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École Nationale de la Statistique et de l’Analyse de l’Information, rue Blaise Pascal,

Campus de Ker L ann, 35170 Bruz, France

deville@ensai.fr

 YVES TILLÉ
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S

A balanced sampling design is defined by the property that the Horvitz–Thompson
estimators of the population totals of a set of auxiliary variables equal the known totals
of these variables. Therefore the variances of estimators of totals of all the variables of
interest are reduced, depending on the correlations of these variables with the controlled
variables. In this paper, we develop a general method, called the cube method, for selecting
approximately balanced samples with equal or unequal inclusion probabilities and any
number of auxiliary variables.

Some key words: Calibration; Poststratification; Quota sampling; Sampling algorithm; Stratification; Sunter’s
method; Unequal selection probabilities.

1. I

The use of auxiliary information is a central issue in survey sampling from finite
populations. The classical techniques that use auxiliary information in a sampling design
are stratification (Neyman, 1934; Tschuprow, 1923) and unequal probability sampling or
sampling proportional to size (Hansen & Hurwitz, 1943; Madow, 1949).

The problem of balanced sampling is an old one and has not yet been solved. Kiaer
(1896), founder of modern sampling, argued for samples that match the means of known
variables to obtain what he called ‘representative samples’. He advocated purposive
methods before the development of the idea of probability sampling proposed by Neyman
(1934, 1938). Yates (1949) also insisted on the idea of respecting the means of known
variables in probability samples because the variance is then reduced. Yates (1946) and
Thionet (1953, pp. 203–7) have described limited and heavy methods of balanced sampling.
Hájek (1964; 1981, p. 157) gives a rigorous definition of a representative strategy and
its properties. According to Hájek, a strategy is a pair composed of a sampling design
and an estimator, the strategy being representative if it estimates exactly the total of
an auxiliary variable. He showed that a representative strategy could be achieved by
regression, but he did not succeed in finding a representative sampling method associated
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with the Horvitz–Thompson estimator other than the rejective procedure, which consists
of selecting new samples until a balanced sample is found. Royall & Herson (1973)
stressed the importance of balancing a sample in order to protect the inference against
a misspecified model. They called this idea ‘robustness’. Since no method existed for
achieving a multivariate balanced sample, they proposed the use of simple random
sampling, which is ‘mean-balanced’ with large samples. Several partial solutions were
proposed by Deville et al. (1988), Deville (1992), Ardilly (1991) and Hedayat & Majumdar
(1995), but a general solution for balanced sampling was never found. Recently, Valliant
et al. (2000) surveyed some existing methods.

In this paper, we propose a general method, the cube method, that allows the selection
of approximately balanced samples, in that the Horvitz–Thompson estimates for the
auxiliary variables are equal, or nearly equal, to their population totals. The method is
appropriate for a large set of qualitative or quantitative balancing variables, it allows
unequal inclusion probabilities, and it permits us to understand how accurately a
sample can be balanced. Moreover, the sampling design respects any fixed, equal or
unequal, inclusion probabilities. The method can be viewed as a generalisation of the
splitting procedure (Deville & Tillé, 1998) which allows easy construction of new unequal
probability sampling methods.

Since its conception, the cube method has aroused great interest amongst survey
statisticians at the Institut National de la Statistique et des Études Économiques (INSEE),
the French Bureau of Statistics. A first application of the method was implemented in
SAS-IML by A. Bousabaa, J. Lieber, R. Sirolli and F. Tardieu. This macro allows the
selection of samples with unequal probabilities of up to 50 000 units and 30 balancing
variables. The INSEE has adopted the cube method for its most important statistical
projects. In the redesigned census in France, a fifth of the municipalities with fewer than
5000 inhabitants are sampled each year, so that after five years all the municipalities will
be selected. All the households in these municipalities are surveyed. The five samples of
municipalities are selected with equal probabilities using the cube method and are balanced
on a set of demographic variables (Dumais & Isnard, 2000).

The demand for such sampling methods is very strong. In the French National Statistical
Institute, the use of balanced sampling in several projects improved efficiency dramatically,
allowing a reduction of the variance by 20 to 90% in comparison to simple random
sampling.

2. F   ,  

Consider a finite population U of size N whose units can be identified by labels
kµ{1, . . . , N}. The aim is to estimate the total Y=W

kµU
y
k

of a variable of interest y
that takes the values y

k
(kµU) for the units of the population. Suppose also that the

vectors of values x
k
= (x
k1

. . . x
kj

. . . x
kp

)∞ taken by p auxiliary variables are known for all
the units of the population. The p vectors (x

1j
. . . x
kj

. . . x
Nj

)∞, for j=1, . . . , p, are assumed
without loss of generality to be linearly independent.

A sample is denoted by a vector s= (s1 . . . , sk . . . , sN )∞, where s
k

takes the value 1
if k is in the sample and is 0 otherwise. A sampling design p ( . ) is a probability distri-
bution on the set S={0, 1}N of all the possible samples. The random sample S takes
the value s with probability pr (S=s)=p(s). The inclusion probability of unit k is the
probability p

k
=pr (S

k
=1) that unit k is in the sample and the joint inclusion probability

is the probability p
kl
=pr (S

k
=1 and S

l
=1) that two distinct units are jointly in the
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sample. The Horvitz–Thompson estimator given by YC=W
kµU

S
k
y
k
/p
k
is an unbiased esti-

mator of Y . The Horvitz–Thompson estimator of the jth auxiliary total X
j
=W
kµU

x
kj

is XC
j
=W
kµU

S
k
x
kj

/p
k
. The Horvitz–Thompson estimator vector, XC =W

kµU
S
k
x
k
/p
k
,

estimates without bias the totals of the auxiliary variables, X=W
kµU

x
k
.

The aim is to construct a balanced sampling design, defined as follows.

D 1. A sampling design p(s) is said to be balanced on the auxiliary variables,
x1 , . . . , xp , if and only if it satisfies the balancing equations given by

XC =X, (1)

which can also be written as

∑
kµU

s
k
x
kj
p
k
= ∑
kµU

x
kj

,

for all sµS such that p(s)>0.

Remark. If the y
k

are linear combinations of the x
k
, that is y

k
=x∞
k
b for all k, where b

is a vector of constants, then YC=Y . More generally, if the y
k
are well predicted by a linear

combination of the x
k
, one can expect var (YC ) to be small.

Next consider the following three particular cases of balanced sampling.

Example 1. A sampling design of fixed sample size n is balanced on the variable
x
k
=p
k
(kµU ) because

∑
kµU

S
k
x
k

p
k
= ∑
kµU

S
k
=n.

Example 2. Suppose that the design is stratified and that, from each stratum U
h

(h=1, . . . , H) of size N
h
, a simple random sample of size n

h
is selected. Then the design

is balanced on the variables d
kh

, where

d
kh
=q1, if kµU

h
,

0, if k1U
h
.

In this case, we have

∑
kµU

S
k
d
kh
p
k
= ∑
kµU

S
k
d
kh

N
h

n
h
=N
h

(h=1, . . . , H).

Example 3. In sampling with unequal probabilities, when all the inclusion probabilities
are different, the Horvitz–Thompson estimator NC =W

kµU
S
k
/p
k

of the population size N
is generally random. When the population size is known before selecting the sample, it
could be important to select a sample such that

∑
kµU

S
k
p
k
=N. (2)

Equation (2) is a balancing equation, in which the balancing variable is x
k
=1 (kµU).

Until now, there has been no method by which (2) can be approximately satisfied for
arbitrary inclusion probabilities, but we will see that this balancing equation can be
satisfied by means of the cube method.
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Stratification and unequal probability sampling are thus special cases of balanced
sampling. In § 6, we present new cases, but the main practical interest of balanced sampling
lies in its generality. Nevertheless, in most cases, the balancing equations (1) cannot be
exactly satisfied, as the following example shows.

Example 4. Suppose that N=10, n=7, p
k
= 7
10

(kµU) and that the only auxiliary
variable is x

k
=k (kµU). Then a balanced sample satisfies

∑
kµU

S
k

k

p
k
= ∑
kµU

k,

so that W
kµU

kS
k
has to be equal to 55× 7

10
=38·5, which is impossible because 38·5 is not

an integer. The problem arises because 1/p
k

is not an integer and the population size
is small.

Consequently, our objective is to construct a sampling design which satisfies the
balancing equations (1) exactly if possible, and to find the best approximation if this
cannot be achieved. The rounding problem becomes negligible when the expected sample
size is large.

3. C    

The cube method is based on a geometric representation of the sampling design. The 2N
possible samples correspond to 2N vectors of RN in the following way. Each vector s is a
vertex of an N-cube, and the number of possible samples is the number of vertices of an
N-cube. A sampling design with inclusion probabilities p

k
(kµU) consists of assigning a

probability p(s) to each vertex of the N-cube such that

E(s)= ∑
sµS

p(s)=p,

where p= (p
k
) is the vector of inclusion probabilities. Geometrically, a sampling design

consists of expressing the vector p as a convex combination of the vertices of the N-cube.
A sampling algorithm can thus be viewed as a ‘random’ way of reaching a vertex of the

N-cube from a vector p in such a way that the balancing equations (1) are satisfied.
Figure 1 shows the geometric representation of the possible samples from a population
of size N=3.

The cube method is composed of two phases called the flight phase and the landing
phase. In the flight phase, the constraints are exactly satisfied. The objective is to round

Fig. 1. Geometric representation of possible samples
in a population of size N=3.
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off randomly to 0 or 1 almost all the inclusion probabilities. The landing phase consists
of coping as well as possible with the fact that the balancing equations (1) cannot always
be satisfied exactly.

The balancing equations (1) can also be written

∑
kµU

a
k
s
k
= ∑
kµU

a
k
p
k
, s
k
µ{0, 1}, kµU, (3)

where a
k
=x
k
/p
k

(kµU) and s
k

equals 1 if unit k is in the sample and 0 otherwise. The
first equation of (3) with given a

k
and coordinates s

k
defines a hyperplane Q in RN of

dimension N−p. Note that Q=p+kerA, where kerA is the kernel or null-space of the
p×N matrix A given by A= (a1 . . . ak . . . aN ). The main idea in obtaining a balanced
sample is to choose a vertex of the N-cube that remains in the hyperplane Q or near to Q
if that is not possible.

If C=[0, 1]N denotes the N-cube in RN whose vertices are the samples of U, the
intersection between C and Q is nonempty, because p is in the interior of C and belongs
to Q. The intersection between an N-cube and a hyperplane defines a polytope K=CmQ,
which is of dimension (N−p) because it is the intersection of an N-cube and a plane, of
dimension (N−p), that has a point in the interior of C.

D 2. L et D be a convex polyhedron. A vertex, or extremal point, of D is defined
as a point that cannot be expressed as a convex linear combination of other points of D. T he
set of all the vertices of D is denoted by Ext (D).

D 3. A sample s is said to be exactly balanced if sµExt (C)mQ.

Note that a necessary condition for finding an exactly balanced sample is that
Ext (C)mQNB.

D 4. A balancing equation system is
(i ) exactly satisfied if Ext (C)mQ=Ext (CmQ),
(ii ) approximately satisfied if Ext (C)mQ=B,

(iii ) sometimes satisfied if Ext (C)mQNExt (CmQ) and Ext (C)mQNB.

Whether the balancing equation system is exactly satisfied, approximately satisfied or
sometimes satisfied depends on the values of p and A.

P 1. If r= (r
k
) is a vertex of K then #{k|0<r

k
<1}∏p, where p is the number

of auxiliary variables, and #(B) denotes the cardinality of a set B.

Proof. Let A* be the submatrix of A consisting of the columns corresponding to non-
integer components of the vector r. If q=#(U*)>p, then kerA* has dimension q−p>0,
and r is not an extreme point of K. %

The following three examples show that the rounding problem can be viewed geo-
metrically. Indeed, the balancing equations cannot be exactly satisfied when the vertices
of K are not vertices of C, that is when q>0.

Example 5. In Fig. 2(a), a sampling design for a population of size N=3 is considered.
The only constraint consists of fixing the sample size n=2, and thus p=1 and x

k
=p
k

(kµU). The inclusion probabilities satisfy p1+p2+p3=2, so that the balancing equation
is exactly satisfied.
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Fig. 2. Geometric representation of rounding problem. (a) shows fixed size constraint when all the
vertices of K are vertices of the cube. In (b) none of vertices of K is a vertex of the cube. In (c) some

vertices of K are vertices of the cube and others are not.

Example 6. Figure 2(b) exemplifies the case where the constraint hyperplane does not
pass through any vertices of the cube. The inclusion probabilities are p1=p2=p3=0·5.
The only constraint is given by the auxiliary variables x1=0, x2=6p2 and x3=4p3 . It
is then impossible to satisfy the balancing equation exactly, but the balancing equation is
always satisfied approximately.

Example 7. Figure 2(c) exemplifies the case where the constraint hyperplane passes
through two vertices of the cube but one vertex of the intersection is not a vertex of the
cube. The inclusion probabilities are p1=p2=p3=0·8. The only constraint, p=1, is given
by the auxiliary variable x1=p1 , x2=3p2 and x3=p3 . The balancing equation is only
sometimes satisfied. In this case there exist balanced samples, but there does not exist an
exactly balanced sampling design for the given inclusion probabilities. In other words,
although exactly balanced samples exist, one must accept selection of only approximately
balanced samples in order to satisfy the given inclusion probabilities.

It seems hard to find a general method for detecting when the balancing equations can
be satisfied exactly. It depends on complex patterns in RN. These problems are already
very intricate in R3 and are treated in crystallography; for a short introduction to this
topic see for instance Doubrovine et al. (1979, pp. 173–95).

4. T  

At the end of the flight phase, a vertex of K is chosen randomly in such a way that the
inclusion probabilities p

k
(kµU) and the balancing equations (1) are exactly satisfied. The

landing phase is necessary only if the attained vertex of K is not a vertex of C, and consists
of relaxing the constraints (1) as little as possible in order to select a sample, i.e. a vertex
of C.

The general method for completing the flight phase is to use a balancing martingale.

D 5. A discrete time stochastic process p(t)={p
k
(t)}, for t=0, 1, . . . , in RN

is said to be a balancing martingale for an inclusion probability vector p and auxiliary
variables x

1
, . . . , x

p
if

(i ) p(0)=p;
(ii ) E{p(t)|p(t−1), . . . , p(0)}=p(t−1), for t=1, 2, . . . ;
(iii ) p(t)µK=CmQ, where A is the p×N matrix given by A=(x

1
/p
1
. . . x
k
/p
k
. . . x
N
/p
N
).
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P 2. If p(t) is a balancing martingale, then we have the following:
(i ) E{p(t)}=E{p(t−1)}= . . .=E{p(0)}=p;
(ii ) W

kµU
a
k
p
k
(t)=W

kµU
a
k
p
k
=X, for t=0, 1, 2, . . . ;

(iii ) when the balancing martingale reaches a face of C, it does not leave it.

Proof. Part (i) is obvious. Part (ii) holds because p(t)µK. To prove (iii), note that
p(t−1) belongs to a face; it is the mean of the possible values of p(t) that therefore must
also belong to this face. %

Part (iii) of Proposition 2 directly implies that (a) if p
k
(t)=0 then p

k
(t+h)=0, for

h�0; (b) if p
k
(t)=1 then p

k
(t+h)=1, for h�0; and (c) the vertices of K are absorbing

states.
The practical problem is to find a method that rapidly reaches a vertex. The follow-

ing procedure allows us to attain a vertex of K in at most N steps. First initialise at
p(0)=p. Next, at time t=1, . . . , T , repeat the following three steps.

Step 1. Generate any vector u(t)={u
k
(t)}N0, such that u(t) is in the kernel of the

matrix A, and u
k
(t)=0 if p

k
(t−1) is an integer. The vector u(t) can be chosen randomly

or deterministically but u(t) must be independent of p(t−1), . . . , p(1).

Step 2. Compute l*
1
(t) and l*

2
(t), the largest values of l1 (t) and l2 (t) such that

0∏p(t−1)+l
1
(t)u(t)∏1, 0∏p(t−1)−l

2
(t)u(t)∏1.

Note that l1 (t)>0 and l2 (t)>0.

Step 3. Select

p(t)=qp(t−1)+l*
1
(t)u(t), with probability q(t),

p(t−1)−l*
2
(t)u(t), with probability 1−q(t),

(4)

where q(t)=l*
2
(t)/{l*

1
(t)+l*

2
(t)}.

This general procedure is repeated until it is no longer possible to carry out Step 1.
The above procedure defines a balancing martingale. Clearly, p(0)=p. Also, from

expression (4) we obtain E{p(t)|p(t−1), . . . , p(0)}=p(t−1), for t=1, 2, . . . , because

E{p(t)|p(t−1), u(t)}=p(t−1) (t=1, 2, . . . ).

Finally, since u(t) is in the kernel of A, from (4) we obtain that p(t) always remains in
K=CmQ.

At each step, at least one component of the process is rounded to 0 or 1. Thus p(1) is
on a face of the N-cube, i.e. on a cube of dimension N−1 at most, p(2) is on a cube of
dimension N−2 at most, and so on. Let T be the time when the flight phase has stopped.
The fact that Step 1 is no longer possible shows that the balancing martingale has attained
a vertex of K, and thus by Proposition 1 that #U

T
∏p, where U

t
={k|0<p

k
(t)<1}.

The flight phase was implemented in a SAS-IML macro. For generating the vector u(t),
we first generate any, random or not, vector v(t)= {v

k
(t)} in RN, that is independent

of p(t−1), . . . , p(1). Next v(t) is projected on to the constraint hyperplane. Let
W
t
=diag {w

k
(t)} where w

k
(t)=0 if k1U

t
. Then we choose

u(t)=W
t
v(t)−W

t
A∞(AW

t
A∞)−AW

t
v(t), (5)

where B− denotes a generalised inverse of a matrix B. The weights w
k
(t) allow a change

of metric that is used, for example, in § 7·4 to generalise Sunter’s method.



900 J-C D  Y T

5. T  

At the end of the flight phase, the balancing martingale has reached a vertex of K,
which is not necessarily a vertex of C. This vertex is denoted by p*= (p*

k
)=p(T ). Let q

be the number of non-integer components of this vertex. If q=0, the algorithm is com-
pleted. If q>0 then only some constraints were exactly attained. Thus we shall seek a
sampling design that minimises the function

var (XC )= ∑
kµU

∑
lµU

x
k
x∞
k

p
k
p
l

D
kl
=ADA∞, (6)

where A is the p×N matrix given by A= (x1/p1 . . . xk/pk . . . xN/pN ),

D
kl
=qpkl−pkpl , if kNl,

p
k
(1−p

k
), if k=l,

and D= (D
kl

)=var (S). The matrix D, can be split into two parts, D=D
F
+ED

L|p*
,

where D
F

is the part related to the flight phase, D
F
=var E (S|p*)=var (p*), and D

L|p*
is

related to the landing phase:

D
L|p*
=var (S|p*)= ∑

sµS
p(s|p*)(s−p*)(s−p*)∞,

where p(s|p*) is the probability of selecting the sample s given that the flight phase has
ended at p*.

Since AD
F
A∞=0,

var (XC )=E var (XC |p*)=E(AD
L|p*

A∞).

At the end of the flight phase we must therefore find the sampling design p(s|p*) that
minimises a function of the matrix, var (XC |p*). In the convex cone of symmetric positive
semidefinite matrices, there does not exist a unique minimal element generated by a design
with expectation p*. In practice, we have to limit ourselves to positive linear forms on the
ordered vector space of symmetric matrices. Therefore, let M= (m

ij
) be any p×p positive

semidefinite matrix. Any such positive linear form is the M-trace of var (XC |p*), which is
given by

M−tr var (XC |p*)=tr {M×var (XC |p*)}

= ∑
sµS

p(s|p*)(s−p*)∞A∞MA(s−p*). (7)

D 6. A sample s is said to be compatible with a vector p* if p*
k
=s
k

for all k
such that p*

k
is an integer. L et C(p*) denote the set with 2q elements of samples compatible

with p*.

It is clear that we can limit ourselves to finding a design with mean value p* and whose
support is included in C (p*).

If

C(s)= (s−p*)∞A∞MA(s−p*)
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defines the ‘cost’ associated with sample s, minimising the M-trace consists of minimising
the conditional mean cost with respect to p*. The choice of the cost function is discussed
in the Appendix. The conditional mean cost function is minimised if we solve the following
linear program:

min

p(.|p*)
∑
sµC(p*)

C(s)p(s|p*), (8a)

subject to

∑
sµC(p*)

p(s|p*)=1, ∑
sµC(p*)|s+k

p(s|p*)=p*
k

(kµU, 0∏p(s|p*)∏1, sµC(p*)). (8b)

Let U*={kµU|0<p*
k
<1}, for q=#(U*), and S*={0, 1}q. then (8) can also be

written as

min

p*(.)
∑
s*µS*

C(s*)p*(s*), (9a)

subject to

∑
s*µS*

p*(s*)=1, ∑
s*µS*|s*+k

p*(s*)=p*
k

(kµU*, 0∏p*(s*)∏1, s*µS*). (9b)

Since q∏p, this linear program no longer depends on the population size but only on
the number of balancing variables. In fact, it is restricted to 2q possible samples, and with
a modern computer it can be applied without difficulty to a balancing problem with a
score of auxiliary variables.

A linear program always produces particular sampling designs defined in the following
way.

D 7. L et p(.) be a sampling design for a population U with inclusion probabilities
p
k
, and let B={s|p(s)>0}. A sampling design p(.) is said to be defined on a minimal support

if and only if there does not exist a subset B
0
5B such that B

0
NB and

∑
sµB
0

p
0
(s)s
k
=p
k

(kµU) (10)

has a solution in p
0
(s).

Wynn (1977) has studied sampling designs defined on minimal supports, and Deville
& Tillé (1998) developed a general method for selecting unequal probability sampling
designs defined on minimal supports.

P 3. T he linear program (8) has at least one solution defined on a minimal
support.

The proof follows directly from the fundamental theorem of linear programming; see
for instance Luenberger (1973, p. 18).

If the number of auxiliary variables is too large for the linear program to be solved by
a simplex algorithm, q>10 in our experience, then, at the end of the flight phase, an
auxiliary variable can be dropped. One constraint is thus relaxed, allowing return to the
flight phase until it is no longer possible to ‘move’ within the constraint hyperplane.
The constraints are thus relaxed successively. For this reason, it is necessary to order the
auxiliary variables according to their importance so that the least important constraints
are relaxed first. This naturally depends on the context of the survey.
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6. Q   

The rounding problem can arise with any balanced sampling design. For instance, in
stratification, the rounding problem arises when the sums of the inclusion probabilities
within the strata are not integers, which is almost always the case in proportional
stratification or optimal stratification. In practice the stratum sample sizes n

h
are rounded

either deterministically or randomly. Random rounding is used so as to satisfy the values
of n
h
in expectation. The purpose of the random rounding is to respect the initial inclusion

probabilities.
The cube method also uses random rounding. In the particular case of stratification, it

provides exactly the well-known method of random rounding of the sample sizes in the
strata. With any variant of the landing phase, the difference of the Horvitz–Thompson
from the total is bounded, because the rounding problem only depends on q∏p values.

P 4. For any application of the cube method,

|XC
j
−X
j
|∏p×max

kµU Kxjkpk K . (11)

Proof. We have that

|XC
j
−X
j
|= K ∑
kµU

S
k
x
kj
p
k
− ∑
kµU

x
kj
p
k
p
kK= K ∑

kµU
S
k
x
kj
p
k
− ∑
kµU

x
kj
p
k
p*
k K

∏ sup

F|#F=q
∑
kµF
Kxkjp
k
K∏p×max

kµU
Kxkjp
k
K . %

P 5. If the sum of the inclusion probabilities is an integer, and if the sampling
design has a fixed sample size, i.e. the auxiliary variables include the variable x

1k
=p
k
, then,

for any application of the cube method,

|XC
j
−X
j
|∏ ( p−1)×max

kµU Kxkjpk −NX9 j
n K , (12)

where X9 j=N−1W
kµU

x
kj

.

Proof. With the cube method, we can always satisfy the fixed sample size constraint
when the sum of the inclusion probabilities is an integer, which can be written as

∑
kµU

S
k
p
k

p
k
= ∑
kµU
p
k
.

Thus, at the end of the flight phase, at most p−1 values of p* are not integers. We obtain

|XC
j
−X
j
|= K ∑
kµU

S
k
x
kj
−cp

k
p
k
− ∑
kµU

x
kj
−cp

k
p
k
p
k K∏ ( p−1)×max

kµU
Kxkj−cp

k
p
k
K ,

for any cµR. If c=NX9 j/n, we obtain Proposition 5. %

This bound is a conservative bound of the rounding error, because we consider the
worst case. Moreover, the bound is computed for a total, and must be considered relatively
to the population size. Let a

k
=p
k
N/n (kµU). For almost all the sampling designs in

common use, we can assume that 1/a
k

is bounded when n�2, N�2 and n/N� f .
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Note that, for a fixed sample size,

1

N
∑
kµU
a
k
=1.

The bound for the estimation of the mean can thus be written

|XC
j
−X
j
|

N
∏

p

n
×max
kµU Kxkjak K=O(p/n),

where O(p/n) is a quantity that remains bounded when multiplied by n/p. The bound thus
very quickly becomes negligible, if the sample size is large with respect to the number of
balancing variables.

For comparison note that with a single-stage sampling design, such as simple random
sampling or Bernoulli sampling, we have generally that

|XC
j
−X
j
|

N
=O
p
(1/√n);

see for example Rosén (1972) and Isaki & Fuller (1982).
Despite the over-statement of the bound, the gain obtained by balanced sampling is

very important. The rate of convergence is much faster for balanced sampling than for a
usual sampling design. Moreover, in balanced sampling, the convergence is not only in
probability but also deterministic. In practice, except for the case of very small sample
sizes, the rounding problem is thus negligible.

Example 8. Suppose that N=100, n=25, p=2, p
k
=0·25 (kµU ) and that two balancing

variables are used, namely x
k1
=1 (kµU), that is fixed sample size, and x

k2
=k (kµU).

Since the sum of the inclusion probabilities is an integer, the first constraint can be exactly
satisfied. Now X9 2=N−1W

kµU
x
k2
=50·5 and, if the sample is balanced,

KXC 2bal−X
2

N K∏ ( p−1)×max
kµU Kxkj−X9 2

n K= 49·5

25
=1·98.

A set of simulations has been run to estimate the variance under balanced sampling, and
we obtained

√{varsim (XC 2bal/N)}=1·1746.

If a simple random sample of fixed sample size is selected,

S2
x2
=

1

N−1
∑
kµU

(x
k2
−X9 2 )2=841·667,

√{var (XC
2SRS/N)}=SAN−n

Nn
S2
x2B=5·0241.
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Balanced sampling is thus much more accurate. The design effect is extremely small:

Deff=
varsim (XC 2bal )
var (XC

2SRS )
=0·05465.

7. P    

7·1. Poisson sampling

The cube method can be used without an auxiliary variable. An interesting unbalanced
sampling procedure is the Poisson sampling design, which consists of selecting unit k with
inclusion probability p

k
, independently of the other units. The sample size is thus random.

Poisson sampling can be implemented using the cube method by defining u(t) such that
u
t
(t)=1 and u

k
(t)=0, if kNt. Next, l

1
(t)=1−p

t
, l
2
(t)=p

t
, and we define

p(t+1)=q (p1 (t) . . . p
t−1

(t) 1 p
t+1

. . . p
N
)∞, with probability q(t),

(p
1
(t) . . . p

t−1
(t) 0 p

t+1
. . . p
N
)∞, with probability 1−q(t),

where q(t)=p
t
. Each unit is thus selected independently of the others.

7·2. Simple random sampling

Simple random sampling is a particular case of the cube method. Let

p= (n/N, . . . , n/N, . . . , n/N)∞,

and x
k
=n/N (kµU). At the first step, the projection of any vector v (1) given in (5) with

w
k
(t)=1 if kµU

t
becomes

u
k
(1)=v

k
(1)−

1

N
∑
lµU

v
l
(1).

There are at least three ways of selecting a simple random sample without replacement.
The first way begins the first step by projecting the vector

v(1)= (1 0 . . . 0)∞,

which gives u(1)= ((N−1)/N,−1/N, . . . ,−1/N)∞. Then l1 (1)= (N−n)/(N−1), l2 (1)=
n/(N−1) and

p(1)=GA1 n−1

N−1
. . .

n−1

N−1B∞, with probability q(1),

A0 n

N−1
. . .

n

N−1B∞, with probability 1−q(1),

where q(1)=p1=n/N. This first step corresponds exactly to the classical sequential
method, described in Fan et al. (1962), that produces a simple random sample without
replacement. The second step consists of taking v(1)= (0 1 0 . . . 0)∞.

The second way consists of sorting the data randomly before applying the cube method
with any vectors v(t). Indeed, any choice of v(t) provides a fixed size sampling with
inclusion probabilities p

k
=n/N. A random sort applied before any equal probability

sampling produces a simple random sampling (Sunter, 1977).
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The third way consists of using a random vector v= (v
k
), where the v

k
are N independent

identically distributed variables. Note that for such v
k

it is obvious that a preliminary
sorting of the data will not change the sampling design, which is thus a simple random
sampling design. In this case, the preliminary sorting is thus not necessary.

An interesting problem occurs when the design has equal inclusion probabilities
p
k
=p (kµU) such that Np is not an integer. If there is only one constraint, implying

a fixed sample size, that is x
k
=1 (kµU), then the balancing equation can only be

approximately satisfied. Nevertheless the flight phase of the cube method works until
N−p=N−1 elements of p*=p(N−1 ) are integers. The landing phase consists of
deciding randomly whether the last unit is drawn or not. The sample size is therefore
equal to one of the two nearest integers to Np. The cube method therefore automatically
solves the rounding problem for stratum sample sizes so as to ensure that the given
inclusion probabilities are exactly satisfied.

7·3. Stratification

Stratification can be achieved by taking x
kh
=d
kh

n
h
/N
h

(h=1, . . . , H), where N
h

is the
size of stratum U

h
, n
h
is the sample stratum size, and

d
kh
=q1, if kµU

h
,

0, if k1U
h
.

In the first step, the projection of v(t) by (5) gives u= (u
k
), where

u
k
(1)=v

k
(1)−

1

N
h
∑
lµU
h

v
l
(1) (kµU

h
).

The three strategies described in § 7·2 for simple random sampling allow us to obtain a
stratified random sample with simple random sampling within the strata.

An interesting property of the cube method is that the stratification can be generalised
to overlapping strata, which can be called ‘quota random design’ or ‘cross-stratification’
(Deville, 1991). Suppose that two stratification variables are available, such as ‘activity
sector’ and ‘region’ in a business survey. The strata defined by the first variable are
denoted by U

h.
(h=1, . . . , H) and the strata defined by the second variable are denoted

by U
.i

(i=1, . . . , K ). Next define p=H+K auxiliary variables,

x
kj
=p
k
×qI(kµU

j.
) ( j=1, . . . , H),

I(kµU
.(j−H)

) ( j=H+1, . . . , H+K),

where I(.) is an indicator variable that takes the value 1 if the condition is satisfied and 0
otherwise. The sample can now be selected directly by means of the cube method.
Generalisation to multiple quota random design follows immediately. It can be shown
(Deville & Tillé, 2000) that the quota random sampling can be satisfied exactly.

Another interesting case of overlapping strata is triangular stratification. Let U1 , U2
and U3 be three subsets of U such that ^3

i=1
U
i
=U, ]3

i=1
U
i
=B, U

i
mU
j
NB, for iN j.

Suppose that the inclusion probabilities are such that W
U
i

p
i
is an integer. The auxiliary

variables are defined by x
ki
=I(kµU

i
) (i=1, 2, 3). In this case it is possible to show that,

although these variables only take the value 0 or 1, the balancing equations cannot be
satisfied exactly. They can only be sometimes satisfied; see Fig. 2(c).
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7·4. Unequal probability sampling with fixed sample size

Sampling with unequal inclusion probabilities can be carried out by means of the cube
method. Suppose that the objective is to select a sample of fixed size n with inclusion
probabilities p

k
(kµU) such that W

kµU
p
k
=n. In this case, the only auxiliary variable is

x
k
=p
k
. In order to satisfy this constraint, expression (5) implies that

∑
kµU

u
k
(t)=0. (13)

Each choice, random or not, of vectors u(t) that satisfy (13) produces another method for
sampling with unequal probability. Nearly all existing methods, except the rejective ones
and the variations of systematic sampling, can easily be implemented by means of the
cube method. In the case of sampling with unequal probabilities, the cube method is
identical to the splitting method described in Deville & Tillé (1998). An interesting pro-
cedure emerges when projecting vector u(t) used for Poisson sampling on the fixed size
constraint.

Example 9. The first step can be implemented by projecting the vector

v(1)= (1 0 . . . 0)∞

on to the fixed size constraint by means of (5) with w
k
(t)=p

k
(t) (kµU

t
). The first step is

thus as follows:

u(1)=p
1qv(1)−

p

nr=p1An−p1n

−p
2

n
. . .
−p
N

n B∞.
Two cases must be distinguished

Case 1. If np
k
/(n−p1 )∏1, for all kN1, then l1 (1)= (1−p1 )n/{p1 (n−p1 )}, l2 (1)=

n/(n−p1 ), and we then select

p(1)=qpa= (pa
1
, . . . , pa

k
, . . . , pa

N
)∞, with probability q=p

1
,

pb= (pb
1
, . . . , pb

k
, . . . , pb

N
)∞, with probability 1−q,

where

pa
k
=q1 (k=1),

p
k
(n−1)/(n−p

1
) (kN1),

pb
k
=q0 (k=1),

p
k
n/(n−p

1
) (kN1).

Case 2. If there is at least one p
k
such that np

k
/(n−p1 )>1, then we write p

m
=max

kN1
p
k
.

We find that l1 (1)= (1−p1 )n/{p1 (n−p1 )}, l2 (1)= (1−p
m
)n/(p
1
p
m
), and we select

p(1)=qpa= (pa
1
, . . . , pa

k
, . . . , pa

N
)∞, with probability q=l

2
(1)/{l

1
(1)+l

2
(1)},

pb= (pb
1
, . . . , pb

k
, . . . , pb

N
)∞, with probability 1−q,

where

pa
k
=q1 (k=1),

p
k
(n−1)/(n−p

1
) (kN1),

pb
k
=qp1− (1−p

m
) (n−p

1
)/p
m

(k=1),

p
k
/p
m

(kN1).
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In fact, this method generalises and corrects Sunter’s procedure (Sunter, 1977, 1986).
The generalisation comes from the fact that Sunter’s method does not handle the case
where np

k
/(n−p1 )∏1, for all kN1, at each step of the algorithm. In order to deal with

this case, Sunter proposes to sort the units in decreasing order and to equalise the inclusion
probabilities of the last units of the file in order that p

k
n/(n−p1 )∏1 (kN1 ) at each step.

By considering both cases, we generalise Sunter’s method and can apply it to any vector
of inclusion probabilities whose units are sorted in an aribitrary order.

The techniques of unequal probability sampling can always be improved. Indeed, in all
the available methods for sampling with unequal probabilities with a fixed sample size,
the design is only balanced on a single variable. However, two auxiliary variables are
always available, namely x

k1
=p
k

(kµU) and x
k2
=1 (kµU). The first variable implies

a fixed sample size, and the second variable implies that NC =W
kµU

S
k
/p
k
=N. In all

the available methods for selection with arbitrary inclusion probabilities, the sample is
balanced on x

k1
but not on x

k2
. The balanced cube method allows us to satisfy both

constraints approximately and to benefit at the same time from the Horvitz–Thompson
and Hájek ratio estimators.

8. B   

The comparison of calibration and balanced sampling may seem unnatural because the
former is an estimation technique whereas the latter is a sampling technique. Balanced
sampling and calibration can, however, be used together. Balanced sampling tends to
achieve the same result as calibration at the sampling stage of the survey. Generally, the
use of auxiliary variables greatly improves the precision of estimators of totals when they
are highly correlated with the variables of interest. However, balanced sampling requires
more auxiliary information: the values of the variables have to be known for all the
population units, whereas, for calibration, only population totals must be known. In
calibration, the weights of the units are modified in such way that the estimators are
exactly equal to the population totals of the auxiliary variables. However, very often
the weights can become very unstable with extreme or negative weights, which is very
problematic particularly with small sample sizes as in small domain estimation.

Balanced sampling does not produce perfect calibration, but the deviations are negligible
when the sample size is large. Balanced sampling has several advantages. If the design is
exactly balanced, the Horvitz–Thompson weights are not random, and the estimator is
unbiased. Furthermore, if the design is sometimes or approximately unbiased, still the
calibration weights are less random, because the calibration only adjusts the rounding
problem. Thus, even with calibration, balanced sampling protects against instability of
the weights, and is therefore more robust.

An advantage of calibration is the opportunity to change the auxiliary variables for
each study variable, and to decide about the auxiliary variables or transformations of
them after the sample has been selected and the form of their relationship with the target
response variable is identified. However, the use of different auxiliary variables for different
response variables may produce different weights for each estimator, which is often
problematic in official statistics. Calibration is also a very good way of dealing with
nonresponse after the selection of the sample; in this scenario the weights must be modified
in any case. Balanced sampling is thus particularly important in cases where the weights
should not be changed and nonresponse does not occur. Examples include the sampling
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of primary sampling units for a self-weighting two-stage or multi-stage sampling design,
the sampling of clusters, as in the new French census described in § 1, sampling for quality
control and sampling in a census.

In practice, the application of calibration and balanced sampling are quite different.
Calibration is a weighting technique that deals with ultimate sampling units and allows
treatment of nonresponse. Balanced sampling is well suited to select clusters, like the
selection of primary units in a two-stage sampling scheme. The best way is to use these
methods together at different stages of the survey, and we argue for the use of calibration
after the selection of a balanced sample. This argument is supported by the simulation
results in § 9 that show that the most accurate strategy is the use of calibration after
selecting a balanced sample. Thus, if the auxiliary information is available at the unit
level, it is always advantageous to select a balanced sample. Moreover, when the sample
is balanced, calibration weights tend to be variable. It therefore becomes possible to use
more auxiliary variables in the calibration process.

In a further paper (Deville & Tillé, 2004) we propose an approximation for the variance
under balanced sampling. This variance is almost the same as for the optimal regression
estimator (Montanari, 1987). The variance of the calibration estimator is generally
approximated by using the linearisation technique. The variance is therefore expected
to be underestimated. In the case of post-stratification at least, a second term can be
computed, and it can be shown that the variance of the post-stratified estimator is larger
than in stratification (Särndal et al., 1992, p. 267, expression 7.6.6).

9. S 

A set of simulations has been carried out in order to evaluate and compare the following
four strategies.

Strategy 1. Nonbalanced sampling with the Horvitz–Thompson estimator.
Strategy 2. Balanced sampling with the Horvitz–Thompson estimator.
Strategy 3. Nonbalanced sampling with a calibration estimator.
Strategy 4. Balanced sampling with a calibration estimator.

We have used the familiar MU284 population of Särndal et al. (1992, pp. 252–9). The
four biggest municipalities have been removed from the population, because, for these
municipalities, nz

k
/Z>1, where z

k
is the size of the municipality, and Z is the population

total of the z
k
. Next the municipalities were regrouped in 50 clusters. We have thus used

a modified version of the ‘Clustered MU284 population’ of Särndal et al. (1992, pp. 660–1).
For both the balanced and nonbalanced designs, samples of size 20 were selected with
inclusion probabilities proportional to the variable P75, the population in 1975, and fixed
sample sizes. What we call the ‘nonbalanced design’ is actually an unequal probability
design balanced on only one variable, the inclusion probabilities, i.e. variable P75. Thus,
the ‘nonbalanced samples’ were also selected by means of the cube method. The balanced
samples were selected with the balancing variables P75, RMT85, SOC82 and ME84; see
Särndal et al. (1992, pp. 652–61) for a description of these variables. Since P75 is a
balancing variable, the balanced samples also have a fixed sample size. Two estimators
are computed for each sample, the Horvitz–Thompson estimator and the calibration
estimator using the same auxiliary variables, P75, RMT85, SOC82 and ME84. The
calibration estimator is defined as

YC
R
=YC+ (X−XC )∞b,
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where

b=A ∑
kµU

s
k
x
k
x∞
k

p
k
B−1 ∑
kµU

s
k
x
k
y
k

p
k

is the ‘standard’ probability weighted estimator. The empirical ‘true’ mean squared errors
were calculated by sampling independently 1000 times from the population under each of
the two sampling schemes.

The results of the simulation study are presented in Table 1. The mean squared errors
are relative to those obtained under Strategy 1. If the cube method provides an exactly
balanced sample, the estimator and the calibration estimator are equal. However, when
several continuous variables are used, an exact balanced sample can rarely be selected.
Table 1 shows that variable P75 is exactly balanced while variables RMT85, SOC82 and
ME3 are approximately balanced. If the cube method provides an approximately balanced
sample, then the regression estimator adjusts the weights to obtain the exact calibration,
and thus in this case the calibration estimator is different from the Horvitz–Thompson
estimator. In this example, four balancing variables are used for a sample size equal to 20.
Thus the rounding problem can be substantial. It is not surprising that, except for the
variable CS82, the best strategy is the use of balanced sampling with the calibration
estimator. For CS82, the best strategy is to use balanced sampling with the Horvitz–
Thompson estimator. The simulations suggest also that balanced sampling is always more
accurate for both estimators. Thus, if the necessary auxiliary information is available,
it is always more accurate to select a balanced sample regardless of which estimation
procedure is used.

The use of balanced sampling has another important advantage. When the calibration
estimator was used with a nonbalanced sample, in 32% of the simulations there was at
least one negative weight, while, when the calibration estimator was used with a balanced
sample, in only one case did a negative weight appear. Balanced sampling protects
against extreme or negative weights, which, as mentioned before, can be very problematic,
particularly with small samples.

Table 1: Simulation results. Mean squared errors relative to the
values for nonbalanced sampling with the Horvitz–T hompson
estimator. For full description of the variables see Särndal et al.

(1992, pp. 652–61)

Horvitz–Thompson Regression
Variable Nonbalanced Balanced Nonbalanced Balanced

P75 0 – – –
RMT85 1 0·12 0 0
SOC82 1 0·14 0 0
ME84 1 0·17 0 0

R85 1 0·90 0·82 0·76
P85 1 0·91 1·02 0·87
CS82 1 0·80 0·92 0·82
S82 1 0·21 0·11 0·11
REV84 1 0·15 0·21 0·08
SIZE 1 0·26 0·15 0·14
S82-CS82-SS82 1 0·34 0·28 0·27
CS82-SS82 1 0·29 0·14 0·13
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10. I      

The cube method generalises all methods that use auxiliary information for the
sampling design including stratification, quota random design and unequal probability
sampling. Moreover, several of these methods can be improved. The cube method can use
overlapping strata, it corrects Sunter’s procedure and it permits sample selection with
unequal inclusion probabilities, while balanced on the population size. Moreover, the cube
algorithm facilitates the joint use of these methods, such as quota random sampling with
unequal probabilities.

Nevertheless, the importance of the cube method is not its use in particular cases but
in its generality. For instance, municipalities can be selected with unequal inclusion
probabilities that are proportional to the number of inhabitants. The sample can be
balanced on qualitative variables such as ‘regions’ and a classification into ‘urban/large
urban/rural’, and continuous variables such as ‘age’ and ‘income’.

A quick examination of the method shows that the number of computational operations
increases no faster than the square of the population size. Indeed, the method can be
applied directly to several thousands of population units. The cube method was first
implemented in Matlab in order to carry out a simulation study for testing variance
estimation procedures. Another implementation, written in SAS-IML, allows the selection
of balanced samples in populations of up to 50 000 units with 30 auxiliary variables. For
larger populations, the cube algorithm can be applied in strata or other subpopulations.

A simple way of reducing the number of operations is to apply the first step of the flight
phase to the first M units of the population, where p<M<N. Next, the second step is
applied to the first M units that have non-integer elements of p(1), and so on. This simple
modification generalises the moving stratification algorithm of Tillé (1996). For very large
files and when the units are selected with equal probabilities, M clusters can be created
randomly. Next, the cube method is applied to the clusters using the cluster totals as
auxiliary variables. When the flight phase is completed, the q clusters with non-integer
inclusion probabilities are split in order to recreate M subclusters. The flight phase is then
applied to these subclusters again, and so on until the clusters are split into units of
interest. With some adjustments, the cube method can thus be applied to any sampling
frame, even with millions of units and a large number of auxiliary variables.

The computation of the joint inclusion probabilities seems not to be feasible for the
general case. In some particular cases, certain joint inclusion probabilities can be equal
to zero, and a design-based estimator of the variance does not exist. A referee pointed out
that, for skewed populations, the joint inclusion probabilities can be very unstable and
change drastically by a change in the auxiliary variable. Consider the following example.

Example 10. Let N=100, n=25, p=2, x
k1
=1, for all kµU, and x

12
=1·000 001,

x22=0·999 999, x32=1·000 002, x42=0·999 998, x52=1·000 003, x62=0·999 997, x72=
1·000 004, x82=0·999 996, and x

k2
=0, for k=9, . . . , 100. In this case, a balanced sample

either includes units 1 and 2 together or not, and thus p12=0·25. Several joint inclusion
probabilities are equal to 0. If x12 changes from 1·000 001 to 1·000 002 and x32 changes
from 1·000 002 to 1·000 001, then p12 changes from 0·25 to 0. A small change of the auxiliary
variable leads to a change in p12 from 0·25 to 0.

Nevertheless, even when a design-based estimator of the variance does not exist, it is
still possible to propose an accurate estimator of the variance. We propose in a further
paper (Deville & Tillé, 2004) to approximate the variance without using the joint inclusion
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probabilities. A variance approximation is proposed for balanced sampling based on
regression residuals, which is validated by a theoretical development and a large set of
simulations. This variance estimator is similar to the variance estimator of a calibration
estimator. Moreover we have calculated the matrix of joint inclusion probabilities by
simulation for several examples and, except in very special cases, the joint inclusion
probabilities are strictly positive.
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A

Choice of the cost function

It can be argued that the choice of C( . ) in the landing phase is an arbitrary decision that depends
on the priorities of the survey manager. As we have seen in expression (7), the cost is defined by
a trace matrix M. A simple cost could be defined by the sum of squares

C
1
(s)=∑

j

{XC
j
(s)−X

j
}2

X2
j

,

where XC
j
(s) is the value taken by XC

j
on sample s. The function C1 ( . ) is an M-trace where M is a

diagonal matrix with the jth diagonal element equal to 1/X2
j
.

Instead we might take M= (m
kl

)= (AA∞)−1, and define

C
2
(s)= (s−p*)∞A∞(AA∞)−1A(s−p*).

The choice of C2 ( . ) has a natural interpretation as a distance inRN, as shown by the following result.

P A1. T he square of the distance between a sample s and its Euclidean projection on
to the constraint hyperplane is given by

C
2
(s)= (s−p*)∞A∞(AA∞)−1A(s−p*). (A1)

Proof. The projection of a sample s on to the constraint hyperplane is

s−A∞(AA∞)−1A(s−p).

The Euclidean distance between s and its projection is thus

(s−p)∞A∞(AA∞)−1A(s−p)= (s−p*+p*−p)∞A∞(AA∞)−1A(s−p*+p*−p)

and, since A(p−p*)=0, (A1) follows directly. %
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