EXPORT TABLE export_flight TO STREAM ar chi ve;
EXPORT TABLE reservation_final TO STREAM ar chi ve;

If atableis not listed in an EXPORT TABLE statement, it is not exported. In the preceding example,
the export_customer, export_flight, and reservation_final tables are identified as the tables that will be
included in the export stream called archive. In addition, since they are export-only tables, inserting data
into these tables will have no effect if export is disabled in the deployment file for the archive stream.

126

Importing and Exporting Live Data

154

If you want to export to different locations, you can assign the export tables to different streams, then
export each stream separately. For example, if you want to export the reservations to a log file but the
customer and flight records to an archival database, you can assign the tables to two different streams:

EXPORT TABLE export_custonmer TO STREAM ar chi ve;
EXPORT TABLE export _flight TO STREAM ar chi ve;
EXPORT TABLE reservation_final TO STREAM | og;

Note that no changes are required to the client application. The configuration of streams and export targets
isall done through the schema and deployment file.

Y ou can also specify whether the export-only tables are partitioned or not using the PARTITION TABLE
statement in the schema. For example, if an export table is a copy of a normal data table, it can be parti-
tioned on the same column. However, partitioning is not necessary for export-only tables. Whether they
are partitioned or "replicated”, since no storage is associated with the export table, you can INSERT in-
to the table in either a single-partitioned or multi-partitioned stored procedure. In either case, the export
connector ensures that at least one copy of the tuple iswritten to the export stream.

Configuring Export in the Deployment File

Toenableexport at runtime, youincludethe<expor t >and<conf i gur at i on> tagsinthedeployment
file, specifying the stream you are configuring and which export connector to use (with thet y pe attribute).
For example:

<export >
<configuration enabl ed="true" streanr"log" type="file">

</ configuration>
</ export >

To export to multiple destinations, you include multiple <conf i gur at i on> tags, each specifying the
export stream it isconfiguring. Any tablesidentified as belonging to that stream (in an EXPORT TABLE...
TO STREAM statement), then use that configuration for export. For example:

<export>
<configuration enabl ed="true" type="file" stream"l|og">

</ configuration>
<configuration enabl ed="true" type="jdbc" stream="archive">

</ configuration>
</ export >

You must also configure each export connector by specifying properties as one or more <pr operty>
tags within the <conf i gur at i on> tag. For example, the following XML code enables export to com-
ma-separated (CSV) text files using the file prefix "MyExport”.

<export>
<configuration enabl ed="true" stream="|og" type="file">
<property nane="type">csv</property>
<property nane="nonce">MyExport </ property>
</ configuration>
</ export >

The propertiesthat are allowed and/or required depend on the export connector you select. VoltDB comes
with six export connectors:

127

Importing and Exporting Live Data

15.5.

» Export tofile

» Export to HTTP, including Hadoop
» Export to JDBC

» Export to Kafka

» Export to RabbitMQ

» Export to Elasticsearch

Asthe name implies, the file connector writes the exported datato local files, either as comma-separated
or tab-delimited files. Similarly, the JIDBC connector writes data to a variety of possible destination data-
bases through the JDBC protocol. The Kafka connector writes export datato an Apache Kafka distributed
message queue, where one or more other processes can read the data. In all three cases you configure the
specific features of the connector using the <pr oper t y> tag as described in the following sections.

How Export Works

Two important aspects of export to keep in mind are:

» Export is automatic. When you enable an export configuration in the deployment file, the database
servers take care of starting and stopping the connector on each server when the database starts and
stops, including if nodes fail and rejoin the cluster. You can also start and stop export on a running
database by updating the deployment file using the voltadmin update command.

» Export is asynchronous. The actual delivery of the data to the export target is asynchronous to the
transactions that initiate data transfer.

The advantage of an asynchronous approach isthat any delaysin delivering the exported data to the target
system do not interfere with the VoltDB database performance. The disadvantage is that VoltDB must
handle queueing export data pending its actual transmission to the target, including ensuring durability in
case of system failures. Again, thistask is handled automatically by the VoltDB server process. But it is
useful to understand how the export queuing works and its consequences.

One consequence of this durability guarantee is that VoltDB will send at least one copy of every export
record to the target. However, it is possible when recovering command logs or rejoining nodes, that certain
export records are resent. It is up to the downstream target to handle these duplicate records. For example,
using unigque indexes or including a unique record ID in the export table.

15.5.1. Export Overflow

For the export process to work, it is important that the connector keep up with the queue of exported
information. If too much data gets queued to the connector by the export function without being delivered
by the target system, the VoltDB server process consumes increasingly large amounts of memory.

If the export target does not keep up with the connector and the data queue fills up, VoltDB starts writing
overflow datain the export buffer to disk. This protects your database in several ways:

* If the destination is intermittently unreachable or cannot keep up with the data flow, writing to disk
helps VoltDB avoid consuming too much memory while waiting for the destination to catch up.

* If the database is stopped, the export data is retained across sessions. When the database restarts, the
connector will retrieve the overflow data and reinsert it in the export queue.

128

Importing and Exporting Live Data

Y ou can specify where VoltDB writes the overflow export data using the <exportoverflow> element in
the deployment file. For example:

<pat hs>
<vol tdbroot path="/opt/voltdb/" />
<exportoverflow path="/tnmp/export/"/>
</ pat hs>

If you do not specify a path for export overflow, VoltDB creates a subfolder in the root directory (in the
preceding example, / opt / vol t db). See Section 3.6.2, “Configuring Paths for Runtime Features’ for
more information about configuring paths in the deployment file.

15.5.2. Persistence Across Database Sessions

15.6.

It isimportant to note that VoltDB only uses the disk storage for overflow data. However, you can force
VoltDB to write all queued export data to disk by either calling the @Quiesce system procedure or by
requesting a blocking snapshot. (That is, calling @SnapshotSave with the blocking flag set.) This means
it is possible to perform an orderly shutdown of aVoltDB database and ensure all data (including export
data) is saved with the following procedure:

1. Put the database into admin mode with the voltadmin pause command.

2. Perform ablocking snapshot with voltadmin save, saving both the database and any existing queued
export data.

3. Shutdown the database with voltadmin shutdown.

You can then restore the database — and any pending export queue data — by starting the database in
admin mode, restoring the snapshot, and then exiting admin mode.

The File Connector

The file connector receives the serialized data from the export tables and writes it out as text files (either
commaor tab separated) to disk. Thefile connector writesthe data out onefile per database table, "rolling"
over to new files periodically. The filenames of the exported data are constructed from:

A unique prefix (specified with the nonce property)

A unique value identifying the current version of the database schema

» Thetable name

A timestamp identifying when the file was started

While the file is being written, the file name also contains the prefix "active-". Once the file is complete
and a new file started, the "active-" prefix is removed. Therefore, any export files without the prefix are
complete and can be copied, moved, deleted, or post-processed as desired.

There are two properties that must be set when using the file connector:

e Thet ype property lets you choose between comma-separated files (csv) or tab-delimited files (tsv).

e Thenonce property specifies aunique prefix to identify al files that the connector writes out for this
database instance.

129

Importing and Exporting Live Data

Table 15.1, “File Export Properties’ describes the supported properties for the file connector.

Table 15.1. File Export Properties

Property

Allowable Values

Description

type*

csv, tsv

Specifies whether to create comma-separated (CSV) or tab-delimit-
ed (TSV) files,

nonce

string

A unique prefix for the output files.

outdir

directory path

The directory where the files are created. If you do not specify an
output path, VoltDB writes the output files to the current default di-
rectory.

period

Integer

The frequency, in minutes, for "rolling" the output file. The default
frequency is 60 minutes.

binaryencoding

hex, base64

Specifies whether VARBINARY datais encoded in hexadecimal or
BASEG4 format. The default is hexadecimal.

dateformat

format string

The format of the date used when constructing the output file names.
Y ou specify the date format as a Java SimpleDateFormat string. The
default format is"yyyyMMddHHmMmMss'.

timezone

string

The time zone to use when formatting the timestamp. Specify the
time zone as a Javatimezone identifier. The defaultis GMT.

delimiters

string

Specifies the delimiter characters for CSV output. The text string
specifies four characters: the field delimiter, the enclosing charac-
ter, the escape character, and the record delimiter. To use special or
non-printing characters (including the space character) encode the
character asan HTML entity. For example "&It;" for the "less than"
symbol.

batched

true, false

Specifies whether to store the output filesin subfolders that are
"rolled" according to the frequency specified by the period property.
The subfolders are named according to the nonce and the timestamp,
with "active-" prefixed to the subfolder currently being written.

skipinternals

true, false

Specifies whether to include six columns of VoltDB metadata (such
astransaction ID and timestamp) in the output. If you specify skipin-
ternals as "true”, the output files contain only the exported table da-
ta

with-schema

true, false

Specifies whether to write a JISON representation of each table's
schema as part of the export. The JSON schema files can be used to
ensure the appropriate datatype and precision is maintained if and
when the output files are imported into another system.

"Required

Whatever properties you choose, the order and representation of the content within the output filesis the
same. The export connector writes a separate line of data for every INSERT it receives, including the
following information:

 Six columns of metadata generated by the export connector. Thisinformation includes atransaction 1D,
a timestamp, a sequence number, the site and partition IDs, as well as an integer indicating the query

type.

e The remaining columns are the columns of the database table, in the same order as they are listed in
the database definition (DDL) file.

130

Importing and Exporting Live Data

15.7. The HTTP Connector

TheHTTP connector receivesthe serialized datafrom the export tablesand writesit out viaHT TP requests.
The connector is designed to be flexible enough to accommodate most potential targets. For example, the
connector can be configured to send out individual records using a GET request or batch multiple records
using POST and PUT requests. The connector also contains optimizations to support export to Hadoop
viaWebHDFS.

15.7.1. Understanding HTTP Properties

The HTTP connector is a general purpose export utility that can export to any number of destinations
from simple messaging services to more complex REST APIs. The properties work together to create a
consistent export process. However, it isimportant to understand how the propertiesinteract to configure
your export correctly. The four key properties you need to consider are:

» batch.mode — whether datais exported in batches or one record at atime
» method — the HTTP request method used to transmit the data

 type— theformat of the output

* endpoint — the target HTTP URL to which export iswritten

The properties are described in detail in Table 15.2, “HTTP Export Properties’. This section explains the
relationship between the properties.

There are essentially two types of HTTP export: batch mode and one record at a time. Batch mode is
appropriate for exporting large volumes of data to targets such as Hadoop. Exporting one record at atime
islessefficient for large volumes but can be very useful for writing intermittent messagesto other services.

In batch mode, the data is exported using a POST or PUT method, where multiple records are combined
in either command-separated value (CSV) or Avro format in the body of the request. When writing one
record at atime, you can choose whether to submit the HTTP request as a POST, PUT or GET (that is,
as a querystring attached to the URL). When exporting in batch mode, the method must be either POST
or PUT and the type must be either csv or avr 0. When exporting one record at atime, you can use the
CGET, POST, or PUT method, but the output type must be f or m

Finally, the endpoint property specifies the target URL where data is being sent, using either the http: or
https: protocol. Again, the endpoint must be compatible with the possible settings for the other properties.
In particular, if the endpoint isa WebHDFS URL, batch mode must enabled.

The URL can aso contain placeholders that are filled in at runtime with metadata associated with the
export data. Each placeholder consists of a percent sign (%) and asingle ASCII character. The following
are the valid placehol ders for the HTTP endpoint property:

Placeholder Description

%ot The name of the VoltDB export table. The table name is inserted into the endpoint in
all uppercase.
%p The VoltDB partition ID for the partition where the INSERT query to the export table

is executing. The partition ID is an integer value assigned by VoltDB internally and
can be used to randomly partition data. For example, when exporting to webHDFS, the
partition ID can be used to direct datato different HDFSfiles or directories.

%g The export generation. The generation is an identifier assigned by VoltDB. The gener-
ation increments each time the database starts or the database schema is modified in
any way.

131

Importing and Exporting Live Data

Placeholder

Description

%d

period.

one hour.

The date and hour of the current export period. Applicable to WebHDFS export only.
This placeholder identifies the start of each period and the replacement value remains
the same until the period ends, at which point the date and hour is reset for the new

You can use this placeholder to "roll over" WebHDFS export destination files on a
regular basis, as defined by the per i od property. The peri od property defaults to

When exporting in batch mode, the endpoint must contain at least one instance each of the %t, %p, and
%og placeholders. However, beyond that requirement, it can contain as many placeholders as desired and
in any order. When not in batch mode, use of the placeholders are optional.

Table 15.2, “HTTP Export Properties’ describes the supported properties for the HT TP connector.

Table15.2. HTTP Export Properties

Property

Allowable Values

Description

endpoint’

string

Specifies the target URL. The endpoint can contain placeholders
for inserting the table name (%t), the partition 1D (%p), the date and
hour (%d), and the export generation (%g).

avro.compress

true, false

Specifies whether Avro output is compressed or not. The default is
false and this property isignored if the typeis not Avro.

avro.schema.location

string

Specifies the location where the Avro schemawill be written. The
schema location can be either an absolute path name on the lo-

cal database server or awebHDFS URL and must include at |east
one instance of the placeholder for the table name (%t). Option-
ally it can contain other instances of both %t and %g. The default
location for the Avro schemaisthe file path expor t / avr o/

% _avro_schema. j son on the database server under the voltd-
broot directory. This property isignored if the typeis not Avro.

batch.mode

true, false

Specifies whether to send multiple rows as a single request or send
each export row separately. The default istrue. Batch mode must be
enabled for WebHDFS export.

httpfs.enable

true, false

Specifies that the target of WebHDFS export is an Apache HttpFS
(Hadoop HDFS over HTTP) server. This property must be set to true
when exporting webHDFS to HttpFS targets.

kerberos.enable

true, false

Specifies whether Kerberos authentication is used when connecting
to aWebHDFS endpoint. This property is only valid when connect-
ing to WebHDFS servers and is false by default.

method

get, post, put

Specifies the HTTP method for transmitting the export data. The de-
fault method is POST. For WebHDFS export, this property isig-
nored.

period

Integer

Specifies the frequency, in hours, for "rolling" the WebHDFS output
date and time. The default frequency is every hour (1). For WebHD-
FS export only.

timezone

string

The time zone to use when formatting the timestamp. Specify the
time zone as a Java timezone identifier. The default is the local time
zone.

132

Importing and Exporting Live Data

Property Allowable Values Description

type csv, avro, form Specifies the output format. If batch.mode is true, the default type
isCSV. If batch.mode isfalse, the default and only allowable value
for typeisform. Avro format is supported for WebHDFS export on-
ly (see Section 15.7.2, “Exporting to Hadoop via WebHDFS’ for de-
tails.)

"Required

15.7.2. Exporting to Hadoop via WebHDFS

As mentioned earlier, the HTTP connector contains special optimizations to support exporting data to
Hadoop via the WebHDFS protocol. If the endpoint property contains a WebHDFS URL (identified by
the URL path component starting with the string "/webhdfs/v1/"), special rules apply.

First, for WebHDFS URLSs, the batch.mode property must be enabled. Also, the endpoint must have at
least one instance each of the table name (%t), the partition ID (%p), and the export generation (%g)
placeholders and those placeholders must be part of the URL path, not the domain or querystring.

Next, the method property isignored. For WebHDFS, the HTTP connector uses a combination of POST,
PUT, and GET requests to perform the necessary operations using the WebHDFS REST API.

For example, Thefollowing deployment file configuration exportstable datato WebHDFS usingthe HTTP
connector and writing each table to a separate directory, with separate files based on the partition 1D,
generation, and period timestamp, rolling over every 2 hours:

<export >
<configuration stream"hadoop" enabl ed="true" type="http">
<property nane="endpoi nt">
http:// nyhadoopsvr/webhdf s/ v1/ %/ dat a%-%y. %d. csv
</ property>
<property name="bat ch. node" >true</ property>
<property name="period">2</property>
</ configuration>
</ export >

Note that the HTTP connector will create any directories or files in the WebHDFS endpoint path that do
not currently exist and then append the data to those files, using the POST or PUT method as appropriate
for the WebHDFS REST API.

Y ou also have a choice between two formats for the export datawhen using WebHDFS: comma-separated
values (CSV) and Apache Avro™ format. By default, data is written as CSV data with each record on
a separate line and batches of records attached as the contents of the HTTP request. However, you can
choose to set the output format to Avro by setting the t ype property, asin the following example:

133

Importing and Exporting Live Data

<export>
<configuration strean"hadoop” enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1/ % / dat a%- %g. %d. avro
</ property>
<property nane="type">avro</property>
<property nanme="avro.conpress">true</property>
<property nane="avro.schena. |l ocation">
htt p: // nyhadoopsvr/ webhdf s/v1/ %/ schema. j son
</ property>
</ configuration>
</ export >

Avro is adata serialization system that includes a binary format that is used natively by Hadoop utilities
such as Pig and Hive. Because it is abinary format, Avro data takes up less network bandwidth than text-
based formats such as CSV. In addition, you can choose to compress the data even further by setting the
avr 0. conpr ess property to true, asin the previous example.

When you select Avro as the output format, VoltDB writes out an accompanying schema definition as a
JSON document. For compatibility purposes, the table name and columns names are converted, removing
underscores and changing the resulting words to lowercase with initial capital |etters (sometimes called
"camelcase"). Thetable nameisgiven aninitial capital letter, while columns names start with alowercase
letter. For example, thetable EMPLOY EE_DATA and its column named EMPLOY EE _iD would be con-
verted to EmployeeData and employeeld in the Avro schema.

By default, the Avro schemais written to alocal file on the VoltDB database server. However, you can
specify an aternate location, including a webHDFS URL. So, for example, you can store the schemain
the same HDFS repository as the data by setting theavr o. schema. | ocat i on property, as shownin
the preceding example.

See the Apache Avro web site for more details on the Avro format.

15.7.3. Exporting to Hadoop Using Kerberos Security

If the WebHDFS service to which you are exporting data is configured to use Kerberos security, the
VoltDB servers must be able to authenticate using Kerberos as well. To do this, you must perform the
following two extra steps:

» Configure Kerberos security for the VoltDB cluster itself
» Enable Kerberos authentication in the export configuration

Thefirst step isto configure the VoltDB serversto use Kerberos as described in Section 12.7, “ Integrating
Kerberos Security with VoltDB”. Because use of Kerberos authentication for VoltDB security changes
how the clients connect to the database cluster, It is best to set up, enable, and test Kerberos authentication
first to ensure your client applications work properly in this environment before trying to enable Kerberos
export aswell.

Once you have K erberos authentication working for the VoltDB cluster, you can enable K erberos authen-
tication in the configuration of the WebHDFS export stream as well. Enabling Kerberos authentication
in the HTTP connector only requires one additional property, ker ber os. enabl e, to be set. To use
Kerberos authentication, set the property to "true". For example:

134

http://avro.apache.org/

Importing and Exporting Live Data

15.8.

Table 15.

<export>
<configuration strean"hadoop” enabl ed="true" type="http">
<property nane="endpoi nt">
htt p: // nyhadoopsvr/ webhdf s/ v1/ % / dat a%- %g. %d. csv
</ property>
<property nane="type">csv</property>
<property name="ker ber os. enabl e">true</ property>
</ configuration>
</ export >

Note that Kerberos authentication is only supported for WebHDFS endpoints.

The JDBC Connector

The JDBC connector receivesthe serialized datafrom the export tables and writesit, in batches, to another
database through the standard JDBC (Java Database Connectivity) protocol.

When the JDBC connector opens the connection to the remote database, it first attemptsto create tablesin
the remote database to match the VoltDB export-only tables by executing CREATE TABLE statements
through JDBC. Thisisimportant to note because, it ensuresthere are suitabl e tablesto receive the exported
data. The tables are created using either the table names from the VVoltDB schema or (if you do not enable
the ignoregenerations property) the table name prefixed by the database generation ID.

If the target database has existing tables that match the VoltDB export-only tables in both name and struc-
ture (that is, the number, order, and datatype of the columns), be sure to enable the ignoregenerations
property in the export configuration to ensure that VoltDB uses those tables as the export target.

It isalso important to note that the JDBC connector exports datathrough JDBC in batches. That is, multiple
INSERT instructions are passed to the target database at atime, in approximately two megabyte batches.
There are two conseguences of the batching of export data:

» For many databases, such as Netezza, where thereis acost for individual invocations, batching reduces
the performance impact on the receiving database and avoids unnecessary latency in the export pro-
cessing.

» Ontheother hand, no matter what the target database, if aquery failsfor any reason the entire batch fails.

To avoid errors causing batch inserts to fail, it is strongly recommended that the target database not use
unique indexes on the receiving tables that might cause constraint violations.

If any errorsdo occur when the JDBC connector attemptsto submit datato the remote database, the VoltDB
disconnects and then retries the connection. This process is repeated until the connection succeeds. If
the connection does not succeed, VoltDB eventually reduces the retry rate to approximately every eight
seconds.

Table 15.3, “JDBC Export Properties’ describes the supported properties for the JDBC connector.

3. JDBC Export Properties

Property Allowable Values Description
jdbeurl” connection string The JDBC connection string, also known as the URL.
jobcuser” string The username for accessing the target database.

135

Importing and Exporting Live Data

Property

Allowable Values

Description

jdbcpassword

string

The password for accessing the target database.

jdbcdriver

string

The class name of the IDBC driver. The JDBC driver class must be
accessible to the VoltDB process for the JDBC export process to
work. Place the driver JAR filesinthel i b/ ext ensi on/ direc-
tory where VoltDB isinstalled to ensure they are accessible at run-
time.

Y ou do not need to specify the driver as a property value for several
popular databases, including MySQL, Netezza, Oracle, PostgreSQL,
and Vertica. However, you still must provide the driver JAR file.

schema

string

The schema name for the target database. The use of the schema
name is database specific. In some cases you must specify the data-
base name as the schema. In other cases, the schemaname is not
needed and the connection string contains al the information neces-
sary. See the documentation for the JDBC driver you are using for
more information.

minpoolsize

integer

The minimum number of connectionsin the pool of connections to
the target database. The default valueis 10.

maxpoolsize

integer

The maximum number of connectionsin the pool. The default value
is 100.

maxidletime

integer

The number of milliseconds a connection can beidle beforeitisre-
moved from the pool. The default value is 60000 (one minute).

maxstatementcached

integer

The maximum number of statements cached by the connection pool.
The default value is 50.

ignoregenerations

true, false

Specifies whether aunique ID for the generation of the database
isincluded as part of the output table name(s). The generation ID
changes each time a database restarts or the database schemais up-
dated. The default isfalse.

skipinternals

true, false

Specifies whether to include six columns of VoltDB metadata (such
astransaction ID and timestamp) in the output. If you specify skipin-
ternals as true, the output contains only the exported table data. The
default isfalse.

"Required

15.9. The Kafka Connector

The Kafka connector receives serialized data from the export tables and writesit to amessage queue using
the Apache Kafka version 0.8.2 protocols. Apache Kafka is a distributed messaging service that lets you
set up message queues which are written to and read from by "producers’ and "consumers', respectively.
In the Apache Kafka model, VoltDB export acts as a "producer”.

Before using the Kafka connector, we strongly recommend reading the Kafka documentation and becom-
ing familiar with the software, since you will need to set up a Kafka 0.8.2 service and appropriate "con-
sumer” clientsto make use of VoltDB's Kafkaexport functionality. Theinstructionsin this section assume
aworking knowledge of Kafka and the Kafka operational model.

When the Kafka connector receives data from the VoltDB export tables, it establishes a connection to the
Kafka messaging service as a Kafka producer. It then writes records to Kafka topics based on the VoltDB
table name and certain export connector properties.

136

http://kafka.apache.org/
http://kafka.apache.org/documentation.html

Importing and Exporting Live Data

The magjority of the Kafka export properties are identical in both in name and content to the Kafka pro-
ducer properties listed in the Kafka documentation. All but one of these properties are optional for the
Kafka connector and will use the standard Kafka default value. For example, if you do not specify the
gueue. buf f eri ng. max. ns property it defaults to 5000 milliseconds.

The only required property is boot st rap. server s, which lists the Kafka servers that the VoltDB
export connector should connect to. You must specify this property so VoltDB knows where to send the
export data.

In addition to the standard K afka producer properties, there are several custom properties specific to Volt-
DB. The properties bi nar yencodi ng, ski pi nternal s, and ti mezone affect the format of the
data. Thet opi c. prefi x andt opi c. key properties affect how the datais written to Kafka.

Thet opi c. pr ef i x property specifiesthetext that precedesthe table name when constructing the Kafka
topic. If you do not specify a prefix, it defaults to "voltdbexport”. Alternately, you can map individual
tablesto topicsusing thet opi c. key property. Inthet opi c. key property you associate an individual
Kafka topic with the corresponding VoltDB export table name as a named pair separated by a colon (;).
Multiple named pairs are separated by commas (,). For example:

EnpTopi c: Enpl oyee, CoTopi c: Conpany, Ent Topi c: Enterpri se

Any table-specific mappingsin thet opi c. key property override the automated topic name specified
byt opic. prefix.

Note that unless you configure the Kafka brokers with the aut 0. cr eat e. t opi ¢s. enabl e property
set to true, you must create the topics for every export table manually before starting the export process.
Enabling auto-creation of topics when setting up the Kafka brokers is recommended.

When configuring the Kafka export connector, it isimportant to understand the rel ationship between syn-
chronous versus asynchronous processing and its effect on database latency. If the export data is sent
asynchronously, the impact of export on the database is reduced, since the export connector does not wait
for the Kafka infrastructure to respond. However, with asynchronous processing, VoltDB is not able to
resend the data if the message fails after it is sent.

If export to Kafkaisdone synchronously, the export connector waitsfor acknowledgement of each message
sent to Kafka before processing the next packet. This allows the connector to resend any packets that fail.
The drawback to synchronous processing is that on a heavily loaded database, the latency it introduces
means export may not be able to keep up with the influx of export data and and have to write to overflow.

Y ou specify the level of synchronicity and durability of the connection using the Kafka acks property.
Set acks to"0" for asynchronous processing, "1" for synchronous delivery to the Kafkabroker, or "all" to
ensure durability on the Kafka broker. Use of "al" is not recommended for VoltDB export. Seethe Kafka
documentation for more information.

VoltDB guarantees that at least one copy of all export data is sent by the export connector. But when
operating in asynchronous mode, the Kafka connector cannot guarantee that the packet is actually received
and accepted by the Kafka broker. By operating in synchronous mode, VoltDB can catch errors returned
by the Kafka broker and resend any failed packets. However, you pay the penalty of additional latency
and possible export overflow.

Finally, the actual export data is sent to Kafka as a comma-separated values (CSV) formatted string. The
message includes six columns of metadata (such as the transaction ID and timestamp) followed by the
column values of the export table.

Table 15.4, “Kafka Export Properties’ lists the supported properties for the Kafka connector, including
the standard Kafka producer properties and the VoltDB unique properties.

137

http://kafka.apache.org/documentation.html#producerconfigs
http://kafka.apache.org/documentation.html#producerconfigs

Importing and Exporting Live Data

Table 15.4. Kafka Export Properties

Property AllowableVal- |Description
ues

bootstrap.servers* string A comma-separated list of Kafka brokers. Y ou can
use net adat a. br oker . | i st asasynonym for
boot st rap. servers.

acks 0,1, al Specifies whether export is synchronous (1 or all) or
asynchronous (0) and to what extent it ensures delivery.
See the Kafka documentation of the producer properties
for details.

acks.retry.timeout integer Specifies how long, in milliseconds, the connector will

wait for acknowledgment from Kafka for each packet.
The retry timeout only appliesif acknowledgements are
enabled. That is, if theacks property is set greater than
zero. The default timeout is 5,000 milliseconds. When
the timeout is reached, the connector will resend the
packet of messages.

partition.key

{table} .{ column}
[,..]

Specifies which table column value to use as the Kafka
partitioning key for each table. Kafka uses the partition
key to distribute messages across multiple servers.

By default, the value of the table's partitioning column is
used as the Kafka partition key. Using this property you
can specify alist of table column names, where the table
name and column name are separated by a period and the
list of table referencesis separated by commas. If theta
bleis not partitioned and you do not specify akey, the
server partition ID is used as a default.

binaryencoding

hex, base64

Specifies whether VARBINARY dataisencoded in
hexadecimal or BASE64 format. The default is hexadec-
imal.

skipinternals

true, false

Specifies whether to include six columns of VoltDB
metadata (such as transaction 1D and timestamp) in the
output. If you specify skipinternals as true, the output
contains only the exported table data. The default is
false.

timezone

string

The time zone to use when formatting the timestamp.
Specify the time zone as a Java timezone identifier. The
defaultisGMT.

topic.key

string

A set of named pairs each identifying a Kafkatopic
name and the corresponding VoltDB table name that will
be written to that topic. Separate the names with a colon
(:) and the name pairs with acomma (,).

The specific topic/table mappings declared by topic.key
override the automated topic names specified by
topic.prefix.

138

http://kafka.apache.org/documentation.html#producerconfigs

Importing and Exporting Live Data

AllowableVal- |Description

ues

topic.prefix string The prefix to use when constructing the topic name.
Each row is sent to atopic identified by { prefix} { ta-
ble-name}. The default prefix is "voltdbexport".

Kafka producer properties various Y ou can specify standard Kafka producer properties

as export connector properties and their values will be
passed to the Kafka interface. However, you cannot
modify the property bl ock. on. buffer.full.

15.10. The RabbitMQ Connector

The RabbitM Q connector fetches serialized data from the export tables and writes it to a RabbitMQ mes-
sage exchange. RabbitMQ is a popular message queueing service that supports multiple platforms, multi-
ple languages, and multiple protocols, including AMQP.

Before using the RabbitM Q connector, we strongly recommend reading the RabbitM Q documentation and
becoming familiar with the software, since you will need to set up a RabbitMQ exchange, queues, and
routing key filtersto make use of VoltDB's RabbitM Q export functionality. Theinstructionsin this section
assume aworking knowledge of RabhitMQ and the RabbitM Q operational mode.

Youmust alsoinstall the RabbitMQ Javaclient library before you can usethe VoltDB connector. Toinstall
the RabbitMQ Javaclient library:

1. Download the client library version 3.3.4 or later from the RabbitMQ website (http:/
www.rabbitmg.com/java-client.html).

2. Copy theclient JAR fileinto thel i b/ ext ensi on/ folder where VoltDB isinstalled for each node
in the cluster.

When the RabbitM Q connector receives data from the VoltDB export tables, it establishes a connection
to the RabbitM Q exchange as a producer. It then writes records to the service using the optional exchange
name and routing key suffix. RabbitM Q usesthe routing key to identify which queuethe datais sent to. The
exchange examines the routing key and based on the key value (and any filters defined for the exchange)
sends each message to the appropriate queue.

Every message sent by VoltDB to RabhitMQ contains a routing key that includes the name of the export
table. You can further refine the routing by appending a suffix to the table name, based on the contents
of individual table columns. By default, the value of the export tabl€'s partitioning column is used as a
suffix for the routing key. Alternately, you can specify a different column for each table by declaring the
routing.key.suffix property asalist of table and column name pairs, separating the table from the column
name with a period and separating the pairs with commas. For example;

<export>
<configuration streanr"queue" enabl ed="true" type="rabbitng">
<property nane="broker. host">rabbitng. nyconpany. conx/ pr operty>
<property nane="routing. key. suffix">
vot er _export.state, contestants_export.contestant_nunber
</ property>
</ configuration>
</ export >

139

http://www.rabbitmq.com/
http://www.rabbitmq.com/documentation.html
http://www.rabbitmq.com/java-client.html
http://www.rabbitmq.com/java-client.html

Importing and Exporting Live Data

The important point to remember isthat it is your responsibility to configure a RabbitMQ exchange that
matches the name associated with the exchange.name property (or take the default exchange) and cre-
ate queues and/or filters to match the routing keys generated by VoltDB. At a minimum, the exchange
must be able to handle routing keys starting with the export tables names. This can be achieved by
using a filter for each export table. For example, using the flight example in Section 15.2, “Planning
your Export Strategy”, you can create filters for EXPORT_FLIGHT.*, EXPORT_CUSTOMER.*, and
RESERVATION_FINAL.*.

Table 15.5, “RabbitMQ Export Properties’ lists the supported properties for the RabbitMQ connector.

Table 15.5. RabbitM Q Export Properties

Property Allowable Values Description

broker.host” string The host name of a RabbitMQ exchange server.

broker.port integer The port number of the RabbitMQ server. The default port number
is5672.

amgap.uri string An alternate method for specifying the location of the Rabbit-
MQ exchange server. Use of amgp.uri allows you to specify ad-
ditional RabbitMQ options as part of the connection URI. Either
br oker. host orangp. uri must be specified.

virtual .host string Specifies the namespace for the RabbitM Q exchange and queues.

username string The username for authenticating to the RabbitMQ host.

password string The password for authenticating to the RabbitMQ host.

exchange.name string The name of the RabbitMQ exchange to use. If you do not specify a

value, the default exchange for the RabbitM Q server is used.

routing.key.suffix

{table} {column},...]

Specifies which table columns to use as a suffix for the RabbitMQ
routing key. The routing key always starts with the table name, in
uppercase. A suffix isthen appended to the table name, separated by
aperiod.

By default, the value of the table's partitioning column is used as
the suffix. Using this property you can specify alist of table column
names, where the table name and column name are separated by a
period and the list of table referencesis separated by commas. This
syntax allows you to specify a different routing key suffix for each
table.

queue.durable

true, false

Whether the RabbitMQ queueis durable. That is, datain the queue
will be retained and restarted if the RabbitMQ server restarts. If you
specify the queue as durable, the messages themselves will also be
marked as durable to enable their persistence across server failure.
The default istrue.

binaryencoding

hex, base64

Specifies whether VARBINARY datais encoded in hexadecimal or
BASE64 format. The default is hexadecimal.

skipinternals

true, false

Specifies whether to include six columns of VoltDB metadata (such
as transaction I1D and timestamp) in the output. If you specify skipin-
ternals as true, the output contains only the exported table data. The
default isfalse.

timezone

string

The time zone to use when formatting the timestamp. Specify the
time zone as a Javatimezone identifier. The default is GMT.

"Required

140

Importing and Exporting Live Data

15.11. The Elasticsearch Connector

The Elasticsearch connector receives serialized data from the export tables and inserts it into an Elastic-
search server or cluster. Elasticsearch is an open-source full-text search engine built on top of Apache
Lucene™. By exporting selected tables from your VoltDB database to Elasticsearch you can perform ex-
tensive full-text searches on the data not possible with VoltDB aone.

Before using the Elasticsearch connector, we recommend reading the Elasticsearch documentation and
becoming familiar with the software. The instructions in this section assume a working knowledge of
Elasticsearch, its configuration and its capabilities.

Theonly required property when configuring El asticsearch isthe endpoint, which identifies the location of
the Elasticsearch server and what index to use when inserting records into the target system. The structure
of the Elasticsearch endpoint is the following:

<protocol >://<server>: <port>//<i ndex- nanme>// <t ype- name>

For example, if the target Elasticsearch service is on the server esear ch. | an using the default port
(9200) and the exported records are being inserted into the enpl oyees index as documents of type
per son, the endpoint declaration would look like this:

<property name="endpoi nt">
http://esearch. | an: 9200/ enpl oyees/ per son
</ property>

Y ou can use placeholders in the endpoint that are replaced at runtime with information from the export
data, such asthe table name (%t), the partition ID (%p), the export generation (%g), and the date and hour
(%d). For example, to use the table name as the index name, the endpoint might look like the following:

<property nane="endpoi nt">
http://esearch. | an: 9200/ % / per son
</ property>

When you export to Elasticsearch, the export connector creates the necessary index names and types in
Elasticsearch (if they do not already exist) and inserts each record as a separate document with the appro-
priate metadata. Table 15.6, “Elasticsearch Export Properties’ lists the supported properties for the Elas-
ticsearch connector.

Table 15.6. Elasticsear ch Export Properties

Property AllowableVal- |Description
ues
endpoint’ string Specifiesthe root URL of the RESTful interface for the

Elasticsearch cluster to which you want to export the da-
ta. The endpoint should include the protocol, host name
or IP address, port, and path. The path is assumed to in-
clude an index name and atype identifier.

The export connector will use the Elasticsearch RESTful
API to communicate with the server and insert records
into the specified locations. Y ou can use placeholdersto
replace portions of the endpoint with data from the ex-
ported records at runtime, including the table name (%t),
the partition 1D (%p), the date and hour (%d), and the
export generation (%g).

141

https://www.elastic.co/guide/index.html

Importing and Exporting Live Data

AllowableVal- |Description

ues
batch.mode true, false Specifies whether to send multiple rows asasingle re-
quest or send each export row separately. The default is
true.
string The time zone to use when formatting timestamps. Spec-

ify the time zone as a Javatimezone identifier. The de-
fault isthe local time zone.

15.12. Understanding Import

Just asVoltDB can export datafrom selected tablesto varioustargets, it supportsimporting datato selected
tables from external sources. Import worksin two ways:

» One-time import of data using one of several dataloading utilities VoltDB provides. These data load-
ers support multiple standard input protocols and can be run from any server, even remotely from the
database itself.

 Streaming import as part of the database server process. For datathat is imported on an ongoing basis,
use of the built-in import functionality ensures that import starts and stops with the database.

The following sections discuss these two approaches to dataimport.

15.12.1. One-Time Import Using Data Loading Utilities

Often, when migrating data from one database to another or when pre-loading a set of datainto VoltDB
asasdtarting point, you just want to perform the import once and then use the data natively within VoltDB.
For these one-time uses, VVoltDB provides separate datal oader utilitiesthat you can run once and then stop.

Each data |oader supports a different source format. You can load data from text files — such as com-
ma-separated value (CSV) files— using the csvloader utility. Y ou can load datafrom another JDBC-com-
pliant database using the jdbcloader utility. Or you can load data from a streaming message service with
the Kafka loader utility, kafkal oader.

All of the data loaders operate in much the same way. For each utility you specify the source for the
import and either a table that the data will be loaded into or a stored procedure that will be used to load
the data. So, for example, to load records from a CSV file named staff.csv into the table EMPLOY EES,
the command might be the following:

$ csvl oader enpl oyees --file=staff.csv
If instead you are copying the data from a JDBC-compliant database, the command might look like this:

$ j dbcl oader enpl oyees \
--jdbcurl =j dbc: postgresql : //renotesvr/ corphr \
--j dbct abl e=enpl oyees \
--jdbcdriver=org. postgresql.Driver

Each utility has arguments unique to the data source (such as - - j dbcur |) that allow you to properly
configure and connect to the source. See the description of each utility in Appendix D, VoltDB CLI Com-
mands for details.

142

Importing and Exporting Live Data

15.12.2. Streaming Import Using Built-in Import Features

If importing data is an ongoing business process, rather than a one-time event, then it is desirable to make
it an integral part of the database system. This can be done by building a custom application to push data
into VoltDB using one of its standard APIs, such as the JDBC interface. Or you can take advantage of
VoltDB's built-in import infrastructure.

The built-in importers work in much the same way as the data loading utilities, where incoming data is
written into one or more database tables using an existing stored procedure. The differenceisthat the built-
in importers start automatically whenever the database starts and stop when the database stops, making
import an integral part of the database process.

Y ou configurethe built-inimportersin the deployment file the sameway you configure export connections.
Within the <import> element, you declare each import stream using separate <configuration> elements.
Within the <configuration> tag you use attributes to specify the type and format of data being imported
and whether the import configuration is enabled or not. Then enclosed within the <configuration> tags
you use <property> elements to provide information required by the specific importer. For example:

<i nport>
<configuration type="kafka" format="csv" enabl ed="true">
<property nane="brokers" >kaf kasvr: 9092</ pr operty>
<property nane="topi cs">enpl oyees</ property>
<property nane="procedure">EMPLOYEE. i nsert </ property>
</ configuration>
</inmport >

Note

For the initial release of built-in importers, Kafka is the only supported import type.

VoltDB currently provides support for only one type of import: kafka. VoltDB also provides support for
two import formats: comma-separated values (csv) and tab-separated values (tsv). Command-separated
values are the default format. So if you are using CSV-formatted input, you can leave out the format
attribute, as in the following examples.

When the database starts, the import infrastructure starts any enabled configurations. If you are importing
multiple streamsto separate tables through separate procedures, you must include multiple configurations,
even if they come from the same source. For example, the following configuration imports data from two
Kafka topics from the same Kafka serversinto separate VoltDB tables.

<i nport>
<configuration type="kafka" enabl ed="true">
<property nane="brokers" >kaf kasvr: 9092</ pr operty>
<property nane="topi cs">enpl oyees</ property>
<property nane="procedure">EMPLOYEE. i nsert </ property>
</ configuration>
<configuration type="kafka" enabl ed="true">
<property nane="brokers" >kaf kasvr: 9092</ pr operty>
<property nane="topi cs" >manager s</ property>
<property nane="procedure">MANAGER. i nsert </ property>
</ configuration>
</inmport >

The following section describes the Kafka importer in more detail.

143

Importing and Exporting Live Data

15.12.2.1. The Kafka Importer

The Kafka importer connects to the specified Kafka messaging service and imports one or more Kafka
topics and writes the records into the VoltDB database. The data is decoded according to the specified
format — comma-separated values (CSV) by default — and is inserted into the VoltDB database using
the specified stored procedure.

Y ou must specify the following properties for each configuration:

 brokers— Identifies one or more Kafkabrokers. That is, servers hosting the Kafka service and desired
topics. Specify asingle server or acomma-separated list of brokers.

* topics — Identifies the Kafka topics that will be imported. The property value can be a single topic
name or a commarseparated list of topics.

» procedure— ldentifiesthe stored procedure that is invoked to insert the records into the VoltDB data-
base.

When import starts, the importer first checks to make sure the specified stored procedure exists in the
database schema. If not (for example, when you first create a database and before a schemais loaded), the
importer issues periodic warnings to the console.

Once the specified stored procedure is declared, the importer looks for the specified Kafka brokers and
topics. If the specified brokers cannot be found or the specified topics do not exist on the brokers, the
importer reports an error and stops. Y ou will need to restart import once this error condition is corrected.
Y ou can restart import using any of the following methods:

 Stop and restart or recover the database
 Pause and resume the database using the voltadmin pause and voltadmin resume commands
 Update the deployment file using the voltadmin update command

If the brokers are found and the topics exist, the importer starts fetching data from the Kafka topics and
submitting it to the stored procedureto insert into the database. In the simplest case, you can use the default
insert procedure for atable to insert recordsinto a single table. For more complex data you can write your
own import stored procedure to interpret the data and insert it into the appropriate table(s).

Table 15.7, “Kafka Import Properties” lists the allowable properties for the Kafka importer.

Table 15.7. Kafka Import Properties

Property AllowableVal- |Description
ues

brokers’ string A comma-separated list of Kafka brokers.

procedure* string The stored procedure to invoke to insert the incoming
data into the database.

topics string A comma-separated list of Kafkatopics.

fetch.message.max.bytes integer The maximum size, in bytes, of the messagethat is
fetched from Kafka. The Kafka default for this property
is 64 Kilobytes.

groupid string A user-defined name for the group that the client belongs
to. Kafka maintains a single pointer for the current posi-
tion within the stream for all clients in the same group.

144

Importing and Exporting Live Data

Property

Allowable Val-
ues

Description

The default group ID is "voltdb". In the rare case where
you have two or more databases importing data from the
same Kafka brokers and topics, be sure to set this prop-
erty to give each database a unique group ID and avoid
the databases interfering with each other.

socket.timeout.ms

integer

Thetime, in milliseconds, before the socket times out if
no response is received. The Kafka default for this prop-
erty is 30,000 (30 seconds).

If the socket times out when the importer first triesto
connect to the brokers, import will stop. If it times out
after the initial connection is made, the importer will
retry the connection until it succeeds.

"Required

145

Appendix A. Supported SQL DDL
Statements

This appendix describes the subset of the SQL Data Definition Language (DDL) that VoltDB supports
when defining the schemafor aVoltDB database. VoltDB a so supports extensions to the standard syntax
to allow for the declaration of stored procedures and partitioning information related to tables and proce-
dures.

Thefollowing sections are not intended as a compl ete description of the standard SQL DDL. Instead, they
summarize the subset of standard SQL DDL statements that are allowed when defining aVoltDB schema
and any exceptions, extensions, or limitations that application devel opers should be aware of .

The supported standard SQL DDL statements are:

* ALTERTABLE
» CREATEINDEX
» CREATETABLE
*» CREATEVIEW

The supported VoltDB-specific extensions for declaring stored procedures and partitioning are:

* CREATE PROCEDURE AS
* CREATE PROCEDURE FROM CLASS
* CREATEROLE

* DRTABLE

* DROP INDEX

* DROP PROCEDURE

* DROPROLE

* DROPTABLE

* DROPVIEW

* EXPORT TABLE

* IMPORT CLASS

* PARTITION PROCEDURE
* PARTITION TABLE

» SETDR

146

Supported SQL DDL Statements

ALTER TABLE

ALTER TABLE — Maodifies an existing table definition.

Syntax

ALTER TABLE table-name DROP CONSTRAINT constraint-name
ALTER TABLE table-name DROP [COLUMN] column-name [CASCADE]
ALTER TABLE table-name DROP {PRIMARY KEY | LIMIT PARTITION ROWS}

ALTER TABLE table-name ADD {constraint-definition | column-definition [BEFORE col-
umn-name] }

ALTER TABLE table-name ALTER column-definition [CASCADE]

ALTER TABLE table-name ALTER [COLUMN] column-name SET {DEFAULT value | [NOT]
NULL}

column-definition: [COLUMN] column-name datatype [DEFAULT value] [NOT NULL] [in-
dex-type]

constraint-definition: [CONSTRAINT constraint-name] { index-definition | limit-definition }

index-definition: {index-type} (column-name [,...])

limit-definition: LIMIT PARTITION ROWS row-count

index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The ALTER TABLE modifies an existing table definition by adding, removing or modifying a column or
congtraint. Thereare several different formsof the ALTER TABLE statement, depending on what attribute
you are atering (a column or a constraint) and how you are changing it. The key point to remember is
that you only alter one item at atime. To change two columns or a column and a constraint, you need to
issuetwo ALTER TABLE statements.

There arethree ALTER TABLE operations:
« ALTERTABLE ADD

* ALTER TABLE DROP

* ALTERTABLEALTER

The syntax of each statement depends on whether you are modifying a column or a constraint. You can
ADD or DROP either acolumn or anindex. However, you can ALTER columnsonly. To ater an existing
constraint you must first drop the constraint and then ADD the new definition.

There are two forms of the ALTER TABLE DROP statement. Y ou can drop a column or constraint by
name or you can drop a PRIMARY KEY or LIMIT PARTITION ROWS constraint by identifying the
type of constraint, since thereis only one such constraint for any given table.

147

Supported SQL DDL Statements

The syntax for the ALTER TABLE ADD statement uses the same syntax to define a new column or
constraint as that used in the CREATE TABLE command. When adding columns you can also specify
the BEFORE clause to specify where the new columns falls in the order of table columns. If you to not
specify BEFORE, the column is added at the end of the list of columns.

The ALTER TABLE ALTER COLUMN statement also has two forms. You can alter the column by
providing a complete replacement definition, similar tothe ALTER TABLE ADD COLUMN statement,
or you can alter a specific attribute using the ALTER TABLE ALTER COLUMN... SET syntax. Use
SET DEFAULT to add or modify an existing default. Use SET DEFAULT NULL to remove an existing
default. Y ou can aso use the SET clause to specify whether the column can be null (SET NULL) or must
not contain anull value (SET NOT NULL).

Handling Dependencies

Y ou can only alter tablesif there are no dependencies on the table, column, or index that would be violated
by the change. For example, you cannot drop the partitioning column from a partitioned table if there
are stored procedures partitioned on that table and column as well. You must first drop the partitioned
store procedures before dropping the column. Note that by dropping the partitioning column, you are also
automatically changing the table into areplicated table.

The most common dependency is if the table already has data in it. You can add, delete, and (within
reasonable bounds) modify the columns of a table with existing data as long as those columns are not
named in an index, view, or PARTITION statement. If acolumn is referenced in aview or index, you can
specify CASCADE when you drop the column to automatically drop the referring indexes and views.

When atable hasrecordsin it, data associated with dropped columnsis deleted. Added columns are inter-
preted as null or filled in with the specified default value. (Y ou cannot add a column that is defined as
NOT NULL, but without a default, if the table has existing datain it.) Y ou can even change the datatype
of the column within reason. In other words, you can increase the size of the datatype (for example, from
INTEGER to BIGINT) but you cannot decrease the size (say, from INTEGER to TINYINT) since some
of the existing data may already violate the size constraint.

Y ou can also add non-unique indexes to tables with existing data. However, you cannot add unique con-
straints (such as PRIMARY KEY) if data exists.

If atable has no recordsin it, you can make almost any changes you like to it assuming, again, there are
no dependencies. Y ou can add and remove unique constraints, add, remove, and modify columns, even
change column datatypes at will.

However, if there are dependencies, such as stored procedure queries that reference adropped or modified
column, you may not be allowed to make the change. If there are such dependencies, it is often easier to
do drop the stored procedures before making the changes then recreate the stored procedures afterwards.

Examples

The following example uses ALTER TABLE to drop a unique constraint, add a new column, and then
recreate the constraint adding the new column.

ALTER TABLE Enpl oyee DROP CONSTRAI NT Uni queNanes;
ALTER TABLE Enpl oyee ADD COLUWN M ddl el nitial VARCHAR(1);
ALTER TABLE Enpl oyee ADD CONSTRAI NT Uni queNanes

UNI QUE (FirstNane, Mddlelnitial, LastName);

148

Supported SQL DDL Statements

CREATE INDEX

CREATE INDEX — Creates an index for faster access to atable.

Syntax

CREATE [UNIQUE|JASSUMEUNIQUE] INDEX index-name
ON table-name (index-column [,...])
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

Creating an index on atable makes read access to the table faster when using the columns of the index as
akey. Note that VoltDB creates an index automatically when you specify a constraint, such as a primary
key, inthe CREATE TABLE statement.

When you specify that the index is UNIQUE, VoltDB constrains the table to at most one row for each set
of index column values. If an INSERT or UPDATE statement attemptsto create arow where all the index
column values match an existing indexed row, the statement fails.

Because the uniqueness constraint is enforced separately within each partition, only indexes on replicated
tables or containing the partitioning column of partitioned tables can ensure global uniqueness for parti-
tioned tables and therefore support the UNIQUE keyword.

If you wish to create an index on a partitioned table that acts like a unique index but does not include the
partitioning column, use the keyword ASSUMEUNIQUE instead of UNIQUE. Assumed unique indexes
are treated like unique indexes (VoltDB verifies they are unique within the current partition). However,
it is your responsibility to ensure these indexes are actually globally unique. Otherwise, it is possible an
index will generate a constraint violation during an operation that modifies the partitioning of the database
(such as adding nodes on the fly or restoring a snapshot to a different cluster configuration).

Theindexed items (index-column) are either columns of the specified table or expressions, including func-
tions, based on the table. For example, the following statements index atable based on the calculated area
and its distance from a set location:

CREATE | NDEX areaof pl ot ON plot (width * height);
CREATE | NDEX di stancefromi9 ON plot (ABS(latitude - 49));

Y ou can create a partial index by including a WHERE clausein the index definition. The WHERE clause
limits the number of rows that get indexed. Thisis useful if certain columns in the index are not evenly
distributed. For example, if you are not interested in recordswhere acolumnisnull, you can useaWHERE
clause to exclude those records and optimize the size and performance of the index.

The partial index is utilized by the database when a query's WHERE clause contains the same condition
asthe partial index definition. A specia caseisif theindex conditionis{col uim} 1S NOT NULL.In
this situation, the index may be applied even in the query does not contain that exact condition, aslong as
the query contains a WHERE condition that implies the column is not null, such as{ col um} > 0.

By default, VoltDB creates a tree index. Tree indexes provide the best general performance for a wide
range of operations, including exact value matches and queries involving a range of values, such as
SELECT ... WHERE Score > 1 AND Score < 10.

If an index is used exclusively for exact matches (such as SELECT ... WHERE MyHashCol um
= 123), it is possible to create a hash index instead. To create a hash index, include the string "hash"
as part of the index name.

149

Supported SQL DDL Statements

Examples

The following example creates two indexes on asingle table. The first is, by default, a non-unique index
based on the departure time The second is a unique index based on the columns for the airline and flight
number.

CREATE | NDEX flightTimeldx ON FLIGHT (departtine);
CREATE UNI QUE | NDEX Flight Keyldx ON FLIGHT (airline, flightlD);

You can aso use functions in the index definition. For example, the following is an index based on the
element movie within a JSON-encoded VARCHAR column named favorites and the member'sID.

CREATE | NDEX FavoriteMvie ON MEMBER (
FI ELD(favorites, 'nmovie'), menberlD
)

The following exampl e demonstrates the use of a partial index, by including a WHERE clause, to exclude
records with anull column.

CREATE | NDEX conpl et ed_t asks
ON tasks (task_id, startdate, enddate)
WHERE enddate 1S NOT NULL;

150

Supported SQL DDL Statements

CREATE PROCEDURE AS

CREATE PROCEDURE AS — Defines a stored procedure composed of a SQL query.

Syntax

CREATE PROCEDURE procedure-name
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
AS sgl-statement

CREATE PROCEDURE procedure-name
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
AS ### source-code ### LANGUAGE GROOVY

Description

Y ou must declare stored procedures as part of the schema to make them accessible at runtime. Use CRE-
ATE PROCEDURE AS when declaring stored procedures directly within the DDL statement. There are
two forms of the CREATE PROCEDURE AS statement:

e The SQL query form supports a single SQL query statement in the AS clause. The SQL statement
can contain question marks (?) as placeholders that are filled in at runtime with the arguments to the
procedure call.

» Theembedded program code form supportstheinclusion of program codeinthe AS clause. The embed-
ded program code is opened and closed by three pound signs (###) and followed by the LANGUAGE
clause specifying the programming language in use. VVoltDB currently supports Groovy as an embedded
language. (Supported in compiled application catalogs only. See the appendix on Using Application
Catalogsin the VoltDB Administrator's Guide for details.)

In both cases, the procedure name must follow the naming conventions for Javaclass names. For example,
the name is case-sensitive and cannot contain any white space.

When creating single-partitioned procedures, you can either specify the partitioning in a separate
PARTITION PROCEDURE statement or you can include the PARTITION ON clause in the CREATE
PROCEDURE statement. Creating and partitioning stored proceduresin asingle statement is recommend-
ed because there are certain cases where procedures with complex queries must be partitioned and cannot
be compiled without the partitioning information. For example, queries that join two partitioned tables
must be run in asingle-partitioned procedure and must join the tables on their partitioning columns.

Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, VoltDB uses the first parameter to the stored procedure as
the partitioning value. However, you can use the PARAMETER clause to specify a different parameter.
The position value specifies the parameter position, counting from zero. (In other words, position O isthe
first parameter, position 1 isthe second, and so on.)

The specified table must be a partitioned table and cannot be an export-only or replicated table.

If security isenabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

151

http://docs.voltdb.com/AdminGuide/AppCatalog.php
http://docs.voltdb.com/AdminGuide/AppCatalog.php
http://docs.voltdb.com/AdminGuide/

Supported SQL DDL Statements

Examples

The following example defines a stored procedure, CountUsersByCountry, as a single SQL query with a
placeholder for matching the country column:

CREATE PROCEDURE Count User sByCountry AS
SELECT COUNT(*) FROM Users WHERE country=?;

The next example restricts access to the stored procedure to only users with the operator role. It also
partitions the stored procedure on the userID column of the Accounts table. Note that the PARAMETER
clauseis used since the userI D isthe second parameter to the procedure:

CREATE PROCEDURE ChangeUser Password
PARTI TI ON ON TABLE Accounts COLUWN user| D PARAMETER 1
ALLOW oper at or
AS UPDATE Accounts SET HashedPasswor d=? WHERE user | D=7?;

152

Supported SQL DDL Statements

CREATE PROCEDURE FROM CLASS

CREATE PROCEDURE FROM CLASS — Defines a stored procedure associated with a Java class.

Syntax

CREATE PROCEDURE
[PARTITION ON TABLE table-name COLUMN column-name [PARAMETER position]]
[ALLOW role-name [,...]]
FROM CLASS class-name

Description

Y ou must declare stored procedures to make them accessible to client applications and the sglemd utili-
ty. CREATE PROCEDURE FROM CLASS lets you declare stored procedures that are written as Java
classes.The class-name is the name of the Java class.

Before you declare the stored procedure, you must create, compile, and load the associated Java class. It
isusually easiest to do this by compiling all of your Java stored procedures and packaging the resulting
classfilesinto asingle JAR file that can be loaded once. For example:

$ javac -d ./obj src/procedures/*.java

$ jar cvf nmyprocs.jar —C obj

$ sqglcnmd

1> | oad cl asses nyprocs.jar;

2> CREATE PROCEDURE FROM CLASS procedures. AddCust omer ;

When creating single-partitioned procedures, you can either specify the partitioning in a separate
PARTITION PROCEDURE statement or you can include the PARTITION ON clause in the CREATE
PROCEDURE statement. Creating and partitioning stored proceduresin asingle statement is recommend-
ed because there are certain cases where procedures with complex queries must be partitioned and cannot
be compiled without the partitioning information. For example, queries that join two partitioned tables
must be run in asingle-partitioned procedure and must join the tables on their partitioning columns.

Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name. By default, VoltDB uses the first parameter to the stored procedure as
the partitioning value. However, you can use the PARAMETER clause to specify a different parameter.
The position value specifies the parameter position, counting from zero. (In other words, position O isthe
first parameter, position 1 isthe second, and so on.)

The specified table must be a partitioned table and cannot be an export-only or replicated table.

If security is enabled at runtime, only those roles named in the ALLOW clause (or with the ALLPROC or
ADMIN permissions) have permission to invoke the procedure. If security is not enabled at runtime, the
ALLOW clauseisignored and all users have access to the stored procedure.

Example

The following example declares a stored procedure matching the Java class MakeReservation. Note that
the class name includes its location within the current class path (in this case, as a child of flight and
procedures). However, the name itself, MakeReservation, must be unique within the schema because at
runtime stored procedures are invoked by name only.

153

Supported SQL DDL Statements

CREATE PROCEDURE FROM CLASS flight. procedures. MakeReservati on;

154

Supported SQL DDL Statements

CREATE ROLE

CREATE ROLE — Defines arole and the permissions associated with that role.

Syntax

CREATE ROLE role-name [WITH permission [,...]]

Description

The CREATE ROLE statement defines a named role that can be used to assign access rights to specific
procedures and functions. When security is enabled in the deployment file, the permissions assigned in the
CREATE ROL E and CREATE PROCEDURE statements specify which users can access which functions.

Use the CREATE PROCEDURE statement to assign permissions to named roles for accessing specific
stored procedures. The CREATE ROLE statement lets you assign certain generic permissions. The fol-
lowing table describes the permissions that can be assigned the WITH clause.

Permission Description Inherits
DEFAULTPROCREAD |Access to read-only default procedures
(TABLE.select)
DEFAULTPROC Access to al default procedures (TABLE.select,| DEFAULTPROCREAD
TABLE.insert, TABLE.delete, TABLE.update, and
TABLE.upsert)
SQLREAD Access to read-only ad hoc SQL queries (SELECT) | DEFAULTPROCREAD
SQL Accessto al ad hoc SQL queries, including datade- | SQLREAD, DEFAULT-
finition language (DDL) statements and default pro- | PROC
cedures
ALLPROC Access to al user-defined stored procedures
ADMIN Full accesstoall system procedures, all user-defined| ALLPROC, DEFAULT-
procedures, aswell as default procedures and ad hoc| PROC, SQL
SQL
Note: For backwards compatibility, the special permissions ADHOC and SY SPROC are still recognized.
They areinterpreted as synonyms for SQL and ADMIN, respectively.

The generic permissions are denied by default. So you must explicitly enable them for those roles that
need them. For example, if users assigned to the "interactive" role need to run ad hoc queries, you must
explicitly assign that permission in the CREATE ROLE statement:

CREATE ROLE interactive WTH sql;

Also note that the permissions are additive. So if a user is assigned to one role that allows access to
defaultproc but not allproc, but that user also is assigned to ancther role that allows allproc, the user has
both permissions.

Example

The following example defines three roles — admin, developer, and batch — each with a different set
of permissions;

155

Supported SQL DDL Statements

CREATE ROLE admin W TH adm n;
CREATE RCLE devel oper WTH sql, allproc;
CREATE RCLE batch W TH def aul t pr oc;

156

Supported SQL DDL Statements

CREATE TABLE

CREATE TABLE — Creates atable in the database.

Syntax

CREATE TABLE table-name (
column-definition [,...]
[, constraint-definition [,...]]

)i

column-definition: column-name datatype [DEFAULT value] [NOT NULL] [index-type]
constraint-definition: [CONSTRAINT constraint-name] { index-definition | limit-definition }
index-definition: {index-type} (column-name [,...])

limit-definition: LIMIT PARTITION ROWS row-count [EXECUTE (delete-statement)]
index-type: PRIMARY KEY | UNIQUE | ASSUMEUNIQUE

Description

The CREATE TABLE statement creates atable and its associated columnsin the database. The supported
datatypes are described in Table A.1, “ Supported SQL Datatypes”’.

TableA.1. Supported SQL Datatypes

SQL Datatype Equivalent Ja- Description
va Datatype

TINYINT byte 1-byte signed integer, -127 to 1272

SMALLINT short 2-byte signed integer, -32,767 to 32,767

INTEGER int 4-byte signed integer, -2,147,483,647 to
2,147,483,647

BIGINT long 8-byte signed integer, -9,223,372,036,854, 775,807
t0 9,223,372,036,854,775,807

FLOAT double 8-byte numeric, -(2-2%%).21023 1o (2-2°°2).210%3

(Note that values less than or equal to -1.7E+308
areinterpreted asnull.)

DECIMAL BigDecimal 16-byte fixed scale of 12 and precision of 38,
-99999999999999999999999999.999999999999
to 99999999999999999999999999.999999999999

VARCHAR() String Variable length text string, with a maximum length
specified in either characters (the default) or bytes.
To specify the length in bytes, usethe BY TES
keyword after the length value. For example:
VARCHAR(28 BYTES).

VARBINARY() byte array Variable length binary string (sometimes referred
to as a"blob") with a maximum length specified in
bytes

157

Supported SQL DDL Statements

SQL Datatype Equivalent Ja- Description
va Datatype
TIMESTAMP long, VoItDB Time- Time in microseconds
stampType

8 or integer and floating-point datatypes, VVoltDB reserves the largest possible negative value to denote a null value. For example
-128 isinterpreted as null for TINYINT, -32768 for SMALLINT, and so on.

The following limitations are important to note when using the CREATE TABLE statement in VoltDB:

» CHECK and FOREIGN KEY constraints are not supported.

VoltDB does not support AUTO_INCREMENT, the automatic incrementing of column values.

 Each column has amaximum size of one megabyte and the total declared size of al of the columnsina
table cannot exceed two megabytes. For VARCHAR columnswherethelengthisspecified in characters,
the declared sizeis calculated asfour bytes per character to allow for the longest potential UTF-8 string.

If you intend to use a column to partition a table, that column cannot contain null values. You must
specify NOT NULL in the definition of the column or VoltDB issues an error when compiling the
schema

» When you specify an index constraint, by default VVoltDB creates atreeindex. Y ou can explicitly create
a hash index by including the string "hash" as part of the index name. For example, the following
declaration creates a hash index, Ver si on_Hash_1 dx, of three numeric columns.

CREATE TABLE Version (
Maj or SMALLI NT NOT NULL,
M nor SMALLI NT NOT NULL,
basel evel | NTEGER NOT NULL,
Rel easeDat e TI MESTAMP,
CONSTRAI NT Ver si on_Hash_I dx PRI MARY KEY
(Maj or, Mnor, Basel evel)

)

See the description of CREATE INDEX for more information on the difference between hash and tree
indexes.

» To specify anindex — either for an individual column or as atable constraint — that is globally unique
across the database, use the standard SQL keywords UNIQUE and PRIMARY KEY. However, for
partitioned tables, VoltDB can only ensure uniqueness if the index includes the partitioning column.
Otherwise, these keywords are not allowed.

It can be a performance advantage to define indexes or constraints on non-partitioning columnsthat you,
asthe devel oper, know are going to contain unique values. Although VoltDB cannot ensure uniqueness
across the entire database, it does alow you to define indexes that are assumed to be unique by using
the ASSUMEUNIQUE keyword.

When you define an index on a partitioned table as ASSUMEUNIQUE, VolItDB verifies uniqueness
within the current partition when creating an index entry. However, it isyour responsibility asdevel oper
or administrator to ensurethat the values are actually globally unique. If the databaseis repartitioned due
to adding new nodes or restoring a snapshot to a different cluster configuration, non-unique ASSUME-
UNIQUE index entries may collide. When this occurs it results in a constraint violation error and the
database will not be able to complete its current action.

158

Supported SQL DDL Statements

Therefore, ASSUMEUNIQUE should be used with caution. Also, it is not necessary and should not
be used with replicated tables or indexes that contain the partitioning column, which can be defined
as UNIQUE.

VoltDB includesaspecia constraint, LIMIT PARTITION ROWS, that limitsthe number of rows of data
that can be inserted into any one partition for the table. This constraint is useful for managing memory
usage and avoiding accidentally running out of memory due to unbalanced partitions or unexpected
data growth.

Note that the limit, specified as an integer, limits the number of rows per partition, not for the table as
awhole. In the case of replicated tables, where each partition contains all rows of the table, the limit
applies equally to the table as a whole and each partition. Also, the constraint is applied to INSERT
operations. The constraint is not enforced when restoring a snapshot, altering the table declaration, or
rebalancing the cluster as part of elastically adding nodes. In these cases, ignoring the limit allows the
operation to succeed even if, as aresult, a partition ends up containing more rows than specified by the
LIMIT PARTITION ROWS constraint. But once the limit has been exceeded, any attempt to INSERT
more table rows into that partition will result in an error, until sufficient rows are deleted to reduce the
row count below the limit.

Aspart of the LIMIT PARTITION ROWS constraint, you can optionally include an EXECUTE clause
that specifiesaDEL ETE statement to be executed when an INSERT statement will exceed the partition's
row limit. For example, assume the events table has the following constraint as part of the CREATE
TABLE statement:

CREATE TABLE events (
event _time TI MESTAMP NOT NULL,
event _code | NTEGER NOT NULL.
event _nessage VARCHAR(128),
LIMT PARTI TI ON ROAS 1000 EXECUTE (
DELETE FROM events WHERE
SI NCE_EPOCH(second, NON - SI NCE_EPOCH(second, event _tinme) > 24*3600

)
)

At runtime, If an INSERT statement would result in the the current partition having more than 1000
rows, the delete statement will automatically be executed in an attempt to reduce the row count before
the INSERT statement isrun. In the example, any recordswith an event_time older than 24 hourswill be
deleted. Notethat it is your responsibility as the query designer to provide a DELETE statement that is
both deterministic and likely to remove sufficient rowsto allow the query to succeed. Several important
points to note about the EXECUTE clause:

« |f the DELETE statement does not delete sufficient rows, the INSERT statement will fail. For exam-
ple, in the previous example, if you attempt to insert more than 1000 rows into a single partition in
a 24 hour period, the DELETE statement will not delete enough records when you attempt to insert
the 1001st record.

e TheLIMIT PARTITION ROWS constraint is applied per partition. That is, the DELETE statement
is executed as a single-partitioned query in the partition where the INSERT statement triggers the
row limit constraint, even if the INSERT statement is part of a multi-partitioned stored procedure.

Thelength of VARCHAR columns can be specified in either characters (the default) or bytes. To specify
the length in bytes, include the BY TES keyword after the length value; for example VARCHAR(16
BYTES).

159

Supported SQL DDL Statements

Specifying the VARCHAR length in charactersis recommended because UTF-8 characters can require
avariable number of bytesto store. By specifying the length in characters you can be sure the column
has sufficient space to store any string of the specified length. Specifying the length in bytesis only
recommended when all values contain only single byte (ASCII) characters or when conserving spaceis
required and the strings are less than 64 bytesin length.

The VARBINARY datatype provides variable storage for arbitrary strings of binary data and operates
similarly to VARCHAR(Nn BYTES) strings. Y ou assign byte arrays to a VARBINARY column when
passinginvariables, or you can useahexidecimal string for assigning literal valuesinthe SQL statement.

The VoltDB TIMESTAMP datatype is a long integer representing the number of microseconds since
the epoch. Two important points to note about this timestamp:

e TheVoltDB TIMESTAMP s not the same as the Java Timestamp datatype or traditional Linux time
measurements, which are measured in millisecondsrather than microseconds. Appropriate conversion
is needed when casting values between aVVoltDB TIMESTAMP and other timestamp datatypes.

e The VoltDB TIMESTAMP is interpreted as a Greenwich Meantime (GMT) value. Depending on
how time values are created, their value may or may not account for the local machine's default time
zone. Mixing timestamps from different time zones (for example, in WHERE clause comparisons)
can result in unexpected behavior.

For TIMESTAMP columns, you can define a default value using the NOW or
CURRENT_TIMESTAMP keywordsin place of a specific value. For example:

CREATE TABLE Event (
Event _| d | NTEGER UNI QUE NOT NULL,
Event _Ti nestanp Tl MESTAMP DEFAULT NOW
Event _Descri pti on VARCHAR(128)

)

The default value is evaluated at runtime as an approximation, in milliseconds, of when the transaction
begins execution.

Example

The following example defines a table with five columns. The first column, Company, is not allowed

to

be null, which is important since it is used as the partitioning column in the following PARTITION

TABLE statement. That columnisalso contained inthe PRIMARY KEY constraint. Again, it isimportant

to

include the partitioning column in any fully unique indexes for partitioned tables.

CREATE TABLE I nventory (

)

Conmpany VARCHAR(32) NOT NULL,
Product | D Bl G NT NOT NULL,

Price DECI VAL,

Cat egory VARCHAR(32),

Descri pti on VARCHAR(256),

PRI MARY KEY (Conpany, Productl D)

PARTI TI ON TABLE | nventory ON COLUMN Conpany;

160

Supported SQL DDL Statements

CREATE VIEW

CREATE VIEW — Creates aview into atable, optimizing access to a summary of its contents.

Syntax

CREATE VIEW view-name (view-column-name [,...])
AS SELECT { column-name | selection-expression } [AS alias] [,...]
FROM table-name
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[GROUP BY { column-name | selection-expression } [,...]]

Description

The CREATE VIEW statement creates a view of atable with selected columns and aggregates. VoltDB
implements views as materialized views. In other words, the view is stored as a special table in the data-
base and is updated each time the corresponding database table is modified. This means there is a small,
incremental performanceimpact for any inserts or updatesto thetable, but selects on the view will execute
efficiently.

The following limitations are important to note when using the CREATE VIEW statement with VoltDB:
* Viewsare allowed on individua tables only. Joins are not supported.

» The SELECT statement must include a field specified as COUNT(*). Other aggregate functions
(COUNT, MAX, MIN, and SUM) are allowed following the COUNT (*).

* If the SELECT statement contains a GROUP BY clause, al of the columns and expressions listed in
the GROUP BY must be listed in the same order at the start of the SELECT statement.

Examples

Thefollowing exampledefinesaview that countsthe number of recordsfor aspecific product item grouped
by itslocation (that is, the warehouse the item isin).

CREATE VI EWi nventory_count _by war ehouse (
product | D,
war ehouse,
total _inventory
) AS SELECT
product | D,
war ehouse,
COUNT(*)
FROM i nventory GROUP BY product| D, warehouse;

The next example uses a WHERE clause but no GROUP BY to provide a count and minimum and maxi-
mum aggregates of all records that meet a certain criteria.

CREATE VIEW snal | _towns (nunber, mininum naxinmm)
AS SELECT count (*), min(popul ation), nax(popul ation)
FROM TOMNS WHERE popul ati on < 10000;

161

Supported SQL DDL Statements

DR TABLE

DR TABLE — Identifies atable as a participant in database replication (DR)

Syntax

DR TABLE table-name [DISABLE]

Description

The DR TABLE statement identifies a table as a participant in database replication (DR). If DR is not
enabled, the DR TABLE statement has no effect on the operation of the table or the database as a whole.
However, once DR is enabled and if the current cluster is the master database for the DR operation, any
updates to the contents of tables identified in the DR TABLE statement are copied and applied to the
replica database as well.

The DR TABLE ... DISABLE statement reversesthe effect of aprevious DR TABLE statement, removing
the specified table from participation in DR. Because the replica database schema must have DR TABLE
statements for any tables being replicated by the master, if DR is actively occurring you must add the
DR TABLE statements to the replica before adding them to the master. In reverse, you must issue DR
TABLE... DISABLE statements on the master before you issue the matching statements on the replica.

See Chapter 11, Database Replication for more information about how database replication works.

Examples

The following example identifies the tables Employee and Department as participants in database repli-
cation.

DR TABLE Enpl oyee;
DR TABLE Departnent;

162

Supported SQL DDL Statements

DROP INDEX

DROP INDEX — Removes an index.

Syntax

DROP INDEX index-name [IF EXISTS]

Description

The DROP INDEX statement deletes the specified index, and any data associated with it, from the data-
base. The IF EXISTS clause allows the statement to succeed even if the specified index does not exist. If
the index does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Y ou must use the name of theindex as specified in the original DDL when dropping theindex. Y ou cannot
drop an index if it was not explicitly named in the CREATE INDEX command. This is why you should
always name indexes and other constraints wherever possible.

Examples

The following example removes the index named employee idx_by lastname:

DROP | NDEX Empl oyee_i dx_by_| ast nane;

163

Supported SQL DDL Statements

DROP PROCEDURE

DROP PROCEDURE — Removes the definition of a stored procedure.

Syntax

DROP PROCEDURE procedure-name [IF EXISTS]

Description

The DROP PROCEDURE statement del etes the definition of the named stored procedure. Note that, for
procedures declared using CREATE PROCEDURE FROM and a classfile, the statement does not delete
the class that implements the procedure, it only deletes the definition and any partitioning information
associated with the procedure. To remove the associated stored procedure class, you must first drop the
procedure definition then use the sglcmd remove classes directive to remove the class.

The IF EXISTS clause allows the statement to succeed even if the specified procedure name does not
exist. If the stored procedure does not exist and you do not include the IF EXISTS clause, the statement
will return an error.

Examples

The following example removes the definition of the FindCanceledReservations stored procedure, then
uses remove classes to remove the corresponding class.

$ sqglcnd
1> DROP PROCEDURE Fi ndCancel edReser vati ons;
2> renove cl asses "*. Fi ndCancel edReservati ons";

164

Supported SQL DDL Statements

DROP ROLE

DROP ROLE — Removesarole.

Syntax

DROP ROLE role-name [IF EXISTS]

Description
The DROP ROLE statement deletes the specified role. The IF EXISTS clause allows the statement to

succeed even if the specified role does not exist. If the role does not exist and you do not include the IF
EXISTS clause, the statement will return an error.

Examples
The following example removes the role named debug;:

DROP ROLE debug;

165

Supported SQL DDL Statements

DROP TABLE

DROP TABLE — Removes atable and any data associated with it.

Syntax

DROP TABLE table-name [IF EXISTS] [CASCADE]

Description

The DROP TABLE statement del etesthe specified table, and any dataassociated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified tables does not exist. If the
table does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Before dropping atable, you must first remove any stored procedures that reference the table. For exam-
ple, if the table EMPLOY EE is partitioned and the stored procedure AddEmployee is partitioned on the
EMPLOY EE table, you must drop the procedure first before dropping the table:

PARTI TI ON TABLE Enpl oyee ON COLUWN Enpl D;
PARTI TI ON PROCEDURE AddEnpl oyee
ON TABLE Enpl oyee COLUWN Enpl D;

[. . .]

DROP PROCEDURE AddEnpl oyee;
DROP TABLE Enpl oyee;

Attempting to drop the table before dropping the procedure will result in an error. The same will normally
happen if there are any views or indexes that reference the table. However, if you use the CASCADE
clause VoltDB will automatically drop any referencing indexes and views as well as the table itself.

Examples

The following example uses DROP TABLE with the IF EXISTS clause to remove any existing MailAd-
dress table definition and data before adding a new definition.

DROP TABLE User Signin | F EXI STS;
CREATE TABLE User Signin (

user | D BIG NT NOT NULL,

| astl ogin TI MESTAMP DEFAULT NOW

)

166

Supported SQL DDL Statements

DROP VIEW

DROP VIEW — Removes aview and any data associated with it.

Syntax

DROP VIEW view-name [IF EXISTS]

Description

The DROP VIEW statement del etes the specified view, and any data associated with it, from the database.
The IF EXISTS clause allows the statement to succeed even if the specified view does not exist. If the
view does not exist and you do not include the IF EXISTS clause, the statement will return an error.

Dropping a view has the same constraints as dropping a table, in that you cannot drop a view that is

referenced by existing stored procedure queries. Before dropping the view, you must drop any stored
procedures that referenceit.

Examples

The following example removes the view named Votes by state:

DROP VI EW vot es_by_st at e;

167

Supported SQL DDL Statements

EXPORT TABLE

EXPORT TABLE — Specifiesthat atable isfor export only.

Syntax

EXPORT TABLE table-name TO STREAM stream-name

Description

At runtime, any records written to an export-only table are queued to the appropriate export connector, as
described in Chapter 15, Importing and Exporting Live Data. If export is enabled for this stream, the data
is then passed to the export connector that manages the export process.

The stream-name specifies to which export stream the table belongs. Y ou can enable and disable different
export streams separately and export them to different destinations through configuration options in the
deployment file.

The EXPORT TABLE statement lets you specify which tablesin the schema are export-only tables. These
tables become write-only. That is, they can be used in INSERT statements, but not SELECT, UPDATE,
or DELETE statements.

If an export configuration is not specified or is not enabled for a particular stream at runtime, writing to
export-only tables belonging to that stream has no effect.

Example

Thefollowing exampl e defines two tables— User and User_Export — with similar columns. The second
tableisthen defined asan export table. By inserting into the User_Export table every timearow isinserted
into the User table, an automated list of users can be maintained external to the active VoltDB database.

CREATE TABLE User (
User | D VARCHAR(15) NOT NULL,
Emai | Address VARCHAR(128) NOT NULL,
Created TI MESTAMP,
Passwor d VARCHAR(14),
Last Logi n TI MESTAMP) ;

CREATE TABLE User_Export (
User | D BI G NT NOT NULL,
Emai | Address VARCHAR(128) NOT NULL,
Created TI MESTAWP) ;

EXPORT TABLE User Export TO STREAM user ar chi ve;

168

Supported SQL DDL Statements

IMPORT CLASS

IMPORT CLASS — Specifies additional Java classes to include in the application catal og.

Syntax

IMPORT CLASS class-name

Description
Warning: Deprecated

The IMPORT CLASS statement is only valid when precompiling a schema into an application
catalog. However, use of precompiled catalogs, and the IMPORT CLASS statement, are depre-
cated. When using interactive DDL to enter your schema, use the sglcmd load classes directive
instead.

The IMPORT CLASS statement lets you specify class files to be added to the application catalog when
the schemais compiled. Y ou can include individual classfilesonly; the IMPORT CLASS statement does
not extract classes from JAR files. However, you can use Ant-style wildcardsin the class specification to
include multiple classes. For example:

| MPORT CLASS org. myconpany. utils.*;

Use the IMPORT CLASS statement to include reusable code that is accessed by multiple stored proce-
dures. Any classes and methods called by stored procedures must follow the same rules for determinis-
tic behavior that stored procedures follow, as described in Section 5.1.2, “VoltDB Stored Procedures are
Deterministic”.

Codeimported using IMPORT CLASSisincludedinthe application catalog and, therefore, can be updated
on arunning database through the @UpdateA pplicationCatal og system procedure. For static libraries that
stored procedures use but that do not need to be modified often, the recommended approach isto include
the code by placing JAR filesin the /lib directory where VoltDB isinstalled on the database servers.

Example

The following example imports a class containing common financial algorithms so they can be used by
any stored procedures in the catal og:

| MPORT CLASS or g. myconpany. common. fi nance;

169

Supported SQL DDL Statements

PARTITION PROCEDURE

PARTITION PROCEDURE — Specifies that a stored procedure is partitioned.

Syntax

PARTITION PROCEDURE procedure-name ON TABLE table-name COLUMN column-name
[PARAMETER position]

Description

Partitioning astored procedure meansthat the procedure executes within aunique partition of the database.
The partition in which the procedure executesis chosen at runtime based on the table and column specified
by table-name and column-name and the value of the first parameter to the procedure. For example:

PARTI TI ON TABLE Enpl oyees ON COLUWN BadgeNumber ;
PARTI TI ON PROCEDURE Fi ndEmpl oyee ON TABLE Enpl oyees COLUMN BadgeNunber ;

The procedure FindEmployee is partitioned on the table Employees, and table Employeesisin turn parti-
tioned on the column BadgeNumber. This means that when the stored procedure FindEmployeeisinvoked
VoltDB determines which partition to run the stored procedure in based on the value of thefirst parameter
to the procedure and the corresponding partitioning value for the column BadgeNumber. So to find the
employee with badge number 145303 you would invoke the stored procedure as follows:

cl i ent Response response = client.callProcedure("Fi ndEnpl oyee", 145303);

By default, VoltDB uses the first parameter to the stored procedure as the partitioning value. However, if
you want to use the value of adifferent parameter, you can use the PARAMETER clause. The PARAME-
TER clause specifies which procedure parameter to use as the partitioning value, with position specifying
the parameter position, counting from zero. (In other words, position O is the first parameter, position 1
is the second, and so on.)

The specified table must be a partitioned table and cannot be an export-only or replicated table.

Y ou specify the procedure by its simplified class name. Do not include any other parts of the class path.
Note that the simple procedure name you specify in the PARTITION PROCEDURE may be different than
the class name you specify in the CREATE PARTITION statement, which can include arelative path. For
example, if the class for the stored procedure is mydb.procedures.FindEmployee, the procedure name in
the PARTITION PROCEDURE statement should be FindEmployee:

CREATE PROCEDURE FROM CLASS nydb. pr ocedur es. Fi ndEnpl oyee;
PARTI TI ON PROCEDURE Fi ndEmpl oyee ON TABLE Enpl oyees COLUMN BadgeNunber ;

Examples

The following example declares a stored procedure, using an inline SQL query, and then partitions the
procedure on the Customer table, Note that the PARTITION PROCEDURE statement includes the PA-
RAMETER clause, since the partitioning column is not the first of the placeholders in the SQL query.
Also notethat the PARTITION argument is zero-based, so the value"1" identifies the second placeholder.

CREATE PROCEDURE GCet Cust oner ByName AS
SELECT * from Custoner WHERE Fi rst Nane=? AND LastNane = ?
ORDER BY Last Nane, FirstNane, Custonerl D

170

Supported SQL DDL Statements

PARTI TI ON PROCEDURE Cet Cust oner ByNamne
ON TABLE Custonmer COLUMN Last Nane
PARAVETER 1;

The next example declares a stored procedure as a Java class. Since the first argument to the procedure's
run method is the value for the LastName column, The PARTITION PROCEDURE statement does not
require a POSITION clause and can use the defaullt.

CREATE PROCEDURE FROM CLASS org. myconpany. ChangeCust orrer Addr ess;

PARTI TI ON PROCEDURE ChangeCust oner Addr ess
ON TABLE Custonmer COLUWN Last Nane;

171

Supported SQL DDL Statements

PARTITION TABLE

PARTITION TABLE — Specifiesthat atableis partitioned and which is the partitioning column.

Syntax

PARTITION TABLE table-name ON COLUMN column-name

Description

Partitioning a table specifies that different records are stored in different unique partitions, based on the
value of the specified column. The table table-name and column column-name must be valid, declared
elementsin the current DDL file or VoltDB generates an error when compiling the schema.

For atableto be partitioned, the partitioning column must be declared asNOT NULL. If you do not declare
a partitioning column of atablein the DDL, the table is assumed to be areplicated table.

Example
The following example partitions the table Employee on the column Employeel D.

PARTI TI ON TABLE Enpl oyee on COLUWN Enpl oyeel D

172

Supported SQL DDL Statements

SET DR

SET DR — Enables the use of Cross Datacenter Replication (XDCR).

Syntax

SET DR= {ACTIVE | PASSIVE}

Description

The SET DR statements enables and disables Cross Datacenter Replication (XDCR). You actually turn
on database replication in the deployment file using the <dr > and <connect i on> elements. But to use
two-way, active replication, you must also enable it in the database schema using the SET DR=ACTIVE
statement for both databases involved in the XDCR process. See Chapter 11, Database Replication for
more information about XDCR.

By default, only passive DR isenabled in the schema. By specifying SET DR=ACTIVE you enablethe use
of XDCR. When enabled, XDCR assigns an additional 8 bytes per row for every DR table in the database.
The additional space is used to store metadata about the row's most recent transaction.

For example, say your schema contains 5 tables which you declare as DR tables and those tables will store
a million rows each. This means the database will consume approximately 40 megabytes of additional
memory when XDCR is enabled, even if DR is not yet initiated in the deployment file. Which iswhy the
SET DR=ACTIVE statement should only be used for databases that will be involved in active XDCR.

If use of XDCR is enabled in the schema, you can use the SET DR=PASSIVE statement to disable it.
Note, however, for both the SET DR=ACTIVE and SET DR=PASSIVE statements, any tables declared
as DR tables must be empty when the SET DR statement is executed.

Examples

Thefollowing example enables the use of XDCR and then declaresthree tables as DR tables. Because any
DR tables must be empty when the SET DR statement is executed, it is often easiest to place the statement
at the beginning of the schema.

SET DR=ACTI VE;

DR TABLE Enpl oyees;
DR TABLE Di vi si ons;
DR TABLE Locati ons;

173

Appendix B. Supported SQL Statements

This appendix describes the SQL syntax that VVoltDB supports in stored procedures and ad hoc queries.

Thisisnot intended as a complete description of the SQL language and how it operates. Instead, it summa:
rizes the subset of standard SQL statements that are allowed in VoltDB and any exceptions or limitations
that application developers should be aware of .

The supported SQL statements are:

DELETE

INSERT

SELECT
TRUNCATE TABLE
UPDATE

UPSERT

174

Supported SQL Statements

DELETE

DELETE — Deletes one or more records from the database.

Syntax

DELETE FROM table-name

[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[ORDER BY {column-name [ASC | DESC [},...] [LIMIT integer] [OFFSET integer]]

Description

The DELETE statement deletes rows from the specified table that meet the constraints of the WHERE
clause. The following limitations are important to note when using the DELETE statement in VVoltDB:

The DELETE statement can operate on only one table at atime (no joins or subgueries).

The WHERE expression supports the boolean operators: equals (=), not equals (= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

The ORDER BY clause lets you order the selection results and then select a subset of the ordered
records to delete. For example, you could delete only the five oldest records, chronologically, sorting
by timestamp:

DELETE FROM events ORDER BY event _tinme ASC LIMT 5;
Similarly, you could choose to keep only the five most recent:
DELETE FROM events ORDER BY event tine DESC OFFSET 5;

When using ORDER BY, the resulting sort order must be deterministic. In other words, the ORDER
BY must include enough columns to uniquely identify each row. (For example, listing all columns or

aprimary key.)

Y ou cannot use ORDER BY to delete rowsfrom apartitioned tablein amulti-partitioned query. In other
words, for partitioned tables DELETE... ORDER BY must be executed as part of a single-partitioned
stored procedure or as an ad hoc query with a WHERE clause that uniquely identifies the partitioning
column value.

Examples

The following example removes rows from the EMPLOY EE table where the EMPLOYEE_ID column
isequal to 145303.

DELETE FROM enpl oyee WHERE enpl oyee id = 145303;

The following example removes rows from the BID table where the BIDDERID is 12345 and the BID-
PRICE isless than 100.00.

DELETE FROM bi d WHERE bi dderi d=12345 AND bi dpri ce<100. O;

175

Supported SQL Statements

INSERT

INSERT — Creates new rows in the database, using the specified values for the columns.

Syntax

INSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

INSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description

TheINSERT statement creates one or more new rowsin the database. Therearetwo formsthethe INSERT
statement, INSERT INTO... VALUES and INSERT INTO... SELECT. The INSERT INTO... VALUES
statement lets you enter specific values for a adding a single row to the database. The INSERT INTO...
SELECT statement lets you insert multiple rows into the database, depending upon the number of rows
returned by the select expression.

The INSERT INTO... SELECT statement is often used for copying rows from one table to another. For
example, say you want to export all of the records associated with aparticular column value. Thefollowing
INSERT statement copies all of the records from the table ORDERS with a warehousel D of 25 into the
table EXPORT_ORDERS:

| NSERT | NTO Export_Orders SELECT * FROM Orders WHERE Cust oner | D=25;

However, the select expression can be more complex, including joining multiple tables. The following
limitations currently apply to the INSERT INTO... SELECT statement:

* INSERT INTO... SELECT can join partitioned tables only if they are joined on equality of the parti-
tioning columns. Also, the resulting INSERT must apply to a partitioned table and be inserted using the
same partition column value, whether the query is executed in a single-partitioned or multi-partitioned
stored procedure.

e INSERT INTO... SELECT does not support UNION statements.

In addition to the preceding limitations, there are certain instances where the sel ect expression istoo com-
plex to be processed. Cases of invalid select expressionsin INSERT INTO... SELECT include:

* A LIMIT or TOP clause applied to a partitioned table in a multi-partitioned query
* A GROUPBY of apartitioned table where the partitioning column is not in the GROUP BY clause

Deterministic behavior is critical to maintaining the integrity of the data in a K-safe cluster. Because an
INSERT INTO... SELECT statement performs both aquery and aninsert based on theresults of that query,
if the selection expression would produces non-deterministic results, the VoltDB query planner rejectsthe
statement and returns an error. See Section 5.1.2, “VoltDB Stored Procedures are Deterministic” for more
information on the importance of determinism in SQL queries.

If you specify the column names following the table name, the values will be assigned to the columnsin
the order specified. If you do not specify the column names, values will be assigned to columns based on
the order specified in the schema definition. However, if you specify a subset of the columns, you must
specify values for any columns that are explicitly defined in the schemaas NOT NULL and do not have
adefault value assigned.

176

Supported SQL Statements

Examples

The following example inserts values into the columns (firsthame, mi, lastname, and emp_id) of an EM-
PLOYEE table:

| NSERT | NTO enpl oyee VALUES ('Jane', 'Q, 'Public', 145303);

The next example performs the same operation with the same results, except this INSERT statement ex-
plicitly identifies the column names and changes the order:

| NSERT | NTO enpl oyee (enp_id, |astnanme, firstnane, m)
VALUES (145303, 'Public', 'Jane', 'Q);

Thelast example assigns valuesfor the employee I D and thefirst and last names, but not the middleinitial.
This query will only succeed if the M| column is nullable or has a default value defined in the database
schema.

| NSERT | NTO enpl oyee (enp_id, |astnanme, firstnane)
VALUES (145304, 'Doe', 'John');

177

Supported SQL Statements

SELECT

SELECT — Fetches the specified rows and columns from the database.

Syntax

Select-statement [{set-operator} Select-statement] ...

Select-statement:
SELECT [TOP integer-value]
{*|[ALL | DISTINCT] { column-name | selection-expression } [AS alias] [,...] }
FROM { table-reference } [join-clause]...
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]
[clause...]

table-reference:
{ table-name [AS alias] | view-name [AS alias] | sub-query AS alias }

sub-query:
(Select-statement)

join-clause:
,table-reference
[INNER | {LEFT | RIGHT} [OUTER]] JOIN [{table-reference}] [join-condition]

join-condition:
ON conditional-expression
USING (column-reference [,...])

clause:
ORDER BY { column-name | alias } [ASC | DESC] [,...]
GROUP BY { column-name | alias } [,...]
HAVING boolean-expression
LIMIT integer-value [OFFSET row-count]

set—operator:
UNION [ALL]
INTERSECT [ALL]
EXCEPT

Description

The SELECT statement retrieves the specified rows and columns from the database, filtered and sorted
by any clauses that are included in the statement. In its simplest form, the SELECT statement retrieves
the values associated with individual columns. However, the selection expression can be a function such
as COUNT and SUM.

The following features and limitations are important to note when using the SELECT statement with
VoltDB:

» SeeAppendix C, SQL Functions for afull list of the SQL functions the VoltDB supports.

 VoltDB supportsthe following operatorsin expressions: addition (+), subtraction (-), multiplication (*),
division (*) and string concatenation (|]).

178

Supported SQL Statements

e TOP nisasynonymforLIM T n.

» The WHERE expression supports the boolean operators. equals (=), not equals (= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), LIKE, ISNULL, ISDISTINCT,
IS NOT DISTINCT, AND, OR, and NOT. Note, however, although OR is supported syntactically,
VoltDB does not optimize these operations and use of OR may impact the performance of your queries.

» The boolean expression LIKE provides text pattern matching in a VARCHAR column. The syntax of
the LIKE expression is{stri ng-expression} LIKE '{pattern}' where the pattern can
contain text and wildcards, including the underscore () for matching asingle character and the percent
sign (%) for matching zero or more characters. The string comparison is case sensitive.

Where an index exists on the column being scanned and the pattern starts with atext prefix (rather than
starting with awildcard), VoltDB will attempt to use theindex to maximize performance, For example, a
query limiting the resultsto rows from the EMPL OY EE table where the primary index, the JOB_CODE
column, begins with the characters "Temp" looks like this:

SELECT * from EMPLOYEE where JOB_CODE |i ke ' Tenp% ;

» Theboolean expression IN determinesif a given value is found within alist of alternatives. For exam-
ple, in the following code fragment the IN expression looks to see if arecord is part of Hispaniola by
evaluating whether the column COUNTRY is equal to either "Dominican Republic" or "Haiti":

WHERE Country IN (' Dom nican Republic', "Haiti')

Note that the list of alternatives must be enclosed in parentheses. The result of an IN expression is
equivalent to a sequence of equality conditions separated by OR. So the preceding code fragment pro-
duces the same boolean result as:

WHERE Country="Dom ni can Republic' OR Country='Haiti'

The advantages are that the IN syntax provides more compact and readable code and can provide im-
proved performance by using an index on theinitial expression where available.

» The boolean expression BETWEEN determines if avalue falls within agiven range. The evaluation is
inclusive of the end points. In thisway BETWEEN is a convenient alias for two boolean expressions
determining if a value is greater than or equal to (>=) the starting value and less than or equal to (<=)
the end value. For example, the following two WHERE clauses are equivalent:

VWHERE sal ary BETWEEN ? AND ?
WHERE sal ary >= ? AND salary <= ?

e Theboolean expressions ISDISTINCT FROM and ISNOT DISTINCT FROM are similar to the equals
("=") and not equals ("<>") operators respectively, except when evaluating null operands. If either or
both operands are null, the equals and not equals operators return a boolean null value, or false. IS
DISTINCT FROM and ISNOT DISTINCT FROM consider null avalid operand. Soif only one operand
isnull ISDISTINCT FROM returnstrue and ISNOT DISTINCT FROM returnsfalse. If both operands
arenull ISDISTINCT FROM returns false and ISNOT DISTINCT FROM returns true.

» When using placeholdersin SQL statementsinvolving the IN list expression, you can either do replace-
ment of individual values within the list or replace the list as a whole. For example, consider the fol-
lowing statements:

SELECT * from EMPLOYEE where STATUS IN (?, ?,7?);
SELECT * from EMPLOYEE where STATUS IN ?;

179

Supported SQL Statements

In the first statement, there are three parameters that replace individual valuesin the IN list, alowing
you to specify exactly three selection values. In the second statement the placeholder replacesthe entire
list, including the parentheses. In this case the parameter to the procedure call must be an array and
allows you to change not only the values of the alternatives but the number of criteria considered.

Thefollowing Javacode fragment demonstrates how thesetwo queries can be used in astored procedure,
resulting in equivalent SQL statements being executed:

String argl = "Sal ary";
String arg2 = "Hourly";
String arg3 = "Parttinme";

vol t QueueSQL(queryl, argl, arg2, arg3);

String listargs[] = new String[3];

listargs[0] = argl;
listargs[1l] = arg2?;
listargs[2] = arg3;

vol t QueueSQL(query2, (Qbject) listargs);

Note that when passing arrays as parameters in Java, it is a good practice to explicitly cast them as an
object to avoid the array being implicitly expanded into individual call parameters.

» VoItDB supports the use of CASE-WHEN-THEN-EL SE-END for conditional operations. For exam-
ple, the following SELECT expression uses a CASE statement to return different values based on the
contents of the price column:

SELECT Prod_nane,
CASE WHEN price > 100.00
THEN ' Expensi ve'
ELSE ' Cheap'
END
FROM products ORDER BY Prod_narne;

For more complex conditional operations with multiple alternatives, use of the DECODE() function is
recommended.

» VoltDB supports both inner and outer joins.

» The SELECT statement supports subqueries as atable reference in the FROM clause. Subqueries must
be enclosed in parentheses and must be assigned a table alias. Note that subqueries are only support-
ed in the SELECT statement; they cannot be used in data manipulation statements such UPDATE or
DELETE.

* You can only join two or more partitioned tables if those tables are partitioned on the same value and
joined on equality of the partitioning column. Joining two partitioned tables on non-partitioned columns
or on arange of valuesisnot supported. However, there are no limitations on joining to replicated tables.

» Extremely large result sets (greater than 50 megabytes in size) are not supported. If you execute a
SELECT statement that generates a result set of more than 50 megabytes, VoltDB will return an error.

Subqueries

The SELECT statement can include subqueries. Subqueries are separate SELECT statements, enclosed in
parentheses, where the results of the subquery are used as values, expressions, or arguments within the
surrounding SELECT statement.

180

Supported SQL Statements

Subqueries, likeany SELECT statement, are extremely flexible and can return awide array of information.
A subquery might return:

» A single row with a single column — this is sometimes known as a scalar subquery and represents a
single value

A single row with multiple columns — this is also known as a row val ue expression
» Multiple rows with one or more columns

In general, VoltDB supports subqueries in the FROM clause, in the selection expression, and in boolean
expressionsinthe WHERE clause or in CASE-WHEN-THEN-EL SE-END operations. However, different
types of subqueries are allowed in different situations, depending on the type of data returned.

 Inthe FROM clause, the SELECT statement supports all types of subquery as a table reference. The
subquery must be enclosed in parentheses and must be assigned atable alias.

* Inthe selection expression, scalar subqueries can be used in place of asingle column reference.

* Inthe WHERE clause and CA SE operations, both scalar and non-scalar subqueries can be used as part
of boolean expressions. Scalar subqueries can be used in place of any single-valued expression. Non-
scalar subqueries can be used in the following situations;

* Row value comparisons — Boolean expressions that compare one row value expression to another
can use subqueries that resolve to one row with multiple columns. For example:

select * fromtl
where (a,c) > (select a, ¢ fromt2 where b=tl.b);

* IN and EXISTS — Subqueries that return multiple rows can be used as an argument to the IN or
EXISTS predicate to determine if a value (or set of values) exists within the rows returned by the
subquery. For example:

select * fromtl

where a in (select a fromt?2);
select * fromtl

where (a,c) in (select a, ¢ fromt2 where b=t1.b);
select * fromtl where ¢ > 3 and

exists (select a, b fromt2 where a=t1l.a);

* ANY and ALL — Multi-row subqueriescan also beused asthetarget of an ANY or ALL comparison,
using either ascalar or row expression comparison. For example:

select * fromtl
where a > ALL (select a fromt?2);
select * fromtl
where (a,c) = ANY (select a, ¢ fromt2 where b=t1.b);

Note that subqueries are only supported in the SELECT statement; they cannot be used in data manipula-
tion statements such UPDATE or DELETE or in CREATE VIEW statements or index definitions. Also,
VoltDB does not support subqueriesin the HAVING, ORDER BY, or GROUP BY clauses.

For the initial release of subqueries in selection and boolean expressions, only replicated tables can be
used in the subquery. Both replicated and partitioned tables can be used in subqueries in place of table
references in the FROM clause.

181

Supported SQL Statements

Set Operations

VoltDB aso supports the set operations UNION, INTERSECT, and EXCEPT. These keywords let you
perform set operations on two or more SELECT statements. UNION includes the combined results sets
from the two SELECT statements, INTERSECT includes only those rows that appear in both SELECT
statement result sets, and EXCEPT includes only those rows that appear in one result set but not the other.

Normally, UNION and INTERSECT provide a set including unique rows. That is, if a row appears in
both SELECT results, it only appears once in the combined result set. However, if you include the ALL
modifier, all matching rows are included. For example, UNION ALL will result in single entries for the
rows that appear in only one of the SELECT results, but two copies of any rows that appear in both.

The UNION, INTERSECT, and EXCEPT operations obey the same rules that apply to joins:
* You cannot perform set operations on SELECT statements that reference the sametable.
» All tablesin the SELECT statements must either be replicated tables or partitioned tables partitioned

on the same column value, using equality of the partitioning column in the WHERE clause.

Examples

The following example retrieves all of the columns from the EMPLOY EE table where the last name is
"Smith":

SELECT * FROM enpl oyee WHERE | astnane = 'Smith';

The following exampl e retrieves selected columnsfor two tables at once, joined by the employee id using
animplicit inner join and sorted by last name:

SELECT | astnane, firstname, salary
FROM enpl oyee AS e, conpensation AS c
WHERE e. enpl oyee _id = c.enployee_ id
ORDER BY | ast nane DESC;

The following example includes both a simple SQL query defined in the schema and a client application
to call the procedure repeatedly. Thiscombination usesthe LIMIT and OFFSET clausesto "page" through
alarge table, 500 rows at atime.

When retrieving very large volumes of data, it isagood ideato use LIMIT and OFFSET to constrain the
amount of datain each transaction. However, to perform LIMIT OFFSET queries effectively, the database
must include atree index that encompasses all of the columns of the ORDER BY clause (in this example,
the lastname and firsthame columns).

Schema:

CREATE PRCCEDURE EnpByLinmit AS
SELECT | ast nanme, firstnanme FROM enpl oyee
VWHERE conmpany = ?
ORDER BY | ast nane ASC, firstnane ASC
LIMT 500 OFFSET ?;

PARTI TI ON PROCEDURE EnpByLinmit ON TABLE Enpl oyee COLUWMN Conpany;
Java Client Application:

| ong offset = 0;

182

Supported SQL Statements

String conpany = "ACME Expl osives";
bool ean al | done = fal se;
while (! alldone) {
Vol t Table results[] = client.callProcedure("EnpByLimt",
conpany, of fset) . get Resul ts();
if (results[0].getRowCount() < 1) {
/1 No nore records.
al | done = true;
} else {
/1 do sonething with the results.

}
of fset += 500;

183

Supported SQL Statements

TRUNCATE TABLE

TRUNCATE TABLE — Deletes all records from the specified table.

Syntax

TRUNCATE TABLE table-name

Description

The TRUNCATE TABLE statement deletes all of the records from the specified table. TRUNCATE TA-
BLE is the same as the statement DELETE FROM {t abl e- nane} with no selection clause. These
statements contain optimizations to increase performance and reduce memory usage over an equivalent
DELETE statement containing a WHERE selection clause.

Thefollowing behavior isimportant to remember when using the TRUNCATE TABLE statement in Volt-
DB:

» Executing a TRUNCATE TABLE query on a partitioned table within a single-partitioned stored pro-
cedure will only delete the records within the current partition. Records in other partitions will be un-
affected.

* You cannot execute a TRUNCATE TABLE query on areplicated table from within a single-partition

stored procedure. To truncate a replicated table you must execute the query within a multi-partition
stored procedure or as an ad hoc query.

Examples

The following example removes all data from the CURRENT_STANDINGS table;

TRUNCATE TABLE Current _standi ngs;

184

Supported SQL Statements

UPDATE

UPDATE — Updates the values within the specified columns and rows of the database.

Syntax

UPDATE table-name SET column-name = value-expression [, ...]
[WHERE [NOT] boolean-expression [{AND | OR} [NOT] boolean-expression]...]

Description

The UPDATE statement changes the values of columns within the specified records. The following limi-
tations are important to note when using the UPDATE statement with VVoltDB:

 VoltDB supports the following arithmetic operators in expressions. addition (+), subtraction (-), multi-
plication (*), and division (*).

» The WHERE expression supports the boolean operators: equals (=), not equals (!= or <>), greater than
(>), lessthan (<), greater than or equal to (>=), lessthan or equal to (<=), ISNULL, AND, OR, andNOT.
Note, however, although OR is supported syntactically, VoltDB does not optimize these operations and
use of OR may impact the performance of your queries.

Examples

The following example changes the ADDRESS column of the EMPLOY EE record with an employee ID
of 145303:

UPDATE enpl oyee
SET address = '49 Lavender Sweep'
WHERE enpl oyee_id = 145303;

The following example increases the starting price by 25% for all ITEM records with a category ID of 7:

UPDATE item SET startprice = startprice * 1.25 WHERE categoryid = 7;

185

Supported SQL Statements

UPSERT

UPSERT — Either inserts new rows or updates existing rows depending on the primary key value.

Syntax

UPSERT INTO table-name [(column-name [,...])] VALUES (value-expression [,...])

UPSERT INTO table-name [(column-name [,...])] SELECT select-expression

Description

The UPSERT statement has the same syntax asthe INSERT statement and will perform the same function,
assuming arecord with amatching primary key does not already exist in the database. If such arecord does
exist, UPSERT updates the existing record with the new column values. Note that the UPSERT statement
can only be executed on tables that have a primary key.

UPSERT has the same two forms as the INSERT statement: UPSERT INTO... VALUES and UPSERT
INTO... SELECT. The UPSERT statement also has similar constraints and limitations as the INSERT
statement with regards to joining partitioned tables and overly complex SELECT clauses. (See the de-
scription of the INSERT statement for details.)

However, UPSERT INTO... SELECT has an additional limitation: the SELECT statement must produce
deterministically ordered results. That is, the query must not only produce the same rows, they must bein
the same order to ensure the subsequent inserts and updates produce identical results.

Examples

Thefollowing examples use two tables, Employee and Manager, both of which define the column emp_id
asaprimary key. In the first example, the UPSERT statement either creates a new row with the specified
values or updates an existing row with the primary key 145303.

UPSERT | NTO enpl oyee (enp_id, lastnane, firstnane, title, departnent)
VALUES (145303, 'Public', 'Jane', 'Manager', 'HR);

The next example copies records from the Employee table to the Manager table, if the employee's title
is "Manager". Again, new records will be created or existing records updated depending on whether the
employee already has arecord in the Manager table. Notice the use of the primary key in an ORDER BY
clause to ensure deterministic results from the SELECT statement.

UPSERT | NTO Manager (enp_id, lastnane, firstnane, title, departnent)
SELECT * from Enpl oyee WHERE titl e=' Manager' ORDER BY enp_i d;

186

Appendix C. SQL Functions

Functions let you aggregate column values and perform other calculations and transformations on data
within your SQL queries. This appendix liststhe functions al phabetically, describing for each their syntax
and purpose. The functions can also be grouped by the type of data they produce or operate on, as listed
below.

Bitwise Function

« BIT_SHIFT_LEFT()
« BIT_SHIFT_RIGHT()
- BITAND()

- BITNOT()

« BITOR()

- BITXOR()

Column Aggregation Functions

« APPROX_COUNT _DISTINCT()
. AVG()

« COUNT()

. MAX()

« MIN()

« SUM()

Date and Time Functions

« CURRENT_TIMESTAMP
« DATEADD()

« DAY/(), DAYOFMONTH()
« DAYOFWEEK()

« DAYOFYEAR()

« EXTRACT()

« FROM_UNIXTIME()
HOUR()

MINUTE()

MONTH()

NOwW

QUARTER()

- SECOND()

- SINCE_EPOCH()

« TO_TIMESTAMP()

« TRUNCATE()

- WEEK(), WEEKOFYEAR()
« WEEKDAY()

« YEAR()

JSON Functions

« ARRAY_ELEMENT()
« ARRAY_LENGTH()
« FIELD()

187

SQL Functions

SET_FIELD()

Logic and Conversion Functions

. CAST()
« COALESCE()
- DECODE()

Math Function

* ABS()

« CEILING()
« EXP()

« FLOOR()

« LN(), LOG()
« MOD()

* PI()

« POWER()

* SQRT()

String Functions

BIN()

CHAR()
CHAR_LENGTH()
CONCAT()
FORMAT_CURRENCY ()
HEX()

LEFT()

LOWER()
OCTET_LENGTH()
OVERLAY()
POSITION()
REGEXP_POSITION()
REPEAT()
REPLACE()

RIGHT()

SPACE()
SUBSTRINGY()

TRIM()

UPPER()

188

SQL Functions

ABS()

ABS() — Returns the absolute value of a numeric expression.

Syntax

ABS(numeric-expression)

Description

The ABS() function returns the absolute value of the specified numeric expression.

Example

The following example sorts the results of a SELECT expression by its proximity to atarget value (spec-

ified by a placeholder), using the ABS() function to normalize values both above and below the intended
target.

SELECT price, product nanme FROM product |i st
ORDER BY ABS(price - ?) ASC

189

SQL Functions

APPROX_COUNT_DISTINCTY()

APPROX_COUNT_DISTINCT() — Returns an approximate count of the number of distinct values for
the specified column expression.

Syntax

APPROX_COUNT_DISTINCT(column-expression)

Description

The APPROX_COUNT_DISTINCT() function returns an approximation of the number of distinct values
for the specified column expression. APPROX_COUNT_DISTINCT (column-expression) isan alternative
to the SQL expression "COUNT(DI STI NCT col utm- expr essi on) ™.

The reason for using APPROX_COUNT_DISTINCT() is because it can be significantly faster and use
less temporary memory than performing a precise COUNT DISTINCT operation. Thisis particularly true
when calculating a distinct count of a partitioned table across al of the partitions. The approximation
usually falls within £1% of the actual count.

Y ou can usethe APPROX_COUNT _DISTINCT() function on column expressions of decimal, timestamp,

or any size integer datatype. Y ou cannot use the function on floating point (FLOAT) or variable length
(VARCHAR and VARBINARY) columns.

Example

Thefollowing example returns an approximation of the number of distinct products availablein each store.

SELECT store, APPROX COUNT_ DI STI NCT(product i d) FROM cat al og
CGROUP BY store ORDER BY store,

190

SQL Functions

ARRAY_ELEMENT()

ARRAY_ELEMENT() — Returns the element at the specified location in a JSON array.

Syntax

ARRAY_ELEMENT(JSON-array, element-position)

Description

The ARRAY_ELEMENTY() function extracts a single element from a JSON array. The array position is
zero-based. In other words, thefirst element inthearray isin position "0". The function returnsthe element
as astring. For example, the following function invocation returns the string "two":

ARRAY_ELEMENT('["zero", "one","two", "three"]", 2)

Note that the array element isalwaysreturned asa string. So in the following example, the function returns
"2" asastring rather than an integer:

ARRAY_ELEMENT('[0,1,2,3]",2)

Finally, the element may itself be a valid JSON-encoded object. For example, the following function
returns the string "[0,1,2,3]":

ARRAY ELEMENT('[[O0,1,2,3],["zero","one","tw","three"]]"', 0)

The ARRAY_ELEMENT() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures. The function returns a NULL value if any of the following conditions
aretrue:

» The position argument is less than zero
» The position argument is greater than or equal to the length of the array
» The JSON string does not represent an array (that is, the string isavalid JSON scalar value or object)

The function returns an error if the first argument is not avalid JSON string.

Example

The following example uses the ARRAY_ELEMENT() function along with FIELD() to extract specific
array elements from onefield in a JSON-encoded VARCHAR column:

SELECT | anguage,
ARRAY_ELEMENT(FI ELD(wor ds, ' colors'), 1) AS col or,
ARRAY_ELEMENT(FI ELD(wor ds, ' nunbers'), 2) AS nunber
FROM wor | d_I| anguages WHERE | anguage = ' French';

Assuming the column words has the following structure, the query returns the strings "French’, "vert",

and "trois".

{"colors":["rouge","vert","bleu"],
“nunbers":["un","deux","trois"]}

191

SQL Functions

ARRAY_LENGTH()

ARRAY _L ENGTH() — Returns the number of elementsin a JSON array.

Syntax

ARRAY_LENGTH(JSON-array)

Description

The ARRAY_LENGTH() returns the length of a JSON array; that is, the number of elements the array
contains. The length is returned as an integer.

The ARRAY _LENGTH)() function can be combined with other functions, such as FIELD(), to traverse
more complex JSON structures.

The function returns NULL if the argument is a valid JSON string but does not represent an array. The
function returns an error if the argument is not avalid JSON string.

Example

Thefollowing example usesthe ARRAY _LENGTH(), ARRAY_ELEMENTY(), and FIELD() functionsto
return the last element of an array in alarger JSON string. The functions perform the following actions:

* Innermost, the FIEL D() function extractsthe JSON field "alerts’, which isassumed to be an array, from
the column messages.

* ARRAY_LENGTH() determines the number of elementsin the array.

* ARRAY_ELEMENT() returns the last element based on the value of ARRAY _LENGTH() minus one
(because the array positions are zero-based).

SELECT ARRAY_ELEMENT(FI ELD(messages, 'al erts'),
ARRAY_ LENGTH(FI ELD(nessages, 'alerts'))-1) AS last_alert,
station FROM report! og
WHERE st ati on=7?;

192

SQL Functions

AVG()

AVG() — Returns the average of arange of numeric column values.

Syntax

AVG(column-expression)

Description

The AV G() function returns the average of arange of numeric column values. The values being averaged
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the average price for each product category.

SELECT AVQE price), category FROM product |i st
GROUP BY cat egory ORDER BY category;

193

SQL Functions

BIN()

BIN() — Returns the binary representation of aBIGINT value as a string.

Syntax

BIN(value)

Description

The BIN() function returns the binary representation of a BIGINT value as a string. The function will
return the shortest valid string representation, truncating any preceding zeros (except in the case of the
value zero, which is returned as the string "0").

Example

The following example use the BIN and BITAND functions to return the binary representations of two
BIGINT values and their binary intersection.

$ sqglcnd

1> create table bits (a bigint, b bigint);

2> insert into bits val ues(55,99);

3> select bin(a) as intl, bin(b) as int2,

4> bi n(bitand(a, b)) as intersection frombits;
I NT1 | NT2 | NTERSECTI ON

110111 1100011 100011

194

SQL Functions

BIT_SHIFT_LEFT()

BIT_SHIFT_LEFT() — Shiftsthe bits of a BIGINT value to the |eft a specified number of places.

Syntax

BIT_SHIFT_LEFT(value, offset)

Description

TheBIT_SHIFT_LEFT() function shiftsthe bit values of aBIGINT value to the left the number of places
specified by offset. The offset must be a positiveinteger value. The unspecified bitsto the right are padded
with zeros. So, for example, if the offset is 5, theleft-most 5 bits are dropped, the remaining bits are shifted
5 places to the left, and the right-most 5 bits are set to zero. Theresult is returned asanew BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example shiftsthe bitsin aBIGINT value three places to the left and displays the hexadec-
imal representation of both the initial value and the resulting value.

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits values (112);

3> select hex(a), hex(bit_shift_left(a,3)) frombits;
Cl c2

195

SQL Functions

BIT_SHIFT_RIGHTY()

BIT_SHIFT_RIGHT() — Shiftsthe bits of aBIGINT value to the right a specified number of places.

Syntax

BIT_SHIFT_RIGHT(value, offset)

Description

The BIT_SHIFT_RIGHT() function shifts the bit values of a BIGINT value to the right the number of
places specified by offset. The offset must be a positive integer value. The unspecified bitsto the left are
padded with zeros. So, for example, if the offset is 5, the right-most 5 bits are dropped, the remaining bits
are shifted 5 places to the right, and the left-most 5 bits are set to zero. The result is returned as a new
BIGINT value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example shifts the bitsin a BIGINT value three places to the right and displays the hexa
decimal representation of both the initial value and the resulting value.

$ sqglcnd

1> create table bits (a bigint);

2> insert into bits values (112);

3> select hex(a), hex(bit_shift_right(a,3)) frombits;
Cl c2

196

SQL Functions

BITAND()

BITAND() — Returns the mask of bits set in both of two BIGINT values

Syntax

BITAND(value, value)

Description

The BITAND() function returns the mask of bits set in both of two BIGINT integers. In other words, it
performs a bitwise AND operation on the two arguments. The result is returned as a new BIGINT value
— the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise AND of the columns:

$ sglcmd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitand(a,b) frombits;

Cl

5

197

SQL Functions

BITNOT()

BITNOT() — Returns the mask reversing every bit of aBIGINT value.

Syntax

BITNOT(value)

Description

TheBITNOT() function returnsthemask reversing every bitinaBIGINT value. In other words, it performs
a bitwise NOT operation, returning the complement of the argument. The result is returned as a new
BIGINT value — the argument to the function is not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writesavalueinto aBIGINT column of the table bits and then returns the bitwise
NOT of the column:

$ sglcmd

1> create table bits (a bigint);

2> insert into bits (a) values (1234567890);
3> select bitnot(a) frombits;

Cc1

-1234567891

198

SQL Functions

BITOR()

BITOR() — Returns the mask of bits set in either of two BIGINT values

Syntax

BITOR(value, value)

Description

The BITOR) function returns the mask of bits set in either of two BIGINT integers. In other words, it
performs a bitwise OR operation on the two arguments. The result is returned asanew BIGINT value —
the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise OR of the columns:

$ sglcmd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitor(a,b) frombits;

Cl

15

199

SQL Functions

BITXOR()

BITXOR() — Returns the mask of bits set in one but not both of two BIGINT values

Syntax

BITXOR(value, value)

Description

The BITXOR() function returns the mask of bits set in one but not both of two BIGINT integers. In other
words, it performs abitwise XOR operation on the two arguments. Theresult isreturned asanew BIGINT
value — the arguments to the function are not modified.

The left-most bit of an integer number is the sign bit, but has no special meaning for bitwise operations.
However, The left-most bit set to 1 followed by all zeros is reserved as the NULL value. If you use a
NULL value as an argument, you will receive a NULL response. But in all other circumstances (using
non-NULL BIGINT arguments), the bitwise functions should never return a NULL result. Consequently
any bitwise operation that would result in only the left-most bit being set, will generate an error at runtime.

Examples

The following example writes values into two BIGINT columns of the table bits and then returns the
bitwise XOR of the columns:

$ sglcmd

1> create table bits (a bigint, b bigint);
2> insert into bits (a,b) values (7,13);
3> select bitxor(a,b) frombits;

Cc1

10

200

SQL Functions

CAST()

CAST() — Explicitly converts an expression to the specified datatype.

Syntax

CAST(expression AS datatype)

Description

The CAST() function converts an expression to a specified datatype. Cases where casting is beneficial
include when converting between numeric types (such as integer and float) or when converting a numeric
value to astring.

All numeric datatypes can be used as the source and numeric or string datatypes can be the target. When
converting from decimal values to integers, values are truncated. Y ou can also cast from a TIMESTAMP
toaVARCHAR or fromaVARCHAR to aTIMESTAMP, assuming thetext string isformatted as YYYY-
MM-DD or YYYY-MM-DD HH:MM:SS.nnnnnnn. Where the runtime value cannot be converted (for ex-
ample, the value exceeds the maximum allowable value of the target datatype) an error isthrown.

Y ou cannot use VARBINARY aseither thetarget or the source datatype. To convert between numeric and
TIMESTAMP values, use the TO_TIMESTAMP(), FROM_UNIXTIME(), and EXTRACT() functions.

Theresult of the CAST() function of anull value is the corresponding null in the target datatype.

Example

The following example uses the CAST() function to ensure the result of an expression is also afloating
point number and does not truncate the decimal portion.

SELECT contestant, CAST((votes * 100) as FLOAT) / ? as percentage
FROM cont est ORDER BY votes, contestant

201

SQL Functions

CEILING()

CEILING() — Returnsthe smallest integer value greater than or equal to a numeric expression.

Syntax

CEILING(numeric-expression)

Description

The CEILING() function returnsthe next integer greater than or equal to the specified numeric expression.
In other words, the CEILING() function "rounds up" numeric values. For example:

CEl LI N&(3. 1415) = 4
CEILING(2.0) = 2
CEI LING(-5.32) = -5

Example

The following example uses the CEILING function to cal culate the shipping costs for a product based on
its weight in the next whole number of pounds.

SELECT shi ppi ng. cost _per _I b * CEI LI N product. wei ght),
product. prod_i d FROM product, shi pping
ORDER BY product. prod_i d;

202

SQL Functions

CHAR()

CHAR() — Returns a string with asingle UTF-8 character associated with the specified character code.

Syntax

CHAR(integer)

Description
The CHAR() function returns a string containing a single UTF-8 character that matches the specified

UNICODE character code. One use of the CHAR() function is to insert non-printing and other hard to
enter characters into string expressions.

Example

The following example uses CHAR() to add a copyright symbol into aVARCHAR field.

UPDATE book SET copyright _notice= CHAR(169) || CAST(? AS VARCHAR)
VWHERE i sbhn=7?;

203

SQL Functions

CHAR_LENGTH()

CHAR_LENGTH() — Returns the number of charactersin astring.

Syntax

CHAR_LENGTH(string-expression)

Description
The CHAR_LENGTH() function returns the number of text charactersin a string.

Note that the number of characters and the amount of physical space required to store those characters can
differ. To measure the length of the string, in bytes, use the OCTET_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

204

SQL Functions

COALESCE()

COALESCE() — Returns the first non-null argument, or null.

Syntax

COALESCE(expression [, ...])

Description

The COALESCE() function takes multiple arguments and returns the value of the first argument that is
not null, or — if all arguments are null — the function returns null.

Examples

The following example uses COALESCE to perform two functions:
* Replace possibly null column values with placehol der text
* Return one of severa column values

In the second usage, the SELECT statement returns the value of the column State, Province, or Territory
depending on the first that contains a non-null value. Or the function returns a null value if none of the
columns are non-null.

SELECT | ast nane, firstnane,
COALESCE(addr ess, ' [address unkown] '),
COALESCE(state, province, territory),
country FROM users ORDER BY | ast nane;

205

SQL Functions

CONCATY()

CONCAT() — Concatenates two or more strings and returns the result.

Syntax

CONCAT(string-expression {, ... })

Description

The CONCAT() function concatenates two or more strings and returns the resulting string. The string
concatenation operator || performs the same function as CONCAT().

Example

The following example concatenates the contents of two columns as part of a SELECT expression.

SELECT price, CONCAT(category, part_nane) AS full _part_nane
FROM product |ist ORDER BY pri ce;

The next exampl e does something similar but usesthe || operator asashorthand to concatenate three strings,
two columns and a string constant, as part of a SELECT expression.

SELECT lastnanme || ', ' || firstname AS full _nane
FROM cust oners ORDER BY | ast nane, firstname;

206

SQL Functions

COUNT()

COUNT() — Returns the number of rows selected containing the specified column.

Syntax

COUNT(column-expression)

Description

The COUNT() function returns the number of rows selected for the specified column. Since the actual
value of the column is not used to calculate the count, you can use the asterisk (*) as awildcard for any
column. For example the query SELECT COUNT(*) FROM wi dget s returns the number of rowsin
thetablewi dget s, without needing to know what columns the table contains.

The one case where the column name is significant is if you use the DISTINCT clause to constrain the
selection expression. For example, SELECT COUNT(DI STI NCT | ast _nane) FROM cust oner
returns the count of unique last namesin the customer table.

Examples

The following example returns the number of rowswhere the product name starts with the captial letter A.

SELECT COUNT(*) FROM product _|i st
VWHERE pr oduct _nane LIKE 'A% ;

The next example returns the total number of unique product categories in the product list.

SELECT CQOUNT(DI STI NCT cat egory) FROM product list;

207

SQL Functions

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP — Returns the current time as a timestamp value.

Syntax

CURRENT_TIMESTAMP

Description

The CURRENT_TIMESTAMP function returnsthe current time as aV oltDB timestamp. The value of the
timestamp is determined when the query or stored procedure isinvoked. Several important aspects of how
the CURRENT_TIMESTAMP function operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in milliseconds then padded to create atimestamp val uein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

Y ou can specify CURRENT_TIMESTAMP asadefault valuein the CREATE TABLE statement when
defining the schema of aVoltDB database.

The CURRENT_TIMESTAMP function cannot be used in the CREATE INDEX or CREATE VIEW
statements.

The NOW and CURRENT_TIMESTAMP functions are synonyms and perform an identical function.

Example

The following example uses CURRENT_TIMESTAMP in the WHERE clause to delete alert events that
occurred in the past:

DELETE FROM Al ert _event WHERE event _tinmestanp < CURRENT_TI MESTAMP;

208

SQL Functions

DATEADD()

DATEADD() — Returns a new timestamp value by adding a specified time interval to an existing time-
stamp value.

Syntax

DATEADD(time-unit, interval, timestamp)

Description

The DATEADD() function creates anew TIMESTAMP value by adding (or subtracting for negative val-
ues) the specified time interval from another TIMESTAMP value. The first argument specifies the time
unit of the interval. The valid time unit keywords are:

« MICROSECOND (or MICROS)
« MILLISECOND (or MILLIS)
« SECOND

« MINUTE

« HOUR

« DAY

« MONTH

« QUARTER

. YEAR

The second argument is an integer value specifying the interval to add to the TIMESTAMP value. A
positive interval moves the time ahead. A negative interval moves the time value backwards. The third
argument specifies the TIMESTAMP value to which theinterval is applied.

The DATEADD function takesinto account leap years and the variable number of daysin amonth. There-
fore, if the year of either the specified timestamp or the resulting timestamp is aleap year, the day is ad-
justed to its correct value. For example, DATEADD(YEAR, 1, *2008-02-29) returns * 2009-02-28'. Sim-
ilarly, if the original timestamp isthe last day of a month, then the resulting timestamp will be adjusted as
necessary. For example, DATEADD(MONTH, 1, ‘2008-03-31") returns * 2008-04-30’.

Example

Thefollowing example usesthe DATEADD() functiontofind all recordswherethe TIMESTAMP column,
incident, occurs within one day before a specified timestamp (entered as a POSIX time value).

SELECT incident, description FROM securitylLog
VWHERE DATEADD(DAY, 1, incident) > FROM UNI XTI ME(?)
AND i nci dent < FROM UNI XTI ME(?)
ORDER BY incident, description;

209

SQL Functions

DAY(), DAYOFMONTH()

DAY (), DAY OFMONTH() — Returns the day of the month as an integer value.

Syntax

DAY(timestamp-value)

DAYOFMONTH(timestamp-value)

Description

The DAY () function returns an integer value between 1 and 31 representing the timestamp's day of the
month. The DAY () and DAY OFMONTH() functions are synonyms. These functions produce the same
result as using the DAY or DAY_OF MONTH keywords with the EXTRACT() function.

Examples

Thefollowing example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) ||
CAST(DAY(starttine) AS VARCHAR) | |
CAST(YEAR(starttinme) AS VARCHAR), title
FROM event ORDER BY starttine;

|/||
|/||

|
|
description

210

SQL Functions

DAYOFWEEK()

DAY OFWEEK () — Returns the day of the week as an integer between 1 and 7.

Syntax

DAYOFWEEK(timestamp-value)

Description

The DAY OFWEEK () function returns an integer value between 1 and 7 representing the day of the week
in atimestamp value. For the DAY OFTHEWEEK() function, the week starts (1) on Sunday and ends (7)
on Saturday.

This function produces the same result as using the DAY_OF WEEK keyword with the EXTRACT()
function.

Examples

The following example uses DAY OFWEEK () and the DECODE() function to return astring value repre-
senting the day of the week for the specified TIMESTAMP value.

SELECT eventti ne,
DECODE(DAY(]=V\EEK(eventtine),

' Sunday"'
' Monday'
' Tuesday' ,
' Wednesday'
" Thur sday' ,
"Friday',
' Saturday') AS eventday
FROM event ORDER BY eventti ne;

NoghkrwnE

211

SQL Functions

DAYOFYEAR()

DAY OFYEAR() — Returns the day of the year as an integer between 1 and 366.

Syntax

DAYOFYEAR(timestamp-value)

Description

The DAY OFY EAR() function returns an integer val ue between 1 and 366 representing the day of the year
of atimestamp value. Thisfunction produces the same result asusing the DAY _OF_Y EAR keyword with
the EXTRACT() function.

Examples

Thefollowing example uses the DAY OFY EAR() function to determine the number of days until an event
occurs.

SELECT DECODE(YEAR(NOW, YEAR(starttine),
CAST(DAYOFYEAR(starttine) - DAYOFYEAR(NOW AS VARCHAR)
|| ' days remaining',
CAST(YEAR(starttine) - YEAR(NOWN AS VARCHAR)
|| ' years remaining'),
event nane FROM event ;

212

SQL Functions

DECODE()

DECODE() — Evaluates an expression against one or more alternatives and returnsthe matching response.

Syntax

DECODE(expression, { comparison-value, result } [,...] [,default-result])

Description

The DECODE() function compares an expression against one or more possible comparison values. If the
expression matches the comparison-value, the associated result is returned. If the expression does not
match any of the comparison values, the default-result is returned. If the expression does not match any
comparison value and no default result is specified, the function returns NULL.

The DECODE() function operates the same way an IF-THEN-EL SE, or CASE statement does in other
languages.

Example

The following example uses the DECODE() function to interpret a coded data column and replace it with
the appropriate meaning for each code.

SELECT title, industry, DECODE(sal ary_range,

"A, 'under $25,000',

"B, '$25,000 - $34,999',

"C, '$35,000 - $49,999',

"D, '$50,000 - $74,999',

"E', '$75,000 - $99, 000",

"F', '$100, 000 and over',
"unspecified') fromsurvey_results

order by industry, title;

The next exampl e tests a value against three columns and returns the name of the column when a match
isfound, or a message indicating no match if noneis found.

SELECT product _nane, DECODE(?, product nane, ' PRODUCT NAME' ,
part _nanme, ' PART NAME' ,
category, ' CATEGORY',

" NO MATCH FOUND)
FROM product _|ist ORDER BY product nane;

213

SQL Functions

EXP()

EXP() — Returns the exponential of the specified numeric expression.

Syntax

EXP(numeric-expression)

Description

The EXP() function returns the exponential of the specified numeric expression. In other words, EXP(x)
isthe equivalent of the mathematical expression €.

Example

The following example uses the EXP function to calculate the potential population of certain species of
animal projecting out ten years.

SELECT species, population AS current,
(popul ation/2) * EXP(10*(gestation/365)*litter) AS future
FROM ani mal s
WHERE species = 'rabbit’
ORDER BY popul ati on;

214

SQL Functions

EXTRACTY()

EXTRACT() — Returns the value of a selected portion of atimestamp.

Syntax

EXTRACT(selection-keyword FROM timestamp-expression)

EXTRACT(selection-keyword, timestamp-expression)

Description

The EXTRACT() function returns the value of the selected portion of atimestamp. Table C.1, “ Selectable
Vaues for the EXTRACT Function” lists the supported keywords, the datatype of the value returned by
the function, and a description of its contents.

Table C.1. Selectable Valuesfor the EXTRACT Function

Keyword Datatype Description

YEAR INTEGER The year as anumeric value.

QUARTER TINYINT The quarter of the year as a single numeric value between 1
and 4.

MONTH TINYINT The month of the year as a numeric value between 1 and 12.

DAY TINYINT The day of the month as a numeric value between 1 and 31.

DAY_OF MONTH|TINYINT The day of the month as a numeric value between 1 and 31
(same as DAY).

DAY_OF WEEK |TINYINT The day of the week asanumeric value between 1 and 7, start-
ing with Sunday.

DAY_OF YEAR |SMALLINT The day of the year as a numeric value between 1 and 366.

WEEK TINYINT The week of the year as a numeric value between 1 and 52.

WEEK_OF YEAR|TINYINT The week of the year as a numeric value between 1 and 52
(same as WEEK).

WEEKDAY TINYINT The day of the week as a numeric value between 0 and 6, start-
ing with Monday.

HOUR TINYINT The hour of the day as a numeric value between 0 and 23.

MINUTE TINYINT The minute of the hour as a numeric value between 0 and 59.

SECOND DECIMAL Thewhole and fractional part of the number of secondswithin
the minute as a floating point value between 0 and 60.

The timestamp expression isinterpreted as a VoltDB timestamp; That is, time measured in microseconds.

Example

The following example lists all the contacts by hame and birthday, listing the birthday as three separate
fields for month, day, and year.

SELECT Last_nane, first_name, EXTRACT(MONTH FROM dat eof birth),

215

SQL Functions

EXTRACT(DAY FROM dat eof bi rt h), EXTRACT(YEAR FROM dat eof bi rt h)
FROM contact _|i st
ORDER BY | ast _nane, first_nane;

216

SQL Functions

FIELD()

FIELD() — Extracts afield value from a JSON-encoded string column.

Syntax

FIELD(column, field-name-path)

Description

The FIELD() function extracts afield value from a JSON-encoded string. For example, assume the VAR-
CHAR column Profile contains the following JSON string:

{"first":"Charles","last":"Dickens","birth": 1812,
"description":{"genre":"fiction",
"period":"Victorian",
"output":"prolific",
"children":["Charl es","Mary","Kate", "Wal ter", "Francis",
"Al fred", "Sydney", "Henry", "Dora", " Edwar d"]

}

It is possible to extract individual field values using the FIELD() function, as in the following SELECT
statement:

SELECT FIELD(profile,"'first') AS firstnaneg,
FI ELD(profile,'last') AS |astnane FROM Aut hors;

It is also possible to find records based on individual JSON fields by using the FIELD() function in the
WHERE clause. For example, the following query retrieves all records from the Authors table where the
JSON field birthis 1812. Note that the FIEL D() function always returns a string, even if the JSON typeis
numeric. The comparison must match the string datatype, so the constant' 1812" isin quotation marks:

SELECT * FROM Aut hors WHERE FI ELD(profile, ' birth') = '1812";

The second argument to the FIELD() function can be a simple field name, as in the previous examples.
In which case the function returns a first-level field matching the specified name. Alternately, you can
specify a path representing a hierarchy of names separated by periods. For example, you can specify the
genre element of the description field by specifying "description.genre” as the second argument, like so

SELECT * FROM Aut hors WHERE
FI ELD(profil e, ' description.genre') = 'fiction';

Y ou can also use array notation — with square brackets and an integer value — to identify array elements
by their position. So, for example, the function can return "Kate", the third child, by using the path spec-
ifier "description.children[2]", where "[2]" identifies the third array element because JSON arrays are ze-
ro-based.

Two important points to note concerning input to the FIELD() function:
* If the requested field name does not exist, the function returns a null value.

» Thefirst argument to the FIELD() function must be avalid JSON-encoded string. However, the content
isnot evaluated until thefunctionisinvoked at runtime. Therefore, it istheresponsibility of the database

217

SQL Functions

application to ensure the validity of the content. If the FIELD() function encounters invalid content,
the query will fail.

Example

Thefollowing example usesthe FIEL D() function to both return specific JSON fieldswithinaVARCHAR
column and filter the results based on the value of athird JSON field:

SELECT product _nane, sku,
FI ELD(speci fication,'color') AS col or,
FI ELD(speci fication, ' weight') AS weight FROM I nventory
WHERE FI ELD(speci fication, 'category') = 'housewares'
ORDER BY product _nane, sku;

218

SQL Functions

FLOOR)

FLOOR() — Returnsthe largest integer value less than or equal to a numeric expression.

Syntax

FLOOR(numeric-expression)

Description

The FLOOR() function returns the largest integer less then or equal to the specified numeric expression.
In other words, the FLOOR() function truncates fractional numeric values. For example:

FLOOR(3. 1415) = 3
FLOOR(2.0) = 2
FLOOR(-5.32) = -6

Example

The following example uses the FLOOR function to calculate the whole number of stocks owned by a
specific shareholder.

SELECT custoner, conpany,
FLOOR(num of _st ocks) AS stocks_avail able_for_sale
FROM shar ehol ders WHERE custoner _id = ?
CORDER BY company;

219

SQL Functions

FORMAT_CURRENCY()

FORMAT_CURRENCY () — Convertsa DECIMAL to atext string as a monetary value.

Syntax

FORMAT_CURRENCY(decimal-value, rounding-position)

Description

The FORMAT_CURRENCY () function convertsaDECIMAL valueto its string representation, rounding
to the specified position. The resulting string is formatted with commas separating every three digits of
the whole portion of the number (indicating thousands, millions, and so on) and a decimal point before
the fractional portion, as needed.

Therounding-position argument must be an integer between 12 and -25 and indicatesthe placeto which the
numeric value should be rounded. Positive valuesindicate adecimal place; for example 2 means round to
2 decimal places. Negative valuesindicate rounding to awhole number position; for example, -2 indicates
the number should be rounded to the nearest hundred. A zero indicates that the value should be rounded
to the nearest whole number.

Rounding is performed using "banker's rounding”, in that any fractional half isrounded to the nearest even
number. So, for example, if the rounding-position is 2, the value 22.225 isrounded to 22.22, but the value
33.335 isrounded to 33.34. The following list demonstrates some sample results.

FORMAT_CURRENCY (.123456789, 4) = 0.1235
FORMAT_CURRENCY (123456789.123, 2) = 123,456,789.12
FORMAT_CURRENCY (123456789.123, 0) = 123,456,789
FORMAT_CURRENCY (123456789.123, -2) = 123,456,800
FORMAT_CURRENCY (123456789.123, -6) = 123,000,000
FORMAT_CURRENCY (123456789.123, 6) = 123,456,789.123000

Example

The following example uses the FORMAT_CURRENCY () function to return a DECIMAL column as a
string representation of its monetary value, rounding to two decimal places and appending the appropriate
currency symbol from aVARCHAR column.

SELECT country,
currency_synbol || format_currency(budget, 2) AS annual budget
FROM wor | d_economy ORDER BY country;

220

SQL Functions

FROM_UNIXTIME()

FROM_UNIXTIME() — Convertsa UNIX time value to a VoltDB timestamp.

Syntax

FROM_UNIXTIME(integer-expression)

Description

The FROM_UNIXTIME() function converts an integer expression to a VVoltDB timestamp, interpreting
the integer value as a POSIX time value; that is the number of seconds since the epoch (00:00.00 on
January 1, 1970 Consolidated Universal Time). Thisfunctionisasynonymfor TO_TIMESTAM P(second,
integer-expression).

Example

Thefollowing exampleinserts arecord using FROM_UNIXTIME to convert the first argument, a POSI X
time value, into a VoltDB timestamp:

| NSERT event (e_when, e what, e _where)
VALUES (FROM UNI X_TI ME(?),?,?);

221

SQL Functions

HEXI)

HEX() — Returns the hexadecimal representation of aBIGINT value as a string.

Syntax

HEX(value)

Description

The HEX() function returns the hexadecimal representation of a BIGINT value as a string. The function
will return the shortest valid string representation, truncating any preceding zeros (except in the case of
the value zero, which is returned as the string "0").

Examples

The following example use the HEX and BITAND functions to return the hexadecimal representations of
two BIGINT values and their binary intersection.

$ sqglcnd

1> create table bits (a bigint, b bigint);
2> insert into bits val ues(555, 999);

3> select hex(a) as intl, hex(b) as int2,

4> hex(bitand(a, b)) as intersection frombits;
I NT1 | NT2 | NTERSECTI ON
22B 3E7 223

222

SQL Functions

HOUR()

HOUR() — Returns the hour of the day as an integer value.

Syntax

HOUR(timestamp-value)

Description

The HOUR() function returns an integer val ue between 0 and 23 representing the hour of theday in atime-
stamp value. This function produces the same result as using the HOUR keyword with the EXTRACT()
function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

223

SQL Functions

LEFT()

LEFT() — Returns a substring from the beginning of a string.

Syntax

LEFT(string-expression, numeric-expression)

Description

The LEFT() function returnsthefirst n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT function to return an abbreviation (the first three characters) of the
product category as part of the SELECT expression.

SELECT LEFT(category, 3), product_nane, price FROM product i st
ORDER BY cat egory, product_naneg;

224

SQL Functions

LN(), LOG()

LN(), LOG() — Returns the natural logarithm of a numeric value.

Syntax

LN(numeric-value)

LOG(numeric-value)

Description

The LN() function returns the natural logarithm of the specified input value. The log is returned as a
floating point (FLOAT) value. LN() and LOG() are synonyms and perform the same function.

Example

The following example uses the LN() function to cal cul ate the rate of population growth from census data.

SELECT «city, current_popul ation,
((LN(current_popul ation) - LN(base_popul ation))
/ (current_year - base_year)
) * 100.0 AS percent_growth
FROM census ORDER BY city;

225

SQL Functions

LOWER()

LOWER() — Returns a string converted to all lowercase characters.

Syntax

LOWER(string-expression)

Description

The LOWER() function returns a copy of the input string converted to all lowercase characters.

Example

The following example uses the LOWER function to perform a case-insensitive search of aVARCHAR
field.

SELECT product _nane, product_id FROM product |i st
VWHERE LOWER(product _namne) LIKE 'acme%
ORDER BY product nane, product_id

226

SQL Functions

MAX()

MAX() — Returns the maximum value from arange of column values.

Syntax

MAX(column-expression)

Description

The MAX() function returnsthe highest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example
The following example returns the highest price in the product list.
SELECT MAX(price) FROM product |ist;
The next example returns the highest price for each product category.

SELECT category, MAX(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

227

SQL Functions

MIN()

MIN() — Returns the minimum value from arange of column values.

Syntax

MIN(column-expression)

Description

The MIN() function returns the lowest value from arange of column values. The range of values depends
on the constraints defined by the WHERE and GROUP BY clauses.

Example

The following example returns the lowest price in the product list.
SELECT M N(price) FROM product |ist;
The next example returns the lowest price for each product category.

SELECT category, M N(price) FROM product |i st
GROUP BY cat egory
ORDER BY cat egory;

228

SQL Functions

MINUTE()

MINUTE() — Returns the minute of the hour as an integer value.

Syntax

MINUTE(timestamp-value)

Description

The MINUTE() function returns an integer value between 0 and 59 representing the minute of the hour
in a timestamp value. This function produces the same result as using the MINUTE keyword with the
EXTRACT() function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

229

SQL Functions

MOD()

MOD() — Returns the result of a modulo operation.

Syntax

MOD(dividend, divisor)

Description

The MOD() function performs a modulo operation. That is, it divides one integer value, the dividend, by
another integer value, the divisor, and returns the remainder of the division operation as a new integer
value. Both the dividend and the divisor must be integer values and the divisor must not be zero. Use of
non-integer datatypes or adivisor of zero will result in aruntime error.

Example

The following example uses the HOUR() and MOD() functions to return the hour of atimestamp in 12
hour format

SELECT event,
MOD(HOUR(event ti me) +11, 12)+1,
CASE WHEN HOUR(eventtine)/12 < 1
THEN ' AM
ELSE ' PM
END
FROM schedul e ORDER BY 3, 2;

230

SQL Functions

MONTHi()

MONTH() — Returns the month of the year as an integer value.

Syntax

MONTH(timestamp-value)

Description

The MONTHY() function returns an integer value between 1 and 12 representing the timestamp's month
of the year. The MONTH() function produces the same result as using the MONTH keyword with the
EXTRACT() function.

Examples

The following example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) || |
CAST(DAY(starttine) AS VARCHAR) | | |
CAST(YEAR(starttinme) AS VARCHAR), title, description
FROM event ORDER BY starttine;

N
N

231

SQL Functions

NOW

NOW — Returns the current time as a timestamp value.

Syntax

NOW

Description

The NOW function returns the current time as a VoltDB timestamp. The value of the timestamp is deter-
mined when the query or stored procedure isinvoked. Several important aspects of how the NOW function
operates are:

The value returned is guaranteed to be identical for all partitions that execute the query.
Thevaluereturned ismeasured in milliseconds then padded to create atimestamp val uein microseconds.

During command logging, the returned value is stored as part of the log, so when the command log is
replayed, the same value is used during the replay of the query.

Similarly, for database replication (DR) the value returned is passed and reused by the replica database
when replaying the query.

Y ou can specify NOW as a default value in the CREATE TABLE statement when defining the schema
of aVoltDB database.

The NOW function cannot be used in the CREATE INDEX or CREATE VIEW statements.

The NOW and CURRENT_TIMESTAMP functions are synonyms and perform an identical function.

Example

The following example uses NOW in the WHERE clause to delete aert events that occurred in the past:

DELETE FROM Al ert _event WHERE event _timestanp < NOW

232

SQL Functions

OCTET_LENGTH()

OCTET_LENGTH() — Returns the number of bytesin a string.

Syntax

OCTET_LENGTH(string-expression)

Description
The OCTET_LENGTH() function returns the number of bytes of datain a string.

Note that the number of bytes required to store a string and the actual characters that make up the string
can differ. To count the number of charactersin the string use the CHAR_LENGTH() function.

Example

The following example returns the string in the column LastName as well as the number of characters and
length in bytes of that string.

SELECT Last Name, CHAR LENGTH(Last Nane), OCTET_LENGTH(Last Nane)
FROM Cust omer s ORDER BY Last Nane, First Nane;

233

SQL Functions

OVERLAY()

OVERLAY () — Returnsastring overwriting aportion of the original string with the specified replacement.

Syntax

OVERLAY(string PLACING replacement-string FROM position [FOR length])

Description

The OVERLAY/() function overwrites a portion of the origina string with the replacement string and
returns the result. The replacement starts at the specified position in the original string and either replaces
the characters one-for-one for the length of the replacement string or, if aFOR length is specified, replaces
the specified number of characters.

For example, if the original stringis 12 charactersin length, the replacement string is 3 charactersin length
and starts at position 4, and the FOR clauseis left off, the resulting string consists of the first 3 characters
of the origina string, the replacement string, and the last 6 characters of the original string:

OVERLAY (‘abcdefghijkl’ PLACING 'XYZ' FROM 4) = abcXY ZghijKI'

If the FOR clause is included specifying that the replacement string replaces 6 characters, the result isthe
first 3 charactersof theoriginal string, the replacement string, and thelast 3 charactersof theoriginal string:

OVERLAY (‘abcdefghijkl' PLACING 'XYZ' FROM 4 FOR 6) = 'abcX Y ZjkI'

If the combination of the starting position and the replacement length exceed the length of the original
string, the resulting output is extended as necessary to include all of the replacement string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 5) = "abcdXY Z'

If the starting position is greater than the length of the original string, the replacement string is appended
to the origina string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 20) = 'abcdefXYZ'

Similarly, if the combination of the starting position and the FOR length is greater than the length of the
original string, the replacement string simply overwrites the remainder of the original string:

OVERLAY (‘abcdef' PLACING 'XYZ' FROM 2 FOR 20) = 'aXY Z'

The starting position and length must be specified as non-negative integers. The starting position must be
greater than zero and the length can be zero or greater.

Example

The following example uses the OVERLAY function to redact part of a name.

SELECT OVERLAY(fullname PLACING '****' FROM 2
FOR CHAR_LENGTH(f ul I nane) - 2
) FROM users ORDER BY ful |l nane;

234

SQL Functions

PI()

Pl() — Returns the value of the mathematical constant pi () &sa FLOAT value.

Syntax

PI()

Description

The PI() function returns the value of the mathematical constant pi () & adoublefloating point (FLOAT)
value.

Example
The following example uses the PI() function to return the surface area of a sphere.

SELECT radius, 4*Pl()*PONER(radius, 2) FROM Sphere ORDER BY radi us;

235

SQL Functions

POSITION()

POSITION() — Returns the starting position of a substring in another string.

Syntax

POSITION(substring-expression IN string-expression)

Description

The POSITION() function returns the starting position of a substring in another string. The position, if a
match isfound, is an integer number between one and the length of the string being searched. If no match
isfound, the function returns zero.

Example

Thefollowing example selects all books where the title contains the word "poodl€" and returns the book's
title and the position of the substring "poodl€e” in the title.

SELECT Title, POSITION(' poodle' IN Title) FROM Books
WHERE Title LIKE ' %oodl e% ORDER BY Title;

236

SQL Functions

POWER()

POWER() — Returns the value of the first argument raised to the power of the second argument.

Syntax

POWER(numeric-expression, humeric-expression)

Description

The POWER() function takes two numeric expressions and returns the val ue of thefirst raised to the power
of the second. In other words, POWER(x,y) is the equivalent of the mathematical expression x”.

Example
The following example uses the POWER function to return the surface area and volume of a cube.

SELECT length, 6 * PONER(| ength, 2) AS surface,
POAER(| engt h, 3) AS vol une FROM Cube
ORDER BY | engt h;

237

SQL Functions

QUARTER()

QUARTER() — Returns the quarter of the year as an integer value

Syntax

QUARTER(timestamp-value)

Description

The QUARTER() function returns an integer value between 1 and 4 representing the quarter of the year
ina TIMESTAMP value. The QUARTER() function produces the same result as using the QUARTER
keyword with the EXTRACT() function.

Examples

Thefollowing example uses the QUARTER() and Y EAR() functionsto group and sort records containing
atimestamp.

SELECT year(starttinme), quarter(starttine),
count (*) as eventsperquarter
FROM event
GROUP BY year(starttine), quarter(starttine)
ORDER BY year(starttine), quarter(starttine);

238

SQL Functions

REGEXP_POSITION()

REGEXP_POSITION() — Returns the starting position of aregular expression within atext string.

Syntax

REGEXP_POSITION(string, pattern [, flag])

Description

The REGEXP_POSITION() function returns the starting position of the first instance of the specified
regular expression within atext string. The position value starts at one (1) for thefirst position in the string
and the functions returns zero (0) if the regular expression is not found.

Thefirst argument to the function isthe VARCHAR character string to be searched. The second argument
isthe regular expression pattern to look for. The third argument is an optional flag that specifies whether
the search is case sensitive or not. The flag must be single character VARCHAR with one of the following

values:
Flag Description
c Case-sensitive matching (default)

i Case-insensitive matching

There are severa different formats for regular expressions. The REGEXP_POSITION() uses the revised
Perl compatible regular expression (PCRE2) syntax, which is described in detail on the PCRE website.

Examples

Thefollowing example uses the REGEXP_POSITION() to filter all records where the column description
matches a specific pattern. The examples uses the optional flag argument to make the pattern match text
regardless of case.

SELECT incident, description FROM securitylLog
WHERE REGXP_POSI TlI ON(descri pti on,
"host:\s*10\.186\.[0-9]+\.[0-9]+",
"i')y >0
ORDER BY i nci dent;

239

http://www.pcre.org/current/doc/html/pcre2syntax.html

SQL Functions

REPEAT()

REPEAT() — Returns a string composed of a substring repeated the specified number of times.

Syntax

REPEAT(string-expression, numeric-expression)

Description

The REPEAT() function returns a string composed of the substring string-expression repeated n times
where n is defined by the second argument to the function.

Example

Thefollowing example usesthe REPEAT and the CHAR_LENGTH functionsto replace acolumn's actual
contents with a mask composed of the letter "X" the same length as the origina column value.

SELECT usernanme, REPEAT(' X', CHAR LENGTH(password)) as Password
FROM account s ORDER BY user nane;

240

SQL Functions

REPLACE()

REPLACE() — Returns a string replacing the specified substring of the original string with new text.

Syntax

REPLACE(string, substring, replacement-string)

Description

The REPLACE() function returns a copy of the first argument, replacing all instances of the substring
identified by the second argument with the third argument. If the substring is not found, no changes are
made and a copy of the original string is returned.

Example

The following example uses the REPLACE function to update the Address column, replacing the string
"Ceylon" with "Sri Lanka".

UPDATE Custoners SET address=REPLACE(address,' Ceylon', 'Sri Lanka')
WHERE address LIKE ' %Ceyl on% ;

241

SQL Functions

RIGHTY()

RIGHT() — Returns a substring from the end of a string.

Syntax

RIGHT(string-expression, humeric-expression)

Description

TheRIGHT() function returnsthelast n charactersfrom astring expression, where nisthe second argument
to the function.

Example

The following example uses the LEFT() and RIGHT() functions to return an abbreviated summary of the
Description column, ensuring the result fits within 20 characters.

SELECT product _nane,
LEFT(description,10) || '..." || R GHT(description,7)
FROM product |ist ORDER BY product nane;

242

SQL Functions

SECOND()

SECOND() — Returns the seconds of the minute as a floating point value.

Syntax

SECOND(timestamp-value)

Description

The SECOND() function returns an floating point value between 0 and 60 representing the whole and
fractional part of the number of seconds in the minute of a timestamp value. This function produces the
same result as using the SECOND keyword with the EXTRACT() function.

Examples

Thefollowing example usesthe HOUR(), MINUTE(), and SECOND() functionsto return thetime portion
of aTIMESTAMP value in aformatted string.

SELECT event nane,
CAST(HOUR(starttine) AS VARCHAR) || ' hours, ' ||
CAST(M NUTE(starttime) AS VARCHAR) || m nutes, and ' ||
CAST(SECOND(starttine) AS VARCHAR) || ' seconds.'
AS tinestring FROM event;

243

SQL Functions

SET_FIELD()

SET_FIELD() — Returns a copy of a JSON-encoded string, replacing the specified field value.

Syntax

SET_FIELD(column, field-name-path, string-value)

Description

The SET_FIELD() function finds the specified field within a JSON-encoded string and returns a copy of
the string with the new value replacing that field's previous value. Note that the SET_FIELD() function
returns an atered copy of the JSON-encoded string — it does not change any column valuesin place. So
to change existing database columns, you must use SET_FIELD() with an UPDATE statement.

For example, assume the Product table contains a VARCHAR column Productinfo which for one row
contains the following JSON string:

{"product”:"Acne wi dget",
"availability":"plenty",
"info": { "description": "A fancy widget.",
"sku": " ABCXYZ",
"part _nunber": 1234},
"war ehouse": [{"location":"Dallas","units": 25},
{"location":"Chicago", "units": 14},
{"location":"Troy","units":67}]

}
It is possible to change the value of the avai | abi | i ty field using the SET_FIELD function, like so:

UPDATE Product SET Productinfo =
SET _FIELD(Productinfo, availability',""limted"")
WHERE FI ELD(Pr oducti nfo, ' product’') = 'Acne w dget';

The second argument tothe SET_FIEL D() function can beasimplefield name, asin the previous example,
In which case the function replaces the value of the top field matching the specified name. Alternately, you
can specify a path representing a hierarchy of names separated by periods. For example, you can replace
the SKU number by specifying "info.sku" as the second argument, or you can replace the number of units
in the second warehouse by specifying the field path "warehouse[1].units'. For example, the following
UPDATE statement does both by nesting SET_FIELD commands:

UPDATE Product SET Productinfo =

SET_FI ELIX
SET _FI ELD(Productinfo,'info.sku','"DEFGH ""),
"war ehouse[1] .units', '128")

WHERE FI ELD(Pr oducti nfo, ' product') = 'Acne w dget';

Note that the third argument isthe string value that will be inserted into the JSON-encoded string. To insert
anumeric value, you enclose the value in single quotation marks, asin the preceding example where '128'
isused asthe replacement valuefor thewar ehouse[1] . uni t s field. Toinsert astring value, you must
include the string quotation marks within the replacement string itself. For example, the preceding code
uses the SQL string constant ""'DEFGHI"" to specify the replacement value for the text field i nf 0. sku.

244

SQL Functions

Finally, thereplacement string value can be any valid JSON value, including another JSON-encoded object
or array. It does not have to be a scalar string or numeric value.

Example

Thefollowing example usesthe SET_FIEL D() function to add anew array element to the warehouse field.

UPDATE Product SET Productinfo =
SET_FI ELD(Product i nf o, ' war ehouse',
"[{"l ocation":"Dallas","units": 25},
{"1 ocation":"Chicago", "units": 14},
{"location":"Troy","units": 67},
{"1 ocation":"Phoeni x","units":23}]")
WHERE FI ELD(Pr oducti nfo, ' product') = 'Acnme w dget';

245

SQL Functions

SINCE_EPOCH()

SINCE_EPOCH() — Converts a VoltDB timestamp to an integer number of time units since the POSIX
epoch.

Syntax

SINCE_EPOCH(time-unit, timestamp-expression)

Description

The SINCE_EPOCH() function converts aVoltDB timestamp into an 64-bit integer value (BIGINT) rep-
resenting the equivalent number since the POSIX epoch in a specified time unit. POSIX time is usually
represented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consoli-
dated Universal Time (UTC). So thefunction SINCE_EPOCH(SECONDS, timestamp) returnsthe POSI X
time equivalent for the value of timestamp. However, you can also request the number of milliseconds or
microseconds since the epoch. The valid keywords for specifying the time units are:

» SECOND — Seconds since the epoch
* MILLISECOND, MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

You cannot perform arithmetic on timestamps directly. So SINCE_EPOCH() is useful for performing
calculations on timestamp valuesin SQL expressions. For exampl e, thefollowing SQL statement looksfor
eventsthat arelessthan aminutein length, based on thetimestamp columns STARTTIME and ENDTIME:

SELECT * FROM Event
WHERE (SI NCE_EPOCH(Second, endti nme)
- SI NCE_EPOCH(Second, starttinme)) < 60;

The TO_TIMESTAMP() function performs the inverse of SINCE_EPOCH(), by converting an integer
value to a VoltDB timestamp based on the specified time units.

Example

The following example returns atimestamp column as the equivalent POSIX time value.

SELECT event _id, event_nane,
SI NCE_EPCCH(Second, starttinme) as posix_tinme FROM Event
ORDER BY event _i d;

The next example uses SINCE_EPOCH() to return the length of an event, in microseconds, by calculating
the difference between two timestamp columns.

SELECT event _id, event_type
SI NCE_EPCCH(M cr osecond, endtine)
- SI NCE_EPOCH(M crosecond, starttine) AS delta
FROM Event ORDER BY event i d;

246

SQL Functions

SPACE()

SPACE() — Returns a string of spaces of the specified length.

Syntax

SPACE(humeric-expression)

Description

The SPACE() function returns a string composed of n spaces where the string length n is specified by the
function's argument. SPACE(n) isa synonym for REPEAT(* ', n).

Example

The following example uses the SPACE and CHAR_LENGTH functions to ensure the result is a fixed
length, padded with blank spaces.

SELECT product_nane || SPACE(80 - CHAR LENGTH(product nane))
FROM product |ist ORDER BY product nane;

247

SQL Functions

SQRTY()

SQRT() — Returns the square root of a numeric expression.

Syntax

SQRT(numeric-expression)

Description

The SQRT() function returns the square root of the specified numeric expression.

Example

Thefollowing example uses the SQRT and POWER functions to return the distance of agraph point from
the origin.

SELECT | ocation, X, v,
SQRT(POVER(x, 2) + PONER(Y, 2)) AS distance
FROM poi nts ORDER BY | ocati on;

248

SQL Functions

SUBSTRING()

SUBSTRING() — Returns the specified portion of a string expression.

Syntax

SUBSTRING(string-expression FROM position [FOR length])

SUBSTRING(string-expression, position [, length])

Description

The SUBSTRING() function returns a specified portion of the string expression, where position specifies
the starting position of the substring (starting at position 1) and length specifies the maximum length of
the substring. The length of the returned substring is the lower of the remaining characters in the string
expression or the value specified by length.

For example, if the string expression is"ABCDEF" and position is specified as 3, the substring startswith
the character "C". If length is also specified as 3, the return value is "CDE". If, however, the length is
specified as 5, only the remaining four characters "CDEF" are returned.

If length is not specified, the remainder of the string, starting from the specified by position, is returned.
For example, SUBSTRING("ABCDEF",3) and SUBSTRING("ABCDEF"3,4) return the same value.

Example

The following example uses the SUBSTRING function to return the month of the year, whichisaVAR-
CHAR column, as athree |etter abbreviation.

SELECT event, SUBSTRI NG nonth, 1, 3), day, year FROM cal endar
ORDER BY event ASC;

249

SQL Functions

SUM()

SUM() — Returns the sum of arange of numeric column values.

Syntax

SUM(column-expression)

Description

The SUM() function returnsthe sum of arange of numeric column values. The values being added together
depend on the constraints defined by the WHERE and GROUP BY clauses.

Example

Thefollowing example uses the SUM () function to determine how much inventory existsfor each product
type in the catalog.

SELECT category, SUMquantity) AS inventory FROM product |i st
GROUP BY cat egory ORDER BY category;

250

SQL Functions

TO_TIMESTAMP()

TO_TIMESTAMP() — Convertsan integer valueto aVoltDB timestamp based on the time unit specified.

Syntax

TO_TIMESTAMP(time-unit, integer-expression)

Description

The TO_TIMESTAMP() function converts an integer expression to aVoltDB timestamp, interpreting the
integer value as the number of specified time units since the POSIX epoch. POSIX timeis usualy repre-
sented as the number of seconds since the epoch; that is, since 00:00.00 on January 1, 1970 Consolidat-
ed Universal Time (UTC). So the function TO_TIMESTAMP(Second, timeinsecs) returns the VoltDB
TIMESTAMP equivalent of timeinsecs asa POSIX time value. However, you can a so request the integer
value be interpreted as milliseconds or microseconds since the epoch. The valid keywords for specifying
the time units are;

» SECOND — Seconds since the epoch
* MILLISECOND. MILLIS— Milliseconds since the epoch
* MICROSECOND, MICROS — Microseconds since the epoch

Y ou cannot perform arithmetic on timestampsdirectly. SoTO_TIMESTAMP() isuseful for converting the
results of arithmetic expressionsto VoltDB TIMESTAMP values. For example, the following SQL state-
ment uses TO_TIMESTAMP to convert a POSIX time value before inserting it into a VoltDB TIMES-
TAMP column:

I NSERT | NTO Event
(event _id, event _nane, event type, starttinme)
VALUES(?, ?, ?, TO_TI MESTAMP(Second, ?));

The SINCE_EPOCH() function performs the inverse of TO_TIMESTAMP(), by converting a VoltDB
TIMESTAMP to an integer value based on the specified time units.

Example

Thefollowing example updatesa TIMESTAMP column, adding one hour (in seconds) to the current value
using SINCE_EPOCH() and TO_TIMESTAMP() to perform the conversion and arithmetic:

UPDATE Cont est
SET deadl i ne=TO_TI MESTAMP(Second, SI NCE_EPOCH(Second, deadl i ne) + 3600)
WHERE expi red=1;

251

SQL Functions

TRIM()

TRIM() — Returns a string with leading and/or training spaces removed.

Syntax

TRIM([[LEADING | TRAILING | BOTH] [character] FROM] string-expression)

Description

The TRIM() function returns a string with leading and/or trailing spaces removed. By default, the TRIM
function removes spaces from both the beginning and end of the string. If you specify the LEADING or
TRAILING clause, spaces are removed from either the beginning or end of the string only.

Y ou can also specify an aternate character to remove. By default only spaces (UTF-8 character code 32)
are removed. If you specify a different character, only that character will be removed. For example, the
following INSERT statement uses the TRIM function to remove any TAB characters from the beginning
of the string input for the ADDRESS column:

I NSERT | NTO Custoners (first, |last, address)
VALUES(?, 2,
TRIM LEADI NG CHAR(9) FROM CAST(? AS VARCHAR))
);

Example

Thefollowing example uses TRIM() to remove extraneous leading and trailing spaces from the output for
three VARCHAR columns:

SELECT TRIMfirst), TRIMIlast), TRI Maddress) FROM Custoner
ORDER BY | ast, first;

252

SQL Functions

TRUNCATE()

TRUNCATE() — Truncates a VoltDB timestamp to the specified time unit.

Syntax

TRUNCATE(time-unit, timestamp)

Description

The TRUNCATE() function truncates a timestamp value to the specified time unit. For example,
if the timestamp column Apollo has the value July 20, 1969 4:17:40 P.M, then using the function
TRUNCATE(hour,apollo) would return the value July 20, 1969 4:00:00 P.M. Allowable time units for
truncation include the following:

- YEAR

« QUARTER

« MONTH

. DAY

« HOUR

« MINUTE

« SECOND

« MILLISECOND, MILLIS

Example

The following example uses the TRUNCATE function to find records where the timestamp column, inci-
dent, fallswithin a specific day, entered asa POSIX time value.

SELECT incident, description FROM securityl og
VWHERE TRUNCATE(DAY, incident) = TRUNCATE(DAY, FROM UNI XTI ME(?))
ORDER BY incident, description;

253

SQL Functions

UPPER()

UPPER() — Returns a string converted to all uppercase characters.

Syntax

UPPER(string-expression)

Description

The UPPER() function returns a copy of the input string converted to all uppercase characters.

Example

The following example uses the UPPER function to return results al phabetically regardless of case.

SELECT UPPER(product nane), product_id FROM product i st
ORDER BY UPPER(pr oduct nane)

254

SQL Functions

WEEK(), WEEKOFYEAR()

WEEK(), WEEKOFY EAR() — Returns the week of the year as an integer value.

Syntax

WEEK(timestamp-value)

WEEKOFYEAR(timestamp-value)

Description
The WEEK () and WEEKOFY EAR() functions are synonyms and return an integer value between 1 and

52 representing the timestamp's week of the year. These functions produce the same result as using the
WEEK_OF_YEAR keyword with the EXTRACT() fucntion.

Examples

The following example uses the WEEK () function to group and sort records containing a timestamp.

SELECT week(starttime), count(*) as eventsperweek
FROM event GROUP BY week(starttine) ORDER BY week(starttinmne);

255

SQL Functions

WEEKDAY()

WEEKDAY () — Returns the day of the week as an integer between 0 and 6.

Syntax

WEEKDAY (timestamp-value)

Description

The WEEKDAY () function returns an integer value between 0 and 6 representing the day of theweek ina
timestamp value. For the WEEK DAY () function, the week starts (0) on Monday and ends (6) on Sunday.

Thisfunction isprovided for compatibility with MySQL and produces the same result as using the WEEK -
DAY keyword with the EXTRACT() function.

Examples

The following example uses WEEK DAY () and the DECODE() function to return astring val ue represent-
ing the day of the week for the specified TIMESTAMP value.

SELECT eventti ne,
DECODE(WEEKDAY(event ti me),
' Monday'
' Tuesday' ,
' Wednesday'
" Thur sday' ,
" Friday',
' Sat ur day'
, ''Sunday') AS eventday
FROM event ORDER BY eventti ne;

ook wNEO

256

SQL Functions

YEAR()

Y EAR() — Returns the year as an integer value.

Syntax

YEAR(timestamp-value)

Description

TheY EAR() function returnsan integer value representing theyear of aTIMESTAMPvalue. The Y EAR()
function produces the same result as using the Y EAR keyword with the EXTRACT() function.

Examples

The following example uses the DAY (), MONTH(), and Y EAR() functions to return atimestamp column
as aformatted date string.

SELECT CAST(MONTH(starttine) AS VARCHAR) || |
CAST(DAY(starttine) AS VARCHAR) | | |
CAST(YEAR(starttinme) AS VARCHAR), title, description
FROM event ORDER BY starttine;

N
N

257

Appendix D. VoltDB CLI Commands

VolItDB provides shell or CLI (command line interpreter) commands to perform common functions for
developing, starting, and managing VoltDB applications and databases. This appendix describes those
shell commands in detail.

The commands are listed in al phabetical order.

csvloader
jdbcloader
kafkal oader
sglemd
voltadmin
voltdb

258

VoltDB CLI Commands

csvioader

csvloader — Imports the contents of a CSV fileand insertsit into aVoltDB table.

Syntax

csvloader table-name [arguments]

csvloader -p procedure-name [arguments]

Description

The csvloader command reads comma-separated values and inserts each valid line of datainto the specified
tablein aVoltDB database. The most common way to use csvloader is to specify the database table to be
loaded and a CSV file containing the data, like so:

$ csvl oader enpl oyees -f acne_enpl oyees. csv
Alternately, you can use standard input as the source of the data:
$ csvl oader enpl oyees < acne_enpl oyees. csv

In addition to inserting all valid content into the specified database table, csvlioader creates three output
files:

» Error log— Theerror log provides details concerning any errors that occur while processing the input
file. Thisincludes errorsin the format of theinput as well as errorsthat occur attempting the insert into
VoltDB. For example, if two rows contain the same value for a column that is declared as unique, the
error log indicates that the second insert fails due to a constraint violation.

» Failed input — A separate file contains the contents of each line that failed to load. Thisfileis useful
becauseit allowsyou to correct any formatting issues and retry just the failed content, rather than having
to restart and reload the entire table.

e Summary report — Once al input lines are processed, csvloader generates a summary report listing
how many lines were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "csvloader" and the table
name as prefixes. For example, using csvloader to insert contestants into the sample voter database creates
the following files:

csvloader_contestants _insert_log.log
csvloader_contestants_invalidrows.csv
csvloader_contestants _insert_report.log

It is possible to use csvloader to load text files other than CSV files, using the - - separ at or, - -

guot echar , and - - escape flags. Note that csvloader uses Python to process the command line argu-
ments. So to enter certain non-al phanumeric characters, you must use the appropriate escaping mechanism
for Python command lines. For example, to use atab-delimited file asinput, you need to use the - - sep-

ar at or flag, escaping the tab character like so:

$ csvl oader --separator=$\t' \

259

VoltDB CLI Commands

-f enpl oyees.tab enpl oyees

Arguments

--batch {integer}
Specifies the number of rows to submit in a batch. If you do not specify an insert procedure, rows of
input are sent in batches to maximize overall throughput. Y ou can specify how many rows are sent
in each batch using the - - bat ch flag. The default batch sizeis 200. If you usethe - - pr ocedur e
flag, no batching occurs and each row is sent separately.

--blank {error | null | empty }
Specifies what to do with missing values in the input. By default, if aline contains a missing value,
it is interpreted as a null value in the appropriate datatype. If you do not want missing values to
be interpreted as nulls, you can use the --blank argument to specify other behaviors. Specifying - -
bl ank error resultsin an error if aline contains any missing values and the line is not inserted.
Specifying - - bl ank enpt y returns the corresponding "empty" value in the appropriate datatype.
An empty value isinterpreted as the following:

» Zerofor al numeric columns
» Zero, or the Unix epoch value, for timestamp columns
* Anempty or zero-length string for VARCHAR and VARBINARY columns

--columnsizelimit {integer}
Specifies the maximum size of quoted column input, in bytes. Mismatched quotation marks in the
input can cause csvloader to read all subsequent input — including line breaks— as part of the column.
To avoid excessive memory usein thissituation, theflag setsalimit on the maximum number of bytes
that will be accepted as input for a column that is enclosed in quotation marks and spans multiple
lines. The default is 16777216 (that is, 16MB).

--escape {character}
Specifies the escape character that must precede a separator or quotation character that is supposed to
beinterpreted asaliteral character in the CSV input. The default escape character isthe backslash (\).

-f, --file {file-specification}
Specifies the location of a CSV file to read as input. If you do not specify an input file, csvlioader
reads input from standard input.

--limitrows {integer}
Specifies the maximum number of rowsto be read from the input stream. This argument (along with
--skip) letsyou load a subset of alarger CSV file.

-m, --maxerrors {integer}
Specifiesthetarget number of errorsbefore csvloader stops processing input. Once csvloader encoun-
ters the specified number of errors while trying to insert rows, it will stop reading input and end the
process. Note that, since csvloader performs inserts asynchronously, it often attempts more inserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--noquotechar
Disablesthe interpretation of quotation charactersin the CSV input. All input other than the separator
character and line break will be treated as literal input characters.

260

VoltDB CLI Commands

--nowhitespace
Specifiesthat the CSV input must not contain any whitespace between data values and separators. By
default, csvloader ignores extra space between values, quotation marks, and the value separators. If
you use thisargument, any input lines containing whitespace will generate an error and not beinserted
into the database.

--password {text]
Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

--port { port-number}
Specifies the network port to use when connecting to the database. If you do not specify a port,
csvloader uses the default client port 21212,

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, csvloader uses a custom procedure to batch multiple rows into a single insert operation.
If you explicitly name a procedure, batching does not occur.

--gquotechar {character}
Specifies the quotation character that is used to enclose values. By default, the quotation character is
the double quotation mark (*).

-r, --reportdir {directory}
Specifies the directory where csvloader writes the three output files. By default, csvlioader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers=server-id[,...]
Specifies the network address of one or more nodes of a database cluster. By default, csvloader at-
temptstoinsert the CSV datainto adatabase on thelocal system (localhost). To load datainto aremote
database, use the --servers argument to specify the database nodes the loader should connect to.

--separator {charactor}
Specifies the character used to separate individual valuesin the input. By default, the separator char-
acter isthe comma(,).

--skip {integer}
Specifies the number of lines from the input stream to skip before inserting rows into the database.
This argument (along with --limitrows) lets you load a subset of alarger CSV file.

--strictquotes
Specifies that al values in the CSV input must be enclosed in quotation marks. If you use this argu-
ment, any input lines containing unquoted values will generate an error and not be inserted into the
database.

--update
Specifiesthat existing recordswith amatching primary key are updated, rather than being rejected. By
default, csvloader attempts to create new records. The --update flag lets you load updates to existing
records — and create new records where the primary key does not already exist. To use --update, the
table must have a primary key.

--user {text}
Specifies the username to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

261

VoltDB CLI Commands

Examples

Thefollowing exampleloadsthe datafromaCSV file, | anguages. csv, into the helloworld table from
the Hello World example database and redirects the output files to the ./logs subfolder.

$ csvl oader helloworld -f | anguages.csv -r ./l ogs
The following example performs the same function, providing the input interactively.

$ csvloader helloworld -r ./l ogs
“"Hell 0", "World", "English"

"Bonjour", "Mnde", "French"
"Hol a", "Miundo", "Spanish"
"Hej", "Verden", "Danish"
"Ciao", "Mndo", "Italian"
CTRL-D

262

VoltDB CLI Commands

jdbcloader

jdbcloader — Extracts a table from another database via JDBC and insertsit into aVoltDB table.

Syntax

jdbcloader table-name [arguments]

jdbcloader -p procedure-name [arguments]

Description

The jdbcloader command uses the JDBC interface to fetch all records from the specified table in aremote
database and then insert those records into a matching table in VoltDB. The most common way to use
jdbcloader isto copy matching tables from another database to VoltDB. In this case, you specify the name
of the table, plus any JDBC-specific arguments that are needed. Usually, the required arguments are the
JDBC connection URL, the source table, the username, password, and local JDBC driver. For example:

$ j dbcl oader enpl oyees \
--jdbcurl =j dbc: postgresql : //renot esvr/ corphr \
- -j dbct abl e=enpl oyees \
--j dbcuser =char | esdi ckens \
- - j dbcpasswor d=bl eakhouse \
--jdbcdriver=org. postgresql . Driver

In addition to inserting all valid content into the specified database table, jdbcloader creates three output
files:

» Error log— The error log provides details concerning any errors that occur while processing the input
file. Thisincludes errorsthat occur attempting the insert into VoltDB. For example, if two rows contain
the same value for a column that is declared as unique, the error log indicates that the second insert fails
due to a constraint violation.

» Failed input — A separate file contains the contents of each record that failed to load. Therecords are
stored in CSV (comma-separated value) format. Thisfileis useful because it allows you to correct any
formatting issues and retry just the failed content using the csvloader.

* Summary report — Onceall input records are processed, jdbcl oader generatesasummary report listing
how many records were read, how many were successfully loaded and how long the operation took.

All three files are created, by default, in the current working directory using "jdbcloader” and the table
name as prefixes. For example, using jdbcl oader to insert contestantsinto the sample voter database creates
the following files:

jdbcloader_contestants insert_log.log
jdbcloader_contestants insert_invalidrows.csv
jdbcloader_contestants insert_report.log

It is possible to use jdbcloader to perform other input operations. For example, if the source table does
not have the same structure as the target table, you can use a custom stored procedure to perform the
necessary trandation from one to the other by specifying the procedure name on the command line with
the --procedure flag:

263

VoltDB CLI Commands

$ j dbcl oader --procedure transl ateEnpRecords \
--jdbcurl =j dbc: post gresql : //renot esvr/ corphr \
- -j dbct abl e=enpl oyees \
- -j dbcuser =charl esdi ckens \
- - j dbcpasswor d=bl eakhouse \
--jdbcdriver=org. postgresql.Driver

Arguments

--batch {integer}
Specifiesthe number of rowsto submit in abatch to the target VoltDB database. If you do not specify
an insert procedure, rows of input are sent in batches to maximize overall throughput. Y ou can specify
how many rows are sent in each batch using the - - bat ch flag. The default batch size is 200. If you
usethe - - pr ocedur e flag, no batching occurs and each row is sent separately.

--fetchsize {integer}
Specifies the number of records to fetch in each JDBC call to the source database. The default fetch
size is 100 records,

--jdbcdriver {class-name}
Specifiesthe class name of the JDBC driver to invoke. The driver must exist locally and be accessible
either from the CLASSPATH environment variable or in the | i b/ ext ensi on directory where
VoltDB isinstalled.

--jdbcpassword {text}
Specifies the password to use when connecting to the source database via JDBC. Y ou must specify a
username and password if security is enabled on the source database.

--jdbctabl e {table-name}
Specifies the name of source table on the remote database. By default, jdbcl oader assumes the source
table has the same name as the target VoltDB table.

--jdbcurl {connection-URL}
Specifies the IDBC connection URL for the source database. This argument is required.

--jdbcuser {text}
Specifies the username to use when connecting to the source database via JDBC. Y ou must specify a
username and password if security is enabled on the source database.

--limitrows {integer}
Specifies the maximum number of rowsto be read from the input stream. This argument lets you load
a subset of aremote database table.

-m, --maxerrors {integer}
Specifies the target number of errors before jdbcloader stops processing input. Once jdbcloader en-
counters the specified number of errors while trying to insert rows, it will stop reading input and end
the process. Notethat, sincejdbcloader performsinsertsasynchronously, it often attempts moreinserts
before the target number of exceptions are returned from the database. So it is possible more errors
could be returned after the target is met. This argument lets you conditionally stop a large loading
process if more than an acceptable number of errors occur.

--password {text]
Specifiesthe password to use when connecting to the VoltDB database. Y ou must specify ausername
and password if security is enabled on the target database.

264

VoltDB CLI Commands

--port { port-number}
Specifies the network port to use when connecting to the VoltDB database. If you do not specify a
port, jdbcloader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifiesastored procedureto usefor loading each record from theinput source. The named procedure
must exist in the VoltDB database schema and must accept the fields of the data record as input
parameters. By default, jdbcloader uses a custom procedure to batch multiple rowsinto asingle insert
operation. If you explicitly name a procedure, batching does not occur.

-r, --reportdir {directory}
Specifies the directory where jdbcloader writes the three output files. By default, jdbcloader writes
output files to the current working directory. This argument lets you redirect output to an alternative
location.

--s, --servers=server-id[,...]
Specifies the network address of one or more nodes of a VoltDB cluster. By default, jdbcloader at-
tempts to insert the data into a VVoltDB database on the local system (localhost). To load data into a
remote database, use the --servers argument to specify the VoltDB database nodes the loader should
connect to.

--user {text}
Specifiesthe username to use when connecting to the VVoltDB database. Y ou must specify ausername
and password if security is enabled on the target database.

Example

The following example loads records from the Products table of the Warehouse database on server
hg.mycompany.com and writesthe recordsinto the Productstabl e of the V otlDB database on serverssvrA,
svrB, and svrC, using the MySQL JDBC driver to accessto source database. Note that the --jdbctable flag
is not needed since the source and target tables have the same name.

$ j dbcl oader Products --servers="svrA svrB,svrC' \
--jdbcurl ="jdbc: nmysql : // hg. nyconmpany. comf war ehouse" \
--jdbcdriver="com mysql .jdbc.Driver" \
--j dbcuser="ceo" \
- - j dbcpasswor d=" headhoncho"

265

VoltDB CLI Commands

kafkaloader

kafkal oader — Imports data from a Kafka message queue into the specified database table.

Syntax

kafkaloader table-name [arguments]

Description

The kafkaloader utility loads data from a Kafka message queue and inserts each message as a separate
record into the specified database table. Apache Kafkais a distributed messaging service that lets you set
up message queues which are written to and read from by "producers" and "consumers’, respectively. In
the Apache Kafka model, the kafkal oader acts as a"consumer".

When you start the kafkal oader, you must specify at least three arguments:

* The database table

e The Kafka server to read messages from, specified using the --zookeeper flag

e The Kafka"topic" where the messages are stored, specified using the --topic flag

For example:

$ kaf kal oader --zookeeper=quesvr:2181 --topic=vol tdb_custoner custoner
Note that Kafka does not impose any specific format on the messages it manages. The format of the
messages are application specific. In the case of kafkaloader, VoltDB assumes the messages are encoded
as standard comma-separated value (CSV) strings, with the values representing the columns of the table
in the order listed in the schema definition. Each Kafka message contains a single row to be inserted into
the database table.

It is also important to note that, unlike the csvloader which reads a static file, the kafkal oader is reading
from a queue where messages can be written at any time, on an ongoing basis. Therefore, the kafkal oader
process does not stop when it reads the last message on the queue; instead it continuesto monitor the queue
and process any new messages it receives. The kafkaloader process will continue to read from the queue

until one of the following events occur:

e The connection to al of the VoltDB servers is broken and so kafkaloader can no longer access the
VoltDB database.

e The maximum number of errors (specified by --maxerrors) is reached.
e Theuser explicitly stops the process.

The kafkaloader will not terminateif it losesits connection to the Kafka zookeeper. Therefore, it isimpor-
tant to monitor the Kafka service and restart the kafkaloader if and when the Kafka service is interrupted.

Finally, kafkaloader acks, or acknowledges, receipt of the messages from Kafka as soon as they are read
from the queue. The messages are then batched for insert into the VoltDB database. This means that the
gueue messages are acked regardless of whether they are successfully inserted into the database or not. It

266

http://kafka.apache.org/

VoltDB CLI Commands

is also possible messages may be lost if the loader process stops between when the messages are read and
the insert transaction is sent to the VoltDB database.

Arguments

--batch {integer}
Specifies the number of rows to submit in a batch. By default, rows of input are sent in batches to
maximize overall throughput. Y ou can specify how many rows are sent in each batch using the - -
bat ch flag. The default batch sizeis 200.

Note that --batch and --flush work together. Whichever limit is reached first triggers an insert to the
database.

--flush {integer}
Specifies the maximum number of seconds before pending dataiswritten to the database. The default
flush period is 10 seconds.

If dataisinserted into the kafka queue intermittently, there could be along delay between when data
is read from the queue and when enough records have been read to meet the - - bat ch limit. The
flush value avoids unnecessary delaysin this situation by periodically writing all pending data. If the
flush limit is reached, all pending records are written to the database, even if the - - bat ch limit has
not been satisfied.

-m, --maxerrors {integer}
Specifies the target number of input errors before kafkaloader stops processing input. Once
kafkal oader encounters the specified number of errors while trying to insert rows, it will stop reading
input and end the process.

The default maximum error count is 100. Since kafka import can be an persistent process, you can
avoid having input errors cancel ongoing import by setting the maximum error count to zero, which
means that the loader will continue to run no matter how many input errors are generated.

--password {text]
Specifies the password to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

--port {port-number}
Specifies the network port to use when connecting to the database. If you do not specify a port,
kafkal oader uses the default client port 21212.

-p, --procedure {procedure-name}
Specifies a stored procedure to use for loading each record from the data file. The named procedure
must exist in the database schema and must accept the fields of the data record as input parameters.
By default, kafkal oader uses a custom procedure to batch multiple rows into asingle insert operation.
If you explicitly name a procedure, batching does not occur.

--S, --servers=server-id[,...]
Specifies the network address of one or more nodes of a database cluster. By default, kafkaloader
attempts to insert the data into a database on the local system (localhost). To load datainto a remote
database, use the --servers argument to specify the database nodes the loader should connect to.

--update
Specifies that existing records with a matching primary key are updated, rather than being rejected.
By default, kafkaloader attempts to create new records. The --update flag lets you load updates to
existing records — and create new records where the primary key does not already exist. To use --
update, the table must have a primary key.

267

VoltDB CLI Commands

--user {text}
Specifies the username to use when connecting to the database. Y ou must specify a username and
password if security is enabled for the database.

--zookeeper {kafka-server|[:port] }
Specifiesthe network address of the Kafka Zookeeper instance to connect to. The Kafka service must
be running Kafka 0.8.

Examples

The following example starts the kafkaloader to read messages from the voltdb_customer topic on the
Kafkaserver quesvr:2181, inserting the resulting recordsinto the CUSTOMER tablein the VoltDB cluster
that includes the servers dbsvrl, dbsvr2, and dbsvr3. The process will continue, regardless of errors, until
connection to the VoltDB database islost or the user explicitly ends the process.

$ kaf kal oader --maxerrors=0 custoner \
- -zookeeper =quesvr: 2181 --topi c=vol tdb_cust oner
--server s=dbsvr 1, dbsvr 2, dbsvr 3

268

VoltDB CLI Commands

sqlemd

sglemd — Starts an interactive command prompt for issuing SQL queries to arunning VoltDB database

Syntax

sglemd [args...]

Description

The sglemd command lets you query a VoltDB database interactively. Y ou can execute SQL statements,
invoke stored procedures, or use directives to examine the structure of the database. When sglcmd starts
it provides its own command line prompt until you exit the session. When you start the session, you can
optionally specify one or more database servers to access. By default, sglcmd accesses the database on
the local system vialocalhost.

At the sglemd prompt, you have severa options:

* SQL queries— You can enter ad hoc SQL queries that are run against the database and the results
displayed. Y ou must terminate the query with a semi-colon and carriage return.

» Procedure calls — You can have sglcmd execute a stored procedure. You identify a procedure call
with the exec directive, followed by the procedure class name, the procedure parameters, and a closing
semi-colon. For example, the following sglecmd directive executes the @SystemCatal og system proce-
dure requesting information about the stored procedures.

$ sqgl cnd
1> exec @ystentCatal og procedures;

Note that string values can be entered as plain text or enclosed in single or double quotation marks.
Also, the exec directive must be terminated by a semi-colon.

» Show and Explain directives— The show and explain directives et you examine the structure of the
schema and user-defined stored procedures. Valid directives are:

e SHOW CLASSES — Lists the user-defined classesin the database. Classes are grouped into proce-
dures classes (those that can be invoked as a stored procedure) and non-procedure classes (shared
classes that cannot themselves be called as stored procedures but can be invoked from within stored
procedures).

¢ SHOW PROCEDURES — Lists the user-defined, default, and system procedures for the current
database, including the type and number of arguments for each.

e SHOW TABLES — Liststhe tablesin the schema.
* EXPLAIN {sgl-query} — Displays the execution plan for the specified SQL statement.

* EXPLAINPROC {procedure-name} — Displays the execution plan for the specified stored proce-
dure.

» Classmanagement dir ectives— Theload classesand remove classesdirectives|et you add and remove
Java classes from the database:

¢ LOAD CLASSES —L oads any classes in the specified JAR file. If aclass already existsin the data-
base, it is replaced by the new class definition in the JAR file.

269

VoltDB CLI Commands

« REMOVE CLASSES — Removes any classes that match the specified class name string. The class
specification can include wildcards.

» Command recall — You can recall previous commands using the up and down arrow keys. Or you
can recall a specific command by line number (the command prompt shows the line number) using the
recall command. For example:

$ sqgl cnd

1> select * fromvotes;
2> show procedures;

3> recall 1

select * fromvotes;

Once recalled, you can edit the command before reissuing it using typical editing keys, such as the | eft
and right arrow keys and backspace and delete.

» Script files— You can run multiple queries or stored procedures in a single command using the file
directive. Thefile directive takes atext file as an argument and executes all of the SQL queries and exec
directivesin thefile asif they were entered interactively. Any show, explain, recall, or exit directives
are ignored. For example, the following command processes al of the SQL queries and procedure in-
vocationsinthefilenyscri pt. sql :

$ sql cnd
1> file nyscript.sql;

If the file contains only data definition language (DDL) statements, you can aso have the entire file
processed as a batch by including the - bat ch argument:

$ sqgl cnd
1> file -batch nyscript.sql;

If afile or set of statements includes both DDL and DML statements, you can still batch process a
group of DDL statements by enclosing the statementsinafil e -i nli nebat ch directive and the
specified end marker. For example, in the following code the three CREATE PROCEDURE statements
are processed as a batch:

| oad cl asses nyprocs.|jar;

file -inlinebatch END O BATCH

CREATE PROCEDURE FROM CLASS procs. AddEnpl oyee;
CREATE PROCEDURE FROM CLASS procs. ChangeDept ;
CREATE PROCEDURE FROM CLASS procs. Pronot eEnpl oyee;
END_OF BATCH

Batch processing the DDL statements has two effects:

e Batch processing can significantly improve performance since al of the schema changes are
processed and distributed to the cluster nodes at onetime, rather than individually for each statement.

» The batch operates as a transaction, succeeding or failing as a unit. If any statement fails, all of the
schema changes are rolled back.

» Exit — When you are done with your interactive session, enter the exit directive to end the session and
return to the shell prompt.

To run a sglemd command without starting the interactive prompt, you can pipe the command through
standard input to the sglcmd command. For example;

270

VoltDB CLI Commands

$ echo "select * fromcontestants;" | sqgl cnd

In general, the sglcmd commands are not case sensitive and must be terminated by a semi-colon. However,
the semi-colon is optiona for the exit, file, and recall directives. Also, list and quit are supported as
synonyms for the show and exit directives, respectively.

Arguments

--help
Displays the sglcmd help text then returns to the shell prompt.

--servers=server-id[,...]
Specifiesthe network address of one or more nodesin the database cluster. By default, sglcmd attempts
to connect to a database on local host.

--port=port-num
Specifies the port number to use when connecting to the database servers. All servers must be using
the same port number. By default, sglcmd connects to the standard client port (21212).

--user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

--password=password-string
Specifies the password to use for authenticating to the database. The password is required if the data-
base has security enabled.

--output-format={ csv | fixed | tab}
Specifiestheformat of the output of query results. Output can be formatted as comma-separated values
(csv), fixed monospaced text (fixed), or tab-separated text fields (tab). By default, the output is in
fixed monospaced text.

--output-skip-metadata
Specifiesthat the column headings and other metadata associated with query results are not displayed.
By default, the output includes such metadata. However, you can use this argument, along with the
- - out put - f or mat argument, to write just the dataitself to an output file.

--guery-timeout=time-limit
Specifies a time limit for read-only queries. Any read-only queries that exceed the time limit are
canceled and control returned to the user. Specify the time out as an integer number of milliseconds.
The default timeout is set in the cluster deployment file or is unlimited if not set by the deployment
file. Only userswith ADMIN privileges can set a sglcmd timeout longer than the cluster-wide setting.

Example

The following example demonstrates an sqlcmd session, accessing the voter sample database running on
node zeus.

$ sqlcmd --servers=zeus
SQ Command :: zeus: 21212
1> select * from contestants;
1 Edwi na Bur nam
2 Tabat ha Gehling
3 Kelly d auss
4 Jessie Al oway

271

VoltDB CLI Commands

5 Al ana Bregnan
6 Jessie Ei chman

(6 row(s) affected)

2> sel ect sunm{numvotes) as total, contestant_nunmber from
v_votes_by contestant_nunber_State group by contestant_nunber
order by total desc;
TOTAL CONTESTANT_NUMBER

757240 1

630429 6

442962 5

390353 4

384743 2

375260 3

(6 row(s) affected)
3> exit

$

272

VoltDB CLI Commands

voltadmin

voltadmin — Performs administrative functions on aVoltDB database.

Syntax

voltadmin {command} [args...]

Description

The voltadmin command allows you to perform administrative tasks on a VoltDB database. Y ou specify
the database server to access and, optionally, authentication credentials using arguments to the voltadmin
command. Individual administrative commands may have they own unique arguments as well.

Arguments

The following global arguments are available for all voltadmin commands.

-h, --help
Displays information about how to use a command. The --help flag and the help command perform
the same function.

-H, --host=server-id[: port]
Specifies which database server to connect to. You can specify the server as a network address or
hostname. By default, voltadmin attempts to connect to a database on localhost. Y ou can optionally
specify the port number. If you do not specify a port, voltadmin uses the default admin port.

-p, --password=password
Specifies the password to use for authenticating to the database. The password is required if the data-
base has security enabled..

-u, --user=user-id
Specifies the username to use for authenticating to the database. The username is required if the
database has security enabled.

-v, -verbose
Displays additional information about the specific commands being executed.

Commands

The following are the administrative functions that you can invoke using voltadmin.

help [command]
Displays information about the usage of individual commands or, if you do not specify a command,
summarizes usage information for all commands. The help command and --help qualifier are syn-
onymous.

dr reset
Resets the database replication (DR) connection on a master database. Performing a reset breaks the
existing DR connection, deletes pending binary logs and stops the queuing of DR data. Thiscommand
isuseful for eliminating unnecessary resource usage on a master database after the replica stopsor is
promoted. Note, however, after areset DR must start over from scratch; it cannot be restarted where
it left off.

273

VoltDB CLI Commands

pause [--wait]
Pauses the database, stopping any additional activity on the client port. Normally, pause returns im-
mediately. However, you can use the --wait flag to have the command wait until al pending transac-
tions are processed and all database replication (DR) and export queues are flushed. Use of --wait is
recommended if you are shutting down the database and do not intend to restart with recover, since
--wait ensures all associated DR or export datais delivered prior to shutdown.

promote
Promotes a replica database, stopping replication and enabling read/write queries on the client port.

resume
Resumes normal database operation after a pause.

save {directory} {unique-1D}
Creates a snapshot containing the current database contents. The contents are saved to disk on the
server(s) using the unique I D asafile prefix and the directory specification asthefile path. Additional
arguments for the save command are:

--format={ csv | native}
Specifies the format of the snapshot files. The allowable formats are CSV (comma-separated
value) and native formats. Native format snapshots can be used for restoring the database. CSV
files can be used by other utilities (such as spreadsheets or the VoltDB CSV loader) but cannot
be restored using the voltadmin restore command.

--blocking
Specifies that the snapshot will block all other transactions until the snapshot is complete. The
advantage of blocking snapshots is that once the command completes you know the snapshot is
finished. The disadvantage is that the snapshot blocks ongoing use of the database.

By default, voltadmin performs non-blocking snapshots so as not to interfere with ongoing data-
base operation. However, note that the non-blocking save command only starts the snapshot. Y ou
must use show snapshotsto determine when the snapshot processisfinished if you want to know
when it is safe, for example, to shutdown the database.

--skiptables={ table-name[,..] }
Specifies one or more tables to leave out of the snapshot. Separate multiple table names with
commas.

--tables={ table-name][,...] }
Specifies what table(s) to include in the snapshot. Only the specified tables will be included.
Separate multiple table names with commas.

restore { directory} {unique-ID}
Restores the data from a snapshot to the database. The data is read from a snapshot using the same
unique ID and directory path that were used when the snapshot was created. If no tables exist in the
database (that is, no schema has been defined) the restore command will also restore the original
schema, including stored procedure classes, before restoring the data.

show snapshots
Displaysinformation about up to ten previous snapshots. This command is useful for determining the
success or failure of snapshots started with the save command.

update [catal og] [deployment]
Updates the deployment configuration or application catalog on a running database. (Note: use of
application catalogs is deprecated and updating the catalog is only possibleif the database was started
withtheschema=" cat al 0g" optioninthedeployment file.) Therearelimitations on what changes

274

VoltDB CLI Commands

can bemade on alive update. See the description of the @UpdateA pplicationCatal og stored procedure
for details.

stop { server-id}
Stops an individual node in the cluster. The voltadmin stop command can only be used on a K-safe
cluster and will not intentionally shutdown the database. That is, the command will only stop a node
if there are enough nodes | eft for the cluster to remain viable.

shutdown
Stops the database.

Example

The following exampleillustrates one way to perform an orderly shutdown of aVoltDB cluster, including
pausing and saving the database contents.

$ vol tadni n pause
$ vol tadmi n save --blocking ./ mnydb
$ vol tadni n shutdown

275

VoltDB CLI Commands

voltdb

voltdb — Performs management tasks on the current server, such as starting and recovering the database.

Syntax

voltdb collect [args] voltdbroot-directory

voltdb mask [args] source-deployment-file [new-deployment-file]
voltdb create [args]

voltdb recover [args]

voltdb add [args]

voltdb rejoin [args]

Description

The voltdb command performs local management functions on the current system, including:

Starting the database process
Adding or rejoining a node to a running database cluster
Collecting log files into a single compressed file

Hiding passwords in the deployment file

The action that is performed depends on which start action you specify to the voltdb command:

collect — the collect option collects system and process logs related to the VoltDB database process
on the current system and compresses them into asingle file. This command is helpful when reporting
problems to VoltDB support. The only required argument to the collect command is the path to the
voltdbroot directory where the database was run. By default, the root directory is asubfolder, vol t d-
br oot , in the current working directory where the database was started.

mask — the mask option disguises the passwords associated with user accounts in the security section
of the deployment file by hashing them using a SHA-1 hash. The output of the voltdb mask command is
either anew deployment file with hashed passwords or, if you do not specify an output file, the original
input fileis modified in place.

create — the create option starts a new, empty database. This option is useful when starting a database
for thefirst timeor if you are updating the cluster configuration by performing asave, shutdown, startup,
and restore. (See Chapter 9, Using VoltDB in a Cluster for information on updating the cluster.)

recover — the recover option starts the database and restores a previous state from the last known
snapshot or from command logs. VoltDB uses the snapshot and command log paths specified in the
deployment file when looking for content to restore. If you specify recover as the startup action and no
snapshots or command logs can be found, startup will fail.

add — the add option addsthe current node to an existing cluster. See Section 9.2, “ Updating the Cluster
Configuration” for details on elastic scaling.

276

VoltDB CLI Commands

» rgjoin — If anode on a K-safe cluster fails, you can use the rejoin start action to have the node (or a
replacement node) rejoin the cluster. The host-id you specify with the host argument can be any node
still present in the database cluster; it does not have to be the host node specified when the cluster was
started. Y ou can also request a blocking rejoin by including the --blocking flag.

Finally, when creating a new database (create) or recovering an existing database (r ecover) you can in-
clude the --replica flag to create arecipient for database replication.

When starting the database, the voltdb command uses Java to instantiate the process. It is possible to
customize the Java environment, if necessary, by passing command line arguments to Java through the
following environment variables:

* LOG4J_CONFIG_PATH — Specifies an alternate Log4J configuration file.

« VOLTDB_HEAPMAX — Specifies the maximum heap size for the Java process. Specify the value
as an integer number of megabytes. By default, the maximum heap sizeis set to 2048.

* VOLTDB_OPTS — Specifies al other Java command line arguments. You must include both the
command line flag and argument. For example, this environment variable can be used to specify system
properties using the -D flag:

export VOLTDB_OPTS="- DnyApp. DebugFl ag=t r ue"

Log Collection Arguments

The following arguments apply specifically to the collect action.

--days={integer}
Specifies the number of days of log files to collect. For example, using - - days=1 will collect data
from the last 24 hours. By default, VoltDB collects 14 days (2 weeks) worth of logs.

--dry-run
Lists the actions that will be taken, including the files that will be collected, but does not actually
perform the collection or upload.

--no-prompt
Specifies that the process will not prompt for input, such as whether to delete the output file after
uploading is complete. This argument is useful when starting the collect action from within a script.

--prefix={file-prefix}
Specifies the prefix for the resulting output file. The default prefix is"voltdb logs'.

--skip-heap-dump
Specifiesthat the heap dump not be included in the collection. The heap dump isusually significantly
larger than the other log files and can be excluded to save space.

--upload={host}
Specifies a host server to which the output file will uploaded using SFTP.

--username={account-name}
Specifies the SFTP account to use when using the --upload option. If you specify --upload but not --
username, you will be prompted for the account name.

--password={ password}
Specifies the password to use when using the --upload option. If you specify --upload but not --pass-
word, you will be prompted for the password.

277

VoltDB CLI Commands

Database Startup Arguments

The following arguments apply to the add, create, recover, and r g oin start actions.

-H, --host={ host-id}
Specifies the network address of the node that coordinates the starting of the database or the adding
or rejoining of a node. When starting a database, all nodes must specify the same host address. Note
that once the database starts and the cluster is complete, the role of the host node is complete and all
nodes become peers.

When regjoining or adding anode, you can specify any node still in the cluster asthe host. The host for
an add or rejoin operation does not have to be the same node as the host specified when the database
started.

The default if you do not specify a host when creating or recovering the database is| ocal host .
In other words, a single node cluster running on the current system. Y ou must specify a host on the
command line when adding or rejoining a node.

If the host node is using an internal port other than the default (3021), you must specify the port as
part of the host string, in the format host:port.

-d, --deployment={depl oyment-file}
Specifies the location of the database configuration file. The configuration file is an XML file that
defines the database configuration, including the initial size of the cluster and which options are en-
abled when the database is started. See Appendix E, Deployment File (deployment.xml) for acompl ete
description of the syntax of the configuration file.

The default, if you do not specify a deployment file, is a single node cluster without K-safety and
with eight sites per host.

-1, --license={license-file}
Specifiesthe location of thelicensefile, which is required when using the VoltDB Enterprise Edition.
The argument is ignored when using the community edition.

-B, --background
Starts the server process in the background (as a daemon process).

-g, --placement-group={ group-string}
Specifies the location of the server. When the K-safety value is greater than zero, VoltDB uses this
argument to assist in rack-aware partitioning. The cluster will attempt to place multiple copies of each
partition on different nodes to keep them physically as far apart as possible.

The physical location is specified by the group-string, which is any set of aphanumeric names sep-
arated by periods. The names might represent physical servers, racks, switches, or anything mean-
ingful to the user to avoid multiple copies failing at the same time. For example, the string might
be "row6.rack5.server3”, to ensure that in a virtualized environment copies of the same partition do
not get placed on the same physical server or rack if possible. The group strings for all nodes of the
cluster are compared so matches of the rightmost name will be avoided first, then matches of the two
rightmost names, and so on.

--ignore=thp
For Linux systems, alows the database to start even if the server is configured to use Transparent
Huge Pages (THP). THP is aknown problem for memory-intense applications like VoltDB. So under
normal conditions VoltDB will not start if the use of THP is enabled. This flag alows you to ignore
that restriction for test purposes. Do not use this flag on production systems.

278

VoltDB CLI Commands

--blocking
For the rejoin operation only, specifies that the database should block client transactions for the af-
fected partitions until the rejoin is compl ete.

-r, --replica
For the create and recover operations only, specifies that the database starts in read-only mode as
areplica for database replication (DR). To create or recover a replica database, the deployment file
must configure DR appropriately, includinga<connect i on> tag identifying the source, or master
database, for replication. See Chapter 11, Database Replication for more information.

Network Configuration Arguments

In addition to the arguments listed above, there are additional arguments that specify the network config-
uration for server ports and interfaces when starting a VoltDB database. In most cases, the default values
can and should be accepted for these settings. The exceptions are the external and internal interfaces that
should be specified whenever there are multiple network interfaces on a single machine.

You can also, optionally, specify a unique network interface for individual ports by preceding the port
number with theinterface's | P address (or hostname) followed by acolon. Specifying the network interface
as part of an individual port setting overrides the default interface for that port set by --externalinterface
or --internalinterface.

The network configuration argumentsto the voltdb command are listed below. See the appendix on server
configuration options in the VoltDB Administrator's Guide for more information about network configu-
ration options.

--externalinterface={ip-address}
Specifies the default network interface to use for external ports, such as the admin and client ports.

--internalinterface ={ip-address}
Specifies the default network interface to use for internal communication, such as the internal port.

--publicinterface={ip-address}
Specifies the public network interface. This argument is useful for hosted systems where the internal
and external interfaces may not be generally reachable from the Internet. In which case, specifying
the public interface helps the VoltDB Management Center provide publicly accessible links for the
cluster nodes.

--admin=[ip-address:]{port-number}
Specifies the admin port. The --admin flag overrides the admin port setting in the deployment file.

--client=[ip-address:]{port-number}
Specifiesthe client port.

--http=[ip-address:]{port-number}
Specifies the http port. The --http flag both sets the port number (and optionally the interface) and
enables the http port, overriding the http setting, if any, in the deployment file.

--internal=[ip-address.]{ port-number}
Specifies the internal port used to communicate between cluster nodes.

--replication=[ip-address:]{ port-number}
Specifies the replication port used for database replication. The --replication flag overrides the repli-
cation port setting in the deployment file.

279

http://docs.voltdb.com/AdminGuide/

VoltDB CLI Commands

--zookeeper=[ip-address:]{port-number}
Specifies the zookeeper port. By default, the zookeeper port is bound to the server'sinternal interface
(127.0.0.2).

Examples

The first example shows the command for creating a database using a custom configuration file,
2nodedepl oy. xm , and the node zeus as the host.

$ vol tdb create --depl oynent =2nodedepl oy. xm \
--host =zeus

The second example takes advantage of the defaults for the host and deployment arguments to start a
single-node database.

$ voltdb create

280

Appendix E. Deployment File
(deployment.xml)

The deployment file describes the physical configuration of aVoltDB database cluster at runtime, includ-
ing the number of hostsin the cluster and the number of sites per hosts, among other things. This appendix
describes the syntax for each component within the deployment file.

The deployment file is a fully-conformant XML file. If you are unfamiliar with XML, see Section E.1,
“Understanding XML Syntax” for a brief explanation of XML syntax.

E.1. Understanding XML Syntax

The deployment fileisafully-conformant XML file. XML files consist of aseries of nested elementsiden-
tified by beginning and ending "tags". The beginning tag is the element name enclosed in angle brackets
and the ending tag is the same except that the element name is preceded by a slash. For example:

<depl oynent >
<cl uster>
</cluster>
</ depl oynent >

Elements can be nested. In the preceding example cl ust er isachild of the element depl oynent .

Elements can also have attributes that are specified within the starting tag by the attribute name, an equals
sign, and its value enclosed in single or double quotes. In the following example the hostcount and sites-
perhost attributes of the cluster element are assigned values of "2" and "4", respectively.

<depl oynent >
<cl uster hostcount="2" sitesperhost="4">
</cluster>

</ depl oynent >

Finally, as a shorthand, elements that do not contain any children can be entered without an ending tag by
adding the slash to the end of the initial tag. In the following example, the cl ust er and heart beat
tags use this form of shorthand:

<depl oynent >
<cl uster hostcount="2" sitesperhost="4"/>
<heart beat timeout="10"/>

</ depl oynent >

For complete information about the XML standard and XML syntax, see the official XML site at http://
www.w3.0rg/XML/.

E.2. The Structure of the Deployment File

The deployment file starts with the XML declaration. After the XML declaration, the root element of the
deployment file is the deployment element. The remainder of the XML document consists of elements
that are children of the deployment element.

Figure E.1, “Deployment XML Structure” shows the structure of the deployment file. The indentation
indicates the hierarchical parent-child relationships of the elements and an dllipsis (...) shows where an
element may appear multiple times.

281

http://www.w3.org/XML/
http://www.w3.org/XML/

Deployment File (deployment.xml)

Figure E.1. Deployment XML Structure

<deployment>
<cluster/>
<paths>
<commandlog/>
<commandlogsnapshot/>
<exportoverflow/>
<snapshots/>
<voltdbroot/>
</paths>
<admin-mode/>
<commandlog>
<frequency/>
<commandlog/>
<dr>
<connection/>
</dr>
<export>
<configuration>
<property/>...
</configuration>...
</export>
<heartbeat/>
<httpd>
<jsonapi/>
</httpd>
<import>
<configuration>
<property/>...
</configuration>...
</import>
<partition-detection>
<snapshot/>
</partition-detection>
<security/>
<snapshot/>
<systemsettings>
<elastic/>
<resourcemonitor>
<disklimit>
<feature/>...
</disklimit>
<memorylimit/>
</resourcemonitor>
<snapshot/>
<temptables/>
</systemsettings>
<users>
<user/>...
</users>
</deployment>

282

Deployment File (deployment.xml)

Table E.1, “Deployment File Elements and Attributes’ provides further detail on the elements, including

their relationships (as child or parent) and the allowable attributes for each.

Table E.1. Deployment File Elementsand Attributes

Element Child of Parent of Attributes
deployment* (root element) admin-mode, com-
mandlog, cluster, ex-
port, heartbeat, httpd,
import, partition-de-
tection, paths, securi-
ty, snapshot, system-
Settings, users
cluster’ deployment hostcount={int} "
sitesperhost={int}
kfactor={int}
schema={ catalog|ddI}
admin-mode deployment port={int}
adminstartup={truelfal se}
heartbeat deployment timeout={int} "
partition-detection deployment snapshot enabled={ true|fal se}
snapshot’ partition-detection prefix={ text}
commandlog deployment frequency enabled={ truelfalse}
synchronous={ truelfal se}
logsize={int}
frequency commandlog time={int}
transactions={ int}
dr deployment connection id={int}"
listen={ truelfal se}
port={int}
connection dr source={ server[,..]} :
export deployment configuration
configuration* export property enabled={ truelfal se}

stream={ text}
type={ file]http|j dbc|kafkalrabbitmg|custom}
exportconnectorclass={ class-name}

property configuration name={ text} ’

import deployment configuration

configurati on import property enabled={ truelfalse}
module={ text}
format={ csv|tsv} .
type={ kafkalcustom}

property configuration name={ text}

httpd deployment jsonapi port={int}
enabled={ true|fal se}

jsonapi httpd enabled={ truelfalse}

283

Deployment File (deployment.xml)

Element Child of Parent of Attributes
paths deployment commandlog, com-
mandl ogsnapshot,
droverflow, expor-
toverflow, snapshots,
voltdbroot
commandlog paths path={ directory-path} ’
commandlogsnapshot | paths path={ directory-path}
droverflow paths path={ directory-path}
exportoverflow paths path={ directory-path} ’
snapshots paths path={ directory-path} "
voltdbroot paths path={ directory-path} "
security deployment enabled={ true|fal se}
provider={ hash|kerberos}
snapshot deployment frequency={int}{ sjmjn}
prefix={ text}
retain={ int}
enabled={ true|fal se}
systemsettings deployment dagtic, query, re
sourcemonitor, snap-
shot, temptables
elagtic systemsettings duration={int}
throughput={ int}
query systemsettings timeout={int}
resourcemonitor systemsettings disklimit, memo- | frequency={int}
rylimit
disklimit resourcemonitor feature
feature diskllimit name={text}
size={int[%]}
memorylimit systemsettings size={int[%]} :
snapshot systemsettings priority={int} ’
temptables systemsettings maxsize={int}"
users deployment user
user users name={text}”
password={ text}
roles={role-namq],..]}
"Required

284

Appendix F. VoltDB Datatype
Compatibility

VoltDB supports nine datatypes. When invoking stored procedures from different programming languages
or queuing SQL statementswithin a Java stored procedure, you must use an appropriate language-specific
value and datatype for arguments corresponding to placeholdersin the query. This appendix provides the
mapping of language-specific datatypes to the corresponding VoltDB datatype.

In several cases, there are multiple possible language-specific datatypes that can be used. The following
tables highlight the best possible matchesin bold.

F.1. Java and VoltDB Datatype Compatibility

TableF.1, “Javaand VoltDB Datatype Compatibility” showsthe compatible Javadatatypesfor each Volt-
DB datatype when:

» Queuing SQL statements using the voltdbQueueSql method
 Calling simple stored procedures defined using the CREATE PROCEDURE AS statement
 Calling default stored procedures created for each table in the schema

Note that when calling user-defined stored procedures written in Java, you can use additional datatypes,
including arrays and the V oltTabl e object, as argumentsto the stored procedure, aslong asthe actual query
invocations within the stored procedure use the following datatypes. Another important distinction to be
aware of isthat VoltDB only accepts primitive numeric types (byte, short, int, and so on) and not their
reference type equivaents (Byte, Short, Integer, etc.).

TableF.1. Java and VoltDB Datatype Compatibility

SQL Datatype Compatible Java Datatypes Notes
TINYINT byte Larger datatypes (short, int, and long) are
short valid input types. However, VoltDB throws a
int runtime error if the value exceeds the allow-
long ablerange of aTINYINT.
String

String input must be a properly formatted
text representation of an integer value in the

correct range.

SMALLINT byte Larger datatypes (int and long) are valid in-
short put types. However, VoltDB throws arun-
int time error if the value exceeds the allowable
long range of aSMALLINT.

String
String input must be a properly formatted
text representation of an integer value in the
correct range.

INTEGER byte A larger datatype (long) is avalid input type.
short However, VoltDB throws aruntime error if
int the value exceeds the allowabl e range of an
long INTEGER.

285

VoltDB Datatype Compatibility

SQL Datatype

Compatible Java Datatypes

Notes

String

String input must be a properly formatted
text representation of an integer value in the
correct range.

BIGINT byte String input must be a properly formatted
short text representation of an integer value in the
int correct range.
long
String

FLOAT double String input must be a properly formatted
float text representation of afloating point value.
byte
short
int
long
String

DECIMAL BigDecimal String input must be a properly formatted
double text representation of adecimal number.
float
byte
short
int
long
String

VARCHAR() String Byte arrays are interpreted as UTF-8 encod-
bytd]] ed string values. String objects can use other
byte encodings.
short
int Numeric and timestamp values are convert-
long ed to their string representation. For exam-
float ple, the double value 13.25 isinterpreted as
double "13.25" when converted to aVARCHAR.
BigDecimal
VoltDB TimestampType

VARBINARY () String String input is interpreted as a hex-encoded
byte|] binary value.

TIMESTAMP

VoltDB TimestampType
int

long

String

For String variables, the text must be
formatted as either YYYY- M\t DD

hh. mMm ss. nnnnnn or just the date por-
tion YYYY- M\t DD.

286

Appendix G. System Procedures

VoltDB provides system procedures that perform system-wide administrative functions. Y ou can invoke
system procedures interactively using the sglcmd utility, or you can invoke them programmatically like
other stored procedures, using the VoltDB client method call Procedure.

This appendix describes the following system procedures.

» @AdHoc

* @Explain

* @ExplainProc

* @GetPartitionKeys
* @Pause

* @Promote

* @Quiesce

* @Resume

* @Shutdown

* @SnapshotDelete
* @SnapshotRestore
* @SnapshotSave

* @SnapshotScan

* @SnapshotStatus
o @Statistics

* @StopNode

* @SystemCatalog
* @Systeminformation
* @UpdateApplicationCatalog
* @UpdateClasses

* @Updatelogging

287

System Procedures

@AdHoc

@AdHoc — Executes an SQL statement specified at runtime.

Syntax

@AdHoc String SQL-statement

Description
The @AdHoc system procedure lets you perform arbitrary SQL statementson arunning VoltDB database.

Y ou can execute multiple SQL statements— either queries or data definition language (DDL) statements
—inasinglecall to @AdHoc by separating the individual statements with semicolons. When you do this,
the statements are performed as a single transaction. That is, the statements all succeed as agroup or they
all roll back if any of them fail. Y ou cannot mix SQL queries and DDL in asingle @AdHoc call.

Performance of ad hoc queriesis optimized, where possible. However, it isimportant to note that ad hoc
gueries are not pre-compiled, like queries in stored procedures. Therefore, use of stored procedures is
recommended over @AdHoc for frequent, repetitive, or performance-sensitive queries.

Return Values

ReturnsoneVoltTablefor each statement, with asmany rows asthere arerecordsreturned by the statement.
The column names and datatypes match the names and datatypes of the fields returned by the query.

Examples

The following program example uses @AdHoc to execute an SQL SELECT statement and display the
number of reservations for a specific customer in the flight reservation database.

try {
Vol t Tabl e[] results = client.callProcedure("@udHoc",
"SELECT COUNT(*) FROM RESERVATION " +
"WHERE CUSTOVERI D=" + custid).getResults();
Systemout.printf("% reservations found.\n",
results[0].fetchRow(0).getLong(0));
}
catch (Exception e) {
e.printStackTrace();
}

Note that you do not need to explicitly invoke @A dHoc when using sglcmd. Y ou can type your statement
directly into the sglcmd prompt, like so:

$ sqglcmd
1> SELECT COUNT(*) FROM RESERVATI ON WHERE CUSTOVERI D=12345;

288

System Procedures

@EXxplain

@Explain — Returns the execution plan for the specified SQL query.

Syntax

@EXxplain String SQL-statement

Description

The @Explain system procedure evaluates the specified SQL query and returns the resulting execution
plan. Execution, or explain, plans describe how VoltDB expectsto execute the query at runtime, including
what indexes are used, the order the tables are joined, and so on. Execution plans are useful for identifying
performance issuesin query design. See the chapter on execution plansin the VoltDB Performance Guide
for information on how to interpret the plans.

Return Values

Returns one VoltTable with one row and one column.

Name Datatype Description
EXECUTION_PLAN VARCHAR | The execution plan as text.
Examples

The following program example uses @Explain to evaluate an ad hoc SQL SELECT statement against
the voter sample application.

try {
String query = "SELECT COUNT(*) FROM CONTESTANTS; ";
Vol t Tabl e[] results = client.callProcedure("@xplain",
query).getResults();
Systemout.printf("Qery: %\ nPlan:\n%",
query, results[0].fetchRow(0).getString(0));
}
catch (Exception e) {
e.printStackTrace();
}

In the sglemd utility, the "explain” command is a shortcut for "exec @Explain”. So the following two
commands are equivalent:

$ sqglcnmd
1> exec @xplain 'SELECT COUNT(*) FROM CONTESTANTS' ;
2> explain SELECT COUNT(*) FROM CONTESTANTS;

289

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@ExplainProc

@ExplainProc — Returns the execution plans for all SQL queriesin the specified stored procedure.

Syntax

@ExplainProc String procedure-name

Description

The @ExplainProc system procedure returnsthe execution plansfor all of the SQL querieswithin the spec-
ified stored procedure. Execution, or explain, plans describe how VoltDB expects to execute the queries
at runtime, including what indexes are used, the order the tables are joined, and so on. Execution plans
are useful for identifying performance issues in query and stored procedure design. See the chapter on
execution plans in the VoltDB Performance Guide for information on how to interpret the plans.

Return Values

Returns one VoltTable with one row for each query in the stored procedure.

Name Datatype Description

SQL_STATEMENT VARCHAR |The SQL query.

EXECUTION_PLAN VARCHAR | The execution plan as text.
Examples

The following example uses @ExplainProc to evaluate the execution plans associated with the Contes-
tantWinningStates stored procedure in the voter sample application.

try {
Vol t Tabl e[] results = client.call Procedure(" @xpl ai nProc",
"Cont est ant W nni ngSt at es”). get Resul ts();

resul ts[0] . reset RowPosition();

while (results[0].advanceRow)) {
Systemout. printf("Query: %\ nPl an:\n%",
results[0].getString(0),results[0].getString(l));

}

}
catch (Exception e) {

e.printStackTrace();
}

In the sglemd utility, the "explainproc” command is a shortcut for "exec @ExplainProc". So the following
two commands are equivalent:

$ sqglcmd
1> exec @kxpl ai nProc ' Cont est ant W nni ngSt at es' ;
2> expl ai nproc Cont est ant W nni ngSt at es;

290

http://community.voltdb.com/docs/PerfGuide/ChapExecPlans
http://community.voltdb.com/docs/PerfGuide/index

System Procedures

@GetPartitionKeys

@GetPartitionKeys — Returns alist of partition values, one for every partition in the database.

Syntax

@GetPartitionKeys String datatype

Description

The @GetPartitionK eys system procedure returns a set of partition values that you can use to reach every
partition inthe database. Thisprocedureisuseful when youwant to run astored procedurein every partition
but you do not want to use a multi-partition procedure. By running multiple single-partition procedures,
you avoid the impact on latency and throughput that can result from a multi-partition procedure. This
is particularly true for longer running procedures. Using multiple, smaller procedures can aso help for
gueries that modify large volumes of data, such aslarge deletes.

When you call @GetPartitionK eys you specify the datatype of the keysto return as the second parameter.
You specify the datatype as a case-insensitive string. Valid options are "INTEGER", "STRING", and
"VARCHAR" (where"STRING" and "VARCHAR" are synonyms).

Note that the results of the system procedure are valid at the time they are generated. If the cluster is static
(that is, no nodes are being added and any rebalancing is complete), the results remain valid until the next
elastic event. However, during rebalancing, the distribution of partitionsislikely to change. Soit isagood
ideato call @GetPartitionKeys once to get the keys, act on them, then call the system procedure again to
verify that the partitions have not changed.

Return Values

Returns one VoltTable with arow for every unique partition in the cluster.

Name Datatype Description

PARTITION_ID INTEGER | Thenumeric ID of the partition.

PARTITION_KEY INTEGER or|A valid partition key for the partition. The datatype of the
STRING key matches the type requested in the procedure call.

Examples

The following example shows the use of sglecmd to get integer key values from @GetPartitionK eys:

$sqgl cnd
1> exec @etPartitionKeys integer;

The next example shows a Java program using @GetPartitionK eys to execute a stored procedure to clear
out old records, one partition at atime.

Vol t Tabl e[] results = client.callProcedure(" @etPartitionKeys",
"I NTEGER') . get Resul t s();

Vol t Tabl e keys = results[0];

for (int k=0;k<keys. get RowCount (); k++) {
| ong key = keys.fetchRow(k).getLong(1);

291

System Procedures

client.callProcedure("Purged dData", key);

292

System Procedures

@Pause

@Pause — Initiates read-only mode on the cluster.

Syntax

@Pause

Description

The @Pause system procedure initiates admin mode on the cluster. Admin mode puts the database into
read-only mode and ensures no further changes to the database can be made through the client port when
performing sensitive administrative operations, such as taking a snapshot before shutting down.

Whilein admin mode, any writetransactionson the client port are rejected and return an error status. Read-
only transactions, including system procedures, are allowed. However, write transactions such as inserts,
deletes, or schema changes are only allowed through the admin port.

Several important points to consider concerning @Pause are;
e @Pause must be called through the admin port, not the standard client port.

« Although write transactions on the client port are rgjected in admin mode, existing connections from
client applications are not removed.

» Toreturntonormal database operation, you must call the system procedure @Resume on the admin port.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

Itispossibleto call @Pause using the sglemd utility. However, you must explicitly connect to the admin
port when starting sgqlcmd to do this. Also, it is often easier to use the voltadmin utility, which connects
to the admin port by default. For example, the following commands demonstrate pausing and resuming
the database using both sqlcmd and voltadmin:

$ sqglcnmd --port=21211
1> exec @pPause;
2> exec @Resune;

$ vol tadni n pause
$ vol tadmin resune

The following program example, if called through the admin port, initiates admin mode on the database
cluster.

client.callProcedure("@ause");

293

System Procedures

@Promote

@Promote — Promotes a replica database to normal operation.

Syntax

@Promote

Description

The @Promote system procedure promotes areplica database to normal operation. During database repli-
cation, the replica database only accepts input from the master database. If, for any reason, the master
database fails and replication stops, you can use @Promote to change the replica database from areplica
to anormal database. When you invoke the @Promote system procedure, the replica exits read-only mode
and becomes a fully operational VVoltDB database that can receive and execute both read-only and read/

write queries.

Note that once a database is promoted, it cannot return to its original role as the receiving end of database
replication without first stopping and reinitializing the database asareplica. If the databaseisnot areplica,

invoking @Promote returns an error.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following programming example promotes a database cluster.

client.callProcedure("@uronote");

It is aso possible to promote a replica database using sglcmd or the voltadmin promote command. The

following commands are equivalent:

$ sqglcnd
1> exec @°ronpte;

$ voltadnmin pronote

294

System Procedures

@Quiesce

@Quiesce — Waits for al queued export data to be written to the connector.

Syntax

@Quiesce

Description
The @Quiesce system procedure waits for any queued export data to be written to the export connector
before returning to the calling application. @Quiesce also does an fsync to ensure any pending export
overflow iswritten to disk. This system procedure should be called after stopping client applications and
before calling @Shutdown to ensurethat all export activity isconcluded before shutting down the database.

If export is not enabled, the procedure returns immediately.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following example calls @Quiesce using sglcmd:

$ sqlcnd
1> exec @i esce;

The following program example uses drain and @Quiesce to complete any asynchronous transactions and
clear the export queues before shutting down the database.

/1 Conplete all outstanding activities
try {
client.drain();
client.callProcedure("@uiesce");
}
catch (Exception e) {
e.printStackTrace();
}

/] Shut down t he dat abase.

try {
client.call Procedure(" @hutdown");
}

/1 W expect an exception when the connection drops.
/1 Report any other exception.

catch (org.voltdb.client.ProcCall Exception e) { }

catch (Exception e) { e.printStackTrace(); }

295

System Procedures

@Resume

@Resume — Returns a paused database to normal operating mode.

Syntax

@Resume

Description

The @Resume system procedure switches all nodes in a database cluster from admin mode to normal
operating mode. In other words, @Resume is the opposite of @Pause.

After calling this procedure, the cluster returnsto accepting read/write ad hoc queries and stored procedure
invocations from clients connected to the standard client port.

@Resume must be invoked from a connection to the admin port.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

Y ou can call @Resume using the sgqlemd utility. However, you must explicitly connect to the admin port
when starting sglcmd to do this. It is often easier to use the voltadmin resume command, which connects
to the admin port by default. For example, the following commands are equivalent:

$ sqglcnd --port=21211
1> exec @Resune;

$ voltadmin resune
The following program example uses @Resume to return the cluster to normal operation.

client.callProcedure("@esune");

296

System Procedures

@Shutdown

@Shutdown — Shuts down the database.

Syntax

@Shutdown

Description

The @Shutdown system procedure performs an orderly shut down of aVVoltDB database on all nodes of
the cluster.

VoltDB is an in-memory database. By default, data is not saved when you shut down the database. If
you want to save the data between sessions, you can enable command logging or save a snapshot (either
manually or using automated snapshots) before the shutdown. See Chapter 14, Command Logging and
Recovery and Chapter 13, Saving & Restoring a VoltDB Database for more information.

Note that once the database shuts down, the client connection islost and the calling program cannot make
any further requests to the server.

Examples

Thefollowing examples show calling @Shutdown from sglecmd and using the voltadmin shutdown com-
mand. These two commands are equivalent:

$ sqglcmd
1> exec @shut down;

$ vol tadni n shut down

The following program example uses @Shutdown to stop the database cluster. Note the use of catch to
separate out aVVoltDB call procedure exception (which is expected) from any other exception.

try {
client.call Procedure(" @hutdown");
}

/1 we expect an exception when the connection drops.
catch (org.voltdb.client.ProcCall Exception e) {
System out. printl n("Database shutdown initiated.");
}

/1 report any other exception.
catch (Exception e) {
e.printStackTrace();
}

297

System Procedures

@SnapshotDelete

@SnapshotDelete — Deletes one or more native snapshots.

Syntax

@SnapshotDelete String[] directory-paths, String[] Unique-IDs

Description

The @SnapshotDel ete system procedure del etes native snapshots from the database cluster. Thisisaclus-
ter-wide operation and a single invocation will remove the snapshot files from all of the nodes.

The procedure takes two parameters: a String array of directory paths and a String array of unique 1Ds
(prefixes).

The two arrays are read as a series of value pairs, so that the first element of the directory path array and
the first element of the unique ID array will be used to identify the first snapshot to delete. The second
element of each array will identify the second snapshot to delete. And so on.

@SnapshotDel ete can del ete native format snapshots only. The procedure cannot delete CSV format snap-
shots.

Return Values

Returns one VoltTable with arow for every snapshot file affected by the operation.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NONCE STRING The unique identifier for the snapshot.

NAME STRING Thefile name.

SIZE BIGINT The total size, in bytes, of thefile.

DELETED STRING String value indicating whether the file was successfully
deleted ("TRUE") or not ("FALSE").

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

Example

Thefollowing exampl e uses @SnapshotScan toidentify all of the snapshotsinthedirectory/ t np/ vol t -
db/ backup/ . Thisinformation is then used by @SnapshotDelete to delete those snapshots.

try {
results = client.call Procedure(" @napshot Scan",

298

System Procedures

"/tnp/vol tdb/ backup/").get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

Vol t Tabl e table = results[O0];
i nt nunof snapshots = tabl e. get RowCount () ;
int i =0;

i f (numofsnapshots > 0) {
String[] paths = new String[nunof snapshots];
String[] nonces = new String[nunof snapshot s];

for (i=0;i<nunofsnapshots;i++) { paths[i] = "/etc/voltdb/backup/"; }
tabl e. reset RowPosi tion();
i = 0;

whil e (tabl e.advanceRow)) {
nonces[i] = table.getString("NONCE");

| ++;
}
try {
client.callProcedure("” @napshot Del et e", pat hs, nonces) ;
}
catch (Exception e) { e.printStackTrace(); }

}

299

System Procedures

@SnapshotRestore

@SnapshotRestore — Restores a database from disk using a native format snapshot.

Syntax

@SnapshotRestore String directory-path, String unique-1D

Description

The @SnapshotRestore system procedure restores a previously saved database from disk to memory. The
snapshot must be in native format. (Y ou cannot restore aCSV format snapshot using @SnapshotRestore.)
The restore request is propagated to al nodes of the cluster, so a single call to @SnapshotRestore will
restore the entire database cluster.

The first parameter, directory-path, specifies where VoltDB looks for the snapshot files.

The second parameter, unique-ID, is a unique identifier that is used as a filename prefix to distinguish
between multiple snapshots.

Y ou can perform only one restore operation on arunning VoltDB database. Subseguent attempts to call
@SnapshotRestore result in an error. Note that this limitation applies to both manual and automated re-
stores. Since command logging often includes snapshots, you should never perform a manual @Snap-
shotRestore after recovering a database using command logs.

See Chapter 13, Saving & Restoring a VoltDB Database for more information about saving and restoring
VoltDB databases.

Return Values

Returns one VoltTable with arow for every table restored at each execution site.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID INTEGER |Numeric ID of the execution site on the host node.
TABLE STRING The name of the table being restored.

PARTITION_ID INTEGER |The numeric ID for the logical partition that this site rep-

resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

Examples

Thefollowing example uses @SnapshotRestore to restore previously saved database content from the path
/tmp/ vol t db/ backup/ using the uniqueidentifier flight.

300

System Procedures

$ sqgl cnd
1> exec @napshot Restore '/tnp/voltdb/backup/', "flight";

Alternately, you can use the voltadmin restore command to perform the same function:
$ voltadm n restore /tnp/voltdb/backup/ flight

Sincethere are anumber of situationsthat impact what dataisrestored, it isagood ideato review thereturn
values to see what tables and partitions were affected. In the following program example, the contents of
the VoltTable array is written to standard output so the operator can confirm that the restore completed
as expected.

Vol t Tabl e[] results = null;

try {
results = client.callProcedure(" @napshot Restore",

“/tnp/vol tdb/ backup/ ",
"flight").getResults();
}
catch (Exception e) {
e.printStackTrace();
}

for (int t=0; t<results.length; t++) {
Vol t Tabl e table = results[t];
for (int r=0;r<table.getRowCount();r++) {
Vol t Tabl eRow row = table.fetchRow(r);
Systemout.printf("Node % Site % restoring " +
"table % partition %l.\n",
row. get Long("HOST_ID"), row. getLong("SITE ID"),
row. get String(" TABLE"), row. get Long(" PARTI TI ON"));

301

System Procedures

@SnapshotSave

@SnapshotSave — Saves the current database contents to disk.

Syntax

@SnapshotSave String directory-path, String unique-ID, Integer blocking-flag

@SnapshotSave String json-encoded-options

Description

The @SnapshotSave system procedure saves the contents of the current in-memory database to disk. Each
node of the database cluster savesits portion of the database locally.

There are two forms of the @SnapshotSave stored procedure: a procedure call with individual argument
parameters and aprocedure call with al argumentsin asingle JSON-encoded string. When you specify the
arguments as individual parameters, VoltDB creates a native mode snapshot that can be used to recover
or restore the database. When you specify the arguments as a JSON-encoded string, you can regquest a
different format for the snapshot, including CSV (comma-separated val ue) filesthat can be used for import
into other databases or utilities.

Individual Arguments

When you specify the arguments as individual parameters, you must specify three arguments:
1. Thedirectory path where the snapshot files are stored

2. An identifier that is included in the file names to uniquely identify the files that make up a single
snapshot

3. A flag value indicating whether the snapshot should block other transactions until it is complete or not

The resulting snapshot consists of multiple files saved to the directory specified by directory-path using
unique-1D asafilename prefix. Thethird argument, blocking-flag, specifieswhether the saveis performed
synchronously (thereby blocking any following transactions until the save completes) or asynchronously.
If this parameter is set to any non-zero value, the save operation will block any following transactions. If
it is zero, others transactions will be executed in parallel.

The files created using this invocation are in native VoltDB snapshot format and can be used to restore
or recover the database at some later time. This is the same format used for automatic snapshots. See
Chapter 13, Saving & Restoring a VoltDB Database for more information about saving and restoring
VolItDB databases.

JSON-Encoded Arguments

When you specify the arguments as a JSON-encoded string, you can specify what snapshot format you
want to create. Table G.1, “ @SnapshotSave Options’ describes all possible options when creating a snap-
shot using JSON-encoded arguments.

Table G.1. @SnapshotSave Options

Option ‘ Description

302

System Procedures

uripath Specifiesthe path where the snapshot filesare created. Note that, asa JSON-encoded
argument, the path must be specified as a URI, not just a system directory path.
Therefore, alocal directory must be specified usingthefi | e: // identifier, such
as"file:///tnp", and the path must exist on all nodes of the cluster.

nonce Specifies the unique identifier for the snapshot.

block Specifies whether the snapshot should be synchronous (true) and block other trans-
actions or asynchronous (false).

format Specifies the format of the snapshot. Valid formats are "csv" and "native".

When you save a snapshot in CSV format, the resulting files are in standard com-
ma-separated value format, with only one file for each table. In other words, dupli-
cates (from replicated tables or duplicate partitions due to K-safety) are eliminated.
CSV formatted snapshots are useful for import or reuse by other databases or utili-
ties. However, they cannot be used to restore or recover aVoltDB database.

When you save asnapshot in native format, each node and partition savesits contents
to separate files. These files can then be used to restore or recover the database. It
isalso possible to later convert native format snapshots to CSV using the snapshot
utilities described in the VoltDB Administrator's Guide.

skiptables Specifies tables to leave out of the snapshot. Use of tables or skiptables allows you
to create a partial snapshot of the larger database. Specify the list of tables as a
JSON array. For example, the following JSSON argument excludes the Areacode and
Country tables from the snapshot:

"ski ptabl es":["areacode", "country"]

tables Specifiestablesto include in the snapshot. Use of tables or skiptables allows you to
create a partial snapshot of the larger database. Specify the list of tables asa JSON
array. For example, the following JSON argument includes only the Employee and
Company tablesin the snapshot:

"tabl es":["enpl oyee", "conpany"]

For example, the JSON-encoded argumentsto synchronously saveaCSV formatted snapshot to /tmp using
the unique identifier "mydb" is the following:

{uripath:"file:///tnp", nonce: "nydb", bl ock:true, format: "csv"}

The block and format arguments are optional. If you do not specify them they default to bl ock: f al se
andf ormat: "native". Theargumentsuri pat h and honce arerequired. The tables and skiptables
arguments are mutually exclusive.

Because the unique identifier is used in the resulting filenames, the identifier can contain only characters

that are valid for Linux file names. In addition, hyphens ("-") and commas (",") are not permitted.
Note that it is normal to perform manual saves synchronously, to ensure the snapshot represents a known

state of the database. However, automatic snapshots are performed asynchronously to reduce the impact
on ongoing database activity.

Return Values

The @SnapshotSave system procedure returns two different VoltTables, depending on the outcome of
the request.

303

http://community.voltdb.com/docs/AdminGuide/

System Procedures

Option #1. one VoltTable with arow for every execution site. (That is, the number of hosts multiplied
by the number of sites per host.).

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.

ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

Option #2: one VoltTable with a variable number of rows.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table. The contents of each table

is saved to a separate file. Therefore it is possible for the
snapshot of each table to succeed or fail independently.

RESULT STRING String value indicating the success ("SUCCESS") or failure
("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

Examples

Thefollowing example uses @SnapshotSaveto save the current database content in native snapshot format
tothepath/ t np/ vol t db/ backup/ using the unique identifier flight on each node of the cluster.

$ sqglcmd
1> exec @napshot Save '/tnp/vol tdb/backup/', 'flight', 1;

Alternately, you can use the voltadmin save command to perform the same function. When using the
voltadmin save command, you usethe- - bl ocki ng flag instead of athird parameter to request a block-
ing save:

$ voltadm n save --blocking /tnp/voltdb/backup/ flight

Note that the procedure call will return successfully even if the save was not entirely successful. The
information returned in the VoltTable array tells you what parts of the operation were successful or not.
For example, save may succeed on one node but not on another.

The following code sample performs the same function, but also checks the return values and notifies the
operator when portions of the save operation are not successful.

Vol t Tabl e[] results = null;

try { results = client.call Procedure("@napshot Save",
"/tnp/vol tdb/ backup/ ™",
"flight", 1).getResults(); }

304

System Procedures

catch (Exception e) { e.printStackTrace(); }

for (int table=0; table<results.length; table++) {
for (int r=0;r<results[tabl e].get RowCount();r++) {
Vol t Tabl eRow row = results[table].fetchRow(r);
if (row. getString("RESULT"). conmpareTo("SUCCESS") != 0) {
Systemout.printf("Site % failed to wite " +

"tabl e % because %s.\n",
row. get String("HOSTNAMVE"), row. getString("TABLE"),
row. getString("ERR_MSG'));

305

System Procedures

@SnapshotScan

@SnapshotScan — Listsinformation about existing native snapshots in a given directory path.

Syntax

@SnapshotScan String directory-path

Description

The @SnapshotScan system procedure provides information about any native snapshots that exist within
the specified directory path for al nodes on the cluster. The procedure reports the name (prefix) of the
snapshot, when it was created, how long it took to create, and the size of the individua files that make
up the snapshot(s).

@SnapshotScan does not include CSV format snapshots in its output. Only native format snapshots are
listed.

Return Values

On successful completion, this system procedure returns three VoltTables providing the following infor-
mation:

» A summary of the snapshots found
» Available space in the directories scanned
* Details concerning the Individual files that make up the snapshots

Thefirst table contains one row for every snapshot found.

Name Datatype Description

PATH STRING The directory path where the snapshot resides.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

SIZE BIGINT Thetotal size, in bytes, of al the snapshot data.

TABLES REQUIRED STRING A comma-separated list of all the table names listed in the
snapshot digest file. In other words, all of the tables that
make up the snapshot.

TABLES_MISSING STRING A comma-separated list of database tablesfor which no data
can be found. (That is, the corresponding files are missing
or unreadable.)

TABLES INCOMPLETE |STRING A commarseparated list of database tables with only partial
data saved in the snapshot. (That is, data from some parti-
tionsismissing.)

COMPLETE STRING A string value indicating whether the snapshot asawholeis
complete ("TRUE") or incomplete ("FALSE"). If this col-

306

System

Procedures

Name Datatype

Description

umnis"FALSE", the preceding two columns provide addi-
tional information concerning what is missing.

The second table contains one row for every host.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path specified in the call to the procedure.
TOTAL BIGINT Thetotal space (in bytes) on the device.

FREE BIGINT The available free space (in bytes) on the device.

USED BIGINT Thetotal space currently in use (in bytes) on the device.
RESULT STRING String value indicating the success ("SUCCESS") or failure

("FAILURE") of the request.
ERR_MSG STRING If the result is FAILURE, this column contains a message

explaining the cause of the failure.

The third table contains one row for every fil

e in the snapshot collection.

Name Datatype Description

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PATH STRING The directory path where the snapshot file resides.

NAME STRING Thefile name.

TXNID BIGINT The transaction ID of the snapshot.

CREATED BIGINT The timestamp when the snapshot was created (in millisec-
onds).

TABLE STRING The name of the database table the data comes from.

COMPLETED STRING A string indicating whether all of the data was successfully
written to thefile ("TRUE") or not ("FALSE").

SIZE BIGINT Thetotal size, in bytes, of thefile.

IS REPLICATED STRING A string indicating whether the table in question is replicat-
ed ("TRUE") or partitioned ("FALSE").

PARTITIONS STRING A comma-separated string of partition (or site) 1Ds from

which data was taken during the snapshot. For partitioned
tables where there are multiple sites per host, there can be
datafrom multiple partitionsin each snapshot file. For repli-
cated tables, data from only one copy (and therefore one
partition) is required.

TOTAL_PARTITIONS BIGINT

The total number of partitions from which data was taken.

READABLE STRING A string indicating whether the file is accessible ("TRUE")
or not ("FALSE").
RESULT STRING String valueindicating the success ("SUCCESS") or failure

("FAILURE") of the request.

307

System Procedures

Name Datatype Description

ERR_MSG STRING If the result is FAILURE, this column contains a message
explaining the cause of the failure.

If the system procedure fails because it cannot access the specified path, it returnsasingle VoltTable with
one row and one column.

Name Datatype Description
ERR_MSG STRING A message explaining the cause of the failure.
Examples

The following example uses @SnapshotScan to list information about the snapshots in the directory /
t mp/ vol t db/ backup/ .

$ sqglcmd
1> exec @napshot Scan /tnp/vol tdb/ backup/;

The following program example performs the same function, using the VoltTablet oSt r i ng() method
to display the results of the procedure call:

Vol t Tabl e[] results = null;

try { results = client.call Procedure("@napshot Scan",
"/tnp/vol tdb/ backup/").get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
Systemout.println(t.toString());

}

In the return value, the first VoltTable in the array lists the snapshots and certain status information. The
second element of thearray providesinformation about the directory itself (such asused, free, and total disk
space). Thethird element of the array lists specific information about theindividual filesin the snapshot(s).

308

System Procedures

@SnapshotStatus

@SnapshotStatus — Lists information about the most recent snapshots created from the current database.

Syntax

@SnapshotStatus

Description
Warning

The @SnapshotStatus system procedure is being deprecated and may be removed in future ver-
sions. Please usethe @Statistics"SNAPSHOTSTATUS' selector, which returnsthe sameresults,
to retrieve information about recent snapshots.

The @SnapshotStatus system procedure providesinformation about up to ten of the most recent snapshots
performed on the current database. The information provided includes the directory path and prefix for
the snapshot, when it occurred and how long it took, as well as whether the snapshot was completed
successfully or not.

@SnapshotStatus provides status of any snapshots, including both native and CSV snapshots, as well as
manual, automated, and command log snapshots.

Note that @SnapshotStatus does not tell you whether the snapshot files till exist, only that the snapshot
was performed. Y ou can use the procedure @SnapshotScan to determine what snapshots are available.

Also, the status information is reset each time the database is restarted. In other words, @SnapshotStatus
only providesinformation about the most recent snapshots since the current database instance was started.

Return Values

Returns one VoltTable with arow for every snapshot file in the recent snapshots performed on the cluster.

Name Datatype Description

TIMESTAMP BIGINT Thetimestamp when the snapshot wasinitiated (in millisec-
onds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table whose data thefile contains.

PATH STRING The directory path where the snapshot file resides.

FILENAME STRING Thefile name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

309

System Procedures

Name Datatype Description

SIZE BIGINT Thetotal size, in bytes, of thefile.

DURATION BIGINT Thelength of time (in milliseconds) it took to complete the
snapshot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

Examples

The following example uses @SnapshotStatus to display information about the most recent snapshots
performed on the current database:

$ sqlcnd
1> exec @napshot St at us;

The following code example demonstrates how to perform the same function programmatically:

Vol t Tabl e[] results = null;

try {
results = client.callProcedure(" @napshot Status").get Results();
}

catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {
Systemout.printlin(t.toString());

}

310

System Procedures

@Statistics

@Statistics — Returns statistics about the usage of the VoltDB database.

Syntax

@ Statistics String component, Integer delta-flag

Description

The @Statistics system procedure returns information about the VVoltDB database. The second argument,
component, specifies what aspect of VoltDB to return statistics about. The third argument, delta-flag,
specifies whether statistics are reported from when the database started or since the last call to @Statistics

where the flag was set.

If the delta-flag is set to zero, the system procedure returns statistics since the database started. If the delta-
flag is non-zero, the system procedure returns statistics for the interval since the last time @Statistics was
called with a non-zero flag. (If @Statistics has not been called with a non-zero flag before, the first call
with the flag set returns statistics since startup.)

Note that in a cluster with K-safety, if a node fails, the statistics reported by this procedure are reset to
zero for the node when it rejoins the cluster.

The following are the allowable values of component:

"COMMANDLOG [313]"

"CPU [314]"

"DRCONSUMER [314]"

"DRPRODUCER [315]"

"IMPORTER [316]"

"INDEX [317]"

Returnsinformation about the progress of command logging, including
the number of segment filesin use and the amount of command log data
waiting to be written to disk.

Returns information about the amount of CPU used by each VoltDB
server process. CPU usage is returned as a number between 0 and 100
representing the amount of CPU used by the VoltDB process out of the
total CPU available for that server.

Returnsinformation about the status of database replication on areplica
database, including the status and data replication rate of each partition.
Thisinformationisavailableonly if the databaseislicensed for database
replication and started as areplica

Returnsinformation about the status of database replication on amaster
database, including how much data is waiting to be sent to the replica.
Thisinformationisavailableonly if the databaseislicensed for database
replication.

Returns statistics on the import streams, including how many import
transactions have succeeded, failed, and been retried and how many
rows have been read but not applied yet.

Returns information about the indexes in the database, including the
number of keys for each index and the estimated amount of memory
used to store those keys. Separate information is returned for each par-
tition in the database.

311

System Procedures

“INITIATOR [317]"

"|OSTATS[318]"

"LIVECLIENTS[318]"

"MANAGEMENT"

"MEMORY [319]"

"PARTITION-
COUNT [320]"

"PLANNER [320]"

"PROCEDURE [321]"

"PROCEDUREIN-
PUT [321]"

"PROCEDUREOUT-
PUT [322]"

Returns information on the number of procedure invocations for each
stored procedure (including system and import procedures). The count
of invocationsis reported for each connection to the database.

Returnsinformation on the number of messages and amount of data (in
bytes) sent to and from each connection to the database.

Returnsinformation about the number of outstanding requests per client.
You can use this information to determine how much work is waiting
in the execution queues.

Returns the same information as INDEX [317], INITIA-
TOR [317], IOSTATS [318], MEMORY [319], PROCE-
DURE [321], and TABLE [324], except al in a single procedure
cal.

Returns statistics on the use of memory for each node in the cluster.
MEMORY statistics include the current resident set size (RSS) of the
VoltDB server process; the amount of memory used for Javatemporary
storage, database tables, indexes, and string (including varbinary) stor-
age; as well as other information.

Returns information on the number of unique partitions in the cluster.
The VoltDB cluster creates multiple partitions based on the number of
servers and the number of sites per host requested. So, for example,
a 2 node cluster with 4 sites per host will have 8 partitions. Howev-
er, when you define a cluster with K-safety, there are duplicate parti-
tions. PARTITIONCOUNT only reports the number of unique parti-
tions availablein the cluster.

Returns information on the use of cached plans within each partition.
Queriesin stored procedures are planned when the procedureisdeclared
in the schema. However, ad hoc queries must be planned at runtime.
To improve performance, VoltDB caches plans for ad hoc queries so
they can be reused when a similar query is encountered later. There are
two caches: thelevel 1 cache performs exact matches on queriesand the
level 2 cache parameterizes constants so it can match queries with the
same plan but different input. The planner statistics provide information
about the size of each cache, how frequently it isused, and the minimum,
maximum, and average execution time of ad hoc queries as aresullt.

Returnsinformation on the usage of stored proceduresfor each sitewith-
in the database cluster sorted by partition. The information includes the
name of the procedure, the number of invocations (for each site), and
selected performance information on minimum, maximum, and average
execution time,

Returns summary information on the size of the input data submitted
with stored procedureinvocations. PROCEDUREINPUT usesinforma-
tion from PROCEDURE, except it focuses on the input parameters and
aggregates data for the entire cluster.

Returns summary information on the size of the result sets returned
by stored procedure invocations. PROCEDUREOUTPUT uses infor-
mation from PROCEDURE, except it focuses on the result sets and ag-
gregates data for the entire cluster.

312

System Procedures

"PROCEDURE-
PROFILE [322]"

"REBALANCE [323]"

"SNAPSHOTS-
TATUS[323]"

"TABLE [324]"

Returns summary information on the usage of stored procedures aver-
aged across al partitionsin the cluster. The information from PROCE-
DUREPROFILE is similar to the information from PROCEDURE, ex-
cept it focuses on the performance of the individual procedures rather
than on procedures by partition. The weighted average across partitions
is helpful for determining which stored procedures the application is
spending most of itstimein.

Returnsinformation on the current progress of rebalancing on the clus-
ter. Rebalancing occurs when one or more nodes are added "on the fly"
to an elastic cluster. If no rebalancing is occurring, no data is returned.
During arebalance, this selector returnsinformation about the speed of
migration of the data, the latency of rebalance tasks, and the estimated
time until completion.

For rebalance, the delta flag to the system procedureisignored. All re-
balance statistics are cumulative for the current rebalance activity.

Returns information about up to ten of the most recent snapshots per-
formed by the database. The results include the directory path and pre-
fix for the snapshot, when it occurred, how long it took, and whether
the snapshot was completed successfully or not. The results report on
both native and CSV snapshots, aswell asmanual, automated, and com-
mand log snapshots. Note that this selector does not tell you whether the
snapshot files till exist, only that the snapshot was performed. Use the
@SnapshotScan procedure to determine what snapshots are available.

Returnsinformation about the database tables, including the number of
rows per site for each table. This information can be useful for seeing
how well the rows are distributed across the cluster for partitioned ta-
bles.

Notethat INITIATOR and PROCEDURE report information on both user-declared stored procedures and
system procedures. These include certain system procedures that are used internally by VoltDB and are
not intended to be called by client applications. Only the system procedures documented in this appendix

are intended for client invocation.

Return Values

Returns different VoltTables depending on which component is requested. The following tables identify
the structure of the return values for each component. (Note that the MANAGEMENT component returns

seven VoltTables.)

COMMANDLOG — Returns arow for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

OUTSTANDING _BYTES |BIGINT The size, in bytes, of pending command log data. That is,
data for transactions that have been initiated but the log has

313

System Procedures

Name Datatype Description
yet to bewritten to disk. For synchronouslogging, thisvalue
is aways zero.

OUTSTANDING_TXNS |BIGINT The size, in number of transactions, of pending command

log data. That is, the number of transactions that have been
initiated for which the log has yet to be written to disk. For
synchronous logging, this value is always zero.

IN_USE_SEGMENT_COUN

INTEGER

Thetotal number of segment files currently in use for com-
mand logging.

SEGMENT_COUNT INTEGER | The number of segment files allocated, including currently
unused segments.
FSYNC _INTERVAL INTEGER |The average interval, in milliseconds, between the last 10

fsync system calls.

CPU — Returnsarow for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PERCENT_USED BIGINT The percentage of total CPU available used by the database

Server process.

DRCONSUMER — Returns two VoltTables. The first table returns a row for every host in the cluster,
showing whether a replication snapshot isin progress and if it is, the status of transmission to the replica.

Name

Datatype

Description

TIMESTAMP

BIGINT

The timestamp when the information was collected (in mil-
liseconds).

HOST_ID

INTEGER

Numeric ID for the host node.

HOSTNAME

STRING

Server name of the host node.

CLUSTER_ID

INTEGER

The numeric ID assigned to the cluster in the deployment
file

STATE

STRING

A text string indicating the current state of replication. Pos-
siblevalues are;

e UNINITIALIZED — DR has not begun yet or has
stopped

* INITIALIZE — DRisenabled and thereplicais attempt-
ing to contact the master

¢ SYNC — DR hasstarted and the replicais synchronizing
by receiving snapshots of existing data from the master

« RECEIVE— DRisunderway andthereplicaisreceiving
binary logs from the master

* END — DR has been canceled for some reason and the
replicais stopping DR

REPLICATION_RATE_1IM

BIGINT

The average rate of replication over the past minute. The
data rate is measured in bytes per second.

314

System Procedures

Name Datatype Description

REPLICATION_RATE_5M [BIGINT The average rate of replication over the past five minutes.
The datarate is measured in bytes per second.

The second table contains information about the replication streams, which consist of arow per partition
for each server. The data shows the current state of replication and how much data has been received by
the replica

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CLUSTER_ID INTEGER | The numeric ID assigned to the cluster in the deployment
file

PARTITION_ID INTEGER | Thenumeric ID for the logical partition.

IS COVERED STRING A text string of "true" or "false” indicating whether this par-

tition is currently connected to and receiving data from a
matching partition on the master cluster.

COVERING_HOST STRING The host name of the server in the master cluster that is pro-
viding DR datato thispartition. If IS COVERED is"false",
thisfield is empty.

LAST_RECEIVED TIMES- The timestamp of the last transaction received from the
_TIMESTAMP TAMP master.

LAST_APPLIED TIMES The timestamp of the last transaction successfully applied
_TIMESTAMP TAMP to this partition on the replica.

DRPRODUCER — Returns two VoltTables. The first table contains information about the replication
streams, which consist of arow per partition for each server. The data showsthe current state of replication
and how much datais currently queued for the replica

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_ID INTEGER | Thenumeric ID for thelogical partition.

STREAMTYPE STRING The type of stream, which can either be "TRANSAC-
TIONS' or "SNAPSHOT".

TOTALBYTES BIGINT Thetotal number of bytes currently queued for transmission
to the replica

TOTALBYTESIN BIGINT The total number of bytes of queued data currently held

MEMORY in memory. If the amount of total bytesis larger than the
amount in memory, the remainder is kept in overflow stor-
age on disk.

TOTALBUFFERS BIGINT The total number of buffersin this partition currently wait-
ing for acknowledgement from the replica. The partitions

315

System Procedures

Name Datatype Description

buffer the binary logs to reduce overhead and optimize net-
work transfers.

LASTQUEUEDDRID BIGINT The|D of thelast transaction queued for transmission to the
replica
LASTACKDRID BIGINT The ID of the last transaction acknowledged by the replica.
LASTQUEUEDTIMES- TIMES The timestamp of the last transaction queued for transmis-
TAMP TAMP sion to the replica
LASTACKTIMESTAMP |TIMES The timestamp of the last transaction acknowledged by the
TAMP replica.
ISSYNCED STRING A text string indicating whether the databaseis currently be-

ing replicated. If replication has not started, or the overflow
capacity has been exceeded (that is, replication has failed),
thevalue of ISSYNCED is"false". If replication is current-
ly in progress, the value is "true".

MODE STRING A text string indicating whether this particular partition
is replicating data for the replica ("NORMAL") or not
("PAUSED"). Only one copy of eachlogical partition actu-
ally sends data during replication. So for clusters with aK-
safety value greater than zero, not all physical partitionswill
report "NORMAL" even when replication isin progress.

The second table returns arow for every host in the cluster, showing whether a replication snapshot isin
progress and if it is, the status of transmission to the replica.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

STATE STRING A text string indicating the current state of replication.

Possible values are "OFF" (replication is not enabled),
'PENDING" (replication is enabled but not occurring), and
"ACTIVE" (replication is enabled and a replica database
hasinitiated DR).

SYNCSNAPSHOTSTATE |STRING A text string indicating the current state of the synchroniza-
tion snapshot that begins replication. During normal opera-
tion, thisvalueis"NONE" indicating either that replication
ishot active or that transactions are actively being replicat-
ed. If a synchronization snapshot is in progress, this value
provides additional information about the specific activity

underway.
ROWSINSYNC BIGINT Reserved for future use.
SNAPSHOT
ROWSACKEDFORSYNC |BIGINT Reserved for future use.
SNAPSHOT

IMPORTER — Returns a separate row for each import stream and each server.

316

System Procedures

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

IMPORTER_NAME STRING The name of the import stream.

PROCEDURE_NAME STRING The name of the stored procedure invoked by the import
stream to insert the incoming data.

SUCCESSES BIGINT The number of import transactions that succeeded.

FAILURES BIGINT The number of import transactions that failed.

OUTSTANDING_REQUESTBIGINT The number of records read from the import stream and
waiting to be inserted into the database.

RETRIES BIGINT The number of attempts to replay failed transactions.

INDEX — Returns arow for every index in every execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-

resents. When using aK value greater than zero, there are
multiple copies of each logical partition.

INDEX_NAME STRING The name of the index.
TABLE_NAME STRING The name of the database table to which the index applies.
INDEX_TYPE STRING A text string identifying the type of the index as either a

hash or tree index and whether it is unique or not. Possible
values include the following:

CompactingHashM ultiMapl ndex
CompactingHashUniquel ndex
CompactingTreeMultiMaplndex
CompactingTreeUniquel ndex

IS UNIQUE TINYINT A byte value specifying whether the index is unique (1) or
not (0).

IS COUNTABLE TINYINT A byte value specifying whether the index maintains a
counter to optimize COUNT (*) queries.

ENTRY_COUNT BIGINT The number of index entries currently in the partition.

MEMORY_ESTIMATE INTEGER | The estimated amount of memory (in kilobytes) consumed
by the current index entries.

INITIATOR — Returns a separate row for each connection and the stored procedures initiated by that
connection.

317

System Procedures

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CONNECTION_HOST STRING The server name of the node from which the client connec-

NAME tion originates. In the case of import procedures, the name
of the importer is reported here.

PROCEDURE_NAME STRING The name of the stored procedure. If import is enabled, im-
port procedures are included as well.

INVOCATIONS BIGINT The number of timesthe stored procedure has been invoked
by this connection on this host node.

AVG_EXECUTION_TIME |INTEGER | The average length of time (in milliseconds) it took to exe-
cute the stored procedure.

MIN_EXECUTION_TIME [INTEGER | Theminimum length of time (in milliseconds) it took to ex-
ecute the stored procedure.

MAX_EXECUTION_TIME|INTEGER |The maximum length of time (in milliseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT Thenumber of timesthe procedurefailed unexpectedly. (As

opposed to user aborts or expected errors, such as constraint
violations.)

|OSTATS — Returns one row for every client connection on the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CONNECTION_HOST STRING The server name of the node from which the client connec-

NAME tion originates.

BYTES READ BIGINT The number of bytes of data sent from the client to the host.

MESSAGES READ BIGINT The number of individual messages sent from the client to
the host.

BYTES WRITTEN BIGINT The number of bytes of data sent from the host to the client.

MESSAGES WRITTEN BIGINT The number of individual messages sent from the host to

the client.

LIVECLIENTS — Returnsarow for every client connection currently active on the cluster.

318

System Procedures

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

CONNECTION_ID BIGINT Numeric ID of the client connection invoking the proce-
dure.

CLIENT_HOSTNAME STRING The server name of the node from which the client connec-
tion originates.

ADMIN TINYINT A byte value specifying whether the connection is to the
client port (0) or the admin port (1).

OUTSTANDING_ BIGINT The number of bytes of data sent from the client currently

REQUEST BYTES pending on the host.

OUTSTANDING_ BIGINT The number of messages on the host queue waiting to be

RESPONSE_MESSAGES retrieved by the client.

OUTSTANDING BIGINT The number of transactions (that is, stored procedures) ini-

TRANSACTIONS

tiated on behalf of the client that have yet to be completed.

MEMORY — Returns arow for every server in the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

RSS INTEGER |The current resident set size. That is, the total amount of
memory allocated to the VoltDB processes on the server.

JAVAUSED INTEGER | Theamount of memory (in kilobytes) allocated by Javaand
currently in use by VoltDB.

JAVAUNUSED INTEGER | Theamount of memory (in kilobytes) allocated by Java but
unused. (In other words, free space in the Java heap.)

TUPLEDATA INTEGER | The amount of memory (in kilobytes) currently in use for
storing database records.

TUPLEALLOCATED INTEGER | Theamount of memory (in kilobytes) allocated for the stor-
age of database records (including free space).

INDEXMEMORY INTEGER | The amount of memory (in kilobytes) currently in use for
storing database indexes.

STRINGMEMORY INTEGER | The amount of memory (in kilobytes) currently in use for
storing string and binary datathat is not stored "in-line" in
the database record.

TUPLECOUNT BIGINT The total number of database records currently in memory.

POOLEDMEMORY BIGINT The tota size of memory (in kilobytes) allocated for tasks

other than database records, indexes, and strings. (For ex-
ample, pooled memory is used for temporary tables while
processing stored procedures.)

319

System Procedures

Name Datatype Description

PHY SICALMEMORY BIGINT Thetotal size of physical memory (in kilobytes) onthe serv-
er.

JAVAMAXHEAP INTEGER | The maximum heap size (in kilobytes) of the Java runtime

environment.

PARTITIONCOUNT — Returns one row identifying the total number of partitions and the host that

provided that information.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

PARTITION_COUNT INTEGER | The number of unique or logical partitions on the cluster.

When using a K value greater than zero, there are multiple
copies of each logical partition.

PLANNER — Returns a row for every planner cache. That is, one cache per execution site, plus one
global cache per server. (The global cacheisidentified by a site and partition 1D of minus one.)

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE ID INTEGER |Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER | The numeric ID for the logical partition that this site rep-
resents. When using aK value greater than zero, there are
multiple copies of each logical partition.

CACHE1 LEVEL INTEGER | The number of query plansin thelevel 1 cache.

CACHE2_LEVEL INTEGER | The number of query plansin thelevel 2 cache.

CACHE1 _HITS INTEGER | The number of queries that matched and reused a plan in
thelevel 1 cache.

CACHE2 HITS INTEGER | The number of queries that matched and reused a plan in
thelevel 2 cache.

CACHE_MISSES INTEGER | The number of queries that had no match in the cache and
had to be planned from scratch

PLAN TIME_MIN BIGINT The minimum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_MAX BIGINT The maximum length of time (in nanoseconds) it took to
complete the planning of ad hoc queries.

PLAN_TIME_AVG BIGINT The average length of time (in nanoseconds) it took to com-
plete the planning of ad hoc queries.

FAILURES BIGINT The number of times planning for an ad hoc query failed.

320

System Procedures

PROCEDURE — Returnsarow for every stored procedure that has been executed on the cluster, grouped
by execution site.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID INTEGER |Numeric ID of the execution site on the host node.

PARTITION_ID INTEGER |The numeric ID for the logical partition that this site rep-

resents. When using a K value grester than zero, there are
multiple copies of each logical partition.

PROCEDURE STRING The class name of the stored procedure.
INVOCATIONS BIGINT The total number of invocations of this procedure at this
site.

TIMED_INVOCATIONS |BIGINT The number of invocations used to measure the minimum,
maximum, and average execution time.

MIN_EXECUTION_TIME [BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX_EXECUTION_TIME [BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

AVG_EXECUTION_TIME |BIGINT The average length of time (in nanoseconds) it took to exe-

cute the stored procedure.

MIN_RESULT_SIZE INTEGER | The minimum size (in bytes) of the results returned by the
procedure.

MAX_RESULT SIZE INTEGER | The maximum size (in bytes) of the results returned by the
procedure.

AVG _RESULT_SIZE INTEGER |The average size (in bytes) of the results returned by the
procedure.

MIN_PARAMETER INTEGER | The minimum size (in bytes) of the parameters passed as

_SET _SIZE input to the procedure.

MAX_PARAMETER INTEGER | The maximum size (in bytes) of the parameters passed as

_SET_SIZE input to the procedure.

AVG_PARAMETER INTEGER | Theaveragesize(inbytes) of the parameters passed asinput

_SET _SIZE to the procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT Thenumber of timesthe procedurefailed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

PROCEDUREINPUT — Returnsarow for every stored procedure that has been executed on the cluster,
summarized across the cluster.

Name Datatype Description
TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

321

System Procedures

Name Datatype Description

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the para-
meter set size for invocations of this stored procedure com-
pared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_PARAMETER BIGINT The minimum parameter set sizein bytes.

_SET_SIZE

MAX_PARAMETER BIGINT The maximum parameter set sizein bytes.

_SET_SIZE

AVG _PARAMETER BIGINT The average parameter set size in bytes.

_SET_SIZE

TOTAL_PARAMETER BIGINT The total input for all invocations of this stored procedure

_SET_SIZE_MB measured in megabytes.

PROCEDUREOUTPUT — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

_SIZE_MB

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the re-
sult set sizereturned by invocations of thisstored procedure
compared to all stored procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

MIN_RESULT_SIZE BIGINT The minimum result set size in bytes.

MAX RESULT SIZE BIGINT The maximum result set sizein bytes.

AVG RESULT SIZE BIGINT The average result set sizein bytes.

TOTAL_RESULT BIGINT The total output returned by all invocations of this stored

procedure measured in megabytes.

PROCEDUREPROFILE — Returns a row for every stored procedure that has been executed on the
cluster, summarized across the cluster.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

PROCEDURE STRING The class name of the stored procedure.

WEIGHTED_PERC BIGINT A weighted average expressed as a percentage of the exe-
cution timefor this stored procedure compared to al stored
procedure invocations.

INVOCATIONS BIGINT The total number of invocations of this procedure.

AVG BIGINT The average length of time (in nanoseconds) it took to exe-

cute the stored procedure.

322

System Procedures

Name Datatype Description

MIN BIGINT The minimum length of time (in nanoseconds) it took to
execute the stored procedure.

MAX BIGINT The maximum length of time (in nanoseconds) it took to
execute the stored procedure.

ABORTS BIGINT The number of times the procedure was aborted.

FAILURES BIGINT Thenumber of timesthe procedurefailed unexpectedly. (As
opposed to user aborts or expected errors, such as constraint
violations.)

REBAL ANCE — Returns one row if the cluster is rebalancing. No data is returned if the cluster is not
rebalancing.

Warning

The rebalance selector is still under development. The return values are likely to change in up-
coming releases.

Name Datatype Description

TOTAL_RANGES BIGINT The total number of partition segments to be migrated.

PERCENTAGE_MOVED |FLOAT The percentage of the total segmentsthat have already been
moved.

MOVED_ROWS BIGINT The number of rows of datathat have been moved.

ROWS PER _SECOND FLOAT The average number of rows moved per second.

ESTIMATED _REMAININGBIGINT The estimated time remaining until the rebalance is com-
plete, in milliseconds.

MEGABYTES PER_SECONR.OAT The average volume of data moved per second, measured
in megabytes.

CALLS PER SECOND FLOAT The average number of rebalance work units, or transac-
tions, executed per second.

CALLS LATENCY FLOAT The average execution time for rebalance transactions, in
milliseconds.

SNAPSHOTSTATUS — Returns arow for every snapshot filein the recent snapshots performed on the
cluster.

Name Datatype Description

TIMESTAMP BIGINT Thetimestamp when the snapshot wasinitiated (in millisec-
onds).

HOST _ID INTEGER |Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

TABLE STRING The name of the database table whose datathe file contains.

PATH STRING The directory path where the snapshot file resides.

FILENAME STRING Thefile name.

NONCE STRING The unique identifier for the snapshot.

TXNID BIGINT The transaction ID of the snapshot.

323

System Procedures

Name Datatype Description

START_TIME BIGINT The timestamp when the snapshot began (in milliseconds).

END_TIME BIGINT The timestamp when the snapshot was completed (in mil-
liseconds).

SIZE BIGINT The total size, in bytes, of thefile.

DURATION BIGINT The length of time (in milliseconds) it took to complete the
snapshot.

THROUGHPUT FLOAT The average number of bytes per second written to the file
during the snapshot process.

RESULT STRING String value indicating whether the writing of the snapshot
file was successful ("SUCCESS") or not ("FAILURE").

TYPE STRING String value indicating how the snapshot was initiated. Pos-
siblevalues are;
e AUTO — an automated snapshot as defined by the de-

ployment file

* COMMANDLOG — acommand log snapshot
* MANUAL — amanual snapshot initiated by a user

TABLE — Returns arow for every table, per partition. In other words, the number of tables, multiplied
by the number of sites per host and the number of hosts.

Name Datatype Description

TIMESTAMP BIGINT The timestamp when the information was collected (in mil-
liseconds).

HOST _ID BIGINT Numeric ID for the host node.

HOSTNAME STRING Server name of the host node.

SITE_ID BIGINT Numeric ID of the execution site on the host node.

PARTITION_ID BIGINT The numeric ID for the logical partition that this site rep-

resents. When using a K value greater than zero, there are
multiple copies of each logical partition.

TABLE_NAME STRING The name of the database table.

TABLE TYPE STRING The type of the table. Values returned include "Persistent-
Table" for normal data tables and views and " Streamed-
Table" for export-only tables.

TUPLE_COUNT BIGINT The number of rows currently stored for this table in the
current partition. For export-only tables, the cumulative to-
tal number of rows inserted into the table.

TUPLE_ALLOCATED INTEGER |Thetotal size of memory, in kilobytes, allocated for storing
_MEMORY inline data associated with this table in this partition. The
allocated memory can exceed the currently used memory
(TUPLE_DATA_MEMORY). For export-only tables, this
field identifies the amount of memory currently in use to
queue export data (both in memory and as export overflow)
prior to its being passed to the export target.

TUPLE DATA_MEMORY |INTEGER |Thetotal memory, in kilobytes, used for storing inline data
associated with this table in this partition. The total memo-

324

System Procedures

Name

Datatype

Description

ry used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

STRING_DATA
_MEMORY

INTEGER

The total memory, in kilobytes, used for storing non-inline
variable length data (VARCHAR and VARBINARY) as-
sociated with this table in this partition. The total memo-
ry used for storing data for this table is the combination of
memory used for inline (tuple) and non-inline (string) data.

TUPLE_LIMIT

INTEGER

Therow limit for thistable. Row limits are optional and are
defined in the schema as a maximum number of rows that
any partition can contain. If no row limit is set, this value
isnull.

PERCENT_FULL

INTEGER

The percentage of the row limit currently in use by table
rowsinthispartition. If norow limitisset, thisvalueiszero.

Examples

The following example uses @Statistics to gather information about the distribution of table rows within

the cluster:

$ sqglcmd

1> exec @tatistics TABLE, O;

The next program example shows a procedure that collects and displays the number of transactions (i.e.
stored procedures) during a given interval, by setting the delta-flag to a non-zero value. By calling this
procedureiteratively (for example, every fiveminutes), it ispossibletoidentify fluctuationsin the database
workload over time (as measured by the number of transactions processed).

voi d nmeasur eWor kl oad() {

Vol t Tabl e[]

results = null;

String procName;
i nt procCount = O;
i nt sysprocCount = 0;

try { results = client.call Procedure("@tatistics",

"INl TI ATOR",

1).getResults(); }

catch (Exception e) { e.printStackTrace(); }

for (VoltTable t: results) {

r=0; r<t.get RowCount (); r++) {

Vol t Tabl eRow row = t.fetchRow(r);

procName = row. getStr

/* Count system procedures separately */

i f (procNane.substring(0,1).conpareTo("@) == 0)
{ sysprocCount += row. getLong("l NVOCATI ONS"); }

for (int

el se

{ procCount += row.

}
}

i ng(" PROCEDURE_NAME") ;

get Long(" | NVOCATI ONS") ; }

Systemout. printf("System procedures: %d\n" +

"User - defi

ned procedures: %\ n", +

sysprocCount, procCount);

325

System Procedures

@StopNode

@StopNode — Stops a VoltDB server process, removing the node from the cluster.

Syntax

@StopNode Integer host-ID

Description

The @StopNode system procedure lets you stop a specific server in a K-safe cluster. Y ou specify which
node to stop using the host 1D, which is the unique identifier for the node assigned by VoltDB when the
server joinsthe cluster.

Note that by calling the @StopNode procedure on a node other than the node being stopped, you will
receive areturn statusindicating the success or failure of the call. If you call the procedure on the node that
you are requesting to stop, the return status can only indicate that the call was interrupted (by the VoltDB
process on the node stopping), not whether it was successfully completed or not.

If you call @StopNode on a hode or cluster that is not K-safe — either because it was started with aK-
safety value of zero or one or more nodes have failed so any further failure could crash the database — the
@StopNode procedure will not be executed. Y ou can only stop nodes on a cluster that will remain viable
after the node stops. To stop the entire cluster, please use the @Shutdown system procedure.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

The following program example uses grep, sqlcmd, and the @Systeminformation stored procedure to
identify the host ID for a specific node (doodah) of the cluster. The example then uses that host ID (2) to
call @StopNode and stop the desired node.

$ echo "exec @ysten nformati on overview," | sqlcnd | grep "doodah"
2 HOSTNAME doodah

$ sql cnd

1> exec @bt opNode 2;

The following Java code fragment performs the same function.

try {
results = client.callProcedure("”@ystenl nfornati on",
"overview').get Results();

}
catch (Exception e) { e.printStackTrace(); }

Vol t Tabl e table = results[O0];

326

System Procedures

tabl e. reset RowPosi tion();
int targetHostID = -1;

whil e (tabl e.advanceRow() && targetHostld < 0) {
if ((table.getString("KEY") == "HOSTNAMVE') &&
(table.getString("VALUE") == target Host Nane)) {
targetHostld = (int) table.getLong("HOST_ID");

}

try {
client.call Procedure(" @St opNode",

target Host1d). get Resul ts();

}
catch (Exception e) { e.printStackTrace(); }

327

System Procedures

@SystemCatalog

@SystemCatal og — Returns metadata about the database schema.

Syntax

@SystemCatalog String component

Description

The @SystemCatal og system procedure returnsinformation about the schemaof the VVoltDB database, de-
pending upon the component keyword you specify. The following are the allowabl e values of component:

"TABLES"
"COLUMNS'

"INDEXINFO"

"PRIMARYKEY S"

"PROCEDURES"

"PROCEDURECOLUM-
NS'

Return Values

Returns information about the tables in the database.
Returns alist of columnsfor al of the tables in the database.

Returns information about the indexes in the database schema. Note that the
procedure returns information for each column in the index. In other words,
if an index is composed of three columns, the result set will include three
separate entries for the index, one for each column.

Returns information about the primary keys in the database schema. Note
that the procedure returns information for each column in the primary key.
If an primary key is composed of three columns, the result set will include
three separate entries.

Returns information about the stored procedures defined in the database, in-
cluding system procedures.

Returns information about the arguments to the stored procedures.

Returns adifferent VoltTable for each component. The layout of the VoltTables is designed to match the
corresponding JDBC data structures. Columns are provided for all JDBC properties, but where VoltDB
has no corresponding element the column is unused and a null value is returned.

For the TABLES component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table.

TABLE_TYPE STRING Specifies whether the table is a data table ("TABLE"), a
materialized view ("VIEW"), or an export-only table ('EX-
PORT").

REMARKS STRING Unused.

TYPE_CAT STRING Unused.

328

System Procedures

Name Datatype Description
TYPE_SCHEM STRING Unused.
TYPE_NAME STRING Unused.
SELF_REFERENCING STRING Unused.
_COL_NAME

REF_GENERATION STRING Unused.

For the COLUMNS component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the column belongs to.

COLUMN_NAME STRING The name of the column.

DATA_TYPE INTEGER |An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the column.

COLUMN_SIZE INTEGER | The length of the column in bits, characters, or digits, de-
pending on the datatype.

BUFFER_LENGTH INTEGER |Unused.

DECIMAL_DIGITS INTEGER | The number of fractional digits in a DECIMAL datatype
column. (Null for all other datatypes.)

NUM_PREC RADIX INTEGER | Specifiestheradix, or numeric base, for calculating the col-
umn size. A radix of 2 indicatesthe column sizeismeasured
in bitswhile aradix of 10 indicates ameasurement in bytes
or digits.

NULLABLE INTEGER |Indicates whether the column value can be null (1) or not
(0).

REMARKS STRING Contains the string "PARTITION_COLUMN?" if the col-
umn is the partitioning key for a partitioned table. Other-
wise null.

COLUMN_DEF STRING The default value for the column.

SQL_DATA_TYPE INTEGER |Unused.

SQL_DATETIME_SUB INTEGER |Unused.

CHAR_OCTET_LENGTH |[INTEGER |For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER |Anindex specifying the position of the columnin thelist of
columnsfor the table, starting at 1.

IS NULLABLE STRING Specifies whether the column can contain a null value
("YES") or not ("NO").

SCOPE_CATALOG STRING Unused.

SCOPE_SCHEMA STRING Unused.

SCOPE_TABLE STRING Unused.

329

System Procedures

Name Datatype Description
SOURCE _DATE_TYPE |SMALLINT |Unused.
IS AUTOINCREMENT STRING Specifies whether the column is auto-incrementing or not.

(Always returns "NQO").

For the INDEXINFO component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE_NAME STRING The name of the database table the index applies to.

NON_UNIQUE TINYINT V alue specifying whether the index is unique (0) or not (1).

INDEX_QUALIFIER STRING Unused.

INDEX_NAME STRING The name of the index that includes the current column.

TYPE SMALLINT |An enumerated value indicating the type of index as either
ahash (2) or other type (3) of index.

ORDINAL_POSITION SMALLINT |Anindex specifying the position of the columnintheindex,
starting at 1.

COLUMN_NAME STRING The name of the column.

ASC OR DESC STRING A string value specifying the sort order of the index. Pos-
sible values are "A" for ascending or null for unsorted in-
dexes.

CARDINALITY INTEGER |Unused.

PAGES INTEGER |Unused.

FILTER_CONDITION STRING Unused.

For the PRIMARY KEY S component, the VoltTable has the following columns:

Name Datatype Description

TABLE_CAT STRING Unused.

TABLE_SCHEM STRING Unused.

TABLE _NAME STRING The name of the database table.

COLUMN_NAME STRING The name of the column in the primary key.

KEY_SEQ SMALLINT |An index specifying the position of the column in the pri-
mary key, starting at 1.

PK_NAME STRING The name of the primary key.

For the PROCEDURES component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.
RESERVED1 STRING Unused.

330

System Procedures

Name Datatype Description

RESERVED?2 STRING Unused.

RESERVED3 STRING Unused.

REMARKS STRING Unused.

PROCEDURE_TYPE SMALLINT |An enumerated value that specifies the type of procedure.
Always returns zero (0), indicating "unknown".

SPECIFIC_NAME STRING Same as PROCEDURE_NAME.

For the PROCEDURECOL UMNS component, the VoltTable has the following columns:

Name Datatype Description

PROCEDURE_CAT STRING Unused.

PROCEDURE_SCHEM STRING Unused.

PROCEDURE_NAME STRING The name of the stored procedure.

COLUMN_NAME STRING The name of the procedure parameter.

COLUMN_TYPE SMALLINT |An enumerated value specifying the parameter type. Al-
ways returns 1, corresponding to procedureColumnin.

DATA_TYPE INTEGER |An enumerated value specifying the corresponding Java
SQL datatype of the column.

TYPE_NAME STRING A string value specifying the datatype of the parameter.

PRECISION INTEGER | The length of the parameter in bits, characters, or digits,
depending on the datatype.

LENGTH INTEGER |The length of the parameter in bytes. For variable length
datatypes (VARCHAR and VARBINARY), this value
specifies the maximum possible length.

SCALE SMALLINT |The number of fractiona digits in a DECIMAL datatype
parameter. (Null for all other datatypes.)

RADIX SMALLINT | Specifiestheradix, or numeric base, for calculating the pre-
cision. A radix of 2 indicates the precision is measured in
bits while a radix of 10 indicates a measurement in bytes
or digits.

NULLABLE SMALLINT |Unused.

REMARKS STRING If this column contains the string
"PARTITION_PARAMETER", the parameter is the parti-
tioning key for asingle-partitioned procedure. If the column
contains the string "ARRAY_PARAMETER" the parame-
ter isanative Java array. Otherwise this column is null.

COLUMN_DEF STRING Unused.

SQL_DATA_TYPE INTEGER |Unused.

SQL_DATETIME_SUB INTEGER |Unused.

CHAR_OCTET_LENGTH |[INTEGER |For variable length columns (VARCHAR and VARBI-
NARY), the maximum length of the column. Null for all
other datatypes.

ORDINAL_POSITION INTEGER | Anindex specifying the position in the parameter list for the

procedure, starting at 1.

331

System Procedures

Name Datatype Description

IS NULLABLE STRING Unused.

SPECIFIC_NAME STRING Same as COLUMN_NAME
Examples

Thefollowing example calls @SystemCatalog to list the stored procedures in the active database schema:

$ sqlcnd
1> exec @ystentCatal og procedures;

The next program example uses @SystemCatalog to display information about the tables in the database
schema.

Vol t Tabl e[] results = null;
try {

results = client.call Procedure(" @ystentCatal og",

"TABLES") . get Resul ts();

Systemout.println("Information about the database schema:");

for (VoltTable node : results) Systemout.println(node.toString());
}
catch (Exception e) {

e.printStackTrace();

}

332

System Procedures

@SystemInformation
@Systemlnformation — Returns configuration information about VoltDB and the individual nodes of the
database cluster.

Syntax

@Systeminformation

@SystemInformation String component

Description

The @SystemlInformation system procedure returns information about the configuration of the VoltDB
database or the individual nodes of the database cluster, depending upon the component keyword you
specify. The following are the allowable values of component:

"DEPLOY- Returns information about the configuration of the database. In particular, this key-

MENT" word returns information about the various features and settings enabled through the
deployment file, such as export, snapshots, K-safety, and so on. These properties are
returned in asingle VVoltTable of name/value pairs.

"OVERVIEW" Returnsinformation about the individual serversin the database cluster, including the
host name, the IP address, the version of VoltDB running on the server, as well as
the path to the deployment file in use. The overview also includes entries for the start
time of the server and length of time the server has been running.

If you do not specify acomponent, @Systemlnformation returnsthe results of the OVERVIEW component
(to provide compatibility with previous versions of the procedure).

Return Values

Returns one of two VoltTables depending upon which component is requested.

For the DEPLOYMENT component, the VoltTable has the columns specified in the following table.

Name Datatype Description

PROPERTY STRING The name of the deployment property being reported.

VALUE STRING The corresponding value of that property in the deployment
file (either explicitly or by default).

For the OVERVIEW component, information is reported for each server in the cluster, so an additional
column is provided identifying the host node.

Name Datatype Description

HOST _ID INTEGER |A numeric identifier for the host node.

KEY STRING The name of the system attribute being reported.

VALUE STRING The corresponding value of that attribute for the specified
host.

333

System Procedures

Examples
The first example displays information about the individual serversin the database cluster:

$ sqglcmd
1> exec @ystem nformation overview,

The following program example uses @Systeminformation to display information about the nodes in the
cluster and then about the database itself.

Vol t Tabl e[] results = null;
try {
results = client.call Procedure("@ystem nformation",
"OVERVI EW) . get Resul t s();
Systemout.println("Information about the database cluster:");
for (VoltTable node : results) Systemout.println(node.toString());

results = client.call Procedure("@ystem nformation",

" DEPLOYMENT") . get Resul t s();
Systemout. println("Information about the database depl oynent:");
for (VoltTable node : results) Systemout.println(node.toString());

}
catch (Exception e) {

e.printStackTrace();
}

334

System Procedures

@UpdateApplicationCatalog

@UpdateApplicationCatalog — Reconfigures the database by replacing the application catalog and/or
deployment configuration.

Syntax

@UpdateApplicationCatalog byte[] catalog, String deployment

Description

The @UpdateA pplicationCatal og system procedure lets you modify the configuration of a running data-
base without having to shutdown and restart.

Note

The @UpdateA pplicationCatalog system procedure is primarily for updating the deployment
configuration. Updating an application catalog is only supported for databases that were started
from a catalog and with the deployment setting schema=" cat al og" . In general, updating the
database schema interactively is recommended and use of application catalogs is being phased
out.

@UpdateA pplicationCatal og supports the following changes to the database:

» Add, remove, or modify stored procedures

» Add, remove, or modify database tables and columns

* Add, remove, or modify indexes (except where new constraints are introduced)

» Add or remove views and export-only tables

Modify the security permissions in the database schema
@UpdateApplicationCatal og supports the following changes to the deployment file:
» Modify the security settings in the database configuration

* Modify the settings for automated snapshots (whether they are enabled or not, their frequency, location,
prefix, and number retained)

» Modify the export settings

In general, you can make any changes to the database schema as long as there is no data in the tables.
However, if there isdatain atable, the following changes are not allowed:

» Changing the partitioning of the table
* Changing columnsto NOT NULL

* Reducing the datatype size of a column (for example, from INTEGER to SMALLINT) or changing to
an incompatible datatype (for example, from VARCHAR to INTEGER)

» Adding or broadening constraints, such as indexes and primary keys, that could conflict with existing
datain thetable

335

System Procedures

The arguments to the system procedure are a byte array containing the contents of the new catalog jar and
astring containing the contents of the deployment file. That is, you pass the actual contents of the catalog
and deployment files, using a byte array for the binary catalog and a string for the text deployment file.
Y ou can use null for either argument to change just the catalog or the deployment.

Thenew catal og and the depl oyment file must not contai n any changes other than the allowed modifications
listed above. Currently, if there are any other changes from the original catalog and deployment file (such
as changesto the export configuration or to the configuration of the cluster), the procedure returns an error
indicating that an incompatible change has been found.

If you call @UpdateA pplicationCatal og on amaster database while database replication (DR) isactive, the
DR process automatically communicates any changes to the application catalog to the replica database to
keep the two databases in sync. However, any changes to the deployment file apply to the master database
only. To change the deployment settings on a replica database, you must stop and restart the replica (and
database replication) using an updated deployment file.

To simplify the process of encoding the catalog contents, the Java client interface includes two helper
methods (one synchronous and one asynchronous) to encode the files and issue the stored procedure re-
quest:

ClientResponse client.updateApplicationCatalog(File catalog-file, File deployment-file)

ClientResponse client.updateApplicationCatalog(clientCallback callback, File catalog-file, File
deployment-file)

Similarly, the sglemd utility interprets both arguments as filenames.

Examples

The following example uses sglcmd to update the application catalog using the filesmycat al og. j ar
and mydepl oy. xmi :

$ sqglcmd
1> exec @Jpdat eApplicationCatal og nycatal og.jar, nydeploy.xm;

An aternativeisto use the voltadmin update command. In which case, the following command performs
the same function as the preceding sqlcmd example:

$ voltadm n update mycatal og.jar mnydepl oy. xm

The following program example uses the @UpdateApplicationCatalog procedure to update the cur-
rent database catalog, using the catalog at pr oj ect/ newcat al og. j ar and configuration file at
proj ect/ production. xm .

String newcat = "project/newcatal og.jar";
String newdepl oy = "project/production.xm";

try {
File file = new Fil e(newcat);
FilelnputStreamfin = new FilelnputStrean(file);
byte[] catalog = new byte[(int)file.length()];
fin.read(catal og);
fin.close();
file = new File(newdepl oy);
fin = new FilelnputStreanm(file);

336

System Procedures

}

byte[] deploybytes = new byte[(int)file.length()];

fin.read(depl oybytes);

fin.close();

String depl oyment = new String(depl oybytes, "UTF-8");

client.call Procedure(" @pdat eAppl i cationCatal og”, cat al og, depl oynent);

catch (Exception e) { e.printStackTrace(); }

The following example uses the synchronous helper method to perform the same operation.

String newcat = "project/newatal og.jar";
String newdepl oy = "project/production.xm";
try {

}

client.updateApplicationCatal og(new Fil e(newcat), new Fil e(newdepl oy));

catch (Exception e) { e.printStackTrace(); }

337

System Procedures

@UpdateClasses

@UpdateClasses — Adds and removes Java classes from the database.

Syntax

@UpdateClasses byte[] JAR-file, String class-selector

Description
The @UpdateClasses system procedure performs two functions:
» Loadsinto the database any Java classesin the JAR file passed as the first parameter
» Removes any classes matching the class selector string passed as the second parameter

Y ou need to compile and pack your stored procedure classes into a JAR file and load them into the data-
base using @UpdateCl asses before entering the CREATE PROCEDURE and PARTITION PROCEDURE
statementsthat define those classes as VVoltDB stored procedures. Note that, for interactive use, the sglemd
utility has two directives, load classes and remove classes, that perform these actions in separate steps.

Toremove classes, you specify the class namesin the second parameter, the class selector. Y ou can include
multiple class selectors using a commarseparated list. You can aso use Ant-style wildcards in the class
specification to identify multiple classes. For example, the following command deletes al classes that are
children of org.mycompany.utils aswell as*.DebugHandler:

sql cnd
1> exec @Jpdat eC asses NULL "org.nyconpany.utils.*,*. DebugHandl er";

You can aso use the @UpdateClasses system procedure to include reusable code that is accessed by
multiple stored procedures. Any classes and methods called by stored procedures must follow the same
rules for deterministic behavior that stored procedures follow, as described in Section 5.1.2, “VoltDB
Stored Procedures are Deterministic”.

However, use of @UpdateClasses is not recommended for large, established libraries of classes used by
stored procedures. For larger, static libraries that do not need to be modified on the fly, the preferred
approach is to include the code by placing JAR files in the /lib directory where VoltDB isinstalled on
the database servers.

Examples

The following example compiles and packs Java stored procedures into the file myapp.jar. The example
then uses @UpdateCL asses to load the classes from the JAR file, then defines and partitions a stored
procedure based on the uploaded classes.

$ javac -cp "/opt/voltdb/voltdb/*" -d obj src/nyapp/*.java

$ jar cvf nyapp.jar -C obj

$ sql cnd

1> exec @Jpdat ed asses nyapp.jar "";

2> CREATE PROCEDURE FROM CLASS myapp. procedur es. AddCust oner ;

3> PARTI TI ON PROCEDURE AddCust oner ON TABLE Custonmer COLUWN Cust oner| D;

338

System Procedures

The second example removes the class added and defined in the preceding example. Note that you must
drop the procedure definition first; you cannot delete classes that are referenced by defined stored proce-
dures.

$ sqlcnd
1> DROP PROCEDURE AddCust orer;
2> exec @Jpdat eC asses NULL "myapp. procedur es. AddCust oner";

As an alternative, the loading and removing of classes can be performed using native sglcmd directives
load classes and remove classes. So the previous tasks can be performed using the following commands:

$ sql cnd

1> | oad cl asses myapp.jar "";

2> CREATE PROCEDURE FROM CLASS myapp. procedur es. AddCust oner ;

3> PARTI TI ON PROCEDURE AddCust oner ON TABLE Customer COLUWN Cust oner | D;
1> DROP PROCEDURE AddCust oner;

2> renpove cl asses "nyapp. procedur es. AddCust omer " ;

339

System Procedures

@UpdatelLogging

@Updatel ogging — Changes the logging configuration for a running database.

Syntax

@UpdatelLogging CString configuration

Description

The @Updatel ogging system procedureletsyou changethelogging configurationfor VoltDB. The second
argument, configuration, is atext string containing the Log4dJ XML configuration definition.

Return Values

Returns one VoltTable with one row.

Name Datatype Description
STATUS BIGINT Always returns the value zero (0) indicating success.
Examples

It is possible to use sgqlcmd to update the logging configuration. However, the argument is interpreted as
raw XML content rather than as a file specification. Consequently, it can be difficult to use interactively.
But you can write the file contents to an input file and then pipe that to sqlcmd, like so:

$ echo "exec @JpdatelLogging '" > sqgl cnd. i nput
$ cat nylog4j.xm >> sql cnd. i nput

$ echo "';" >> sqglcnd. input

$ cat sqglcnmd.input | sqlcnmd

Thefollowing program example demonstrates another way to update the logging, using the contents of an
XML file (identified by the string xmlfilename).

try {
Scanner scan = new Scanner (new File(xm fil enane));

scan. useDelimter("\\Z");

String content = scan. next();

client.call Procedure(" @lpdat eLoggi ng", content);
}
catch (Exception e) {

e.printStackTrace();
}

