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Climate change and biological invasions are key pro-
cesses affecting global biodiversity, yet their effects
have usually been considered separately. Here, we
emphasise that global warming has enabled alien
species to expand into regions in which they previously
could not survive and reproduce. Based on a review of
climate-mediated biological invasions of plants, invert-
ebrates, fishes and birds, we discuss the ways in which
climate change influences biological invasions. We
emphasise the role of alien species in a more dynamic
context of shifting species’ ranges and changing com-
munities. Under these circumstances, management
practices regarding the occurrence of ‘new’ species
could range from complete eradication to tolerance
and even consideration of the ‘new’ species as an enrich-
ment of local biodiversity and key elements to maintain
ecosystem services.

Does climate change affect biological invasions?
Climate change and biological invasions are two important
drivers affecting biodiversity and ecosystem services [1,2].
However, their effect on biodiversity has usually been
assessed independently, despite good scientific reasons
to expect the rate and extent of biological invasions to
be influenced by climate change [3–5]. The various press-
ures from global change in general, and climate change and
biological invasions in particular, should therefore be con-
sidered in a more integrated manner.

The changes in climatic conditions that have occurred
over recent decades have resulted in altered population
dynamics of native species and, thus, also their geographic
ranges, the structure and composition of communities and
functioning of ecosystems [6,7]. Similarly to these observed

Glossary

Alien: an organism occurring outside its natural past or present range and

dispersal potential, whose presence and dispersal is due to intentional or

unintentional human action.

Apomictic/parthenogenic: asexual form of reproduction without fertilization.

Casual: refers to organisms that do not form self-replacing populations and

rely on repeated introductions for their persistence.

Cryptogenic: a term used for species of unknown origin or means of arrival,

which cannot be ascribed as being native or alien [62].

Naturalization: refers to aliens that form free-living, self-sustaining (reprodu-

cing) and durable populations persisting in the wild.

Founder population: a new population in a region, usually consisting of a small

number of (here: introduced) individuals.

Introduction/introduced: direct or indirect movement by human agency, of an

organism outside its past or present natural range.

Invasion/invasive: refers to established alien organisms that are rapidly

extending their range in the new region. (This is usually associated, although

not necessarily for an organism to qualify as invasive, with causing significant

harm to biological diversity, ecosystem functioning, socio-economic values

and human health in invaded regions).

Native: an organism that has originated in a given area without human

involvement or that has arrived there without intentional or unintentional

intervention of humans.

Trailing edge: the boundary of distribution where a species is retreating;

opposite to the expanding range margin.

Voltinism: the number of broods or generations of an organism in one year.
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Avda. Américo Vespucio, s/n, 41092 Sevilla, Spain. 23Potsdam Institute for Climate
Impact Research (PIK), Telegraphenberg A 62, 14473 Potsdam, Germany.

ht
tp

://
do

c.
re

ro
.c

h
Published in "Trends in Ecology & Evolution 24(12): 686-693, 2009"
which should be cited to refer to this work.

1



responses of native species, climate change might also
directly influence the likelihood of alien species being
introduced into a territory and also affect their chances
of naturalization (see Glossary). Furthermore, an indirect
effect of climate change might occur as some ecosystems
become less resistant to invasive species or more resilient
to their impacts under future climates. In extreme cases,
climate-driven invasions could lead to completely trans-
formed ecosystems where alien species dominate function
or richness or both, leading to reduced diversity of native
species [8,9].

Based on these theoretical and conceptual aspects, we
present here a compilation and synthesis of the evidence
for observed changes in biological invasions arising from
recent climate change. We evaluate the relative import-
ance of the direct and indirect effects of climate change on
the invasion process, and compare these findings with
studies on climate-induced changes in native species. We
reason that, with continued climate change, existing defi-
nitions and crucial distinguishing factors of native and
alien species become increasingly blurred. The role of alien
species should therefore be assessed in a more integrated
and dynamic context of shifting species’ ranges and chan-
ging compositions and structures of communities. Resident
species can become increasingly poorly adapted to the local
environment, whereas newcomers might be better adapted
and, thus, more competitive under the new conditions.
Hence, irrespective of the mode of original introduction,
the ‘new’ species might become acceptable or even necess-
ary at some sites to assure local ecosystem function con-
tinuity and service provision.

Most of the available literature on climate-induced
biological invasions deals with warming effects. Therefore,
we focus primarily on temperature and less so on the
effects of changing precipitation patterns. The geographi-
cal coverage of reported examples of climate-induced bio-
logical invasions is uneven among continents, with most of
the examples reported from Europe, followed by Asia, with
fewer from other continents. Thus, although our study

focus is more an effect of availability of, and accessibility
to, reported case studies, there is a global dimension to the
issue.

We follow the sequential stages of an invasion process
(Figure 1), starting from the introduction of a few precursor
individuals, which only temporarily occur in a site during
short favourable climatic periods or are spatially restricted
to favourable micro-habitats. Continued climatic warming
might then prolong the duration of these occasional occur-
rences of initial introductions, increase their frequency or
enlarge the range and area of suitable habitats, making it
more likely for these species to persist, to occur more
frequently and to develop larger populations. With further
global warming, alien species originating from warmer
regions could build up numerically and spatially larger
populations that might spread to wider areas. This is true
for casual (i.e. temporary) occurrences as well as natural-
izations. Hence, a climate-mediated invasion process fol-
lows the classic pathway of several sequential transitions
[10] but with climatic parameters (here: temperature) as
major determinants for at least some of the transitions
(Figure 1).

Interplay of global warming and biological invasions
There is increasing evidence that global warming has
enabled alien species to expand into regions where pre-
viously they were not able to survive and reproduce. Based
on case studies of climate-mediated biological invasions
that have been reported for plants, invertebrates, fishes
and birds (see also Online Supplementary Material), we
discuss the ways in which climate change influences the
sequential stages of an invasion process.

Offering new opportunities for introductions
Populations of alien plants and animals are considered
more likely to survive if they are introduced to areas with
climatic conditions that are similar to those in their native
distribution range. Temperature is a key factor limiting
survival, growth and reproduction in plants and many

Figure 1. Influence of climate change on all the sequential transitions of a successful invasion process. Based on the scheme of Ref. [10], with their terms indicated in

parentheses. For examples, see text and Online Supplementary Material.
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animals [11,12]. Hence, the survival of alien species intro-
duced from habitats in warmer regions to new areas with
colder conditions depend on locally heated ‘islands’, such as
thermal effluents for aquatic species [13], urban areas [14]
or anthropogenic habitats (especially buildings) [15].
Otherwise, ecological adaptation is needed; for example,
the tropical seaweed Caulerpa taxifolia evolved tolerance
for colder temperatures in aquaria in Europe before being
released and spreading widely in the Mediterranean Sea
[8].

Global warming could provide new opportunities for
introductions to areas where, until recently, introduced
species were not able to survive. In temperate regions,
many introduced ornamental plants from warmer regions
required overwintering indoors for survival. However, in
recent years, palms such as Trachycarpus fortunei are
prominent examples that have successfully been planted
outdoors and survive all year unprotected owing to gener-
ally milder winter conditions [16,17]. Furthermore, a
recent analysis of commercial plant nurseries in Europe
has shown that many garden species are already planted
and survive 1000 km further north than their known
natural range limits [18].

In addition to the removal of physiological constraints,
climate change can also affect the dispersal pattern of
species in various ways. For example, warmer nocturnal
temperatures increase flight activity of winter pine proces-
sionary moth Thaumetopoea pityocampa females, and
thereby enable them to disperse over greater distances
[19]. A recent survey showed that the phenology of native
and alien aphids largely depends on climatic variables [20].
It has also been calculated by using selected climate
change scenarios that, on average, the first aphid occur-
rence is expected to occur 2–3 days earlier every decade.

Furthermore, the long-range dispersal of organisms by
air is controlled, to a large extent, by atmospheric circula-
tion patterns and often depends on extreme climatic events
[21]. Increases in greenhouse gases and the associated
general warming are likely to lead tomore extreme climate
events [22] such as floods, resulting in escapes of previously
confined aquatic species [23], and the removal of existing
vegetation and creation of bare soil, which is then easier to
colonize.

Global warming also modifies human activities in a way
that might increase the chances of invasion. For example,
climatic warming is likely to result in the receding of
summer Arctic ice cover to provide a seasonal trading
route through the northern oceans. This link between
the North Atlantic and North Pacific oceans would provide
access for cold-water species to either ocean [24]. Likewise,
the connection of geographically distant basins through
waterways to overcome water consumption shortages as a
result of climate change or increased irrigation of agricul-
tural lands could also increase the distribution range of
present and new invaders [25].

Facilitating colonization and successful reproduction
The presence of a ‘new’ species does not automatically lead
to successful establishment. Unless invaders reproduce
clonally, are self-compatible, apomictic or parthenogenic,
being present in sufficient numbers is one of the key

prerequisites for establishing a founder population
[26,27]. In this regard, climatic factors might also have
an important role if they can increase the per-capita
reproductive output for any given population density.
Species introduced from warmer regions to temperate
areas have, until recently, been constrained by too short
a growing season, which prevented several species from
becoming naturalized; for example, by being unable to set
fruit [28,29] or to compete successfully with resident
species [17,30], as was the case for the cherry laurelPrunus
laurocerasus in temperate areas of central Europe [31].
This could be about to change with warmer temperatures
extending the growing season of plants and reproductive
period of animals. There is evidence of a strong association
between patterns of the emergence of gypsy moths Lyman-
tria dispar and climatic suitability in Ontario, Canada [32].
Pheromone trap records indicated a significant increase in
the distribution of this alienmoth in this region since 1980.
However, between 1992 and 1997, a temporary decline in
climatic suitability occurred and resulted in a pronounced
reduction in the area of defoliation by this species. Since
1998, the trend has reversed, with the consequent resur-
gence in defoliation and increased frequency of moths in
pheromone traps further north and west in Ontario and
other Canadian provinces. In the northern Mediterranean
Sea, higher water temperatures have enabled former ster-
ile pseudopopulations of the ornate wrasse Thalassoma
pavo to reproduce and establish fertile populations [33].
Former greenhouse inhabitants such as the three scale
species Diaspidiotus distinctus, Coccus hesperidum and
Icerya purchasi have recently been found outdoors in
Switzerland [34]. Also, non-native biological control agents
of greenhouse pests, such as the predatory bug Macrolo-
phus caliginosus [35] and the predatory mite Neoseiulus
californicus [36] in the UK, have begun to establish outside
the greenhouse environment. A recent survey listed >400
insect species of Australasian, African and Central and
South American origin that have established in Europe,
with most occurring in the Mediterranean region [37].

Enabling population persistence and spread
Global warming might also be responsible for the sudden
spread of established alien insects and diseases, often
causing serious economic or ecological hazards. The
southern green stink bug Nezara viridula, formerly a
sub-tropical species, has been expanding its range north-
ward in temperate regions of Japan and Europe since the
1960s, probably because of reduced mortality resulting
from milder winters. In the newly invaded regions in
Japan, it has become a major pest and out-competes the
indigenous Nezara antennata [38]. Similarly, the main
invasion of the buffelgrass Pennisetum ciliare into the
Lower Sonoran Desert of southern Arizona coincided with
warmer winters since the 1980s. As with other neotropical
species, buffelgrass is sensitive to low winter tempera-
tures; thus, its range is expected to further expand north
and upslope as minimum temperatures continue to
increase [39].

Furthermore, in organisms for which population
dynamics are mainly controlled by temperature, global
warming could increase rates of dispersal and development.
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For example, increasing temperatures could lead to the
production of an additional yearly generation [40,41]. In
Japan, the American fall webworm Hyphantria cunea
shifted from having two generations per year to three in
at least a part of its range; in addition, important changes in
some life-history traits, such as the crucial photoperiod for
diapause induction, have occurred, enabling the species to
expand its range, mainly towards the north of Japan [42].
Similarly, in European mountain forests, the native spruce
bark beetle Ips typographus is changing voltinism as a
consequence of the disproportionately large warming at
high elevations [43], which could result in unprecedented
outbreaks, as seen with the mountain pine beetle Dendroc-
tonus ponderosae in British Columbia, Canada [44]. The
same might also affect coniferous plantations in areas out-
side the native range, where conifers had been introduced
for commercial purposes.

Mechanisms underlying invasion success in the context
of climate change
All these aforementioned examples (and for more case
studies see Online Supplementary Material) suggest that
changing climatic conditions, and warming in particular,
appear to have had an increasingly important role in
triggering increases in population abundance and distri-
bution not only of native but also of alien species since the
1970s, when climatic conditions began to change. For
many cases, an in-depth understanding of their ecological
limits and how these have changed during the recent past
supports this hypothesis. Such changes are particularly
obvious at higher latitudes and altitudes, where pre-
viously there were thermal constraints. For example,
the range distribution of the pine processionary moth
Thaumetopoea pityocampa is no longer limited by
unfavourable larval feeding conditions (i.e. night air
temperature <0 8C and temperature inside the nest
<9 8C on the preceding day) [45], enabling the species to
expand its existing range, but also to colonize new areas
that are disconnected from its present distribution. Plants
such as the palm Trachycarpus fortunei have also bene-
fited frommilder winter conditions; mean temperatures of
the coldest month >2.2 8C in the past few decades have
enabled this species to establish fertile populations in the
wild [17]. Changes in climatic conditions that result in a
prolonged growing and reproductive period often provide
alien species with exploitable opportunities [46]. As a
consequence, global warming can shift or breach barriers
that previously limited spread and thus enable expansion
into areas where the species were previously kept in check
by climate ([47,48], but see [49]).

These examples show that some alien species benefit
from ameliorated conditions, mainly owing to warmer
temperatures. Less is known about introductions that
failed or species that show range contractions or reduced
impacts as a consequence of climate change, as suggested
for tropical ectotherms [50,51]. Moreover, as well as
temperature, other aspects of climate change, such as
changes in precipitation regimes [52], are also likely to
influence invasion processes. There is observational evi-
dence from long-termmonitoring data gathered since 1993
suggesting that increase in rainfall promotes a wider

distribution of the introduced Argentine ant Linepithema
humile into new areas in California, USA [53]. A snow
addition experiment in North American mixed-grass
prairie showed that increases in snowfall would enhance
the recruitment, and therefore abundance, of alien forbs
[54]. By contrast, there are also scenarios where native
species might regain competitive advantage over the alien
invader, depending on the potential seasonal increase in
precipitation [55]. As in the case of climate change impacts
on native species, the data on impacts of changing rainfall
regimes on alien species is less readily available than for
temperature, and it remains to be seen if general, predict-
able patterns will arise.

Climate change blurs migration and invasion
The increasing number of colonization events and sub-
sequent establishment of species originating from regions
with a warmer climate than in the area of establishment
and spread is remarkable (our (non-exhaustive) list pro-
vided in the Online Supplementary Material includes
>100 taxa). Such species appear to have responded to
the changed climatic conditions of the recent past, which
enabled them to reproduce and establish in the presence of
resident species. Simultaneously, native species have also
exhibited marked natural poleward movements from war-
mer regions, sometimes at the expense of local resident
species that are adapted to colder climates [56–59]. For
example, the annual numbers of migratory lepidopteran
species in southern Britain are increasing, and are linked
to positive temperature anomalies in spring and summer.
They are considered to represent a competitive threat to
resident species which typically have lower mobility and
are more specialized in habitat requirements [60]. Sim-
ilarly, the rapid increase in the establishment of migrant
butterflies on the Nansei Islands (Japan) during the twen-
tieth century was correlated with increasing surface tem-
peratures [40]. There has been a general increase in the
number of Mediterranean dragonfly species in middle and
northern European countries, and African species are
expanding their range to southern Europe, whereas Euro-
siberian species are showing range contractions [61]. How-
ever, it is not known for every event whether the species
arrived autonomously at the new location or profited from
anthropogenic assistance, thus, the term ‘cryptogenic’ has
been suggested for a species that is not demonstrably
native or introduced [62].

It is often difficult to disentangle human-mediated
movements and natural migration processes. For example,
the present northward expansion of the native moth Thau-
metopoea pityocampa probably results from a combination
of a natural short-range expansion triggered by climate
warming and of long-distance events where moth pupae
are carried with the soil accompanying large pine trees
translocated by humans as ornamentals (A. Roques,
personal observation). Mediterranean insects such as the
praying mantis Mantis religiosa and the bush cricket
Meconema meridionale are expanding their native range
in southern Germany, but they are also found further
north, far away from their natural range; these popu-
lations are considered to be the result of accidental trans-
port by humans [61].
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With continued climate change, native species are forced
to shift their ranges over ever-larger distances and/or
depend on human assistance to reach suitable habitats.
In times of human domination of ecosystems of the Earth,
their transfer to the new habitat might have occurred
directly with humanassistance [18,63,64] or indirectly prof-
iting from human infrastructures linking previously uncon-
nected areas [25]. Hence, it becomes increasingly difficult to
assess the role of humans in the observed range expansion
[65,66], especially if species originate from the same con-
tinent or adjacent regions, but human assistance in their
transfer cannot be excluded. This increases the risk of being
perceived in the new habitat as an alien invader. Thus, a
crucial distinguishing factor between native and alien
species for the actual definition [67] and also for inter-
national agreements [68] becomes increasinglyblurredwith
continued climate change.

Consequences of climate-mediated invasions
Alien species can be viewed as drivers and passengers of
change in biological communities [69,70]. Many invasive
species exert strong impacts on invaded communities and
ecosystems [71] and transform ecosystem properties [10],
which inevitably leads to changes in biological commu-
nities. The consequences of climate-mediated biological
invasions are far-reaching and more controversial than
those of past invasions not affected by climate change,
where species typically originate from habitats with
similar climatic conditions [72,73]. In climate-mediated
invasions, the occurrence of an alien species depends on
a change in site conditions that might push the system to a
different location in environmental space. For example,
milder winters changed the environmental space of decid-
uous forests to conditions that are now more suitable for
evergreen broad-leaved species [31]. As a consequence,
resident species can become increasingly poorly adapted
to the local environment, which will then provide oppor-
tunities for newcomers that are better adapted and, thus,
more competitive under the new conditions. Expanding
native and alien species sharing similar traits and site
preferences could establish mixed communities, such as a
new assemblage of evergreen broad-leaved plants estab-
lishing in former deciduous broad-leaved forests at the
southern foot of the European Alps [74]. Likewise, combi-
nations of the invasion of alien species and climate change
have resulted in the reorganization of marine ecosystems,
as shown for example in the Atlantic waters off the coast of
the USA [75] and Europe [76], and in the Mediterranean
Sea [77]. Such mixed assemblages and the resulting ‘novel
ecosystems’ [78] raise important questions in an applied
context; for example, which factors enable native species to
persist with invaders once the latter have established [79]?
Which invasive species should be targeted for control and
which ones can be ignored [80]?

Environmental changes, producing expanding or shift-
ing species’ ranges, respect neither political borders nor
those of nature reserves. Hence, some species that increase
their range as a result of climate changemight be perceived
in a new administrative region as alien and could be
subject to varying forms of control to prevent their spread
[60]. From this perspective, conservation strategies should

also respect and consider dynamic ecological processes to
preserve biodiversity [81,82], otherwise well-intentioned
control measures against invasion might result in unex-
pected outcomes [83,84].

Lack of knowledge and research needs
Most of the current information about range shifts and
invasions comes from the plant and animal kingdoms,
whereas little is known about invasions of alien microor-
ganisms [85]. For example, modern forestry practice uses
commercial mixtures of symbiotic ectomycorrhizal fungi
for successful establishment of trees in silviculture [86],
transporting them away from their native distribution
range. The impacts of these alien fungi on local ecosystems
are unknown, not to mention the impacts of the interaction
with climate change. What is known, however, is that the
introduction of symbionts can trigger the invasion of alien
trees, such as pines, in parts of the southern hemisphere
[87].

Another gap in our knowledge is that there is an obvious
unbalanced coverage of evidence for climate-induced inva-
sions. Most of the existing knowledge focuses on changes in
temperature because pattern and trend in temperature are
less heterogeneous than expected for precipitation regime
[22], which makes it easier to derive general trends. None-
theless, changing patterns of rainfall and water availabil-
ity are a major component of global climate change and
could impact large parts of the world, such as Australia,
Africa, as well as parts of Asia and the Americas, where
water is the major limiting factor. Hence, future research
should provide a more balanced picture of climate-induced
changes, both geographically and in terms of factors other
than temperature. There is also more evidence of expand-
ing range margins than retreats and, as in the case of
climate-induced range shifts in native species, the trailing
edge of alien species’ ranges remains poorly studied [88].

The interactions of the various pressures involved in
global change (e.g. changes in climate, atmospheric com-
position in terms of CO2 and nitrogen compounds, chan-
ging land use) and the associated feedback effects are likely
to represent one of the largest uncertainties in projections
of future biodiversity change [89,90] and will have pro-
found impacts on research into global change and ecosys-
tem management. The same applies for indirect impacts,
as for example for aquatic environments the effects of
changing temperatures on water column stratification,
changes in ocean currents, pH, or upwelling, adding
further question marks to the longer-term development
of ecosystems under climate change [91].

The simultaneous action of all these intervening press-
ures are expected to result in synergistic effects, meaning
that, in combination, they have a greater total effect than
the sum of individual effects alone [92]. In this framework,
the role of alien species should be assessed in a more
integrated and dynamic context involving shifting species’
ranges and changing compositions and structures of com-
munities under changing environmental conditions.

Conclusions
In a changing world, it will be increasingly difficult to
evaluate the impacts of alien species and prioritising
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species for removal, and it is likely that the increasing
presence of ‘new’ species and the decline of ‘old’ ones will
change successional patterns and ecosystem functioning
[93,94]. With continued climate change and the resulting
increasing discrepancy between the requirements of resi-
dent species and altered environmental conditions, one
should take into account that some of the alien species
that are earmarked for control today might become accep-
table or even desired species at some sites tomorrow to
assure the functions and services of local ecosystem [95].
Although this cannot be an excuse to ignore current threats
from alien species, plans to control them should consider
the potential consequences that such control might also
have for native species and ecosystems under climate
change scenarios.

These changes pose complex challenges for the man-
agement of biodiversity as well as of wild and cultivated
resources and could include implications for ecosystem
functioning, especially with the addition or loss of ecosys-
tem engineers [96]. Hence, management practices with
regard to the occurrence of ‘new’ species will require com-
prehensive evaluation of changing habitat conditions and
will depend on the individual case. They could range from
complete eradication to toleration and consideration of the
‘new’ species as an enrichment of the local biodiversity as a
means to facilitate ecosystem restoration or to maintain
ecosystem function as native communities re-assemble and
establish under a new climate regime.
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W.T. by the ANR Biodiversité DIVERSITALP; A.R. and C.R. by the ANR
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