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Abstract—The robust identification and measurement of 
the intima media thickness (IMT) has a high clinical relevance 
because it represents one of the most precise predictors used 
in the assessment of potential future cardiovascular events. 
To facilitate the analysis of arterial wall thickening in serial 
clinical investigations, in this paper we have developed a novel 
fully automatic algorithm for the segmentation, measurement, 
and tracking of the intima media complex (IMC) in B-mode 
ultrasound video sequences. The proposed algorithm entails a 
two-stage image analysis process that initially addresses the 
segmentation of the IMC in the first frame of the ultrasound 
video sequence using a model-based approach; in the second 
step, a novel customized tracking procedure is applied to ro-
bustly detect the IMC in the subsequent frames. For the video 
tracking procedure, we introduce a spatially coherent algo-
rithm called adaptive normalized correlation that prevents the 
tracking process from converging to wrong arterial interfaces. 
This represents the main contribution of this paper and was 
developed to deal with inconsistencies in the appearance of the 
IMC over the cardiac cycle. The quantitative evaluation has 
been carried out on 40 ultrasound video sequences of the com-
mon carotid artery (CCA) by comparing the results returned 
by the developed algorithm with respect to ground truth data 
that has been manually annotated by clinical experts. The 
measured IMTmean ± standard deviation recorded by the pro-
posed algorithm is 0.60 mm ± 0.10, with a mean coefficient 
of variation (CV) of 2.05%, whereas the corresponding result 
obtained for the manually annotated ground truth data is 
0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numeri-
cal results reported in this paper indicate that the proposed 
algorithm is able to correctly segment and track the IMC in 
ultrasound CCA video sequences, and we were encouraged by 
the stability of our technique when applied to data captured 
under different imaging conditions. Future clinical studies will 
focus on the evaluation of patients that are affected by ad-
vanced cardiovascular conditions such as focal thickening and 
arterial plaques.

I. Introduction

Atherothrombotic events, myocardial infarction,
and stroke are responsible for approximately 35% of 

the total mortality in the western world and are the lead-

ing causes of morbidity burden world-wide. The first indi-
cation of cardiovascular disease is a thickening of the in-
timal and medial layers of the arterial wall [1], commonly 
known as intima media thickness (IMT). The intima me-
dia complex (IMC) is best visualized in longitudinal sec-
tions of the common carotid artery and, as shown in Fig. 
1, it is composed of two quasi-parallel lines that represent 
the lumen intima (LI) and the media adventitia (MA) 
interfaces. The thickening of the intimal and medial layers 
is caused by inflammatory-fibroproliferative responses to 
various forms of insult. It involves lipid accumulation and 
the migration and proliferation of many cells in the sub-
intimal and medial layers, which result in the formation 
of plaques. It is the rupture of such plaques that causes 
myocardial infarcts (heart attacks), cerebrovascular 
events (strokes), peripheral vascular disease (gangrene), 
and kidney infarcts [2]. To emphasize the impact of the 
IMC thickening process on the incidence of cardiovascu-
lar events, the Rotterdam study indicates that the risk of 
myocardial infarction increases 43% per standard devia-
tion increase (0.163 mm) in common carotid IMT [3]. The 
main conclusions resulting from this study were supported 
by other independent investigations, which reveal that an 
IMT higher than 0.9 to 1.0 mm indicates a potential ath-
erosclerotic disease [1], [3], [4]. Hence, the robust segmen-
tation and measurement of the IMT has a considerable 
impact in the early diagnosis of atherosclerosis, prognosis 
prediction, and in the monitoring of responses to lifestyle 
and prescribed pharmacological treatments. In addition 
to the IMT estimation, changes in the mechanical proper-
ties of the arterial wall are of interest because they also 
have the potential to indicate the existence of early car-
diovascular diseases. These changes can be detected by 
analyzing the arterial wall stiffness (or elasticity) using 
techniques such as diameter change estimation, artery dis-
tensibility, or strain imaging [5]–[8].

The current clinical practice in the assessment of the 
early cardiovascular diseases involves the acquisition of 
ultrasound data from large superficial arterial vessels such 
as the common carotid. The image acquisition process 
generates large ultrasound video sequences that are in-
terpreted using either manual annotation procedures or 
histologically validated semi-automatic image-processing 
environments such as the Artery Measurement System 
(AMS v1.091, Chalmers University, Goteborg, Sweden) 
[9]–[11].



Although manual assessment generally results in ac-
curate IMT measurements, it is useful to note that the 
process of annotating multi-frame ultrasound data is not 
only labor intensive, but is also highly dependent on the 
experience of the medical practitioner(s). The accuracy 
of the manual tracing process was analyzed in [12]–[15], 
and these studies indicate that the results returned by the 
manual procedures are not reproducible and they are gen-
erally characterized by high intra- and inter-user variabili-
ty [12]–[15]. For instance, the inter-observer consistency of 
the IMC manual tracing was investigated in [12], where 26 
carotid artery images were annotated by 5 clinical experts. 
The authors conclude that the inter-reader differences are 
significant and they may affect the correct evaluation of 
the cardiovascular risk. Prompted by the results reported 
in [12], the study conducted in [13] indicates that the ap-
plication of computer-based diagnostic tools has the poten-
tial to significantly reduce the inter-user bias. Therefore, 
the investigation of automatic segmentation techniques 
can greatly support the clinical practitioners in their eval-
uation, because they may have substantial benefits in the 
quality of the medical act, especially in situations in which 
the developed computer-aided detection (CAD) tools can 
play the role of the second reader. To address this clinical 
need, a substantial number of studies were focused on the 
development of segmentation algorithms that were spe-
cifically designed for IMC segmentation in still B-mode 
ultrasound images. At this stage, it is useful to mention 
that most of the previous research was concentrated on 

the segmentation of the IMC in user-defined frames, and 
limited research ([16], [17]) was dedicated to the IMT seg-
mentation in video ultrasound sequences. This fact is em-
phasized in Table I, in which the most representative IMC 
segmentation techniques are listed. For reasons of com-
pleteness, Table I provides a brief technical description for 
each analyzed IMC segmentation technique, indicates the 
type of data and the number of patients/data sets used in 
the clinical study, and gives details in regard to the level 
of user intervention (these methods will be further ana-
lyzed in Section IV, where their accuracy in measuring the 
IMT will be contrasted to that achieved by the proposed 
algorithm). In our opinion, the application of single-frame 
IMC segmentation algorithms in a serial manner to each 
image of the sequence is problematic because of the lack of 
inter-frame correlation in video ultrasound data. Indeed, 
because of the nature of the ultrasound image acquisition 
process and additional issues induced by motion artifacts, 
the local contrast between relevant anatomic regions can 
vary from frame to frame and this may negatively impact 
on the efficacy of the single-frame IMC segmentation al-
gorithms. To further highlight the limitations associated 
with single-frame IMC segmentation algorithms, we em-
phasize two key observations. First, the vast majority of 
the algorithms that were developed for still (2-D) ultra-
sound images entail a substantial level of user intervention 
(for example, 13 of the 18 algorithms described in Table I 
require user intervention) that would make it impractical 
to apply them to challenging video CCA data. Second, the 

Fig. 1. (a) First frame of a cardiac cycle displaying a longitudinal section of the carotid artery. (b) Detail of the far wall that shows the two anatomical 
boundaries that compose the intima media complex (IMC), as marked by a medical expert. The intima media thickness (IMT) value is given by the 
distance between the two interfaces: lumen-intima (LI) and media-adventitia (MA). For this image, we have recorded the following values: IMTmean 
= 0.54 mm, IMTmin = 0.4 mm, IMTmax = 0.76 mm, and IMTmedian = 0.5 mm. 
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single-frame approach does not allow the development of 
robust mechanisms that enforce a consistent estimation of 
the LI and MA interfaces in all frames of the sequence. 
This fact not only increases the computational time and 
the error probability associated with the identification of 
the IMC in CCA video data, but also prevents the coher-
ent localization of the IMT in consecutive frames of the 
image sequence. These observations identify the funda-
mental challenges associated with the automatic analysis 
of the CCA ultrasound video data and they form the ma-
jor research objective of the work detailed in our paper. 
The inconsistencies in the appearance of the IMC, which 
are caused by either patient motion or tissue/arterial de-
formation during the full cardiac cycle, induce substantial 
changes in the gradient profiles of the IMC when they are 
analyzed in a frame-to-frame manner. This issue raises 
a substantial challenge that must be accommodated by 
the algorithms that are developed to measure the IMT 
in CCA video sequences. To adapt to this difficult IMC 
tracking problem, in this paper a novel unsupervised spa-
tially coherent algorithm called adaptive normalized cor-
relation (ANC) has been introduced. The proposed ANC 
algorithm has been designed to track the IMC over the 
cardiac cycle, where piecewise matching constraints were 
imposed to prevent the algorithm from converging to the 
wrong arterial interfaces. One important task associated 
with the IMC tracking procedure is related to the ini-
tialization of the LI and MA interfaces in the first frame 
of the video sequence. This particular issue brings to 
light the second contribution of this work, which involves 
the development of an unsupervised IMC segmentation 
scheme that is able to identify the LI and MA interfaces 
by fitting a multi-resolution spatially continuous vascular 
model to the CCA image data. The application of spatial 
continuity constraints in the process of IMC segmentation 
proved critical in achieving accurate results and the ex-
perimental data demonstrate that the proposed scheme is 
robust to patient-dependent changes in the morphological 
structure of the carotid and to variations in ultrasound 
image quality.

This paper is organized as follows: Section II-A describes 
the ultrasound video acquisition protocol and provides de-
tails about the demographics of the patients involved in 
our study. Section II-B outlines the computational compo-
nents of the developed technique; and in Section II-C, the 
IMC segmentation and tracking algorithms are introduced 
and presented in detail. Section III presents a comprehen-
sive evaluation of the results obtained by the proposed 
IMC segmentation and tracking technique and Section IV 
analyzes the key technical and practical aspects associated 
with the proposed and state-of-the-art IMC segmentation 
algorithms. Section V concludes our paper.

II. Materials and Methods

A. Ultrasound Video Data Acquisition

Our database consists of 40 ultrasound video sequences 
of longitudinal sections of the CCA that were captured 

by our clinical partners from Beaumont Hospital, Dublin, 
Ireland, from 23 patients. The cohort of patients involved 
in this study comprised individuals that were free of car-
diovascular symptoms at the date of the scan. Seventeen 
were women with an age range between 21 and 41 years 
(mean 32 years); the remaining 6 patients were men aged 
between 30 and 48 years (mean 37 years). This study did 
not include patients with advanced cardiovascular dis-
eases or plaques; however, several patients presented fac-
tors indicating a future risk of cardiovascular events, as 
follows: 3 patients were current smokers and 4 were ex-
smokers, 5 had a family history of heart disease or stroke, 
6 patients had cholesterol levels above the recommended 
limit of 5.0 mmol/L, and 3 of the 17 women included in 
this analysis had suffered from pre-eclampsia during preg-
nancy.

Carotid ultrasound examinations of the left common 
carotid artery were performed using a Phillips iU22 (Phil-
ips Medical Systems, Andover, MA) ultrasound system 
equipped with L9–3 (with a frequency range of 3 to 9 MHz) 
and L17–5 (with a frequency range of 5 to 17 MHz) linear-
array transducers. Subjects were examined, from a lateral 
projection, in the supine position with the neck extended 
and rotated slightly to the contralateral side. B-mode digi-
tal cineloop images of the distal common carotid, includ-
ing approximately 1 cm of the bulb dilatation, were stored 
on the hard drive of the ultrasound system for off-line 
analysis. The number of frames per video sequence varies 
between 37 to 370 (37 frames approximate one full cardiac 
cycle) and the pixel depth is 8 bits (256 gray levels). The 
pixel spacing has equal resolutions in the x and y directions 
and ranges between 0.029 to 0.095 mm/pixel; the image 
size is 600 × 800. The focus of this work was driven by our 
clinical partners from Beaumont Hospital, Dublin, who 
are specifically interested in tracking the IMC for 0.5 s 
immediately after the R-wave of the electrocardiogram. 
This allows the quantification of the IMT during both the 
minimum and the maximum carotid artery distension that 
correspond to the diastolic and systolic phases, respective-
ly. Depending on the acquisition frequency that is specific 
for each data set, the number of frames corresponding to 
the 0.5-s interval ranges between 18 to 29 and the total 
number of analyzed frames that are evaluated from the 40 
ultrasound video sequences is 772. In all 772 frames, both 
IMC interfaces were manually marked by an ultrasound 
clinical expert from Beaumont Hospital, Dublin, and all 
of the annotations were validated by a senior radiologist. 
An example that illustrates the results of the manual an-
notation process is shown in Fig. 1.

B. Outline of the Proposed Algorithm

A complete outline of the proposed IMC segmenta-
tion and tracking algorithm is provided in Fig. 2, where 
the data flow between the constituent modules is illus-
trated. The algorithm developed to segment the IMC in 
the first frame of the sequence is completely unsupervised 
and includes the following computational steps: automatic 



region of interest (ROI) detection, multi-resolution edge 
filtering, IMC model selection, and edge reconstruction. 
These computational steps are detailed in Section II-C-1.

In the tracking stage of the algorithm, the resulting 
MA and LI interfaces identified in the first frame are used 
to initialize the proposed ANC tracking procedure that is 
applied to identify the IMC interfaces in the subsequent 
frames of the video ultrasound sequence. Because the MA 
and LI interfaces show sizeable inter-frame structural in-
consistencies (such as variable gaps in the IMC structure) 
the proposed ANC algorithm has been designed to enforce 
spatial coherence during the inter-frame tracking process. 
In the remainder of the paper, each component shown in 
Fig. 2 will be analyzed in detail.

C. IMC Video Segmentation

1) IMC Segmentation in the First Frame
of the Video Sequence: 

a) Automatic detection of the ROI: In [24], we intro-
duced a novel approach for ROI detection that proved 
robust to variations in the local image contrast, type of 
the ultrasound transducer used for image acquisition, ori-
entation of the transducer relative to the position of the 
artery, and the size of the artery section that is imaged 
by the scanner. In this paper, we have further improved 
this method to enhance its accuracy when applied to low 
signal-to-noise ratio ultrasound data and additional al-

TABLE I. Overview of State-of-the-Art IMC Segmentation Algorithms. 

Research paper IMC segmentation method used
Still/ 
video

# Patients/ 
sequences

User interaction 
required

Selzer et al. [16] Dynamic edge detection segmentation using 
PROSOUND [18]

Video 24 patients Yes (initial IMC boundary and 
manual corrections)

Dwyer et al. [19] Edge detection using PROSOUND [18] Still 38 patients Yes (initial IMC boundary)
Wendelhag et al. [10] Dynamic programming with cost function 

minimization
Still 50 patients Yes (interactive corrections)

Liang et al. [11] Dynamic programming using a coarse to 
fine multiscale approach with cost function 
optimization

Still 50 (CCA) Yes (cost function weights 
adjusted using training; 
corrections)

Liguori et al. [20] Pattern recognition and edge detection 
(PRED): 
- thresholding 
- gradient intensity profile analysis

Still 30 images Yes (manual selection of the 
ROI)

Faita et al. [21] First-order absolute moment (FOAM) edge 
detector

Still 42 patients Yes (manual selection of the 
ROI)

Golemati et al. [22] Canny edge detector 
Hough transform to extract straight lines 
Selection of dominant lines

Still 10 patients No (but the method is restricted 
to strictly horizontal vessels)

Gutierrez et al. [23] Multiresolution active contours Still 30 patients Yes (manual selection of the 
ROI, manual corrections)

Ilea and Whelan [24] Spatially continuous vascular model. 
Proposed steps include: data pre-processing, 
edge filtering, model selection, edge 
reconstruction, data refinement.

Still 49 images No

Destrempes et al. [17] Semi-automatic model-based segmentation 
based on the estimated distributions from 
disease free patients. 
The ROI containing the IMC is modeled 
using a mixture of three Nakagami 
distributions.

Video 30 sequences Yes (initial IMC boundary is 
constructed using manually 
inserted points; the mixtures 
parameters require training)

Loizou et al. [25] Snakes-based segmentation Still 100 images Yes (manual selection of the 
ROI)

Cheng et al. [26] Snakes-based segmentation Still 32 images Yes (snakes initialization)
Chan et al. [27], 
2000

Anisotropic diffusion 
Active contours segmentation

Still 40 data sets Yes (manual initialization of the 
contour)

Rocha et al. [28] Hybrid dynamic programming-based active 
contour

Still 47 images, 
24 patients

Yes (the user estimates the 
lumen medial axis with 2 or 3 
points)

Delsanto et al. [29] Snake-based segmentation (snake initialised 
using gradient-based method)

Still 120 images, 
31 patients

No

Molinari et al. [30] Integrated approach (CALEXia = 
line fitting followed by fuzzy K-means 
classification)

Still 200 images No

Molinari et al. [31] Multi-resolution edge detection 
Segmentation using FOAM

Still 365 images No

Loizou et al. [32] Snakes-based segmentation [25] Still 100 images Yes (see [25])

IMC = intima media complex; CCA = common carotid artery; ROI = region of interest.



gorithmic steps were devised to allow its application to 
image sequences that exhibit unusual arterial morpholo-
gies. The main principle behind the proposed approach 
is to identify the location of the far wall interface [in the 
reminder of this paper, for purposes of clarity, it will be 
referred to as the tracked interface (TI)] using a suite 
of image processing steps that combine the information 
contained in the intensity domain with knowledge relating 
to the anatomical structure of the carotid artery. Because 
the variation of the intensity values in B-mode carotid 
ultrasound images can be approximated with a bimodal 
distribution, the proposed algorithm starts with an adap-
tive thresholding algorithm [33] that is applied to detect 
the borders between the two main image classes: the blood 
and the arterial tissues. In this approach, the threshold 
k is automatically detected by maximizing the between-

class variance [33]. The thresholding operation results in 
a binary image where the blood and artery tissue classes 
are formed:

if   (blood class);
if 
I x y k I x y
I x y k I x y
( , ) ( , )
( , ) ( , )

≤ ⇒ =
> ⇒ =

0
255  (tissue class);

	 (1)

where I(x,y) denotes the intensity value of the input image 
at location (x,y). The result after the application of (1) is 
shown in Fig. 3(b). Next, the thresholded data are sub-
jected to a post-processing refinement step that is applied 
to eliminate isolated groups of pixels, as follows:
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As illustrated in (2), a histogram hΓ(x, y) is constructed 
in a Γ neighborhood around the location (x, y) in the bi-
nary image. An important issue was the identification of 
the size of the neighborhood Γ that is sufficiently large to 
ensure statistical relevance for the local distribution hΓ(x, 
y). In our implementation, the size of the neighborhood Γ 
was set to 7 × 7 around the pixel under analysis, b1 is the 
histogram bin that contains the number of white (tissue) 
pixels and b2 is the bin generated by the black (blood) 
image pixels. This distribution will be evaluated to iden-
tify the blood pixels that have been incorrectly classed as 
artery tissues in the result returned from (1). If the value 
of b1 is greater than the value of b2, then the pixel under 
analysis has strong local coherence in the intensity domain 

Fig. 2. Outline of the developed intima media complex (IMC) segmenta-
tion and tracking algorithm (VMF = vector median filtering; ANC = 
adaptive normalized correlation).

Fig. 3. Automatic region of interest (ROI) detection: (a) Original carotid ultrasound image. (b) Image resulting from the automatic thresholding 
procedure. (c) The post-processed thresholded data. In this image, the two resulting classes are blood (in black) and the arterial tissue (in gray). 
The blood-tissue borders are marked in white. (d) The blood-tissue interfaces retained after the application of the test implemented by (3). (e) The 
automatically detected tracked interface (TI) of the carotid artery. (f) The TI interface superimposed on the ROI, where details about the limits of 
the ROI are shown. (g) The automatically determined ROI for the image depicted in (a).



and it is classed as a candidate artery tissue pixel (in the 
output image will be marked with a light gray value). 
Otherwise (if b2 > b1), it is assumed that the pixel is gen-
erated by noise and is reclassified as a blood pixel (in the 
output image will be set to 0). The resulting boundary 
pixels between the two classes after the application of the 
post-processing step are marked in white in the output 
image [see Fig. 3(c)], and it can be observed that border 
pixels are generated not only for the TI interface, but also 
for other blood-tissue interfaces as well. Then, the next 
step is to localize the TI interface in this data and the 
analysis consists of the identification of the blood–tissue 
interfaces that simultaneously satisfy the following condi-
tions:

1 255
2 0
3

) ( , )
) ( , )
) (

 (border pixel)
 (blood above)
 

I x y
I x y
I

=
+ =α

xx y, )− >α 0 (tissue below).
(3)

The conditions in (3) are applied to Fig. 3(c) as they 
evaluate the local distribution of the border pixels [I(x, 
y) = 255], and, as indicated earlier, they enforce the ana-
tomic constraint that is characteristic of the TI interface. 
In this way, the conditions shown in (3) are verified for all 
blood–tissue interfaces [see the border regions marked in 
white in Fig. 3(c)] and this process eliminates the blood–
tissue interfaces that are not plausible TI candidates 
[i.e., do not fulfill the three conditions that enforce the 
requirement to have blood data (black pixels) for α pix-
els above the examined blood-tissue interface and artery 
tissue (light gray pixels) for α pixels below the interface 
under examination]. In our implementation, the param-
eter α is adaptively detected and in this study the search 
is carried out in the interval [0, 10]. The resulting bor-
der segments that do not simultaneously satisfy the three 
conditions in (3) will be filtered out and only a reduced 
number of segments will be retained for further analysis 
[see Fig. 3(d)]. To facilitate the accurate identification of 
the TI, we will enforce additional anatomical constraints 
that specify that above the TI interface is the lumen area 
that is always characterized by low-intensity values in the 
original ultrasound data. Hence, only the segments that 
have the lowest mean intensity value for q pixels above 
the blood–tissue interfaces in Fig. 3(d) will be subjected 
to further analysis. The parameter q has been set to a 
large value (in our implementation, q = 50) to allow the 
accurate identification of the interfaces that are adjacent 
to the lumen. From the blood–tissue interfaces that were 
retained from the previous step, we focus our attention 
on the segment with the largest length because it is the 
most likely TI candidate. Indeed, following a detailed ex-
amination of the B-mode ultrasound images, in the vast 
majority of cases, the TI is the longest interface from the 
retained border segments, but our analysis identified less 
frequent situations in which the blood–tissue interface cor-
responding to the far wall of the jugular vein generates a 
border segment that has similar properties relating to the 

length and structure of the TI, and sometimes it is slightly 
larger than the TI interface. Fortunately, the anatomical 
structure of the carotid data can be again used to eluci-
date the correct identification of the TI. After the longest 
border segment from Fig. 3(d) is retained, we will deter-
mine whether it belongs to the TI interface by determin-
ing whether the second-largest border segment is located 
at a lumen distance below it. If the second-largest segment 
is located at the lumen distance, then this second segment 
is associated with the TI. A complete outline of the opera-
tions required to identify the TI interface is presented in a 
step-by-step manner in Figs. 3(a) to 3(e).

Once the TI is identified using this procedure, the size 
of the ROI in which the search process for the IMC inter-
faces will be carried out is selected as follows: the width 
of the ROI has the same width as the original image and 
the height is calculated using the expression ROIheight = 
(maxy − miny) + 2smax, where miny and maxy are the 
minimum and maximum coordinates of the TI on the y 
axis, and smax is a parameter that allows sampling of suf-
ficient image data above and below the extreme positions 
of the TI, as illustrated in Fig. 3(f). The parameter smax 
has been experimentally set to 15, because this value en-
sures the selection of an ROI that includes all image areas 
where the IMC is present.

b) IMC segmentation of the first frame in the sequence:
The speckle pattern is a distinct characteristic of the ul-
trasound data; it has a random and deterministic nature 
and is formed by the echoes of coherently distributed sub-
resolution scatterers [34]–[38]. The speckle is often per-
ceived as noise because its texture is not directly related 
to the underlying tissue structure and it degrades the 
quality of the ultrasound image acquisition process. To 
attenuate the speckle noise (which has undesirable effects 
on the extraction of the edge information that is used in 
the segmentation of the IMC), in the initial stage, the im-
age section sampled by the ROI is filtered using the vector 
median filtering (VMF) algorithm [39]. The VMF [39] is 
a nonlinear filtering strategy that excels in the removal of 
the impulse and multiplicative noise, making it particular-
ly useful for denoising CCA ultrasound data. In addition, 
the VMF is able to locally smooth the image data while 
preserving the contextual information, such as edges. The 
application of the VMF proved to be an important factor 
in obtaining accurate edge extraction by rejecting the spu-
rious responses caused by the weak textures that are as-
sociated with the speckled patterns that are present in the 
CCA ultrasound data. The concept behind VMF consists 
of the process of replacing the intensity value of each pixel 
in the ROI with that of the pixel that is situated in its s × 
s neighborhood that returns the overall minimum Euclid-
ian distance with respect to all pixels that are contained 
in the s × s neighborhood. To prevent edge attenuation 
that occurs when the filtering procedure is applied for a 
large window size s, we applied the VMF filtering in a 3 
× 3 neighborhood.



The next step of the IMC segmentation process involves 
the extraction of the plausible initial coarse edge segments 
that are associated with the MA and LI interfaces by ap-
plying the Canny edge detector [40] to the image data 
sampled by the ROI. We selected the Canny edge detec-
tor because this method is optimal with respect to edge 
localization and it also avoids issues such as multiple edge 
responses because it applies a nonmaxima suppression 
procedure to identify the strongest edge responses in the 
direction of the gradient. To further improve the selectiv-
ity of the edge extraction process, before the calculation of 
the partial derivatives, the input data are convolved with 
a Gaussian filter G, ∇[IROI(x, y) ○ G(x, y, σ)], where the 
scale σ of the Gaussian filter allows a well-controlled and 
stable edge extraction process. The judicious selection of 
the scale parameter σ is of particular interest because it 
opens the possibility of multi-resolution edge extraction. 
In this regard, if σ is set to high values, only the strong 
edges that are characterized by significant pixel intensity 
transitions will be preserved, whereas a small value of σ 
will result in the extraction of a dense edge structure, 
where the identification of the coherent image structures 
would be problematic. This observation motivated us to 
adopt a coarse-to-fine (or multi-resolution) strategy for 
the segmentation of the two IMC interfaces. To this end, 
in the initial stage of the IMC segmentation algorithm, 
the coarse edge information is extracted with the purpose 
of detecting the strong IMC edge features that will be 
further reconstructed using the edge information that is 
extracted at a finer scale.

c) Identification of the primary IMC in coarse edge data:
As previously indicated, the main rationale behind the 
proposed multi-resolution approach is that the edge infor-
mation generated at a low scale is too dense to facilitate 
the robust identification of the IMC. Because the edge 
segments extracted at a coarse scale are produced by ro-
bust salient features that are present in the image, they 
are used to generate the primary IMC. The primary IMC 
represents an accurate marker for the identification of the 
final IMC interfaces that are obtained by completing the 
coarse edges with the edge data extracted at a finer scale. 
In the coarse stage of the IMC segmentation process, we 
set the scale parameter σ to 1.0, a value that ensures that 
spurious edges that are caused by image noise and weak 
textures are eliminated. To provide a unique index for 
each edge segment returned by the Canny edge detector, 
the coarse edge data are subjected to a labeling procedure.

The primary IMC is constructed by fitting the coarse 
Canny edges to a spatially continuous vascular model. Be-
cause the IMC is defined by a pair of quasi-parallel lines, 
the plausible IMC segments are only those that are con-
sistent to the slope that is calculated from the detected 
TI, as it is known that portions from this interface belong 
to MA. In other words, the parametric representation of 
the TI provides a geometrical constraint for the two IMC 
interfaces and its slope will provide us a robust indicator 
of the orientation of the LI and MA segments. Building on 

this concept, we calculate the slope-intercept parameters 
for all coarse edge segments and only those with slope 
values close to that calculated for the TI will be retained. 
The edge segments that do not satisfy the slope criterion 
will be discarded. In our implementation, the slope-inter-
cept parameters (ap, bp) of the Tp edge segment, y = apx 
+ bp, are estimated using the linear least-square fitting 
procedure [41]. If p is the index of the coarse edge segment 
Tp, it will be retained for further analysis only if its slope 
satisfies the condition: | ap − aTI | < 0.2, where aTI is the 
slope of TI. The next operation associated with the con-
struction of the primary IMC interfaces from coarse edge 
segments involves the enforcement of the echogenicity of 
the main anatomical structures that are encountered in 
B-mode longitudinal ultrasound images of the carotid ar-
tery. This implies that the pixels located above the LI 
interface (lumen area corresponding to blood) will always 
have lower grayscale values than the pixels situated below 
the MA interface (which are characterized by high inten-
sity values). This anatomical constraint is always fulfilled 
and we applied it in the final selection of the coarse edge 
segments that compose the primary model.
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In (4) and (5), p is the index of the edge segment under 
analysis, np is the number of edge pixels associated with 
the edge segment with index p, (x, y) are the pixel’s coor-
dinates, A(p) is the local mean value of the pixels situated 
above the segment Tp and B(p) is the local mean value of 
the pixels below the segment Tp. To obey the anatomic 
constraints, we propose selection of the MA edge segments 
for the primary IMC (pMA) if they simultaneously fulfill 
the two additional conditions

a) /
b) 

MA MA

MA MA ma

A p B p
B p B p
( ) ( )
( ) (max[ ( )] ),

<
≥ −

γ
β

(6)

where pMA are the candidate MA edge segments and βma 
is the parameter that samples the variation in the inten-
sity of the pixels below pMA. The γ parameter should be 
assigned a value smaller than 1.0, because we know that in 
the case of the MA interface the mean value of the pixels 
below pMA is significantly higher than the mean value of 
the pixels above it: B(pMA) ≫ A(pMA). Experimentally,
we set γ = 0.7 and this value proved robust in all experi-
ments conducted in our study. This additional test [see 
the conditions shown in (6)] was applied to eliminate any 
potential segment that was erroneously labeled as MA 
during the construction of the MA interface of the pri-
mary IMC. A similar procedure has been applied to test 
the anatomical consistency of the LI edge segments from 
the primary IMC. An edge segment pLI will be classed 
as belonging to the LI if it has low intensity values in a 



region above it when compared with the intensity val-
ues of the region beneath it, (A(pLI) / B(pLI)) < γ. The 
MA and LI edge segments that fulfill the slope constraint 
with respect to the TI and the anatomical conditions 
implemented by (4) through (6) are subjected to a final 
IMT thickness test. The goal of this test is to identify the 
spurious edge segments that do not obey the geometric 
consistency of the IMC model. The thickness analysis is 
carried out by constructing a distribution (histogram) of 
the IMT values for all pixels that belong to the primary 
IMC along the horizontal axis (distIMT(x) records the dis-
tance between the LI and MA segments at position x, x 
∈ [1, ROI_width]), where the probable IMT thickness is 
calculated as the most frequent value encountered in the 
histogram, distIMT_mode = arg max [hist(distIMT(x))]. This 
value is denoted as the mode of the IMT thickness histo-
gram (hist(distIMT(x)), x ∈ [1, ROI_width]) and is used 
to check the consistency of all segments that define the 
primary (coarse) IMC as shown in (7), see above.

The primary IMC obtained for the image shown in Fig. 
3(g) is illustrated in Fig. 4(a). At this stage, it is useful 
to note the improved robustness of the proposed meth-
odology as it enforces a suite of geometrical and anatom-
ic constraints in the identification of the primary IMC, 
when compared with the unrefined approach based on the 
search for maxima values in the column intensity profiles 
that was widely employed by the IMC segmentation tech-
niques that were listed in Table I.

d) Reconstruction of the coarse IMC using dense edge
data: The last step of the proposed IMC segmentation 
algorithm involves the completion of the coarse IMC us-
ing the edge information that is obtained by applying 
the Canny edge detector to the VMF filtered data with 
a lower scale value (σ = 0.3). In this computational step, 
the coarse IMC interfaces will be augmented with the 
fine-scale edge segments that are spatially contiguous and 
consistent with the geometrical and anatomic constraints 
that were imposed in the construction of the coarse IMC. 

To prevent duplications, the fine-scale edge segments that 
are situated above and below the primary (coarse) model 
are eliminated because the IMC interfaces were already 
determined at those locations.

The remaining fine-scale edge data consist of a large 
number of edge segments, but only those that are adjacent 
or positioned in the close vicinity of the coarse primary 
IMC will be retained for further analysis. To achieve this, 
a list of edge terminators is extracted for each segment of 
the primary IMC [1, sPM], where sPM defines the number 
of segments of the primary IMC, and the search for candi-
date edge segments is initiated in agreement with vicinity 
and primary IMC geometric constraints. This is achieved 
by constructing an array in which, for each labeled seg-
ment of the primary IMC, the x and y coordinates associ-
ated with the segment’s extreme values (edge termina-
tors) are stored. The search process is applied to identify 
compatible segments in the fine-scale edge data that are 
located at the left and right sides of the corresponding 
edge terminators of the primary IMC. The principle of 
the search process is shown in Fig. 5, where the left edge 
terminator of the primary IMC is marked in black. As-
suming that the coordinates of the left edge terminators 
are XPM_L and YPM_L, the search for possible candidate 
edge points is conducted as shown in Fig. 5. Once a can-
didate edge pixel that belongs to a fine-scale edge segment 
is found [(Xc, Yc)], this point acts as a seed point and the 
neighborhood is iteratively increased to encompass all of 
the edge points that are connected to it. After the newly 
detected segments are added to the primary IMC model, 
the reconstruction process is repeated for the new edge 
terminators, until all potential IMC segments in the dense 
edge data are added to the primary IMC.

While the search process shown in Fig. 5 is carried 
out in large neighborhoods to ensure that all potential 
fine-scale edge pixels are included in the candidate list, 
we apply an additional test to determine whether the re-
constructed sections that are added to the primary IMC 
satisfy the conditions depicted in (4) through (6). These 
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Fig. 4. (a) The primary intima media complex (IMC) model corresponding to Fig. 3(a). (b) The final pair of lines of the IMC resulting after the edge 
data reconstruction (the mean intima media thickness (IMT) value calculated for this image is 0.48 mm). This diagram is best viewed in color. 
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conditions are tested to ensure that the reconstructed 
IMC fine-scale dense edge structure is consistent with the 
anatomical constraints that were imposed in the selection 
of the primary IMC. Fig. 4(b) illustrates the final IMC 
segmentation result for the image shown in Fig. 3(a).

2) IMC Tracking in the Subsequent Frames:
During the full cardiac cycle, segments that belong to 

the two IMC interfaces (LI and MA) are often inconsistent 
when evaluated on a frame-by-frame basis, because their 
borders become fuzzy and poorly defined. This situation 
occurs for both interfaces, but with a higher prevalence for 
the LI. Although it is theoretically feasible to apply the 
algorithm detailed in the previous section to each frame, 
this approach is not desirable for several reasons. The 
main reason is that the IMC is better defined in the first 
frames of the cardiac cycle ([16], [17]); another important 
reason is that the overall motion of the LI and MA inter-
faces between adjacent frames of the sequence is small. As 
a result, it is optimal to implement a tracking process that 
is able to identify the IMC in the subsequent frames of the 
ultrasound sequence, because the MA and LI interfaces 
that are identified in the first frame (using the procedure 
detailed in the previous section) are used for the initializa-
tion of the tracking algorithm.

In our initial investigation, we explored the feasibility 
of applying a strategy based on active contours because 
these formulations appeared well-suited to serve our track-

ing objectives. Unfortunately, the gradient information 
that is associated with the MA and LI interfaces shows a 
significant level of variation in consecutive frames of the 
video sequence and the results were not as accurate as we 
initially expected. The most difficult issues were associ-
ated with the optimization of the internal parameters and 
also with the implementation of advection forces that are 
necessary to prevent the LI interface from settling either 
on incorrect anatomic structures or on spurious strong 
gradients that are present in the arterial tissue. To pro-
vide a graphical description of these problems, Fig. 6 de-
picts screenshots detailing the far wall for six consecutive 
frames, where the inconsistencies in the IMC structure 
can be observed.

Given the problems encountered when applying active 
contour-based techniques in the context of IMC track-
ing, we have developed a different tracking approach. In 
this paper we introduce a novel tracking strategy called 
adaptive normalized correlation (ANC) that was specifi-
cally designed for the tracking of the IMC over the car-
diac cycle. As previously indicated, the inconsistency of 
the IMC in adjacent frames of the ultrasound sequence is 
a major challenge in the implementation of robust IMC 
tracking algorithms, and we believe that this is one of the 
main reasons that restricted the researchers to evaluation 
of the IMC in single-frame B-mode ultrasound images (for 
more details, refer to Table I, where the most relevant 
IMC segmentation methods are listed). The analysis of 

Fig. 5. (a) Example showing the search process employed to identify the dense edge segments situated in the neighborhood of the left edge terminator 
of the primary intima media complex (IMC). (b) The candidate IMC edge points are added to the primary IMC model. 

Fig. 6. Screenshots of the far wall for six consecutive frames that detail the changes in the intima media complex (IMC) over a short sequence of the 
cardiac cycle. In this diagram, the image areas where the IMC shows inconsistencies are highlighted with rectangles.
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single-frame ultrasound images, as indicated in Section I, 
provides only a partial answer because they are not able 
to sample the changes in the IMC over the full cardiac 
cycle, and as a result they are impractical when applied to 
serial investigations.

The proposed tracking process is carried out by evaluat-
ing the ANC along the y-axis for all points that define the 
IMC resulting from the application of the segmentation 
procedure outlined in Section II-C-1. The main advan-
tage of the proposed ANC-based tracking scheme is that 
is not hampered by the absence of strong gradients, as is 
the case with implementations based on active contour 
strategies. As illustrated in Fig. 6, inconsistencies in the 
IMC structure often occur during the cardiac cycle, and 
this will have adverse effects when the pixel-wise tracking 
process is implemented. To alleviate the problems caused 
by the gaps in the IMC structure, we have modified the 
pixel-wise tracking procedure based on normalized cor-
relation (NC) [42] to implement a piecewise-based track-
ing process. In this regard, the modified NC process is 
evaluated for each interface for a set of pixels adjacent to 
the point of interest (x, y), as illustrated in (8), see above, 
and the displacement between the IMC in image f2 with 
respect to image f1 is obtained by maximizing the expres-
sion shown in (8):

d x y f f x y k
k

( , ) arg max( ( , , , , )),
[ , ]

=
∈−ω ω

ANC 1 2 	 (9)

where f1 is the current image in the cardiac cycle, f2 is the 
next image in the sequence, t denotes the 1-D neighbor-
hood on the horizontal axis around the pixel of interest 
with coordinates (x, y), Ω is the image neighborhood where 
ANC is calculated (Ω = 9 × 9), f1( )Ω  and f2( )Ω  are the 
average intensity values calculated within the neighbor-
hood Ω from images f1 and f2 at positions (x + t, y) and (x 
+ t, y + k), respectively, and k defines the interval of vari-
ation for the LI and MA interfaces in the vertical direction 
(along the y-axis). In our implementation, the parameter 
ς has been experimentally determined (optimal results 
have been obtained for t ∈ [−2, 2]), and for computational 
reasons the IMC displacement, d(x, y), is evaluated in the 
interval k ∈ [−15, 15], which is larger than any of the IMC 
displacements that were recorded in the analyzed ultra-
sound data. As shown in (8), the ANC measure adopts a 
piecewise data matching approach that is suitable in the 
presence of weak gradients and missing data estimation by 
assuming that the movement of a particular weak edge 
pixel is in agreement with the movement of the ς left and 
right neighboring pixels. If a pixel does not have a strong 
gradient response, we assume that some of the neighbor-

ing pixels do have and the NC values are aggregated along 
the t neighborhood, as indicated in (8). The MA and LI 
interfaces in frame f2 that correspond to the MA and LI 
interfaces in frame f1 are determined using (9), where the 
displacement is analyzed in the interval k ∈ [−15, 15], i.e., 
w = 15.

The tracking algorithm described in this paper is com-
plemented with a post-processing procedure to improve 
its accuracy. In the proposed implementation, an addi-
tional IMT thickness test is applied to evaluate if there 
are any outliers or misidentified pixels, by comparing the 
distances between the MA and LI that are obtained for 
each pixel position in each frame with the most frequent 
IMT thickness value that is encountered in the respective 
frame. If there are isolated pixels that return inconsistent 
IMT thickness values with respect to the most frequent 
IMT thickness value, then these pixels are eliminated and 
image interpolation is applied to bridge the gaps in the 
IMC.

III. Results

For the quantitative evaluation of the obtained video 
segmentation results, a detailed statistical analysis has 
been conducted (by comparing the results returned by 
our IMC segmentation and tracking algorithm against the 
ground truth data that was manually annotated by an ex-
perienced clinician from Beaumont Hospital, Dublin). The 
experimental results that are reported in Section III are 
obtained using the parameter settings that are indicated 
in Section II-C.

A. Statistical Evaluation of the Video 
Segmentation Results

To illustrate the performance of the proposed algorithm 
in a graphical mode, Fig. 7 depicts the IMC segmentation 
results for the first frames in 12 randomly selected carotid 
ultrasound sequences. For clarity purposes, the images 
showed in Fig. 7 display only the ROI that was automati-
cally detected using the algorithm detailed in Section II-
C-1.

To quantify the performance of the proposed IMC 
tracking algorithm, two sets of tests were performed. The 
first set of tests evaluates the overall border displacement 
errors for both the LI and MA interfaces detected by the 
proposed method with respect to the expert’s manual an-
notations. This was achieved by computing the Euclidian 
distances (or L2 norm) between the pixels situated on the 
abscissa of the LI and MA interfaces in the ground truth 
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data and the corresponding pixels that were identified by 
the proposed algorithm. To allow for a compact presen-
tation of the experimental results, the calculated errors 
are reported in Fig. 8 using box plots [28]. Each box plot 
depicts the minimum and maximum value of the errors, 
the range between the 25th and the 75th percentile, and 
the median error value. To complement the experimen-
tal results shown in Fig. 8, we also calculated the overall 

mean error ± standard deviation for the LI (LIMean_Error 
= 0.06 mm ± 0.03) and MA (MAMean_Error 0.08 mm ± 
0.04) interfaces. The interquartile range (IQR; i.e., the dif-
ference between the 75th and 25th percentile) for the box 
plot corresponding to the LI interface is 0.03 mm, whereas 
the calculated IQR for the MA interface is 0.042 mm.

The second set of tests was conducted to calculate sta-
tistics related to the mean IMT values that are deter-

Fig. 7. First frame intima media complex (IMC) segmentation results obtained using the algorithm described in Section II-C-1 for 12 carotid ultra-
sound sequences. The intima media thickness (IMT) mean value determined by the proposed algorithm is displayed for each corresponding image.



mined by the proposed automatic method and those mea-
sured from the manually annotated ground truth data. 
Fig. 9 depicts the box plots of the mean IMT values cal-
culated for all 40 ultrasound sequences for both automati-
cally segmented (IMT_Mean_Seg) and ground truth data 
(IMT_Mean_GT). The overall mean IMT value ± stan-
dard deviation calculated for the automatically segmented 
data is 0.60 mm ± 0.10, whereas the mean IMT value ± 
standard deviation calculated for the ground truth data 
is 0.60 mm ± 0.11. As an additional statistical measure, 
Fig. 9 also reports the IMT mode values which are the 
most frequent IMT values encountered in each data set in 
the segmented (IMT_Mode_Seg) and in the ground truth 
(IMT_Mode_GT) data. The overall mean ± standard 
deviation values of the IMT mode are 0.59 mm ± 0.115 
and 0.59 mm ± 0.11 for the automatically segmented and 
ground truth data, respectively.

Fig. 10 reports additional statistics calculated from the 
IMT values (IMTMax, IMTMin, and IMTMedian values) for 
both ground truth data and the automatically segmented 
data.

To evaluate the level of dispersion between the IMT 
values within the automatically segmented and ground 
truth data, in Fig. 11 we report the coefficient of variation 
(CV%) ([10], [25]), which is defined as CV% = 
( )σ IMT Mean/ /IMT2  × 100. The average value of the CV 
calculated for all 40 data sets is 2.05% for the automati-
cally segmented data and 5.6% for the ground truth data. 
The results reported in Fig. 11 indicate a higher variation 
in the IMT values for ground truth data, which illustrates 
that the manual annotation process can be easily biased 
by the subjectivity of the human operator (the problems 
associated with the manual annotation process are par-
ticularly visible in sections of the ultrasound images where 
the contrast between the MA interface and the surround-
ing tissue is very low).

To provide a more detailed measurement that quanti-
fies the performance of the algorithm proposed in this 
paper, we analyzed the IMTmean agreement for all 772 
frames between the automatically estimated IMT values 
with respect to ground truth annotations using Bland–
Altman ([43], [44]) and linear regression plots [41].

Fig. 12 illustrates the Bland–Altman plot of the aver-
age versus the difference in the mean IMT values between 
the automatic and manual measurements, where the lim-
its of agreements are (−0.007) mm ± 0.176. Fig. 13 de-
picts the regression plot (the scatter diagram) between 
the IMT mean values calculated from the ground truth 
data with respect to the automatically segmented results 
for all frames of the 40 data sets (772 frames) that were 
used in our study. As indicated in Fig. 13, the correlation 
coefficient (corr_coeff) is 0.7, which indicates a good fit 
between the automatically segmented and manually an-
notated data. To evaluate the nonparametric significance 
test between the automatic and manually determined 
IMT values, we employed the Wilcoxon rank sum test [45] 
which was calculated for all 772 frames. The calculated 

Fig. 8. The overall border displacement errors between the manually 
segmented lumen intima (LI) and media adventitia (MA) interfaces and 
the automatically segmented LI and MA interfaces. The overall mean 
errors are: LIMean_Error = 0.06 mm ± 0.03 and MAMean_Error 0.08 mm ± 
0.04. The calculated interquartile range is: IQRLI_Interface = 0.03 mm and 
IQRMA_Interface = 0.042 mm.

Fig. 9. The mean intima media thickness (IMT) and IMT mode val-
ues calculated over the entire database of 40 cardiac sequences for 
the automatically segmented (Seg) and the ground truth (GT) data. 
The calculated interquartile range is: IQRIMT_Mean_Seg = 0.156 mm,  
IQRIMT_Mean_GT = 0.15 mm, IQRIMT_Mode_Seg = 0.147 mm, and 
IQRIMT_Mode_GT = 0.141 mm.

Fig. 10. Additional intima media thickness (IMT) statistics calculated 
for the 40 ultrasound video data sets used in the experimental study.



p-value is 0.25, which indicates a nonsignificant difference 
between the two sets of measurements (any value of p > 
0.05 indicates a nonsignificant difference between the two 
sets of measurements).

The IMC tracking results also provide information 
about the dynamic properties of the arterial far wall and 
examples for four different subjects are illustrated in Fig. 
14. Figs. 14(a1) to 14(d1) show the changes in the IMT
mean values that are calculated for every frame of the 
analyzed 0.5 s of the cardiac cycle. In these graphs, the 
origin (time = 0) corresponds to the end of the diastolic 
phase of the cardiac cycle, a situation in which the IMT 
has a maximum value and the arterial diameter reach-
es its minimal value. During the systolic expansion, the 
pulse pressure that passes through the carotid causes the 
compression of the IMC and its decreasing value is illus-
trated in the plots depicted in Figs. 14 (a1) to (d1). The 
peak systole of the cardiac cycle can be observed in these 
graphs at the moment where the IMT records the minimal 
value and the arterial diameter is at its maximum value. 
These graphs provide additional proof that the proposed 
algorithm works correctly from end-diastolic to the peak 
systolic phase of the cardiac cycle, and the IMC deforma-
tion patterns depicted in Fig. 14 are in agreement with the 
clinical studies reported in [16] and [46].

B. Computational Complexity of the Proposed Method

The computational time required to segment the first 
frame in the video sequence (using the method in Section 
II-C-1) is in the range of 6 to 14 s; the time necessary to 
track the IMC in the subsequent frames covering the 0.5 s 
of the cardiac cycle ranges from 1.0 to 2.5 s per frame, 
depending on the length of the LI and MA interfaces. 
As an example, for the ultrasound sequence (covering the 
0.5 s of the cardiac cycle) depicted in Fig. 14(d), the total 
computational overhead is 31 s (7 s are required to seg-
ment the IMC in the first frame and 24 s are required 
to track the LI and MA interfaces in the subsequent 19 
frames). For the 40 video sequences that were used in 

our experimental study, the highest overall computational 
time was attained for the video sequence whose first frame 
is shown in Fig. 14(b), for which the total segmentation 
and tracking time was 80 s (8 s to segment the IMC in 
the first frame and an additional 72 s to track the LI and 
MA interfaces in the subsequent 28 frames). The compu-
tational complexity associated with the IMC segmenta-
tion and tracking scheme proposed in this paper is very 
low when compared with the computational times that 

Fig. 11. Box plots of the coefficient of variation (CV%) of the intima 
media thickness (IMT) mean values calculated for all 40 video sequenc-
es for both automatically segmented (CV_Seg) and ground truth data 
(CV_GT).

Fig. 12. Bland–Altman plot of the average versus the difference in the 
intima media thickness (IMT) mean values calculated for all 772 frames 
contained in the 40 data sets (automatic segmentation with respect to 
the ground truth data). The middle line represents the mean difference; 
the upper and lower lines represent the limits of agreement between the 
two analyzed methods (automatic versus manual), which are defined as 
the mean ± 2 standard deviation (SD) of the difference.

Fig. 13. Regression plot for the mean intima media thickness (IMT) val-
ues calculated for all 772 frames representing the 40 data sets contained 
in the database using the proposed algorithm with respect to the ground 
truth data. There are three data sets with an IMT value higher than 0.8 
mm (which generate 57 stars out of the 772 stars that are plotted for 
all frames).



were reported for other published algorithms ([16], [17]; 
more details are provided in the next section), a fact that 
further recommends the use of the proposed algorithm in 
the development of a clinical CAD application. The ex-
periments have been conducted using a 2.4-GHz AMD X2 
4600 PC (Advanced Micro Devices Inc., Sunnyvale, CA) 
running Windows XP (Microsoft Corp., Redmond, WA).

IV. Discussion

The experimental data reported in the previous section 
indicate that the proposed automatic IMC segmentation 
and tracking technique returns correct results when ap-
plied to the identification and measurement of the IMC in 
ultrasound B-Mode sequences of longitudinal sections of 
the common carotid artery. Among many issues related to 
the segmentation and tracking processes, the movement 
artifacts induced by breathing, inter-patient variation 
with respect to the structure and mechanical properties 
of the arterial wall, speckle noise, intra- and inter-frame 
intensity inconsistencies associated with the LI and MA 
interfaces that are caused by the non-optimal orientation 
of the ultrasound probe during image acquisition, and the 
overall low image contrast proved the most difficult to ad-
dress during the development of the proposed algorithm. 
To address these issues, which are common in the analysis 
of CCA ultrasound data, we have adopted a two-stage un-
supervised IMC segmentation and tracking strategy. The 
first stage deals with the robust identification of the LI 

and MA interfaces in the first frame of the video sequence 
(using a new method that entails the fitting of a multi-
resolution spatially continuous vascular model in the ana-
lyzed image data), and the second stage involves the ap-
plication of a novel tracking procedure to track the LI 
and MA interfaces in the subsequent frames of the CCA 
ultrasound sequence. The proposed tracking strategy has 
been specifically designed to accommodate situations in 
which the LI and MA interfaces exhibit noticeable incon-
sistencies in the frames that encompass the cardiac cycle.

To allow for a targeted discussion that samples the key 
aspects related to the analysis of CCA ultrasound image 
data, in the remainder of this section, we will analyze the 
most relevant published techniques that addressed this 
field of research with respect to their performances and 
the technical aspects associated with the methodology 
employed to identify/track the IMC in video image data. 
To emphasize the most apparent advantages associated 
with the proposed segmentation and tracking scheme, in 
this discussion, the analysis of the algorithms that were 
designed to identify the IMC in video (2-D + time) CCA 
image sequences will be prevalent. This analysis centers 
on the information collated in Table II, which summarizes 
the performances obtained by the state-of-the-art IMC 
segmentation algorithms. Table II provides information 
regarding the names of the researchers who authored each 
paper, year of publication, whether the method was de-
veloped for the segmentation of still or video ultrasound 
data, details of the data used in the experimental activity, 
and performance indicators.

Fig. 14. Dynamic behavior of the IMT_mean during the analyzed 0.5 s of cardiac cycles from four different subjects using the proposed automatic 
segmentation method. (a), (b), (c), and (d): Regions of interest (ROIs) of the first frames in the cardiac cycles segmented using the method described 
in Section II-C-1. (a1), (b1), (c1), and (d1): Graphical results illustrating the changes in IMT_mean (calculated for each frame). It can be observed 
that the IMT_mean values follow a trend; it starts with a slightly higher value at the beginning of the cycle, while during the systolic expansion the 
intima media thickness (IMT) is compressed, which translates into a decrease in the IMT_mean value. The statistics calculated over the cardiac cy-
cles corresponding to each of these examples are as follows: (a) IMTMean = 0.72 mm, IMTMax = 0.76 mm, IMTMin = 0.70 mm, and IMTMedian = 0.73 
mm; (b) IMTMean = 0.52 mm, IMTMax = 0.54 mm, IMTMin = 0.50 mm, and IMTMedian = 0.52 mm; (c) IMTMean = 0.86 mm, IMTMax = 0.95 mm, 
IMTMin = 0.79 mm, and IMTMedian = 0.85 mm; (d) IMTMean = 0.76 mm, IMTMax = 0.81 mm, IMTMin = 0.71 mm, and IMTMedian = 0.74 mm. 
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Based on the underlying approach employed by the 
published works to identify the IMC in CCA ultrasound 
data, the algorithms in Table II can be broadly categorized 
as edge-based [16], [18], [19]–[21], [24], [47], [48], active 
contours [23], [25]–[27], [29], [49], dynamic programming 
[11], [28], [50], and probabilistic IMC segmentation meth-
ods [17]. An initial categorization of the field of research 
focused on the IMC segmentation has been detailed in [51] 
and in this section we aim to complement that study by 
providing an additional analysis of the methods that were 
developed for the IMC detection/tracking in 2-D + time 
ultrasound image sequences. As illustrated in Table II, 
many algorithms have been proposed for the segmentation 
of still ultrasound frames, and only limited research has 
been published on the problem of tracking the IMC in vid-
eo ultrasound sequences. As indicated in the introductory 
section of this paper, the application of single-frame IMC 
segmentation in a serial manner, although theoretically 
feasible, it is impractical because it requires user interven-
tion to accommodate the substantial level of inter-frame 
variation in imaging conditions, which is a prominent char-
acteristic of the ultrasound image acquisition process. We 
have conducted a thorough literature search and we were 
able to find only two papers that explicitly addressed IMC 
segmentation in video sequences ([16], [17]). In [16], Selzer 
et al. employed an edge detection algorithm to identify 
the IMC and the vessel diameter over the cardiac cycle. 
The algorithm detailed in [16] starts with a user-driven 
annotation procedure in the first frame of the sequence, 
in which the clinician is required to identify and mark a 
number of points that belong to the LI and MA interfaces. 
Next, the authors applied the PROSOUND method [18] 
to construct the arterial wall interfaces from the manually 
annotated points. The IMC detected in the first frame is 
used as input for the PROSOUND method that was also 
applied to identify the LI and MA interfaces in the subse-
quent frames of the sequence. During the tracking process, 
the user is required to correct the errors that may occur in 
the identification of the IMC (the authors indicated that 
most errors occur during the systolic expansion and are 
caused by problems related to the errors in the initializa-
tion of the PROSOUND algorithm). The minimum and 
maximum IMT values were recorded for 24 CCA video 
sequences and the results reported by the authors are pro-
vided in Table II.

A more recent semi-automatic algorithm that addressed 
the IMC segmentation in sequences of B-mode ultrasound 
images was proposed by Destrempes et al. [17]. Their al-
gorithm relies on the assumption that the echogenicity of 
the region of interest that encompasses the IMC can be 
accurately modeled using a mixture of three Nakagami 
distributions and in their approach they estimated the 
parameters of these distributions using an expectation-
maximization (EM) algorithm. Similar to the approach 
detailed in [16], the first stage of the algorithm proposed 
by Destrempes et al. [17] involves a user-driven process 
that is applied to select a set of points that are used to 
initialize the IMC interfaces in the first frame of the se-

quence. From this manual initialization, their algorithm 
searches for piecewise segments located 2 mm above and 
below the manually marked IMC points that maximize 
the posterior distributions using an exploration selection 
(ES) optimization algorithm. Once the process associated 
with the identification of the IMC is completed, the algo-
rithm commences the tracking in the subsequent frames. 
In this regard, the IMC interfaces located in the previous 
frames are used as initial solutions in the current frame 
and the algorithm searches for piecewise segments within 
1 mm toward the lumen and 1 mm toward the adventi-
tia using the same approach that has been employed to 
identify the IMC in the first frame of the video sequence. 
Destrempes et al. [17] reported a mean distance error for 
data annotated by two experts as follows: 0.21 mm ± 0.13 
for the LI interface and 0.16 mm ± 0.07 for the MA inter-
face for Expert 1 and 0.18 mm ± 0.11 for the LI interface 
and 0.15 mm ± 0.1 for the MA interface for Expert 2 (see 
Table II).

By analyzing the algorithmic solutions and perfor-
mance indicators associated with [16] and [17], we can 
observe several issues that illustrate the superiority of our 
algorithm. First, our method does not require any level of 
user intervention during the IMC segmentation or during 
the LI and MA tracking process. Second, the performance 
returned by our method with respect to the identifica-
tion of the IMC in video ultrasound CCA data is supe-
rior to those offered by both state-of-the-art algorithms. 
The mean errors recorded by our method are as follows: 
0.06 mm ± 0.03 for the LI interface and 0.08 mm ± 0.04 
for the MA interface. In addition, the proposed method 
outperforms the approaches detailed in [16] and [17] with 
respect to the computational time. For the method de-
tailed in [16], the reported computational time required 
to track the IMC in a video sequence that consists of 
80 frames is 8.2 minutes (this translates into a processing 
time of 6.15 seconds per frame), whereas the computation-
al overhead associated with the method proposed by Des-
trempes et al. [17] is 14 hours and 41 minutes to identify 
the IMC in 30 video sequences (the average computational 
time is 24 seconds per frame). The method detailed in our 
paper is faster, requiring a computational time between 
1.0 and 2.5 s to process one frame.

At this point, we emphasize the predominantly super-
vised nature of the approaches listed in Table II. Follow-
ing a detailed analysis of the published works on IMC 
segmentation listed in Table II, it is important to mention 
that they were built on the assumption that the adventitia 
is characterized by pixels defined by maximum intensity 
values. Consequently, this information was used to con-
struct salient intensity profiles that were applied to local-
ize the arterial layers in the ultrasound data. Two major 
drawbacks are worth mentioning: The first drawback is 
related to the fact that in ultrasound clinical data the ad-
ventitia is not always characterized by maximum intensity 
values and as a result these approaches will fail to return 
the expected results. The second drawback is given by 
the potential risk of confusing the carotid artery with the 
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jugular vein and in this case the region of interest (ROI) 
will be erroneously selected. To address these problems, 
in this paper, we introduced an algorithm that is able to 
identify the IMC interfaces in an unsupervised manner, 
where the proposed solution is not adversely influenced 
by the changes in morphological properties of the carotid 
that are patient-characteristic. Although the user inter-
vention proved opportune because it reduced, to a large 
extent, the errors in the IMC ROI detection, there is little 
doubt that this solution is far from optimal when applied 
to large ultrasound image sequences. To remove the re-
liance on the user interaction (which is a characteristic 
of the majority of algorithms listed in Table II), in our 
implementation, we have maximized the use of the ana-
tomic knowledge in the process required to locate the far 
wall of the carotid artery in ultrasound data. The precise 
identification of the far wall interface opened the oppor-
tunity to develop an efficient model-based IMC segmenta-
tion strategy that primarily consists of a multi-resolution 
edge reconstruction process.

The second important point we want to make in this 
discussion relates to the strategies employed for the seg-
mentation of the IMC in still and video CCA data. Be-
cause of the large spectrum of practical advantages that 
are achieved by enforcing spatial continuity constraints 
in the process of IMC segmentation, the snake-based ap-
proaches were popular among many researchers. Despite 
their initial enthusiasm, many studies [23], [25]–[27], [29], 
[49] emphasized several practical and theoretical limita-
tions associated with the snake-based approaches when 
applied to the IMC segmentation. The most obvious ones 
are related to the complexity of the contour initialization 
process and the poor contrast between the MA interface 
and the surrounding arterial tissues. The latter problem 
proved more challenging and to alleviate the occurrence of 
errors during the energy minimization process, researchers 
have adopted various custom-designed solutions to imple-
ment advection forces ([25], [26]) that prevent the MA 
and LI interfaces from settling on incorrect arterial struc-
tures. Dynamic programming algorithms were proposed 
as a computationally efficient alternative to the standard 
heuristic contour search methods, and because of their 
intrinsic properties, they proved an attractive approach 
for IMC segmentation [11], [28], [50]. However, these ap-
proaches have several limitations, including their inabil-
ity to capture deep concavities and sharp saliencies [11], 
and their rigid architecture is not particularly well suited 
to address the problems generated by the inconsistent LI 
and MA gradient profiles that are often encountered in 
clinical CCA ultrasound data. All issues associated with 
the inconsistencies of the LI and MA interfaces are sub-
stantially exacerbated when the algorithms are applied 
to video (2-D + time) CCA data and this motivates the 
development of more targeted strategies, such as that de-
tailed in this paper.

The last issue that we would like to address in this dis-
cussion relates to the quantitative evaluation of the pro-

posed method that was detailed in Section II. As indicated 
in Section III, the performance in terms of the identifica-
tion of the LI and MA interfaces proved very encourag-
ing, and this study allowed the identification of several 
clinical needs that can be addressed by the proposed IMC 
segmentation and tracking algorithm. By analyzing the 
mean IMT values obtained for each video sequence used in 
our experimental study, we found that the patients’ demo-
graphics were mirrored in the numerical results. Because 
the study was conducted on healthy and asymptomatic 
patients (some patients had clinical conditions that could 
put them at risk of early cardiovascular diseases, as dis-
cussed in Section II-A.), the obtained IMT mean value 
was low (0.6 mm ± 0.1). Three patients were identified to 
be at a higher risk of developing atherosclerosis, having a 
high mean IMT, and this was in accordance to their clini-
cal condition. For patients D5 (48-year-old smoker) and 
D18 (37-year-old male with high cholesterol levels), the 
automatically measured IMTmean was 0.81 mm, and for 
the patient D21 (31-year-old female with high cholesterol 
levels) the IMTmean was 0.86 mm.

Another interesting issue emerging from our study is 
associated with the box plots depicted in Fig. 11 that 
display the coefficient of variation (CV %) of the IMTmean 
values recorded for automatic and manual IMT measure-
ments. The experimental results show that in 39 out of 40 
datasets, the CV is higher for manually annotated data, 
which emphasizes that the manual measurements are 
more dispersed within the same dataset when compared 
to the automatic segmentation results. This finding raises 
an important issue that illustrates the potential bias that 
can be inserted during the manual annotation process 
and motivates the use of CAD solutions as a second read-
er. Fig. 14 brings to surface an additional research topic 
that received limited attention in previous studies—i.e., 
the variation of the IMT from the end diastolic phase to 
the peak systolic phase of the cardiac cycle. The change 
in the IMT over the cardiac cycle has the potential to 
complement the results that relate to the elastic proper-
ties of the arterial wall, because these measurements may 
have clinical use in the evaluation of the arterial stiff-
ness [46]. The reader can refer to [16], [46], and [52]–[55], 
where additional studies were conducted to evaluate the 
relation between the change in the IMT and the arterial 
stiffness. Among these, the clinical study by Meinders et 
al. [46] is the most relevant, in which the authors evalu-
ated in detail the dynamic behavior of the IMC to assess 
the local structural and mechanical changes in the arte-
rial walls in the presence of arterial lesions. We conclude 
that the changes in the IMT over the cardiac cycle may 
have pathophysiological relevance, because the thicken-
ing of the intimal and medial layers is caused by muscle 
hypertrophy, inflammatory cell infiltration, deposition of 
lipids, and/or calcification. All of these factors are likely 
to induce different deformation patterns, whose identi-
fication may allow a more accurate prediction of future 
cardiovascular events.



V. Concluding Remarks and Future Work

A distinct characteristic of the majority of the pub-
lished works that addressed the IMC segmentation is the 
substantial level of supervision that is required to com-
pensate for the errors that are generated by the challeng-
ing imaging conditions that are present in the CCA video 
ultrasound data. The major objective of this paper was to 
introduce a new automatic methodology for the segmenta-
tion and tracking of the two IMC interfaces in longitudinal 
carotid B-mode video ultrasound sequences that is able to 
identify in an unsupervised manner the IMT changes and 
the LI and MA displacements during the cardiac cycle. 
The proposed algorithm entails a multi-stage ultrasound 
data analysis. In the first stage, an unsupervised method 
for the segmentation of the IMC in the first frame of the 
sequence was proposed. A particular novelty associated 
with the proposed IMC segmentation algorithm is the ap-
plication of a suite of geometric and anatomic constraints 
to ensure that the IMC interfaces do not converge on erro-
neous vascular structures. The next phase of the algorithm 
involves the application of a novel tracking procedure that 
is referred to as ANC, which is employed for the detection 
of the MA and LI interfaces in the subsequent frames of 
the 2-D + time video sequence. An important advantage 
of the proposed ANC algorithm is its ability to accom-
modate the inconsistencies in the structure of the IMC in 
consecutive images that encompass the cardiac cycle. The 
quantitative evaluation that was used to assess the perfor-
mance of the developed algorithm indicates a good corre-
lation between the results returned by the proposed IMC 
segmentation and tracking algorithm and those calculated 
from the manually annotated ground truth data. Our ex-
perimental study revealed several interesting issues in re-
lation to the assessment of the IMT in video ultrasound 
data. First, the recorded IMT results indicate that the 
proposed automatic technique returns consistent results 
and its performance recommends its use in clinical studies 
as a second reader. Second, the evaluation of the IMT over 
the cardiac cycle allows the extraction of additional indi-
cators that can be used in the assessment of the arterial 
dynamics, which may allow a more accurate prediction 
of future cardiovascular events. Currently, the proposed 
algorithm is being evaluated in clinical trials in Beaumont 
Hospital, Dublin, Ireland. This research is ongoing and 
the future clinical studies will focus on the evaluation of 
patients that are affected by advanced cardiovascular con-
ditions, such as focal thickening and arterial plaques.
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