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We present three-dimensional direct numerical simulations (DNS) of the Kida vortex
flow, a prototypical turbulent flow, using a novel high-order lattice Boltzmann
(LB) model. Extensive comparisons of various global and local statistical quantities
obtained with an incompressible-flow spectral element solver are reported. It is
demonstrated that the LB method is a promising alternative for DNS as it
quantitatively captures all the computed statistics of fluid turbulence.
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1. Introduction
The lattice Boltzmann (LB) method is a relatively new approach to hydrodynamics,

with applications ranging from high-Reynolds-number flows to flows at the micron
scale, porous media and multi-phase flows (Succi 2001). It solves a fully discrete kinetic
equation for the populations fi(x, t) of fictitious particles designed in such a way as
to reproduce the Navier–Stokes equations in the hydrodynamic limit. Populations
correspond to discrete velocities ci , i = 0, . . . , Q, which fit into a regular spatial lattice
with nodes x. This enables a simple and highly efficient ‘stream along links and
equilibrate at nodes’ realization of the LB algorithm.

There are a few recent suggestions to extend the LB method to a higher order of
accuracy (Chikatamarla & Karlin 2006, 2009; Philippi et al. 2006; Shan, Yuan & Chen
2006). This is due to the fact that current standard LB lattices are not ‘sufficiently’
Galilean invariant (the feature that LB improved on from its predecessor, the lattice
gas model, but failed to resolve completely). Even though the incomplete Galilean
invariance of current LB models was recognized earlier (Benzi & Succi 1990; Benzi,
Succi & Vergassola 1992; Qian & Orszag 1993), progress was achieved only recently.
Insufficient Galilean invariance of standard LB lattices leads to many difficulties, in
particular, in applications to high-Reynolds-number hydrodynamics (Hazi & Kavran
2006), multi-phase (Swift et al. 1996) and multi-component flows (Arcidiacono et al.
2007), compressible flows (Ansumali & Karlin 2005), microflows (Ansumali et al.
2007), etc. It is well understood that the current ‘standard’ LB models are too
constrained by the small number of discrete velocities, and lattices with more velocities
are required to overcome these limitations. However, early attempts to introduce
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lattices with more velocities were unsuccessful because of severe numerical instabilities
of the resulting LB schemes (McNamara, Garcia & Alder 1995; Qian & Zhou 1998).
Discretization of the velocity space using high-order Gauss–Hermite quadrature
offers the potential for a systematic derivation of new stable discrete velocity models
(Shan & He 1998; Ansumali, Karlin & Öttinger 2003). However, since the roots
of Hermite polynomials are irrational, the corresponding discrete velocities do not
fit into a regular space-filling lattice. Thus, one of the most important advantages
of LB methods, the exact space discretization of particles’ advection, is lost with
quadrature-based off-lattice models.

Progress was recently achieved by Chikatamarla & Karlin (2006, 2009), where
higher-order LB modes were constructed using an entropy function (Karlin,
Ferrante & Ottinger 1999). In particular, it was shown that some of the high-order
lattices suggested in the past were doomed to fail because of the lack of a supporting
entropy function in their construction. The systematic construction of high-order LB
models proposed by Chikatamarla & Karlin (2006, 2009) not only recovered the
results from the Gauss–Hermite quadrature as a limiting case, but also led to the
discovery of new admissible lattices with better properties.

Before these higher-order lattices can be applied to complex fluid dynamics
problems, it is important to demonstrate their applicability and stability in the
incompressible flow regime. In this paper, we present for the first time three-
dimensional turbulent flow simulations using a novel higher-order entropic LB model
as well as a standard low-order model. The classical Kida vortex flow at high Reynolds
numbers is chosen in order to compare the LB method (in both formulations)
with direct numerical simulation (DNS) results obtained using a spectral element
incompressible flow solver. The LB method was found to quantitatively reproduce
the DNS results, and also lead to significant savings in computational time compared
to the spectral element solver. We also demonstrate that the new higher-order LB
model is superior to the standard LB method in terms of Galilean invariance and
stability at high-Reynolds-number flows.

The outline of the paper is as follows. In § 2, we review the multi-speed LB
models, along with a numerical demonstration of its Galilean invariance. In § 3, we
present three-dimensional simulations of the Kida vortex flow using a spectral element
solver and the LB method. Detailed comparison of the statistics of various physical
quantities computed from simulation results in terms as well as quantitative run times
for both methods are presented.

2. Galilean invariant multi-speed lattice Boltzmann model
In this section, the derivation of the multi-speed LB models (Chikatamarla & Karlin

2006, 2009) is reviewed briefly. The construction proceeds in three steps: (i) derivation
of admissible lattices in one spatial dimension. In this step, one-dimensional velocity
sets V with Q integer-valued discrete velocities are found from a condition that
the higher-order moments of the equilibrium (obtained by minimizing the entropy
function) are Galilean invariant. From this requirement, the reference temperature T0

for each admissible set V can be derived. The reference temperature, in particular,
is equal to the square speed of sound (T0 = c2

s ) in the expression for the equilibrium
pressure P E = ρc2

s + ρu2. (ii) The one-dimensional velocity sets found in step (i) are
extended into three dimensions using a tensor-product expansion. The tensor-product
lattice can be naturally expressed in terms of groups of velocities with the same
magnitude (energy shells). (iii) The tensor-product lattice is reduced by systematically
discarding some of the energy shells (pruning).
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300 S. S. Chikatamarla and others

ε Vε Qε Wε = Wi2 + j2 + k2

0 {(0, 0, 0)} 1 2(5045 − 1507
√

10)/2025

1 {(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)} 6 377/(5
√

10) − (91/40)

2 {(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1)} 12 (55 − 17
√

10)/50

3 {(±1, ±1, ±1)} 8 (233
√

10 − 730)/1600

9 {(±3, 0, 0), (0, ±3, 0), (0, 0, ±3)} 6 (295 − 92
√

10)/16 200

27 {(±3, ±3, ±3)} 8 (130 − 41
√

10)/129 600

Table 1. The D3Q41 lattice. First column: energy shells ε = i2 + j 2 + k2 in increasing order;
second column: velocity sets Vε constituting energy shells ε; third column: number of velocities
Qε in each energy shell; fourth column: weights Wε corresponding to each discrete velocity
in a given energy shell ε. The D3Q41 velocity set is a joint of all the sets Vε displayed in the
second column.

In this paper, we consider the velocity set V = {−3, −1, 0, 1, 3} (Q = 5), for which
the reference temperature is

T0 = 1 −
√

2/5. (2.1)

The three-dimensional extension of this set, formed by the tensor product of V ,
consists of Q =125 discrete velocities c = (i, j, k), i, j, k ∈ {−1, −3, 0, 1, 3}, which
can be grouped into ten energy shells, each energy shell Vε being a subset of
discrete velocities with the same energy ε = i2 + j 2 + k2. In the pruning procedure,
we consider subsets S of the 10 energy shells, and require that an entropy function
H of functional form

H =
∑
ε∈S

∑
(i,j,k)∈Vε

f(i,j,k) ln

(
f(i,j,k)

Wε

)
, (2.2)

exists such that its minimizer under fixed density and momentum renders the
higher-order equilibrium moments required to recover the Navier–Stokes equations
Galilean invariant. This amounts to finding the weights Wε > 0 corresponding to
each of the retained energy shells in function (2.2). In this paper, the D3Q41 lattice
is considered. The retained energy shells together with the corresponding weights are
specified in table 1.

Once the entropy function H is defined, the equilibrium is obtained by computing
its minimum under fixed density and momentum. The minimization problem can
be efficiently solved by employing the product form of equilibrium (Chikatamarla,
Ansumali & Karlin 2006). The equilibrium populations are represented as

f E
(i,j,k) = ρWεABi

xB
j
y Bk

z , (2.3)

where Lagrange multipliers A and Bα have the following series expansion to order
O(u8):

A = 1 − u2

2T0

+
u4

8T 2
0

− (3 − 2T0(5 − 3T0))u
6

48T 5
0

+
(5(T0 − 2)T0 + 3)

16T 5
0

X

− (6 − T0(6T0(7T0 − 16) + 47))u8

384T 7
0

− (T0(T0(18T0 − 43) + 22) − 3)

48T 7
0

u2X

+
(7T0(T0 + 1) − 3)

96T 7
0

(
u4

xu
4
y + u4

yu
4
z + u4

xu
4
z

)
+

(2(14T0(5T0 − 1) − 3))

96T 7
0

u2
xu

2
yu

2
zu

2,

(2.4)
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X =
(
u2

x + u2
y

)(
u2

x + u2
z

)(
u2

y + u2
z

)
;

Bα =
uα

T0

+
u2

α

2T 2
0

+
u3

α

6T 3
0

+
u4

α

24T 4
0

+
(3(T0 − 2)T0 + 2)u5

α

24T 5
0

+
(18(T0 − 2)T0 + 11)u6

α

144T 6
0

+
(8 − 3T0(T0(3T0 − 11) + 11))u7

α

144T 7
0

+
(35 − 24T0(3(T0 − 3)T0 + 7))u8

α

1152T 8
0

+ B ′
α, (2.5)

B ′
α =

(3T0 − 1)

48T 6
0

(
uα +

u2
α

T0

)[
(T0 − 3)

(
u4

β + u4
γ

)
u2

α + (T0 − 9)u2
βu

2
γ

(
u2

α + u2
)]

, β �= γ �= α.

(2.6)

The product-form equilibrium (2.3) is particularly efficient for simulations at low
Mach numbers which is the objective of this paper. Once the equilibrium is defined,
we use the lattice Bhatnagar–Gross–Krook (LBGK) scheme

f(i,j,k)(x + c, t + 1) − f(i,j,k)(x, t) =
2

2τ + 1

(
f E

(i,j,k)(x, t) − f(i,j,k)(x, t)
)
. (2.7)

In the low-Mach-number limit, the LB equation (2.7) recovers the Navier–Stokes
equations at the reference temperature T0, with kinematic viscosity ν = τT0. It is
instructive to compare the accuracy of the Navier–Stokes equations recovered by
the present D3Q41 LB model with the accuracy of the standard LB model for
incompressible flow simulations. We note here that the standard three-dimensional
D3Q27 LB is generated as the tensor product of the one-dimensional velocity set
V = {−1, 0, 1} (Q = 3, corresponding to the reference temperature T0 = 1/3), followed
by pruning to derive the commonly used D3Q19 and D3Q15 models.

In order to make a comparison, the Lagrange multipliers (2.4), (2.5) and (2.6)
are substituted into (2.3), the resulting equilibrium is expanded into powers of uα

to order u3, and the equilibrium pressure tensor P E
αβ =

∑
i f

E
i ciαciβ and third-order

moment tensors QE
αβγ =

∑
i f

E
i ciαciβciγ , which are required to recover isothermal

Navier–Stokes equations by the LBGK model (2.7) are computed. The D3Q41 model
recovers the Galilean invariant expressions:

P E
αβ = ρT0δαβ + ρuαuβ,

QE
αβγ = ρT0(uαδβγ + uβδαγ + uγ δαβ) + ρuαuβuγ .

}
(2.8)

On the contrary, the third-order moment QE
αβγ of the standard D3Q27, D3Q19 and

D3Q15 LB models is recovered only up to O(u): QE
αβγ = ρT0(uαδβγ +uβδαγ +uγ δαβ)+

O(u3), where the deviation terms O(u3) are present in all three models.
In the standard LB models, these deviations result in a spurious dependence of

the kinematic viscosity on the fluid velocity, thus limiting their range of applicability
(Benzi & Succi 1990; Benzi et al. 1992; Qian & Orszag 1993; Succi 2001). Such a
spurious dependence is not present in the D3Q41 model. This can be demonstrated
by a simulation of the decay of a shear wave which we present first. A periodic box
of fluid is initialized with equilibrium distributions computed at constant density and
a velocity given by

u = u0 + a0 sin(2πz/Nz) ex, (2.9)

where u0 = (0, u0y, u0z) is the reference frame velocity and a0 is the small initial
amplitude of the shear in the direction ex . A simulation domain of Nz = 100 nodes
in the z direction and Nx =Ny = 5 nodes in the x and y directions was chosen with
periodic boundary conditions on all three sides. Two LBGK models of the form (2.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

27
40

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

21
:4

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112010002740
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


302 S. S. Chikatamarla and others

MaZ
00.20.40.6

MaY

00.20.40.6

ν
/ν

0

0.6

0.8

1.0

1.2
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Figure 1. Decay of the shear wave in a moving reference frame. Reduced kinematic viscosity
ν/ν0, where ν0 corresponds to u0 = 0, as a function of the Y and Z Mach numbers is measured
for the present D3Q41 (solid) and the standard D3Q15 LB models. Anisotropic and spurious
dependence of viscosity of the order of the equilibrium distributions is seen for the D3Q15
model (the dashed surfaces, in the increasing order of dash-size, represent D3Q15 simulations
using second-, third- and fourth-order equilibrium distributions).

were studied at various frame velocities: the standard D3Q15 model and the present
D3Q41 model with the equilibrium obtained by expanding the product form (2.3)–
(2.6) to third order in the velocity u. This is needed in order to keep the conservation
laws under control at larger values of the velocity.

Figure 1 shows the influence of the Y and Z Mach numbers, MaZ = u0z/
√

T0 and
MaY = u0y/

√
T0, respectively, on the measured kinematic viscosity. An LB model is

termed complete Galilean invariant if the measured viscosity is independent of the
frame velocity (Qian & Zhou 1998). It can be clearly seen that while the D3Q41 LB
model is Galilean invariant, the viscosity of the standard D3Q15 LB model depends
strongly on the frame velocity. We now proceed with the turbulent flow simulations
using the D3Q41 LB model.

3. Direct numerical simulation of turbulent vortex flow
A detailed comparison of the accuracy and efficiency of LB methods for simulating

fluid turbulence is the main objective of this paper. The Taylor–Green and the Kida
vortex flows are benchmark flows where simple initial conditions evolve in time to a
turbulent flow. Both flows have been analysed extensively using DNS; the former by
Orszag (1983) and Brachet (1991), and the latter by Kida (1985), Kida & Murakami
(1987), Boratav & Pelz (1994), Keating et al. (2007) and others. We investigate here in
detail the Kida vortex flow using the LB method and an incompressible flow solver
based on the spectral element method (SEM).

The Kida vortex flow is initialized by the velocity field

ux(x, y, z, 0) = U0 sin x(cos 3y cos z − cos y cos 3z),

uy(x, y, z, 0) = U0 sin y(cos 3z cos x − cos z cos 3x),

uz(x, y, z, 0) = U0 sin z(cos 3x cos y − cos x cos 3y),

⎫⎬
⎭ (3.1)
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where x ∈ [0, 2π], and periodic boundary conditions are imposed in all directions.
A detailed summary of this flow, including its symmetries are discussed by Kida
(1985). Some of the symmetries that are present in this flow are 2π periodicity,
bilateral symmetry through planes nπ, n= 0, +1, +2, . . . , a π/2 rotational symmetry
around the axis (π/2, π/2) and permutation symmetry of the velocity components,
ux(x, y, z) = uy(y, z, x) = uz(z, x, y). Using these symmetries (i.e. simulating only the
independent Fourier modes), the memory and computational requirements can be
reduced when using Fourier spectral methods. Such optimizations were used to
produce high-resolution DNS for this flow (see e.g. Boratav & Pelz 1994). These
optimizations are characteristic to this flow set-up, and cannot be exploited by
conventional techniques like finite difference, or even the LB method and SEM; all
simulations presented here do not take advantage of these symmetries.

The Reynolds number is defined based on the initial condition, Re = LU0/ν, where
L is the domain size and ν the kinematic viscosity. The kinetic energy, Ke, initially
stays relatively constant, reflecting the inviscid nature of the flow in the early stages.
On the other hand, the enstrophy Ω initially increases almost exponentially, reaches a
maximum value which depends on the Re, and then decays. As the Reynolds number
increases, this early-time behaviour of almost constant Ke and steep increase in Ω

intensifies. Since this flow resembles a fully developed turbulent flow, especially after
the peak of enstrophy, we investigate in detail data collected from this regime.

For comparison, the incompressible Navier–Stokes equations were solved using
and incompressible flow solver based on the SEM (Patera 1984). The temporal
discretization is based on a second-order mixed explicit/implicit operator splitting
formulation (Karniadakis, Israeli & Orszag 1991; Tomboulides, Israeli & Karniadakis
1989). Various spatial discretizations were employed with 32 spectral elements in each
direction and the number of collocation points ranging from 8 to 12 in each direction
in the interior of each element, corresponding to an overall grid resolution of up
to 3533 (after removing redundant points). An MPI-based parallel spectral element
code, nek5000, with very good scalability was used (https://nek5000.mcs.anl.
gov/index.php/Main_Page). Simulations were performed on 32 or 64 AMD 2.5 GHz
processors.

The simulations were performed for Re = 4000 in a domain of size L = 1, velocity
U0 = 1 and grid resolution of 3533 for the SEM. In the LB simulation, the same
Re with velocity U0 = 0.05 and a grid resolution of 3523 (L =352) was employed.
Note that the SEM grid is a non-uniform grid within each element, while in the LB
method a uniform Cartesian mesh is chosen to make the advection step of the LBGK
equation (2.7) exact.

The LB simulations using the new D3Q41 model as well as the standard D3Q15
model were performed using a similar code structure and the equilibrium expressed
in the product form. Due to the linear scaling of the product form (cf. Chikatamarla
et al. 2006), the D3Q41 simulations were only about 2.3 times slower compared to
the D3Q15 simulations. Since the initial conditions for the flow are known only in
terms of low-order moments (density and velocity), the higher-order moments for
the LB simulations were obtained by the iterative process described in Mei et al.
(2006). Each simulation produces information regarding the velocity and pressure
fields at more than 40 million grid points at each time step. Snapshots of the velocity
field at selected time instances were stored and post-processed in order to compare
various statistics of the turbulent flow. The velocity fields obtained from SEM (after
spectrally interpolating to an equidistant grid) and LB method were subject to the
same post-processing. The following quantities were computed.
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Time (t) Ke (DNS) Ke (D3Q15) Ke (D3Q41) Ω (DNS) Ω (D3Q15) Ω (D3Q41)

0.197 0.601 0.601 (0.0%) 0.601 (0.0%) 397.28 399.63 (0.6%) 400.20 (0.7%)
0.345 0.528 0.526 (0.4%) 0.525 (0.6%) 699.17 675.70 (3.4%) 667.75 (4.7%)
0.509 0.396 0.404 (2.0%) 0.399 (0.8%) 719.88 698.78 (2.9%) 685.10 (5.0%)
0.708 0.280 0.284 (1.4%) 0.283 (1.0%) 493.06 481.75 (2.3%) 478.45 (3.0%)

Table 2. Enstrophy and kinetic energy at various time instants (Re = 4000). Percentage
deviation between LB and DNS results are indicated in parenthesis.

Skewness DNS D3Q15 D3Q41

S3 0.459 0.417 0.403
S4 5.069 5.090 4.915
S5 6.762 6.314 5.770
S6 51.406 51.205 47.303

Table 3. Comparison of the skewness factors for SEM, 15 and 41 velocity lattices,
at time t =0.708 (Re =4000).

(i) Enstrophy and kinetic energy: the enstrophy Ω = 1/(2V )
∫

ω2 dV , where
ω = ∇ × u is the vorticity, and kinetic energy Ke =1/(2V )

∫
u2 dV , are two important

global quantities characterizing the flow and its history. The kinetic energy and the
enstrophy at various times is given in table 2. Overall, the deviation between the SEM
and LB method does not exceed 2 % in Ke and 3.4 % in Ω for the D3Q15, and
1.0 % in Ke and 5.0 % in Ω for the D3Q41 models, respectively.

(ii) Skewness factor: the longitudinal skewness function localized at r = 0 is defined
as

Sn = (−1)n 〈(∂ux/∂x)n〉
〈
(∂ux/∂x)2

〉−n/2
, (3.2)

where, r =1, 2, . . . N . The angular brackets 〈φ(x, y, z)〉 denote average of the quantity
α over the domain. The comparison of the skewness factor for both DNS and LB
method at time t =0.708 is reported in table 3.

So far, averaged and global quantities have been compared; however, to gain better
understanding of the quality of the results from the LB simulations obtained further
comparisons are needed using local quantities.

(iii) Energy spectrum: initially, all the energy is contained in the smallest
wavenumbers (the largest scales) of the system. As the flow evolves, the large initial
vortex undergoes vortex stretching and then breaks up into smaller vortices. During
this process, energy is transferred to higher wavenumbers through the action of the
nonlinear terms of the Navier–Stokes equations. The distribution of the energy is
most conveniently seen in a spherically averaged (pure shear) energy spectrum, which
is defined here by a band average as

KE(k) =
∑

k�k′<k+1

|û(k′)|2, k = 0, 1, 2, . . . , (3.3)

where ûα(kx, ky, kz) is the three-dimensional discrete Fourier transform of the velocity
field uα(x, y, z). The spherical wavenumber k is defined as k2 = k2

x + k2
y + k2

z , and

|û(k)|2 = |ûx(k)|2 + |ûy(k)|2 + |ûz(k)|2 is collected into the corresponding wavenumber
k. The same post-processing routine was used for both methods. Figure 2 compares
the energy spectrum for the SEM and LB method at t = 0.708. Excellent agreement
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Figure 2. (a) Pure shear energy spectrum at t = 0.708 (Re = 4000). A line with slope −5/3
shows the scaling of low-wavenumber modes. (b) Pure shear energy spectrum for the D3Q41
LB simulation at Re = 16 000 and a grid size of 3603 (for comparison the energy spectrum for
Re = 4000 is plotted with arbitrary scaling).

is observed between the two methods for k � 90 (or scales with KE � 10−6). Although
the flow is turbulent, the Reynolds number, Re = 4000, is relatively low to see an
extended inertial range.

(iv) Structure functions: the longitudinal structure function of order n is a local
quantity defined as

Bn
ll(r) = 〈[ux(x, y, z) − ux(x + r, y, z)]n〉 . (3.4)

According to Kolmogorov (1941), the structure functions for isotropic turbulence are
linear on logarithmic plots. Although the Reynolds number in the present simulation
is relatively low to see an extended inertial range, the structure function is nevertheless
a good measure to probe different numerical methods. Figure 3(a) shows the very good
agreement of the second-order structure function from the SEM and LB simulations
at t =0.708. Very good agreement between the two methods over the entire range of
r was also observed for higher-order structure functions.

(v) Two-point velocity correlations: another relevant quantity that can be used
to assess different numerical techniques is the correlation of the velocity field. The
longitudinal and transversal velocity correlation functions are defined here as

ρ11(r) =
〈 ux(x, y, z)ux(x + r, y, z) 〉

〈 ux(x, y, z)ux(x, y, z) 〉 , ρ22,33(r) =
〈 uy,z(x, y, z)uy,z(x + r, y, z) 〉

〈 uy,z(x, y, z)uy,z(x, y, z)〉 . (3.5)

The comparison at t =0.708 is shown in figure 3(b). As expected, both components of
the transversal correlation functions (ρ22 and ρ33) are very similar and good agreement
is observed between the two methods, for all three components of the correlation
function. The symmetry of the flow, i.e. the presence of two-similar vortex structures
within the domain with 2π periodicity can also be inferred from this figure.

(vi) Summary of comparison with DNS: Before we compare the run time for both
simulations, it must be mentioned that for the case under study the two methods
used, SEM and LB method, are not optimal. The Kida vortex flow has a number
of symmetries which can only be exploited by a global Fourier method. Our interest
here is not to use the optimal technique to solve the Kida vortex flow, rather, we
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Figure 3. (a) Comparison of second-order structure function. Straight dash line indicates the
Kolmogorov asymptotics for isotropic turbulence. (b) Comparison of the two-point longitudinal
and transversal correlation functions.

wish to compare the LB simulations with a conventional high-order DNS solver for
a benchmark turbulent flow.

The computational times (wall clock time) for the above simulations at Re = 4000,
from t =0–0.708, on the same 64 processor cluster, were roughly 20 h for the SPM
(effective grid of 3533) and around 0.5 and 1.25 h for the D3Q15 and D3Q41 LB
models, respectively (grid 3523). Although reasonable choices are made for parameters,
further code and parameter optimizations may still be possible for both LB method
and SEM. These run times indicate that the LB methods are an order of magnitude
faster compared to SEM for this problem. However, it should be noted that although
the D3Q41 method is defined as a high-order method, the term ‘high’ refers to its
recovery of higher-order moments, relevant to Galilean invariance. On the other hand,
SEM, being a high-order method in terms of spatial convergence rate, couples 8–12
points in each spatial direction (corresponding to the polynomial orders used in this
work). It is well known that using the same total number of points with high-order
methods results in significantly higher accuracy.

Finally, in the above simulations, a moderate Reynolds number was chosen in order
to compare the three solutions (SEM, the standard D3Q15 and the new D3Q41 LB
models). The two LB models show similar behaviour which is not surprising since
the absolute value of the velocity is small compared to the LB speed of sound, and
thus deviation due to incomplete Galilean invariance of the D3Q15 is negligible.
Small deviations were seen in sensitive quantities like skewness factor. Excellent
comparison was obtained for all other quantities such as enstrophy, kinetic energy,
energy spectrum, structure functions and two-point velocity correlations. On the other
hand, we observed that the multi-speed D3Q41 is more robust in terms of numerical
stability when the Reynolds number was increased, thus allowing simulations at higher
Reynolds numbers on a given grid size. For example, with a grid of 3523 lattice points,
the simulation on D3Q15 lattice becomes unstable slightly over Re = 12 000, while
the simulation on the D3Q41 lattice remains stable at least till Re = 23 000. Figure 2
shows the energy spectrum for the Re = 16 000 on the D3Q41 lattice with a larger
inertial range as compared to the Re = 4000 case. It is also worth mentioning here
that, for entropic LB models, stability can be further enhanced by employing the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

27
40

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

21
:4

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S0022112010002740
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


Lattice Boltzmann method for direct numerical simulation 307

entropic time-stepping process (Karlin et al. 1999; Keating et al. 2007), instead of the
LBGK time stepping (defined in (2.7)) used in the current simulations.

These detailed and quantitative comparisons show that the LB method can be
considered as an alternative to DNS of high-Reynolds-number flows. We have
also demonstrated, for the first time, that higher-order entropic LB models are
computationally efficient and more stable and thus should be considered as a basis for
further development of LB methods to other areas of fluid dynamics like compressible
flows, multi-phase flows, etc.

The authors would like to thank S. Ansumali, P. Fischer, S. Kerkemeier, S. A. Orszag,
X. Shan and S. Succi for useful discussions. This work was partially supported by
CCEM-CH (I.V.K.).
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