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Abstract—In 5G device to device (D2D) communication, two
users residing in close proximity can directly communicate
among themselves without the need of a base station. Such a
communicating pair of users forms a D2D link which operates on
a common channel. Suppose Y dedicated channels are available
to support the D2D communications. Since channels are limited
resources, we may have to reuse the same channel to multiple
links in order to enhance the capacity. But if two links are
interfering to each other, they cannot use the same channel to
avoid co-channel interference. The interference constraints at a
particular time instant t can be modeled in terms of a graph g(t)
where each vertex represents a link and two vertices have an
edge between them if their corresponding links are interfering
to each other. At any time instant, a vertex must be assigned
with a channel, otherwise the corresponding user pair can not
communicate. Due to the movement of the users, a color/channel
assigned at time t�1 may not be a valid coloring at time t. Hence
we may have to recolor some vertices to satisfy the interference
constraints. Our objective is to minimize the total number of
such recoloring/perturbations A(t) at time t. To minimize A(t),
we propose a decentralize differential coloring (DDC) algorithm
and calculate the asymptotic bound on A(t) produced by DDC.
We also compare the value of A(t) produced by DDC with
other existing approaches. Results show that DDC produces less
perturbations than the existing approaches. Theoretical results
have also been validated through simulations.

I. INTRODUCTION

In 5G device to device (D2D) communication, two proximity
users residing within some transmission range of each other
can communicate directly without involving the base station
[11], [12], [13], [14], [10]. Each D2D communicating pair
forms a link and communicate through a common channel.
We assume that some Y channels are available for providing
the D2D communications [19], [26], [27] which are different
from those being used by the cellular networks. Since channels
are limited resources, we have to reuse the same channel to
multiple links. We assume a simple wireless network model
that uses only omni-directional antenna. Hence if receiver of a
link is residing within the interference range of the transmitter
of another link, they cannot communicate through the same
channel to avoid interference [31]. As discussed in several
studies [19], [20], [21], [9], [15], the interference relationship
among the active links at a particular time instant t can be
modeled as an interference graph g(t) = (V (g(t)), E(g(t))),
where each vertex represents a link and two vertices have an

edge between them if their corresponding links are interfering
to each other. At a particular time instant, a link may or may
not be active. Moreover, as interference range is typically small
and users are moving, edges may appear or disappear over
time. Since both V (g(t) and E(g(t)) are time variant, g(t)
becomes a dynamic graph [1] which evolves over time.

To have a smooth communication, at each time t, each
active link must be assigned with a channel such that the
interference constraints are satisfied. In other words, at each
time t, we have to find a channel/color vector C(t) = (ci(t))
of g(t), where ci(t) 2 {1, 2, · · · , Y } is the channel/color
assigned to link/vertex i so that no monochromatic edge exists.
Two interfering links form a monochromatic edge if they are
assigned with the same channel. Since g(t) is a dynamic graph,
C(t � 1) of g(t � 1) may not be a valid coloring of g(t).
If we copy the colors of the common vertices of g(t � 1)
and g(t) from C(t� 1) to C(t), many monochromatic edges
may form in g(t). The graph induced by those monochromatic
edges is termed as conflict graph gc(t) [15]. To dissolve each
monochromatic edge, we have to recolor at least one endpoint
of it. Thus to dissolve all monochromatic edges, we have to
recolor the vertices of a vertex cover of gc(t). Let A(t) be the
total number of recoloring/perturbation in C(t) from C(t�1).
That is, A(t) =

P
i Ii(t) where Ii(t) = 1, if ci(t) 6= ci(t�1),

and 0, otherwise. In a practical point of view, recoloring a
link essentially implies switching the channel of that link and
hence it incurs a delay. To minimize such switching delays,
we must minimize A(t). Given Y , C(t � 1) and g(t), our
problem is to find C(t) such that no monochromatic edge
exists in g(t) and A(t) gets minimized. It is evident that the
problem is equivalent to find the minimum vertex cover of
gc(t) and hence NP-complete.

There could be two different approaches to solve this
problem. First is the centralized approach, where using the po-
sition information of the D2D communicating pairs we could
explicitly build gc(t) and then find its vertex cover to minimize
A(t). Second one is the decentralized approach. Here each
D2D communicating pair will decide its coloring themselves.
For such a decision to be made it has to exchange some
control messages with its neighboring devices. We assume
that these control message communications will be held using
a separate channel and scheduling of such communications
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would be done by the assistance of the base station. Note that
for decentralized approach, we take help of the base station
only for the control message interactions. This kind of help
of base station had widely been taken in different distributed
algorithms in the context of D2D communications [25], [26].
In fact, availability of base station is the fundamental differ-
ence of 5G D2D communication network from the Ad hoc
network. Since the computation of channel allocation will be
done by the D2D communicating pairs themselves, significant
amount of overhead on the base station can be reduced.

A. Related Literatures
Coloring g(t) with Y colors is equivalent to traditional graph
coloring problem, which is known to be NP-complete [24],
[23]. Graph coloring in both centralized and distributed set
up is a well studied subject. Several centralized [2], [3] and
decentralized [4], [5] graph coloring techniques are available
in the literature.

Coloring g(t) with Y colors with minimum perturbations is
a less studied subject. It is evident that if Y � |V (g(t))|, 8t
then the best solution is to apply a new color to each newly
appeared vertex and retain that color throughout. According
to [1] and also to our best of knowledge, only little works had
been done to solve the problem of perturbation minimization.
The problem had mostly been tackled before in terms of
centralized heuristics and experimental results [6], [7], [8],
[15]. In [1] authors proposed a big bucket and a small
bucket algorithm, in which per newly appeared vertex or
monochromatic edge they try to minimize the total number
of recoloring/perturbations.

In [9], [15] authors deal with a slightly different problem.
They assumed Y (t) is not known and minimized a combined
cost function f(t) = Y (t) + ↵A(t) of number of colors
and perturbations where ↵ is a constant representing relative
weights of Y (t) and A(t). In [9], two approaches namely
SNAP and SMASH are proposed to minimize f(t). SNAP
considers each graph separately whereas SMASH considers
a union of k graphs. In [15], a differential coloring (DC)
technique is proposed. DC first copies the colors of the
common vertices of g(t) and g(t� 1) from C(t� 1) to C(t)
and then constructs the conflict graph gc(t) induced by the
monochromatic edges created by such copying of colors. Next
DC finds a minimum vertex cover vc(t) of gc(t) using a 2-
approximation vertex cover finding algorithm [29], [28] and
recolors the vertices of vc(t). DC is a centralizes algorithm
which needs channel state information (CSI) of each device
to build gc(t). Note that several decentralized algorithms exist
for finding a minimum vertex cover [16], [17], [18] of a
given graph. But all these algorithms need a graph as input
to find a minimum vertex cover of it. In other words, we
must have to construct the conflict graph gc(t) first to apply
those algorithms to find a minimum vertex cover of gc(t). It is
important to note that building gc(t) in a decentralized manner
itself is a challenging task. To build gc(t) in a decentralized
way, each node must know the information of the entire
graph g(t), which involves huge amount of control message

overhead. In this paper, we attempt to find a minimum vertex
cover vc(t) of the conflict graph without explicitly building
the conflict graph. Next, we recolor the vertices of vc(t) in a
decentralize fashion so that A(t) get minimized.

B. Our contributions
Our contributions are summarized as follows:
• A decentralized differential coloring (DDC) algorithm is

proposed for perturbation minimization problem. DDC
finds a minimal vertex cover vc(t) of the conflict graph
gc(t) and recolors all the vertices in vc(t) to keep the
perturbations at minimum level. The salient feature of
DDC is that it does not explicitly generates gc(t) to find
vc(t) and hence DDC reduces the computation time as
well as control message overhead.

• Considering g(t) as random graph, we have computed
the expected number of perturbations E[A(t)] produced
by DDC theoretically.

• We compared DDC theoretically as well as through
simulations with existing centralized big and small bucket
algorithms. We have shown that DDC performs better
than those algorithms in terms of expected number of
perturbations.

• The theoretical results have also been validated through
simulations.

Rest of the paper is organized as follows. In section II, we
present DDC formally. In section III, we present asymptotic
bounds on E[A(t)] produced by DDC. We compare DDC
with small and big bucket algorithms in section IV. We have
validated our bounds through rigorous simulations in section
V. The paper is concluded in section VI.

II. DECENTRALIZED DIFFERENTIAL COLORING (DDC)
In this section we present our decentralized differential col-
oring (DDC) algorithm to minimize A(t). Initially all links
which were active in g(t� 1) and are still active in g(t) will
retain their previous colors. Links which become newly active
in g(t) will be assigned with random colors. This may cause
some monochromatic edges in g(t). We assume that the user-
pair forming a D2D link can identify whether its channel is
being used by other user-pair in its proximity by observing
the channel state information (CSI). When user-pair of a link
identify that some other link is interfering with it, then the
concerned user-pair goes in channel switching mode. In this
mode, the concerned user-pair will be in communication with
each other and decide together a different channel for commu-
nication so that the monochromatic edge is dissolved. When
user-pair forming link i finds that its channel is being used
by another link, it broadcasts its channel/color information
to all its neighbors. Here a vertex is a neighbor of another
vertex if it falls withing the interference range of that vertex.
Communication power of a vertex will be set to transmit
upto its interference range while the concerned vertex is in
channel switching mode. Communications in this mode will
be performed by taking the assistance of the base station. Each
receiving user of that signal then reply back their channel
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information to the requesting user. By this way the user-pair
forming link i will get the total channel information of its
neighbors and construct a set Mi(t) containing all links which
are active with the same channel as that of link i. If Mi(t) is
not empty, link i randomly chooses link j 2 Mi(t) and send
a pairing request to j. If i and j both send pairing request to
each other then they form a pair and send that information to
all their neighbors. The said pair (i, j) will then choose two
random colors from {1, 2, · · · , Y } such that for each link the
color of that link is not being used by their neighbors. After
forming the pair and successfully acquiring the channel, both
i and j will get released from channel switching mode. If link
i is not paired, upon receiving pairing requests from other
neighbors, it removes those neighbors from Mi(t). If Mi(t) is
still not empty, i repeat the process to pair up with another link.
Finally when Mi(t) become empty, then no monochromatic
edge exists whose one endpoint is the color used by link i.
In that case link i will get released from channel switching
mode. This algorithm is presented formally in Algorithm 1
which will be run by the user-pair forming link i.

Algorithm 1: Decentralized differential coloring (DDC)
Input: Set of colors {1, 2, · · · , Y }, ci(t� 1)
Output: ci(t)

1 For each vertex common in V (g(t)) and V (g(t� 1)) do
ci(t) = c(t� 1);

2 For each newly appeared vertex set ci(t) to a random color
from {1, 2, · · · , Y };

3 Check whether ci(t) is used by any other link by seeing CSI;
4 if ci(t) is used by another link in its neighborhood then
5 Enter into channel switching mode;
6 Send current color ci(t) to all neighbors and request for

their colors;
7 Receive colors from all neighbors;
8 Construct Mi(t) as the set of all neighbors whose color is

same as ci(t);
9 while Mi(t) 6= ; do

10 Choose an user j randomly from Mi(t);
11 Send pairing request to j;
12 Receive pairing request from all neighbors;
13 if j sent a pairing request to i then
14 Pair with j;
15 Share the pairing status with all neighbors;
16 Choose ci(t) and cj(t) randomly from {1, 2, · · ·

, Y } such that links i and j get colors which are
not being used by their respective neighbors;

17 Exit from channel switching mode;
18 else
19 Receive pairing information from all neighbors;
20 Remove all already paired links from Mi(t);
21 Exit channel switching mode;

22 else if i receives coloring request from any of its neighbors
then

23 Send current color ci(t) to all such requesting neighbors;

Note that Algorithm 1 essentially recolors all endpoints
of a random maximal matching of the conflict graph gc(t)
without explicitly constructing the conflict graph gc(t). Since
any minimum vertex cover must include at least one endpoint

of each edge of a maximal matching, we could bound the
number of perturbations as stated in Theorem 1.

Theorem 1. If optimum perturbation in g(t) from C(t� 1) is
Aopt(t) then DDC essentially creates number of perturbations
A(t)  2Aopt(t).

Proof. It is evident that we must have to recolor each element
of a minimum vartex cover of gc(t) to dissolve all monochro-
matic edges. In other words, Aopt(t) is the size of a minimum
vertex cover of gc(t). Note that Algorithm 1 recolors both
endpoints of each edge of a random maximal matching of
gc(t). Each vertex cover includes at least one endpoint of each
edge of a maximal matching. Also the set constructed by both
endpoints of each edge of a maximal matching is a vertex
cover itself. Hence Algorithm 1 essentially a 2-approximation
algorithm to find a minimum vertex cover of gc(t). Hence
A(t)  2Aopt(t).

Remark 1. It is evident that if we build gc(t) explicitly and
then find the conflict graph, each link requires information
of the whole graph. That is, in that case, control message
overhead for each link would be O(|E(g(t))|). In contrast
to that in DDC algorithm each vertex needs to know the
information of its neighbors only. Hence in DDC the control
message overhead for each link i will be O(deg(i, g(t))),
where deg(i, g(t)) is the degree of vertex i in g(t). Thus the
total control message overhead for g(t) corresponding to the
above mentioned two cases will be O(|V (g(t))| ⇥ |E(g(t))|)
and O(

P
i deg(i, g(t))) = O(2 ⇥ |E(g(t))|) respectively.

Hence DDC improved the control message overhead by a
factor of |V (g(t))|

2 .

Complexity 1. While in switching mode, the user-pair forming
link i has to send and receive color information from all its
neighbors in O(1) time. Let �(gc(t)) be the maximum degree
of gc(t). To form a pair, the user-pair forming link i has to
send pairing request to all its neighbors in O(1) time. There
could be at most O(�(gc(t))) neighbors. Hence probability
that i will be able to form a pair is

�(gc(t))X

j=1

O((
1

�(gc(t))
)2) = O(

1

�(gc(t))
).

Thus expected time required to form a pair is O(�(gc(t))).
Hence the total expected time complexity of Algorithm 1 is
O(�(gc(t))). Also each user-pair forming a link has to store
the information received from all its neighbor. Thus total space
complexity is O(�(gc(t))) per link.

III. EXPECTED NUMBER OF PERTURBATIONS

In this section, we calculate bounds on the expected number of
perturbations generated by DDC assuming g(t) as a random
graph. Let us denote GN,p as a Erdos-Reyni (ER) random
graph where N is the number of vertices and each edge is
generated independently with probability p. It is well known
that the average degree of GN,p is Np. We assume that
some n links are present in a large coverage area. We also
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assume that at a particular point of time a link will be active
with probability pv . As links are independent to each other,
E[|V (g(t))|] = npv and g(t) will be Gnpp,pe , where pe is
the edge generation probability in g(t). It is evident that as
n ! 1, the user density over the entire region tends to
some constant value. In other words, when n ! 1, the
average degree of g(t) tends to some constant value. That
is, npvpe = O(1) when n ! 1. Using this fact we derive
expected number of perturbations in Theorem 2. Before going
to our main result as stated in Theorem 2, we first state
a short result in Lemma 1 using which we will prove the
theorem. We now introduce a notation which will be used in
the proofs of both Lemma 1 and Theorem 2. We denote A(n)
is asymptotically equals to B(n) as A(n) ⇠n B(n). Here
A(n) ⇠n B(n) means

lim
n!1

A(n)

B(n)
= 1.

Lemma 1. Size of minimum vertex cover of Erdos-Reyni
random graph GN,p is O(N2

p), when Np = O(1), Np < 1
and N ! 1.

Proof. It is well-known that the size of the minimum vertex
cover of GN,p is ⇠N N(1 � 1

�(N,p) ) [30], where �(N, p)
is the expected chromatic number of GN,p. We also know
from [30] that when N ! 1, Np = O(1) and Np � 1
then �(N, p) = O(Np) = O(1). Hence the size of minimum
vertex cover of GN,p is O(N) when Np � 1.

We now calculate the size of minimum vertex cover of GN,p

when Np < 1. Let Xi be an indicator variable where Xi = 1
and Xi = 0 represent that vertex i is non-isolated and isolated
in GN,p respectively. Note that P (Xi = 1) = Np when Np <

1. Hence the total number of non-isolated vertices in GN,p is
E[
P

i Xi] =
P

i E[Xi] = N ⇥ P (Xi = 1) = N ⇥ Np. It
is evident that the size of minimum vertex cover of GN,p

essentially is the size of minimum vertex cover of the graph
induced by its non-isolated vertices only. This implies if Np <

1, the size of minimum vertex cover of GN,p will be equivalent
to the size of minimum vertex cover of a GN2p,p0 where each
of N

2
p vertices is a non-isolated vertex and N

2
pp

0 = O(1).
Since each vertex is a non-isolated vertex in such a GN2p,p0 ,
we get N

2
pp

0 � 1. Hence using the above mentioned well-
known result, we get the size of minimum vertex cover of
GN,p as O(N2

p) when Np < 1. Hence the proof.

Theorem 2. Expected number of perturbations in g(t) is
E[A(t)] = O(n

2p4
vpe

Y ).

Proof. Since we are using Y colors to color g(t), E[Y (t)] 
Y . We apply 2-approximation algorithm to find the minimum
vertex cover of the conflict graph and size of it represents the
total number of perturbations. Again in conflict graph each
vertex is independent and identical. Note that to be a member
of conflict graph gc(t) each vertex must be a member of both
g(t) and g(t � 1). Hence conflict graph is also an ER graph
Gnp2

v,p
0
e
, where p

0
e is the edge generation probability in the

conflict graph.

We now calculate p
0
e. It is evident that an edge will be

monochromatic in g(t) only if it is present in g(t), absent in
g(t� 1) and both endpoints of it were colored with the same
color in g(t� 1). Hence

p
0
e = P (ij 2 E(g(t)) & ij /2 E(g(t� 1))

⇥P (ci(t� 1) = cj(t� 1)). (1)

It is evident that P (ij 2 E(g(t)) & ij /2 E(g(t � 1)) =
pe(1� pe). It is also evident that P (ci(t� 1) = cj(t� 1)) =
YX

c=1

(P (ci(t� 1) = c))2. So Equation (1) can be rewritten as

p
0
e = pe(1� pe)⇥

YX

c=1

(P (ci(t� 1) = c))2. (2)

As we don’t put any bias on the colors in DDC algorithm
and colors are chosen randomly and independently from
{1, 2, · · · , Y }, we get P (ci(t � 1) = c) = 1

Y for all
c 2 {1, 2, · · · , Y }. So Equation (2) can be rewritten as

p
0
e = pe(1� pe)⇥

YX

c=1

1

Y 2

=
pe(1� pe)

Y
. (3)

Hence gc(t) is G
np2

v,
pe(1�pe)

Y
whose average degree is

np2
vpe(1�pe)

Y . It is evident that when n ! 1 and npe = O(1)

then np2
vpe

Y (1 � pe) ⇠n
np2

vpe

Y . Now np2
vpe

Y = O(1) as
npe = O(1), and pv , Y are constants. Hence average degree
of G

np2
v,

pe(1�pe)
Y

is ⇠n
np2

vpe

Y = O(1) when n ! 1.
We get from [30] that npvpe is the expected chromatic

number of g(t) and hence npvpe  Y . Thus npvpe

Y ⇥ pv < 1.
Since the average degree of G

np2
v,

pe(1�pe)
Y

is O(1) at n !

1 and np2
vpe

Y < 1, we get from Lemma 1 that the size of
minimum vertex cover of gc(t) is O(n

2p4
vpe

Y ). Hence the proof.

IV. COMPARISON WITH OTHER APPROACHES

In [1] authors have proposed two centralized algorithms,
namely small bucket and big bucket algorithms, for maintain-
ing coloring of a dynamic graph. In their algorithms d levels
are considered. Each level i 2 {0, 1, · · · , d� 1} consists of s
buckets plus an reset bucket. A bucket at level i consists of si
vertices. Each bucket uses Ymax colors and the colors allocated
for each bucket are distinct from the colors of other buckets.
They assumed a coloring algorithm which can color the graph
with Ymax colors. If an monochromatic edge appears one of
its endpoint is removed from the corresponding bucket and
considered as a newly appeared vertex. Once a new vertex
appears their algorithm puts that vertex in an empty bucket
at level i = 0. If s� 1 buckets are already filled in a level it
accumulates all vertices at that level and puts them in an empty
bucket of the immediate upper level and recolor the subgraph
induced by them with the assumed coloring algorithm. They
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showed that each bucket could be colored in Ymax colors and
hence using O(dn

1
dYmax) colors they can color the graph

with O(d) recoloring for each update. Here an update means
appearance of a monochromatic edge or insertion of a new
vertex. Varying the bucket size they conclude O(dn

1
dYmax)

color requirements with O(d) recoloring per update in small
bucket algorithm and O(dYmax) color requirements with
O(dn

1
d ) recoloring per update in big bucket algorithm.

Note that in our problem scenario at each time instant t we
have to recolor the vertices of a minimum vertex cover of the
conflict graph. It is evident that DDC makes 2 recoloring per
update as DDC is a 2-approximation algorithm for finding
a minimum vertex cover of the conflict graph. In contrast
to this, small bucket algorithm requires O(d) recoloring and
big bucket algorithm requires O(dn

1
d ) recoloring per update.

Hence if we set the same Y as the color requirements of all
these algorithms, then DDC produces less perturbations than
big bucket algorithm and if d > 2, DDC also produces less
perturbations than small bucket algorithm. This improvement
is quite expected because of the fact that DDC recolors only
the vertices of a minimum vertex cover of the conflict graph
instead of recoloring both endpoints of each monochromatic
edges.

V. SIMULATION

In this section, we would actually generate random sequences
of g(t)s and observe the behavior of DDC on those random
graphs. At each time instance, there are n links of which
each link gets active with probability pv . Considering g(t)
as Gnpv,pe , we set the average degree of the g(t) as npvpe =
10pv . We observe the number of perturbation A(t) obtained by
DDC for different values of n, pv , pe and Y . For a fixed value
of n, pv , pe and Y we run DDC on 10000 many randomly
generated graphs and report the average A(t) produced by
DDC. Note that the expression of E[A(t)] in Theorem 2 is
asymptotic in nature. For finite n, we now observe the behavior
of E[A(t)] through simulations and compare the obtained
results with the asymptotic results.

In Figure 1 we fix Y = 800, pv = 0.5 and increase n from
500 to 1000 with a step of 25. We observe that E[A(t)] is
almost linearly increasing with n. Note that from Theorem 2
we get that the expression of E[A(t)] as O(n

2p4
vpe

Y ) = O(n⇥
np4

vpe

Y ) = O(n), where npe = O(1) and pv and Y are all
constants. Hence the expression says that if other parameters
remains constant E[A(t)] = O(n). Hence this behavior tallies
with theoretical findings of Theorem 2.

In Figure 2 we fix n = 750, Y = 500 and increase pv

from 0 to 1 with a step of 0.05. We observe that E[A(t)]
is increasing with pv like p

4
v . This observed behavior again

tallies with our theoretical expression of Theorem 2, which is
E[A(t)] = O(n

2p4
vpe

Y ) = O(p4v), as npe = O(1) and n and Y

are all constants.
In Figure 3 we fix n = 750, pv = 0.5 and increase

Y from 500 to 750 with a step of 5. We observe that
E[A(t)] is decreasing hyperbolically with Y . This behavior
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Fig. 1: Behavior of E[A(t)] for DDC with increasing n where
Y = 800 and pv = 0.5
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Fig. 2: Behavior of E[A(t)] for DDC with increasing pv where
n = 750 and Y = 500

also tallies with the theoretical expression of Theorem 2, which
is E[A(t)] = O(n

2p4
vpe

Y ) = O( 1
Y ), as npe = O(1) and n and

pv are all constants.
In Figure 4 we fix n = 750, pv = 0.5 and Y = 500 and vary

pe from 0 to 1 with a step of 1
30 . We observe that E[A(t)] is

first increasing and after reaching a point it started decreasing
down to 0. When pe is small g(t) has smaller number of edges,
hence probability that a monochromatic edge will form is very
small because the probability of edge formation itself is small.
With the increase of pe probability of monochromatic edge
formation gradually increases and hence E[A(t)] increases.
But with increasing number of edges, the chromatic number
of the graph itself will become very high. It is evident that
with low chromatic numbered graph random assignment get
more scope to put same color to multiple vertices. But as the
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Fig. 3: Behavior of E[A(t)] for DDC with increasing Y where
n = 750 and pv = 0.5
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Fig. 4: Behavior of E[A(t)] for DDC with increasing pe where
Y = 500, n = 750 and pv = 0.5

pe cross some threshold g(t)’s chromatic number become so
high that each vertex get eventually different color, and hence
with slight variation of the graph the new graph does not need
any new recoloring. Thats why after a point E[A(t)] started to
decline till it reaches to 0 when the graph become a complete
graph by itself.

We now compare DDC with an existing bucket based
algorithm [1]. We generate ER graphs with different n, pv

and pe. By varying s, d for a given n and Y , we generate
E[A(t)] for bucket based algorithm. Also, for the same n

and Y , we calculate E[A(t)] as produced by DDC algorithm.
The results are reported in Table I. We observe that for a
given value of n, pv , pe and Y DDC produces much smaller
E[A(t)] than the bucket based algorithm. This result validates

the theoretical finding. Here Ab and Ad in Table I represent
Eb[A(t)] produced by the bucket based algorithm and DDC
respectively.

n pv pe s d Y Ab Ad

100 0.5 10/n 2 5 65 20.59 0.80
200 0.5 10/n 2 6 75 41.68 1.97
300 0.5 10/n 2 7 85 61.31 2.39
400 0.5 10/n 2 7 85 81.93 2.61
500 0.5 10/n 2 7 85 105.72 3.89
100 0.5 10/n 3 3 65 18.37 0.80
200 0.5 10/n 3 3 65 38.91 1.50
300 0.5 10/n 3 4 80 59.47 2.43
400 0.5 10/n 3 5 110 85.16 2.15
500 0.5 10/n 3 5 110 105.4 2.58

TABLE I: Bucket based algorithm vs DDC

VI. CONCLUSION

In this paper, we have proposed a distributed differential
coloring algorithm to minimize perturbations for a given
number of colors. We have calculated the expected pertur-
bations produced by DDC and compared with bucket based
algorithm. Finally theoretical findings are also verified through
simulations.
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