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Figure 1: The concept of “Motion Passwords” involves XR users verifying their identity by physically spelling out their password in
the air. This screenshot from our VR prototype shows a user writing their Motion Password. This Unity application supports user
enrollment and verification, demonstrating the feasibility of motion-based verification.

ABSTRACT
This paper introduces “Motion Passwords”, a novel biometric au-
thentication approach where virtual reality users verify their identity
by physically writing a chosen word in the air with their hand con-
troller. This method allows combining three layers of verification:
knowledge-based password input, handwriting style analysis, and
motion profile recognition. As a first step towards realizing this po-
tential, we focus on verifying users based on their motion profiles.
We conducted a data collection study with 48 participants, who per-
formed over 3800 Motion Password signatures across two sessions.
We assessed the effectiveness of feature-distance and similarity-
learning methods for motion-based verification using the Motion
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Passwords as well as specific and uniform ball-throwing signatures
used in previous works. In our results, the similarity-learning model
was able to verify users with the same accuracy for both signature
types. This demonstrates that Motion Passwords, even when ap-
plying only the motion-based verification layer, achieve reliability
comparable to previous methods. This highlights the potential for
Motion Passwords to become even more reliable with the addition
of knowledge-based and handwriting style verification layers. Fur-
thermore, we present a proof-of-concept Unity application demon-
strating the registration and verification process with our pretrained
similarity-learning model. We publish our code, the Motion Pass-
word dataset, the pretrained model, and our Unity prototype on
https://github.com/cschell/MoPs
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1 INTRODUCTION
Traditional user-verification methods based on username and pass-
word combinations face significant challenges in Virtual, Augmented,
and Mixed Reality (VR, AR, MR, or XR: eXtended Reality for short).
Not only do password theft and brute force attacks also persist for
XR, but practical and ergonomic difficulties of using soft or hardware
keyboards for password entry pose unique challenges [4, 10, 14, 38].
Such interactions may disrupt the immersive experience fundamental
to XR, motivating a need for alternative verification mechanisms.

In response to these challenges, we introduce and evaluate the
concept of “Motion Passwords”. Motion Passwords are not typed
but written in the air, as demonstrated in Figure 1. This allows
three distinct layers of verification: first, like traditional passwords
this approach enables knowledge-based verification, allowing the
system to verify if the correct word has been entered. Second, in-air
writing can also reflect the user’s accustomed writing style [11],
which permits the application of models that verify handwriting
characteristics, such as the style and order of strokes. Third, Motion
Passwords capture the user’s unique motion profile, which has been
shown to include highly identifying patterns [19, 26]. Additionally,
the in-air writing approach could reduce the ergonomic and usability
issues associated with using keyboards in immersive environments.

We explore the potential of Motion Passwords, specifically fo-
cusing on the third layer, and develop and evaluate a motion-based
verification model. We compare two motion-based techniques used
by previous works, a feature-distance method used by Li et al. [16]
and a similarity-learning method used by Rack et al. [32]. We evalu-
ated both techniques on a new dataset of 48 users executing Motion
Passwords and an existing dataset from Miller et al. [23], which
includes 41 users performing specific ball-throwing actions. Com-
paring signatures from both datasets allows us to determine if the
increased complexity of ‘writing’ compared to specific and uniform
‘ball-throwing’ actions, which have been shown to provide high
identifying potential [1, 15, 17, 23], affects verification reliability.
Altogether, our contributions include the following:

(1) Introduction of the concept of “Motion Passwords” and re-
lease of our new dataset, featuring 48 participants performing
over 3800 Motion Passwords across two sessions with a typi-
cal VR setup (Meta Quest 2).

(2) Evaluation of Motion Passwords as complex signatures for
motion-based verification in comparison to specific and uni-
form ball-throwing signatures.

(3) Preliminary evaluation of Motion Passwords against shoulder
surfing attacks.

(4) Release of our proof-of-concept Unity application featuring
our trained similarity-learning model. This application not
only demonstrates the motion-based verification process but
also offers an interactive experience to try it out hands-on.

Our work marks the first step in exploring Motion Passwords
as a reliable method for motion-based user verification in XR. The
results show that Motion Passwords provide verification reliability
comparable to specific ball-throwing signatures, even when using
only motion-based identification techniques. We observed that our
model primarily focuses on the user’s motion profile rather than
the written word itself. This suggests that future work can combine
motion-based verification with models that verify the actual word

or the user’s handwriting to achieve even higher verification relia-
bility. Our Motion Password dataset lays the groundwork for future
investigations into these additional verification approaches. Overall,
Motion Passwords present a promising alternative to both purely
motion-based verification methods, like specific ball-throws, and
purely knowledge-based approaches, such as traditional passwords.

2 RELATED WORK
2.1 Handwritten Signatures as Biometric Input
Handwritten signatures have long been recognized as a viable bio-
metric input for identity verification [29]. Their uniqueness stems
from the distinct neuromuscular patterns exhibited during the sign-
ing process, which are difficult to replicate [5]. This uniqueness
encompasses both static and dynamic traits, such as the shape of
the signature and the speed, pressure, and rhythm of the signing mo-
tion [12]. Signatures maintain relative consistency over time, making
them reliable for repeated verification [35].

The integration of handwritten signatures into existing workflows
is straightforward due to their widespread acceptance and established
use in legal and financial contexts. This ease of integration further
supports their viability as a biometric input.

Motion Passwords in virtual reality extend the concept of hand-
written signatures into 3D space, making them potentially stronger
than traditional 2D signatures. First, the additional dimension al-
lows for the emergence of user-specific writing patterns in 3D space,
which should be more complex and hence even harder to replicate.
Second, Motion Passwords capture more data points, including the
position and orientation of the writing hand, off-hand, and head,
not just the position tip of the writing pen. Consequently, Motion
Passwords leverage the advantages of traditional signatures while in-
troducing a new level of complexity and source of biometric signals.

2.2 Motion-Based User Verification in XR
Motion-based user verification extends biometric analysis to a broader
range of human motions, and there is already a sizable body of lit-
erature that discusses using motions for user recognition. In the
following, we focus on the context of typical XR systems that track
the head and at least one hand. We follow the terminology defined
by Jain et al. [7]: biometric user recognition systems can serve either
identification or verification tasks. Identification involves determin-
ing a user’s identity from a set of known identities, which is typically
relevant for access control or surveillance applications. Verification
on the other hand confirms or denies a user’s claimed identity, like
logging into one’s account or checking in on an airport with a pass-
port. With the concept of Motion Passwords, we specifically target
the verification scenario.

Most of previous works discuss the identification task. Rogers et
al. [34] were the first to use motions from XR users to explore the
feasibility of user identification within a set of 20 users, followed
by Pfeuffer et al. [28] who investigated several controlled VR tasks.
Subsequently, Miller M. et al. [21] demonstrated that individuals
can be re-identified quite accurately even within a larger group of
users (N=511). Up to this point, research had focused on whether
motion data is identifying at all, and the investigated scenarios were
limited to fairly specific and well-defined user actions. Rack et al.
[30] collected a dataset from 71 users playing Half-Life: Alyx. The
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authors showed that deep learning models are capable of identifying
users even in contexts, where the user task (i.e., ‘play the game’)
allows a wide spectrum of possible actions and user motions. Re-
cently, Nair et al. [26] demonstrated that motion-based identification
is possible even within a substantial user base of 50,000 individu-
als. Altogether, these works demonstrate that motion data carries a
significant identifying signal that can be used as biometric signature
for user recognition tasks.

In the context of motion-based verification, literature is compara-
tively sparse and focused on scenarios with very specific user tasks.
Li et al. [16] designed a system that required users to nod along to
music for a few seconds, wearing Google Glasses, and achieved an
average verification accuracy of about 96%. Miller et al. [20, 22]
evaluated verification performance with different VR devices by
prompting users to throw virtual balls. Both tasks, nodding and
throwing, produce motion sequences, where the resulting movement
trajectories are highly constrained and very similar. While these user
tasks are simple and have been shown to work well for verification,
conceptually they may be problematic from a security perspective.
XR users can unknowingly reveal a lot of information about them-
selves, either by accident or through malicious application design
[27], and unintentionally perform their verification signatures in
front of adversaries. This allows attackers to observe these simple
motions and repeat them to gain unauthorized access.

In contrast, by letting users write personalized – potentially more
complex – words, Motion Passwords combine the ideas of biometric-
based and knowledge-based verification: attackers not only have to
know the correct password but also have to somehow infer how their
victim writes that password in 3D space. Lu et al. [18] also explored
verification based on freestyle in-air handwriting, though it relied on
a camera and a glove device for data capture and had participants
write only two words in a single session.

2.3 Verification Methods
Verification requires a method that determines the similarity between
a known and an unknown biometric sample. For motion-based veri-
fication, previous works used two types of methods to achieve this:
feature-distance and similarity-learning methods. Feature-distance
methods are conceptually simple as they determine the similarity
––– or distance — between two samples directly in the feature space,
hence they do not require any sort of training phase. Li et al. [16]
evaluated three different feature-distance methods and found that Dy-
namic Time Warping (DTW) worked best for verifying users based
on their head nodding. However, in the context of motion sequences,
this can only be expected to work if the underlying user action of the
two samples is the same, e.g., both samples show a throwing motion.
If the underlying actions are different, the distances of the resulting
trajectories in the feature space become too large, even if the actions
were performed by the same user.

Similarity-learning models use machine learning to learn the
motion profile of individuals even within complex and arbitrary
motions [22, 32]. Subsequently, the similarity calculation between
two samples is done within the representation space learned by
the neural networks instead of the feature space. This method can
identify users even on arbitrary motions, as demonstrated by Rack
et al. [32], but comes at the cost of requiring a pretraining phase.

Against this backdrop, we compare feature-distance and similarity-
learning as foundation for the verification task in our analyses.
Feature-distance approaches offer themselves as a simple and resource-
effective method for the verification task, yet have only been evalu-
ated on specific motions. Similarity-learning is a more sophisticated
technique that requires pretraining on larger datasets but may yield
better results on the comparatively more complex patterns of Motion
Passwords.

3 DATASETS
We utilized three distinct datasets for our research: our newly created
“Motion Passwords” (MoP) dataset, the Ball-Throwing (BaT) dataset
from Miller et al. [23], and the “Who Is Alyx?” (WiA) dataset from
Rack et al. [30]. Each dataset provides spatial (x, y, z) and rotational
(quaternion: x, y, z, w) tracking data of the head-mounted display
(HMD) and both hand controllers of the VR users.

3.1 Motion Passwords
We conducted a data collection study to create a dataset of Motion
Password inputs. Participants were required to attend two separate
sessions where they were instructed to write specific words multiple
times with either hand. For this, we created a virtual environment
with Unity to guide participants through the study. The study has
been approved by the Research Ethics Committee of our faculty.

3.1.1 Main Data Collection Study. We recruited 48 participants
(9 males, 39 females), aged between 18 and 27 years (average age:
22), via our institute’s student participant system. Most participants
were right-handed, and only two were left-handed.

Participants were fully briefed on the concept of Motion Pass-
words and the study’s goals and the data collection process. In the
VR environment, they followed instructions displayed on a virtual
blackboard using a Meta Quest 2 headset and controllers. Partic-
ipants attended two separate sessions, writing specific words five
times with each hand. The words included ‘Motion‘ (both sessions),
‘Secure‘ (first session), ‘Password‘ (second session), and two ran-
dom words (same two across both sessions). Participants pressed
the trigger button on the controller to write and used virtual buttons
within the scene to repeat or proceed with their writing tasks. This
resulted in a total of 4 words × 5 repetitions × 2 hands × 2 ses-
sions = 80 individual writing sequences per participant. In total, we
collected 3840 Motion Passwords, retaining 3800 after removing
non-meaningful inputs (e.g., incomplete words). The average length
of a Motion Password was 6.2 seconds, with a minimum of 2.1 sec-
onds and a maximum of 18.2 seconds. To determine when a Motion
Password started and when it ended we selected the frames between
the first and last trigger button presses. Figure 2 visualizes resulting
Motion Passwords from sample users. Note that we did not use the
button presses as input for our models in this work.

3.1.2 Fully Informed Attack Data Collection Study. In addition
to the previously mentioned attack types, we aimed to include a fully
informed attack scenario. To achieve this, we designed a shoulder
surfing attack setup within the Unity scene. In this setup, participants
watched videos of a hypothetical victim performing their Motion
Password. They were then instructed to carefully observe and mimic
the victim’s password.
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Figure 2: Example 2D projections of signatures from our Motion Password (MoP) dataset and from the Ball-Throwing (BaT) dataset
from Miller et al. The black lines in MoP signatures represent trigger button presses.

However, our initial attempts highlighted several issues. Partici-
pants required more detailed instructions and training to understand
which aspects to focus on and to apply the necessary diligence
expected of a real attacker. For instance, many participants took
significantly longer to complete the Motion Password than the vic-
tim or failed to notice details such as the order of strokes. These
shortcomings indicated that our simulated attacks did not accurately
reflect a real-world scenario, leading us to exclude this part of the
study from our main analyses.

Despite this, we sought to provide some insight into the system’s
sensitivity to fully informed attacks. We conducted a follow-up study
with six colleagues (1 female, 5 male, all right-handed) from our
research group. Before the study, we thoroughly instructed them on
the concept of Motion Passwords, showing example videos and ex-
plaining key aspects attackers should focus on: matching the writing
speed and order of strokes and paying attention to letter size and
hand inclination.

We included two victims (both male and right-handed) who wrote
the words ‘Motion’, ‘Secure’, and ‘Motion Password’. Each attacker
was tasked with mimicking each word three times using their right
hand. While we acknowledge that the small sample size limits the
generalizability of our findings, we believe the results are still valu-
able and can provide first insights into the robustness of Motion
Passwords for motion-based verification.

3.2 Ball-Throwing Dataset from Miller et al.
We used the Ball-Throwing (BaT) dataset from Miller et al. [23] to
compare the verification reliability of Motion Passwords with very
specific motion patterns. This dataset comprises motion data from 41
users, recorded over two sessions using three different VR systems,
the HTC Vive, the Oculus Quest, and the HTC Vive Cosmos. For our
analyses, we select the signatures recorded with the Oculus Quest to

match the device of our Motion Password study. Each user performed
a ball-throwing action 10 times per session and device, with each
session taking place on a separate day. The task involved throwing a
virtual ball at a target, with consistent physical characteristics and
locations of the ball, target, and pedestal across sessions. Data was
recorded at 90 frames per second and each throwing sequence was
cut to be exactly three seconds long.

3.3 Who Is Alyx?
We use the “Who Is Alyx?” (WiA) [30] dataset to pretrain the
similarity-learning model, following Rack et al [32]. The dataset
contains 71 users who play the VR game “Half-Life: Alyx” over
two sessions for about 45 minutes per user and session with a HTC
Vive Pro. The game introduces a wide array of different user mo-
tions, ranging from calm and subtle motions when users try to solve
puzzles or explore the virtual world, to extensive and even hectic
motions when users get startled by enemies and have to fight their
way out. User motions were recorded with 90 frames per second.

We selected this dataset since it can be used to train versatile
similarity-learning models that become able to identify new users
from different datasets [32]. The high variety of user motions in
“Who Is Alyx?” is the foundation for models to accurately learn user-
specific motion signatures amidst a wide array of potential actions.
Moreover, since the dataset includes two sessions from different
days for each user, models can learn to separate the variance that is
specific to individual sessions from the identifying signal.

3.4 Dataset Alignment
When working with motion data from more than one dataset, it is
important to align all recordings to use the same coordinate system,
representation of rotations, time encoding, and units of measure-
ment [33]. While all datasets use quaternions, they use different
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coordinate systems and units of measurement, as WiA had been
recorded with Steam OpenVR and MoP and BaT both with Unity.
Hence, we pay attention to ensuring the same format by converting
recordings from the MoP Dataset to use the Steam OpenVR coor-
dinate system (X: right, Y: up, Z: forward) and ‘centimeters’ for
positions. After these preprocessing steps, we inspected recordings
from both datasets with the visualization tool from Rack et al. [33]
to visually verify the correct alignment of all datasets.

4 METHODOLOGY
In this section, we describe our methodology for motion-based veri-
fication, focusing on specific signatures from the BaT dataset and
Motion Passwords from the MoP dataset.

4.1 Input Data
The input data to our verification models is a motion sequence repre-
senting the user’s entered signature, as visualized in Figure 2. This
sequence consists of frames containing 3D coordinates for positions
(x, y, z), as well as quaternions (x, y, z, w) for each peripheral (HMD,
left & right controller). Since the original framerate can vary, we
resample every sequence to a constant framerate of 30 frames per
second (fps). This framerate balances computational costs and fi-
delity, retaining sufficient information without excessive data size
[31]. For Motion Passwords, the final sequence length varies accord-
ing to the duration of the user input. The ball-throwing signatures
from the BaT dataset are all exactly 90 frames (i.e., 3 seconds) long.

Next, we convert the resampled motion data with the Body-
Relative Acceleration (BRA) encoding from Rack et al. [30, 31].
This encoding removes irrelevant information (e.g., user’s position
or orientation within the scene), preventing overfitting by ensuring
models focus on actual identifying signals. First, we transform the
motion sequences into the body-relative (BR) encoding, making
each frame’s positions and rotations relative to the HMD’s local
coordinate system. This step also removes the HMD’s position, as
it is always the origin (0,0,0) in its local coordinate system. Then,
we compute the second derivative between the frames, producing
the positional and angular accelerations based on the BR data. After
these steps, the preprocessed input sequence consists of 18 features
per frame: (pos-x, pos-y, pos-z, rot-x, rot-y, rot-z, rot-w) for each
controller (left and right) and (rot-x, rot-y, rot-z, rot-w) for the HMD.

4.2 Feature-Distance Model
For the feature-distance approach, we utilize Dynamic Time Warping
(DTW) [36]. DTW measures the similarity between two temporal
sequences that may vary in speed or timing. The algorithm aligns
sequences in the time dimension using a dynamic programming
approach that minimizes the cumulative distance between them.

DTW calculates an optimal match by adjusting the time indices
of the points in one sequence to align with the corresponding points
in another sequence. This involves constructing a distance matrix
where each element represents the distance between points in the two
sequences. From this matrix, DTW determines the shortest path that
best aligns the sequences, corresponding to the minimum cumulative
distance, which provides the degree of similarity.

4.3 Similarity-Learning Model
Our similarity-learning model employs Deep Metric Learning [24],
which learns a function that maps input data to an embedding space
where distances reflect semantic similarities between samples. The
model is trained to reduce the distance between embeddings of
samples from the same class (i.e., the same user) while increasing the
distance between embeddings from different classes. This approach
facilitates effective measurement of similarity directly from the
learned embeddings. We followed the methodology from Rack et
al. [32] but implemented an updated architecture.

4.3.1 Architecture. Our architecture processes input sequences
through a Gated Recurring Unit (GRU) layer first, followed by a
transformer encoding unit before the final output layer. This archi-
tecture yielded superior results in our preliminary experiments on
the WiA dataset compared to the original architecture from Rack et
al. [32], who used a single GRU unit with several layers. Our archi-
tecture exposes several hyperparameters and given the variability of
optimal configurations for individual use cases, we implemented a
hyperparameter search (see Section 4.3.3). Detailed documentation
of the model architecture and the exposed hyperparameters can be
found in the code repository.

4.3.2 Pretraining. We pretrained the similarity-learning model
on the WiA dataset. Notably, the WiA and our MoP datasets do not
share any users. Our training procedure generally aligns with the
methods outlined by Rack et al. [32], reserving 11 users for valida-
tion purposes and the remainder for training. Throughout training,
we monitored the ‘R Precision’, measuring retrieval accuracy by
quantifying the rate of relevant items retrieved within the top posi-
tions of the ranking. Training checkpoints were saved upon achieving
new high scores in R Precision. The process was terminated when
no improvement was observed for several consecutive epochs.

4.3.3 Hyperparameter Search. Our similarity-learning model’s
architecture involves several hyperparameters. Given the unpre-
dictability of optimal configurations, a hyperparameter search was
conducted. This search employed the ‘sweeps’ function of the ma-
chine learning monitoring service “Weights and Biases”, using the
Bayesian search strategy. We iteratively refined our search param-
eters, expanding or narrowing the search space based on interme-
diate results on the WiA validation set, and initiated new sweeps
accordingly. Ultimately, we performed 2,750 individual trainings
and selected the model configuration yielding the highest R Preci-
sion on the validation set. The investigated search space, the final
hyperparameter configuration, and the trained model can be found
in the code repository.

4.4 Model Implementations
All code was implemented in Python and can be found in the ac-
companying repository. For the similarity-learning model, we used
PyTorch Lightning [6] together with the PyTorch Metric Learning
library [25]. For the feature-distance model, we used the ‘tslearn’
package [39].
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4.5 User Verification
Our verification system comprises two primary stages: registration
and verification. In the registration stage, users submit their refer-
ence signature, for the system to store as template for their identity.
During verification, a user claims their supposed identity, and the
system assesses the authenticity of this claim. This involves the user
providing their query signature, which the system then compares
against the stored reference template of the claimed identity. The
query is exclusively compared to the reference of the claimed iden-
tity, ignoring any other references in the database –– otherwise, this
would be considered identification, not verification [8].

The feature-distance and the similarity-learning method both yield
a similarity score between any two given items. For final verification,
this score is compared against a predefined threshold to determine
acceptance or rejection.

Using DTW, the feature-distance approach directly compares
the query’s temporal sequence with the reference and immediately
generates a distance value that quantifies the dissimilarity between
the two sequences.

Unlike the feature-distance approach, the similarity-learning me-
thod initially processes references and queries independently and
requires a second step to retrieve a similarity score. During regis-
tration, the user provides one or more reference signatures, each
of which gets encoded as an embedding. For instance, in our MoP
dataset, each user provided five iterations per session of the same
word with the same hand, resulting in five reference embeddings,
and five query embeddings. To create a single, representative ref-
erence embedding, we compute the kernel embedding, which is
positioned at the center of all provided reference embeddings. This
accounts for variations in the user’s reference signatures, aiming to
capture a more robust and representative motion profile. Then, in
the verification phase, the retrieved query embedding is compared
to the reference embedding. This comparison yields a similarity
score, which is evaluated against a predefined threshold to determine
whether the user’s identity is verified. Since our training approach
uses the ArcFace loss, we use the cosine similarity between the two
embeddings as the similarity score.

5 EXPERIMENTAL SETUP
In our experimental setup, we first compared feature-distance (FD)
and similarity-learning (SL) models both in combination with sig-
natures from the MoP and the BaT dataset, so we ended up with
four conditions: FD+BaT, SL+BaT, FD+MoP, and SL+MoP. Subse-
quently, we analyzed the potential of Motion Passwords using the
SL+MoP condition. This section explains the setup and how we
evaluate the verification performances.

5.1 Verification Scenario
We simulated the following scenario: users register on their first day
using our hypothetical XR application by providing their signature,
either a ball throw or a Motion Password. After a few days, users
attempt to log in and get verified by the system, either as themselves
(genuine) or as another user (impostor). For genuine cases, reference
and query signatures are from the same user. For impostor cases, they
are from different users. The system should ideally accept genuine
attempts and reject impostor attempts.

5.2 Performance Measures
To measure the performance of our verification system, we are in-
terested in the ratio of genuine verification successes (i.e., True
Acceptance Rate (TAR)) and the ratio of impostor verification suc-
cesses (i.e., False Acceptance Rate (FAR)). For example, a TAR of
95% and a FAR of 1% indicates that the system succeeds in accept-
ing 95 in 100 genuine attempts, and fails to reject 1 in 100 impostor
attempts.

Adjusting the similarity threshold facilitates a trade-off: a stricter
system enhances security by requiring higher similarity, resulting
in lower TAR and FAR, whereas a more lenient system increases
both TAR and FAR, reducing security. To analyze and compare this
trade-off we employ the ‘Receiver Operating Characteristic’ (ROC)
curve. The ROC curve plots the TAR against the FAR at various
threshold settings, providing a visualization of the trade-offs between
sensitivity and specificity.

Additionally, we evaluate overall verification accuracy using the
corresponding ‘Area Under the Curve’ (AUC). The AUC provides
a single scalar value that summarizes the performance across all
possible threshold settings. A higher AUC value indicates a better
overall ability of the system to distinguish between genuine and
impostor attempts, irrespective of any specific threshold. An AUC
of 1.0 represents a perfect system that completely separates genuine
and impostor samples, while an AUC of 0.5 suggests a performance
no better than random guessing.

Another metric often used in the verification context is the Equal
Error Rate (EER), which is the point at which the FAR and the False
Rejection Rate are equal. Like the AUC, EER provides a single value
that summarizes the overall accuracy of the system. A lower EER
indicates better performance.

5.3 Verification Thresholds
The choice of a verification threshold depends on the individual use
case. To demonstrate system performance across different levels of
verification strictness, we determined four exemplary thresholds that
yield the following FARs in our initial analysis in Section 6.1: we se-
lected a strict threshold at FAR = 0.1%, a moderate threshold at FAR
= 1%, a lenient threshold at FAR = 10%, and a permissive threshold
at FAR = 25%. We used these threshold values in subsequent anal-
yses to compare how different conditions, such as attacks, impact
FAR and TAR when either threshold is applied for verification. Over-
all, these four thresholds are intended to demonstrate the verification
system’s performance across different levels of strictness.

6 RESULTS
6.1 Genuine Attempts & Uninformed Attacks
In this section, we evaluate the verification accuracy using genuine
attempts and uninformed attacks across four conditions: FD+BaT,
SL+BaT, FD+MoP, and SL+MoP. The primary goal is to determine
the efficacy of our Motion Passwords in comparison to traditional
ball-throwing signatures under different verification models.

For Motion Passwords, we included the three words each partici-
pant wrote in both sessions (i.e., ‘Motion’ and two random words).
For genuine attempts, we paired the same words from the same



Motion Passwords VRST ’24, October 9–11, 2024, Trier, Germany

0.00 0.25 0.50 0.75 1.00

False Acceptance Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

A
cc

ep
ta

nc
e

R
at

e

ROC Curve

0.001 0.01 0.1 0.25

False Acceptance Rate

Detailed View

Comparison of Verification Accuracy

SL+BaT (AUC = 0.94)
SL+MoP (AUC = 0.93)

FD+BaT (AUC = 0.93)
FD+MoP (AUC = 0.75)

Figure 3: Trade-offs between TAR and FAR for the four com-
binations of model types (Similarity-Learning (SL), Feature-
Distance (FD)) and signature types (Motion Passwords (MoP),
Ball-Throws (BaT)). The right figure provides a detailed view of
the ROC curve on the left for the FARs discussed in Section 5.3.

user as reference and query. For impostor attempts, we paired differ-
ent words from different users, representing an uninformed attack
scenario where the attacker does not know the correct word or the
victim’s writing style.

The ROC curves for these conditions are shown in Figure 3. The
SL model outperformed the FD model for both signature types.
For the BaT dataset, the SL model achieved an AUC of 0.941,
slightly higher than the FD model’s AUC of 0.931. However, the
performance gap widened for Motion Passwords, with the SL model
achieving an AUC of 0.93 compared to the FD model’s 0.75. This
indicates that the DTW algorithm struggles to find similarities in
Motion Passwords when they originate from the same user. The
scored EERs are 12.4% for SL+BaT, 14.5% for SL+MoP, 14.6% for
FD+BaT, and 32.3% for FD+MoP.

Figure 3 also provides a detailed view at four FAR values selected
for the exemplary thresholds discussed in 5.3. The TARs achieved by
SL+MoP, SL+BaT, and FD+BaT lie within each other’s confidence
intervals, suggesting that differences between these three conditions
are insignificant at the selected thresholds. When the verification
threshold is set to allow 1% of impostor attempts to succeed, approx-
imately half of the genuine attempts are accepted, indicating that
genuine users typically need two attempts for successful verifica-
tion with the FD+BaT and SL+BaT/MoP approaches. The FD+MoP
combination performs significantly worse, requiring a more lenient
threshold that accepts around 25% of impostor attempts to achieve a
similar TAR.

6.2 Correct vs. Incorrect Passwords
In this subsection, we examine the impact of using correct versus
incorrect passwords on the verification performance. The goal is to
understand how the similarity-learning model handles genuine at-
tempts with incorrect passwords and attacks with correct passwords.

Table 1: Resulting TARs and cosine similarities of the SL+MoP
condition based on the results in Section 6.1 for the four repre-
sentative thresholds we selected in Section 5.3.

Threshold FAR TAR Similarity

strict 0.1% 28% 0.903
moderate 1% 52% 0.850
lenient 10% 81% 0.746
permissive 25% 91% 0.660
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Figure 4: Comparison of TAR and FAR if the query word is
correct or incorrect, i.e., equal or unequal to the reference.

In our previous experiment, we paired the same words for gen-
uine users and different words for attacks. In this experiment, we
reversed the setup by pairing different words for genuine users and
the same words for attacks. The results of this experiment are shown
in Figure 4.

For genuine users, the TAR drops significantly when the reference
and query words do not match. The TAR decreases by 14 to 24
percentage points for the strict, moderate, and lenient thresholds,
indicating a substantial impact on verification accuracy. Despite
these reductions, the model still detects genuine users to some extent,
indicating that the model can still pick up on the users’ motion
profiles.

For impostors, the TAR does not change when they attack using
the correct word. This result implies that merely knowing the cor-
rect word does not significantly increase the impostor’s chances of
success. In other words, attackers cannot improve their success rate
solely by knowing the correct word without replicating the victim’s
writing style.

Additionally, we paired reference and query signatures of the
same words written with different hands. In this scenario, the SL
model’s performance comes close to random guessing, with an AUC
score near 0.5. This result indicates that the attackers must use the
correct hand to have any chance of success.
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6.3 Fully Informed Attack with Motion Passwords
With our preliminary attack study, we investigated the robustness of
the similarity-learning model against fully informed attacks, where
attackers are aware of both the correct password and the victim’s
writing style. Participants were tasked to replicate the Motion Pass-
words of the two victims after observing video recordings of the
correct writing actions. The results of these fully informed attacks
are depicted in Figure 5, which shows the ranking of each verifi-
cation attempt by both genuine users and attackers for the three
passwords: ‘Motion’, ‘Secure’, and ‘Motion Password’.

Overall, the similarity-learning model achieved an AUC score
of 0.95 across all three words, indicating a slight improvement in
performance compared to scenarios with partially informed or com-
pletely uninformed attacks. A5 was the only attacker able to achieve
higher similarity scores than victim V2 for two of the words and
very similar scores across all attempts. In contrast, attacks on victim
V1 were significantly less successful, with no attacker reaching the
average similarity scores of V1.

Figure 5 also illustrates the different verification thresholds dis-
cussed in Section 5.3. The ‘strict’ and ‘moderate’ thresholds were
breached only by attacker A5 when imitating V2: the ‘strict’ thresh-
old was surpassed once with the word “Motion Password”, and the
‘moderate’ threshold with the other two words. The AUC scores
remained consistent across the three passwords, indicating that the
length of the word did not significantly affect verification reliability.

7 DISCUSSION
In this work, we explored the efficacy of Motion Passwords for user
verification in XR environments, focusing on the motion-based layer
of security. Our findings indicate that Motion Passwords, when com-
bined with a similarity-learning model, can achieve a level of verifi-
cation reliability on par with previous methods using specific motion
signatures. The similarity-learning model demonstrated robust per-
formance by effectively distinguishing genuine users from impostors,
leveraging the unique motion profiles of users. This performance was

consistent across various attack scenarios, highlighting the potential
of Motion Passwords as a viable biometric verification method.

We observed that the similarity-learning model can effectively
handle the complexity of Motion Passwords. The model focuses on
the user’s underlying motion profile rather than the specific trajectory
of the motion. This capability was demonstrated by the model’s high
verification success rate for genuine users, even when paired with
a wrong word. This finding suggests that Motion Passwords can
encapsulate unique motion profiles, making them a viable biometric
signature for motion-based user verification.

One significant advantage of Motion Passwords seems to be their
potential resistance against shoulder-surfing attacks as demonstrated
by our preliminary fully informed attack study. The overall achieved
similarity scores of these attacks were predominantly below the
scores of genuine attempts and the AUC was comparable to the
AUC of the uninformed impostor scenarios. Particularly, the ‘strict’
and ‘moderate’ thresholds were just breached by one attacker. While
these findings are promising, they are based on a limited number of
participants and should be interpreted with caution.

The comparison of Motion Passwords with specific ball-throwing
signatures revealed that the latter could be effectively verified us-
ing both feature-distance and similarity-learning models. However,
the feature-distance model failed with the more complex Motion
Passwords. This failure underscores the necessity of more advanced
techniques, such as similarity-learning models, to handle complex
and individualized motion patterns.

8 FUTURE WORK
We believe that our current Motion Password dataset represents a
conservative estimate of the potential similarity of genuine verifica-
tion attempts between reference and query signatures. In trials with
our proof-of-concept application, we observed that the consistency
of signatures improved with practice. This observation suggests that
with increased experience and muscle memory, users will be able
to produce more consistent Motion Passwords over time. As users
develop more consistent signatures, the similarity between regis-
tration and verification signatures for genuine users is expected to
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increase. If future work can confirm this learning effect, it would
allow for higher verification thresholds, thereby reducing the likeli-
hood of impostor success. To improve the learning process of users,
implementing feedback mechanisms during the registration phase
providing measures of similarity between entered and stored signa-
tures could be beneficial. This allows users to refine their Motion
Passwords and could lead to more consistent and distinctive motion
profiles, potentially improving verification accuracy.

Technical advancements also offer avenues for future research.
While our study focused on the fundamental evaluation of Motion
Passwords, exploring optimal deep-learning architectures and more
sophisticated input sequence encodings could yield better results.
Additionally, training methodologies that include fine-tuning with
specialized datasets might further enhance the model’s ability to
identify unique motion patterns.

Future work should also investigate further potential failure modes
to enhance the robustness and reliability of Motion Passwords. This
includes examining other attack vectors, system errors such as track-
ing failures or hardware malfunctions, and user errors, such as incon-
sistent motion due to fatigue or stress. Mitigation strategies could
involve incorporating error-correction algorithms and designing fall-
back methods, like traditional keyboard-based passwords.

Lastly, our motion-based verification model represents only one
layer of security for Motion Passwords. Incorporating a knowledge-
based approach with an Optical Character Recognition (OCR) model
allows comparison of the actual words between reference and query
signatures, thereby preventing impostor success when the correct
password is not known. OCR is a well-established field with mature
techniques and readily available solutions for 2D handwriting such
as Tesseract [37], OCRopus [2], or Kraken [13]. The challenge of
applying OCR in this context lie in adapting these solutions from
2D to 3D space. Additionally, training a model to specifically recog-
nize handwriting styles can complement the motion-based approach.
This might seem redundant to the motion-based verification used
in this work because this approach also analyzes how a word has
been written. However, analyzing false positives from our SL+MoP
condition revealed that many confused signatures do not actually
look the same if visualized side by side. Therefore, incorporating
techniques that focus on writing style and stroke order should sig-
nificantly reduce the FAR. Recent studies have successfully used
machine learning techniques for handwriting verification [3, 9], indi-
cating the feasibility of this approach for Motion Passwords. Similar
to OCR, the challenge here is to extend these 2D solutions to 3D
space. By combining these three methods, an attacker would need
to replicate the victim’s motion profile, know the correct password,
and accurately mimic their handwriting style, including the order of
strokes and fine details, to succeed. Future work should investigate
integrating these multi-layered verification methods to fully exploit
the potential of Motion Passwords in 3D space.

9 LIMITATIONS
Despite these promising results, our work has several limitations
that need addressing in future research.

Firstly, the small scale of our attack study limits the generalizabil-
ity of our findings regarding security against shoulder-surfing. Future

studies should include a larger number of victims and attackers to
obtain more robust insights.

Secondly, the narrow set of ethnicities represented in our datasets
may not capture the full diversity of motion profiles across different
cultures and populations. Including a more diverse participant pool
will help to understand how cultural differences may affect motion-
based verification.

Finally, our study primarily focused on technical feasibility with-
out extensive consideration of user experience factors, such as ease
of use and user acceptance, which are crucial for practical deploy-
ment. Future research should explore these aspects to ensure broader
applicability and effectiveness of the proposed verification system.

10 UNITY PROTOTYPE
To demonstrate the feasibility of motion-based verification in XR
environments, we developed a prototype Unity application. This
prototype integrates our similarity-learning model, as used in the
analyses presented in this paper. To our knowledge, this represents
the first published application incorporating motion-based recogni-
tion in an XR setting.

The prototype supports two primary modes. In registration mode,
new users can be created, and they provide multiple repetitions of
the same signature to build a robust profile for future verification
attempts. In verification mode, a user can claim a registered identity
and make verification attempts. The system displays the achieved
similarity score and, based on the selected threshold, either confirms
or rejects the attempt.

The application comprises two main components: a Python server
and the Unity application. The Python server manages user data
and handles the registration and verification of motion sequences
through an HTTP API. It executes the similarity-learning model and
processes the motion data accordingly. The Unity scene provides
the VR environment and communicates with the Python server. De-
tailed setup and usage instructions are available in the accompanying
Readme file in the code repository.

11 CONCLUSION
In this study, we have demonstrated the viability of using Motion
Passwords for user verification in XR environments. Our findings
show that motion-based verification works effectively with Motion
Passwords. The similarity-learning model, in particular, has proven
to be a reliable method for distinguishing genuine users from impos-
tors, even under various attack scenarios.

However, while the motion-based layer has shown promising
results, there remains significant potential for enhancing verification
reliability by integrating additional layers of security, like OCR
or handwriting style recognition techniques. These enhancements
can further establish Motion Passwords as a robust and versatile
verification method, combining ease of use with additional security.
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