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Abstract—As the volume of content served by content distri-
bution networks (CDNs) grows, these networks evolve to improve
performance. Their performance is difficult to characterize be-
cause it depends on a number of factors. In this paper, we develop
a methodology called DBit that can determine whether one CDN’s
user-perceived performance is statistically different from another.
We validate DBit and demonstrate its usefulness on CDNs used
for photo delivery. We use PlanetLab to collect HTTP download
data for 14.5 million photo fetches and RIPE Atlas nodes hosted
in end-user homes in 1470 ASes worldwide to obtain 470,400
photo fetches respectively, from three popular CDNs. We find
that DBit can identify significant performance differences not
just between CDNs, but also across time and location.

Index Terms—Content Distribution Networks, Performance
Analysis

I. INTRODUCTION

Beyond Akamai’s early deployment of a large content distri-
bution network (CDN), other content providers have recently
built out their own CDNs [1], [2], [3], [4], [5]. Today, a very
large proportion of Internet traffic is served by CDNs, so it
is important to develop robust methodologies to understand
their performance. The performance of CDNs depend on many
factors, including placement of the front-end servers in the
topology, the quality of their connectivity to clients, the cache
sizes and the cache efficacy, the compute capacity of the front-
ends, the network connectivity between the front-ends and the
back-end, the efficiency of the storage system (e.g., for photos
and videos) or the compute system (e.g., for search) at the
back-end, and so forth.

There is, however, a lack of a widely accepted system-
atic methodology for their performance analysis. Existing
techniques for CDN performance comparison fall into two
classes. Some studies use first order statistics (mean, median,
percentiles) of performance measures and compare CDNs
based on the differences in the magnitude of these first-order
statistics [6], [7], [8]. Others [9] compare CDNs based on the
distribution of the difference in performance metrics across all
clients. In either case, whether the performance difference is
significant is often a matter of judgement.

Contributions. In this paper, we make the following contribu-
tions: (1) we show that comparisons based on first or second
order statistics can lead to faulty conclusions, (2) we consider
a complementary methodology for comparing CDNs based
on statistically significant differences in the distributions of

performance metrics (like latency) as seen by multiple clients.
Specifically, given two CDNs A and B, we ask: how can
we systematically determine if A’s user-perceived performance
is statistically better than B’s, or vice versa? Our approach,
called DBit, can answer this question for a continuous-valued
performance metric such as latency or throughput. In this
paper, we focus on latency comparisons.

The key idea behind DBit is to use standard hypothesis
testing to establish statistical significance, but adapted for
CDN architectures. Suppose we measure multiple samples of
CDN download latency, for two CDNs A and B, from each
client in a large set of CDN clients. At each client, its samples
approximate the distribution of latency seen for each CDN.
The key idea behind DBit is to use a test of differences in
the distribution at each client: this determines whether, at that
client, A is statistically better than B. Then, we use another
statistical test to determine if there is a statistically significant
number of clients at which A is significantly better than B.

Using active measurements of 14.5 million photo fetches
spanning over a period of eight months from PlanetLab
and RIPE Atlas, we show: (a) that DBit signals statistical
differences where these might be expected to exist (such
as diurnal differences, or differences between cache fetch
and CDN backend fetch performance); (b) that when DBit
detects a statistical difference, the magnitude of the differences
are significant (several hundred milliseconds) and systematic
(visible across multiple, geographically dispersed) vantage
points; and (c) that it is flexible enough to be used to perform a
variety of other comparisons, such as tail latency performance
and outlier detection.

Use cases. DBit is a first step towards a systematic method-
ology for assessing statistical differences between CDN per-
formance. By itself, it can either be used by third-party
companies (like Conviva or Keynote [10], [11]) to provide a
comparative performance of major CDNs. Customers can use
such an assessment as input in deciding to use a CDN service.
Moreover, a CDN can use this methodology to compare itself
against its competitors (for whom it will not have direct access
to performance metrics), to help focus its engineering efforts.

II. MOTIVATION AND DESIGN RATIONALE

In this section we discuss the point in the design space
which DBit aims to occupy and our rationale for choosing it.
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Figure 1— 1(a) A sample plot showing that CDN A is faster than CDN B. KS-statistic is shown by arrow 1(b) A sample plot showing the ambiguous case.
1(c) The significant regions show the fraction of 1’s required for a 95% confidence in the Binomial test verdict.

CDNs in general are dynamic entities with a great degree of
diversity in the way they are engineered and the character-
istics of their workload. For instance, a CDN with a highly
uniform workload like Facebook can be engineered through
very specific optimizations driven by the characteristics of its
workload as compared to a third party CDN like Akamai [5],
[12]. Similarly, factors such as scale, cache size, cache efficacy,
network connectivity to the backend and clients etc. also
affect CDN performance. As a result, CDN performance is
known to vary greatly across across both temporal and spatial
dimensions [10]. Therefore, any straightforward attempt to do
CDN comparison is likely to fall short, since care is required
in selection of the correct metrics and the methodology [6].

Unfortunately, there is a lack of a widely accepted method-
ology to perform CDN comparison. Current techniques range
from back of the envelope calculations or anecdotal evidence
to schemes which are either application specific, or use first
and second order statistics to compare proxy metrics such as
DNS resolution time [6], [13]. It is, therefore, not surprising
that deciding whether the performance difference between
CDNes is significant is often left to judgment.

Our design of DBit is motivated by the need for a sys-
tematic methodology for CDN comparison. We place two
requirements on the design of DBit: that it declares one CDN
to be better than another only when there is a statistically
significant performance difference; and that it be flexible and
can accommodate a variety of performance comparisons.

In the following section we discuss the design of DBit
and also explain our design choices in light of the design
principles.

ITI. How DBIT WORKS

In this section we describe the internals of DBit. Suppose
we want to determine whether the latency difference between
CDN A and CDN B is statistically significant. Conceptually,
DBit has three distinct stages:

Stage 1: DBit obtains active measurements to CDNs from a
set of vantage points V. Each active measurement from a node
v in V to A or B produces one sample of the performance
metric of interest (e.g., latency or throughput). Suppose we
model this performance metric as a random variable X4,
and Xp, for the two CDNs at each node v. In general,
the distributions of X may not be known a priori and can

be different for different CDNs, because the corresponding
performance metric may depend upon many factors, such as,
the location of the client and Photo CDN load, competing
network traffic, etc.

Stage 2: DBit looks for statistically significant distributional
differences in the empirical distributions of the random vari-
ables X. We ask: is the distribution of X 4 , statistically better
or worse than Xp ,? If we use latency as the performance
metric then “better” implies “faster” and the above questions
translates to: is CDN A faster than CDN B?

We frame the above question as a hypothesis, namely that A
is faster than B, which can then be answered using hypothesis
testing. For this purpose, we use the two-sample one-sided
Kolmogorov-Smirnov test (or K-S test) [14]. The KS-Test is
a well-known non-parametric test and makes no assumptions
about the underlying distribution, hence making it a good
fit for our purpose. Its decision is based on the KS-statistic
which is the maximum difference between the two cumulative
distributions. Figure 1(a) shows two sample distributions for
A and B, the arrow shows the KS-statistic (maximum distance
between the CDFs).

Given the distributions of X 4 , and Xp , we are now in a
position to test our hypothesis that A is faster than B against
the null hypothesis that A is similar or slower than B for
a given significance level. The significance level indicates a
degree of confidence in the verdict. Smaller significance levels
are better. For example, a significance level of 0.05 (used in
this paper) means that the null hypothesis can be rejected with
95% confidence.

The output of the KS-test is a single bit by g, for each
vantage point v which is 1 (respectively 0) if the null hypoth-
esis could (respectively could not) be rejected in the favour of
our alternate hypothesis. Thus, if by B, is 1, it implies that
at some part of the distribution A is faster than B for vantage
point v at the specified significance level. However, the KS-test
is one-sided, which leaves the possibility that B is faster than
A in some other part of the distribution. Figure 1(b) shows an
example of this ambiguity.

To deal with this ambiguity, DBit also tests the converse
hypothesis, namely that B is faster than A, before making a
final decision. It generates a final decision bit c4 g, which is
1 if and only if the hypothesis that A is faster than B is true
and the hypothesis B is faster than A is false or vice versa.
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Figure 2—This figure shows the latency distributions of two CDNs for which
the KS-Test is inconclusive, but the first order statistics show CDN A is better
than CDN B. The reason KS-Test is inconclusive because the distribution for
CDN A is bimodal, notice that between 60th-70th percentile CDN A performs
worse than CDN B which is enough evidence for KS-Test to be inconclusive.

At the end of the second stage, each vantage point generates
a bit c4 p ,: these bits are used as input to the third state.

Stage 3: Finally, DBit uses the Binomial test [15] to determine
if the fraction of nodes with c4 g, bits being 1 is statistically
significant. If, for a significant number (as determined by the
Binomial test) of nodes, c4 B, is 1, then we conclude that
A is indeed faster than B. The fraction of c4 B, bits being
1 required to determine statistical significance depends on the
number of vantage points used (Figure 1(c)): for example, if
the total number of vantage points is 250 then at least 150!
vantage points with c4 g, equal to 1 are required to establish
statistical significance.

Choice of Statistical Test. While we choose the KS-test, it
is is not the only test that can be used to detect statistical
differences between distributions: other tests such as the
Anderson-Darling test or Chi-Squared test can also be used.
However, these tests either require a priori assumptions about
the underlying distribution or are only designed to test whether
a given sample comes from a specific probability distribution.
These constraints are contrary to the DBit’s generality princi-
ple which requires that minimum assumptions be made about
the data. Hence, the non-parametric K-S test is more suited
for comparing empirical distributions the way DBit does. As
an aside, the K-S test is known to have flaws, for example
when testing whether a given distribution matches the normal
distribution [16], but this does not apply in our setting since we
use the two-sample one-sided version of the test to compare
two samples rather than testing whether a sample matches the
normal distribution.

Why simpler approaches are insufficient. Comparing CDNs
using means or percentiles can be misleading [17], [18] in at
least two cases: when CDN performance measures like latency
have skewed distributions (as is often the case with CDNs
serving clients with significant geographic diversity); or when
the distributions are multi-modal (e.g., when vantage points
are directed to geographically different front end servers due

IThe value 150 is calculated as 60% of 250
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Figure 3—This figure shows the latency distributions of two CDNs for which
the KS-Test is conclusive, but the first order statistics are ambiguous as CDN
A is worse than CDN B with respect to average and median but better at the
95th percentile. The reason KS-Test is not inconclusive because the difference
in performance at the tail is insignificant evidence for KS-Test, whereas the
performance difference between O to 90th percentile is significant.

to load balancing). For example, Fig. 2, shows the CDF of
HTTP request completion latencies from two different CDNSs,
where the KS-Test is inconclusive but the first order statistics
show that CDN A is consistently better than CDN B. Similarly,
in Figure 3 we show a different example where KS-Test is
conclusive but first-order statistics are inconclusive. Notice
that CDN A is worse than CDN B with respect to average
and median but better at the 95th percentile.” In scenarios
such as these, using first order statistics can lead to erroneous
conclusions, and comparing distributions is often the most
robust way to judge statistical differences.

IV. DATA COLLECTION METHODOLOGY

In this section we describe our methodology to collect
data which we later use to demonstrate how DBit’s approach
can be applied to detect statistically significant performance
differences. The data is collected through active measurements
spanning a period of six months. We use two different testbeds
to fetch content from popular Photo CDNs and record the
download latency.

Testbed Selection. In order to collect data we use two well
known testbeds, namely PlanetLab and RIPE Atlas. We fully
acknowledge the shortcomings of both PlanetLab and RIPE
Atlas testbeds in terms of location of their vantage points and
their suitability for measuring the performance of CDNs. For
instance, it is well known that PlanetLab nodes on average
tend to have better connectivity than real users in the wild.
This is largely due to the fact that 85% of PlanetLab nodes
are located in research organizations or university campuses
which typically have better provisioned networks with high
speed upstream connections [19]. Moreover, user accounts on
a PlanetLab node run inside a virtualized environment, hence
any latency measurements that involves the NIC (Network
Interface Card), such as HTTP request to fetch an object
from an external source can simply get inflated due to the

2Both these examples are taken from real-world measurements described
later.



virtualization overhead and the load imposed by concurrently
active user accounts on a particular node. Similarly, the RIPE
Atlas nodes are also known to be biased towards the research
community, although a number of nodes are hosted in end user
homes but these nodes are mostly setup by researchers using
the testbed.

Addressing bias in vantage point selection is a non-goal of
this paper. Our goal is to demonstrate how DBit can be used to
compare two CDNS, given measurements from several vantage
points. In our case, we have used two open measurement
infrastructures for this demonstration. While our actual results
might possibly be skewed by vantage point selection bias, the
value of our paper is in showing how to use DBit to study
various aspects of CDN performance. A study or service that
claims to compare CDNs would have to address this bias, but
once they do, they can leverage the statistical validity of DBit’s
hypothesis tests. DBit is also not limited by scale, since the
data is collected from distributed vantage points, it can easily
scale to bigger measurement studies, infact many real world
systems routinely collect such data, as discussed more in §VII.

The Photo CDNs We collect data from three Photo CDNs:
Google+, Facebook and Flickr. The general architecture of
these three Photo CDNs is as follows: Photo CDNs direct
client photo fetches to front-end servers, and a cache miss
results in an access to a photo back-end. Each photo is
accessed by a URL. We obtain direct CDN URLs to photos
by employing user facing APIs for each of the Photo CDN
(Facebook’s Graph API, Google’s Data API, Flickr’s Data
APL)

Google+: Recent work has shown that Google has expanded
its Web serving infrastructures and directs search requests
to satellite front-ends, which relay the requests to back-end
data centers [4]. Through measurements spanning the Google
address space we have found that these satellite front-ends
also serve requests for Google+ photos. Therefore, Google+
has front-ends at 1400 distinct sites across the world [4].

Facebook: Facebook uses its own set of cache front-end
servers [5] and also relies on Akamai [20] for front-end servers
to serve photos around the globe. In our paper, we treat the two
sets of cache servers differently, since they may have different
performance properties [21]. Hence, in what follows, every
reference to the Akamai CDN refers to Facebook’s use of
Akamai. Beyond nine known Facebook front-end servers (the
edge caches in [5]), we have discovered through active probing
14 additional sites belonging to Facebook. Of these additional
sites, 1 is in the US and the remaining are in Europe and
Asia?

Flickr: An analysis of DNS names from our measurements
indicates Flickr directs clients to three photo back-ends. These
sites host three of the five known Yahoo! data centers [22].

Vantage Points. To collect HTTP download data from Photo
CDNs, we use 162 PlanetLab vantage points each from a

3Seattle, Amsterdam, Paris, Frankfurt, Hong Kong, Kuala Lumpur, London,
Lulea (Sweden), Madrid, Milan, Tokyo, Sao Paulo, Singapore, Vienna

distinct site. PlanetLab provides rich visibility into components
of performance and allows us to record the latency of each
stage of the entire life-cycle of a HTTP request.

We also use the RIPE Atlas testbed to collect data from
a more constrained environment. RIPE does not have the
flexibility of PlanetLab since it does not provide direct access
to the RIPE probes. Moreover, measurements once configured
and launched from the RIPE dashboard can’t be changed
dynamically. RIPE is also limited in reporting the performance
of different stages of a HTTP request, its current version only
reports the download completion time but gives no insight into
other stages such as the time to perform the TCP handshake
or the time to first byte etc. However, it still provides us with a
valuable resource in demonstrating DBit’s ability to work with
a constrained dataset. We select a set of 1470 RIPE vantage
points, each in a distinct AS, which are hosted in end user
homes.

Latency Measurements and Reference Stream.

From each Planetlab vantage point, we measure two forms
of latency: cold-fetch latency which is the time taken to
download a non-cached photo and hot-fetch latency which is
the time taken to download a cached (accessed in recent past)
photos. All downloads were performed through cURL using
direct CDN URLSs to photos. cURL provides separate latency
measures for DNS resolution, TCP connection setup, time-
to-first-byte (the time between sending the HTTP request, and
receiving the first byte) and time to download the entire photo.

To measure hot-fetch latency each vantage point repeatedly
downloads a photo every 30 minutes, and for cold fetch latency
a vantage point downloads a different photo every hour. We
assign 150 different photos to each vantage point. This number
ensures that a photo will be re-downloaded after six days
which is long enough for the photo to be evicted from any
cache. We have confirmed this using our measurements: for
example, on Facebook we found the eviction times to be
between 52 and 60 hours.

We followed substantially the same methodology for the
RIPE vantage points, but with one important difference: all
accesses from RIPE vantage points were to photos that were of
resolution 1x14. Since most RIPE nodes are in home networks,
we used smaller photos to minimally disturb home users’ per-
ceived network performance. Moreover, because of limitations
in the way measurement campaigns can be mounted on RIPE,
we were only able to measure hot-fetch latencies from the
RIPE vantage points.

Reference Stream. To measure these forms of latency, we
uploaded a total of 600,000 photos, or 200,000 for each of the
three providers (Facebook, Google+ and Flickr). We uploaded
these to newly created accounts and set privacy settings to
ensure that these photos could not be accessed by other users
of these Photo CDNs. All photos were JPEG images of the
same resolution (960x640) and the same JPEG quality factor
(97). All our Planetlab experiments ran between April and
November 2014 during which we retrieved a total of 14.5

“#a 1x1 resolution JPG image comprises of a single pixel



Hot vs. Cold Fetches
Akamai Facebook Flickr Google+
CAHJHAC|JCAHJHAC[CAHJHAC | CAHJHAC
cA,B.v frac. 0 0.9864 0.034 0.7007 0 0.9116 0 0.9796
P-value 1.1e-44 | 1.2e-40 | 3.0e-33 | 8.1e-08 1.1e-44 | 1.1e-29 | 1.1e-44 | 5.9e-39
Significant HV/ HV/ HV HV/

Table I—Hot fetch and cold fetch comparison. DBit correctly identifies that
hot fetches have lower latencies than cold fetches

million photo fetches. Our latency measurements for photos
from RIPE Atlas ran for 12 days between Dec 1-12, 2014.

V. EVALUATION

In this section we use our collected data to demonstrate
different use cases for DBit. First, we validate the correctness
of DBit by checking whether it can detect known performance
differences or not. Second, we show how to use DBit to
uncover statistically significant difference in performance of
a CDN and finally we explore the range of questions which
can be answered by DBit. In summary, following are our goals
for the evaluation of DBit:

o Does DBit correctly identify differences which are
known to be (likely) true and hide differences known
not to exist?

« How can DBit be used to detect statistically significant
performance differences?

o What is the actual magnitude of differences when DBit
identifies statistical performance difference?

« Is DBit flexible enough to perform other kinds of
comparisons?

A. Is DBit Correct?

We first evaluate DBit by testing its ability to detect sta-
tistical differences in settings where intuition suggests there
should be a significant performance difference.

Hot vs. Cold Fetches. It is reasonable to expect that hot
fetches are faster than cold fetches. To test whether DBit’s
results are consistent with this expectation, we obtain the
distribution of hot and cold fetches Xp , and X¢ , for each
Photo CDNs at each node v in the set V and use them as
inputs to second stage of DBit. (As an aside, although in §III
we described DBit in terms of comparing two CDNs, DBit
can be used to compare the performance of a given CDN
under different conditions. This is done by conditioning the
distributions appropriately, as we have done here by generating
separate hot and cold fetch distributions.)

Table I shows the results from DBit. For example, the
Akamai column shows two hypotheses: C A H and H A C,
where A sign denotes a “faster than” relation, hence, H A
C should be read as “Hot is faster than Cold”. The ca B
row shows the output of the second stage of DBit, that is,
total fraction of nodes where the hypothesis is true, so under
the hypothesis C A H, at no node is the hypothesis true
resulting in a value of 0. Conversely, the high value under
the hypothesis H A C signifies that an overwhelming majority
of the nodes found that the hot fetches are indeed faster than
cold fetches. The P-value row shows the output of DBit’s
third stage, that is, the probability of getting the fractions in

Time of Day Variation Detected by DBit
Facebook Flickr
PSAP2Z [ P2APS [PSAP2 [ P2APS
cA.B.v frac. 0.0370 0.8519 0.1111 0.5741 0.0556 0.7407

P-val 1.6e-13 1.4e-07 3.3e-09 3.4e-01 2.9e-12 5.4e-04
Significant P2/ P2/

Table II—Time of Day Comparison for Hot Fetches, DBit correctly identifies
that P2 has lower latencies than PS.

Akamai
PSAP2Z [ P2AP5

Google+
PSAP2Z [ P2APS
0.1111 0.3889
3.3e-09 1.3e-01

the c4 B, row due to mere chance. Observe that the values
are negligibly small, ruling out the possibility of chance with
high probability. By similarly examining other columns, we
see that this statistical difference persists across other Photo
CDNs. Thus, we can conclude that, DBit correctly identifies
that for all Photo CDNs, hot fetches are distributionally faster
than cold fetches. Finally, the “significant” row shows the final
outcome of DBit.

Peak vs. Off-peak hours. Internet traffic and server load
is known to follow diurnal patterns. Thus, one might expect
CDN performance to be better during off-peak hours and
worse during peak hours. We use DBit to see if its results
are consistent with this expectation. To understand this, we
select a subset of 54 Planetlab nodes from our set which
lie in the same time zone and divide the 24 hour day into
4 hour periods (labeled P1 to P6), with P1 from 2:30am-
6:29am, P2 from 6:30am-10:29am and so on (these periods
are determined by local time at the corresponding nodes’
timezone). For each Photo CDN, we obtain the distribution of
each period Xp1,,, Xp2v, XpP3u, Xpa,w, Xps,p and Xpg,
for each Photo CDNs at each node v in the set V and use
DBit to compare distributions from one period to the Photo
CDN’s own distribution in another period for both hot and
cold fetches. DBit detects that there is a statistical performance
difference between P2 and P5. We show the results in Table II
for the comparison between P2 and P5. P2, the early morning
hours between 6:30am - 10:29am, sees better performance than
evening (6:30pm - 10:29p.m) of PS. While all CDNs exibit
better performance during P2, DBit does not determine the
differences to be statistically significant in case of Facebook
and Google+, since these difference are small.

B. Using DBit to compare CDNs

We now use our collected dataset to demonstrate how
DBit can be used to compare the performance of CDNs.
Towards this end, we compare the performace of Flickr with
Facebook and Google+. Flickr uses Yahoo’s CDN to serve
content around the globe. It is known from previous work
that the scale of Yahoo’s CDN is much smaller than Akamai
and Google [22]. Our measurement of Facebook’s content
serving infrastructure also confirms that Facebook operates
a greater number of Edge Caches than Flickr. Given this
background knowledge, it is reasonable to expect that the
latency performance of Flickr should be inferior to other Photo
CDNs with respect to both hot and cold fetches.

It is known from previous work that CDN performance can
vary considerably across both spatial and temporal dimen-
sions [23]. Therefore, in order to apply DBit we divide our
PlanetLab vantage points on the basis of continents, which



Global Hot Fetch Comparison Global Cold Fetch Comparison
Flickr Vs Facebook Flickr Vs Google+ Flickr Vs Akamai Flick Vs Facebook Flickr Vs Google+ Flickr Vs Akamai
FBAFl | FIAFB | G+ AFl | FIAG+ | AkKAFl | FI A Ak FoAFl | FIAFB | G+ AFl | FIAG+ | AKAFl | FI A Ak
cA,Bw frac. | 0.6481 0.1296 0.9444 0 0.8086 0 0.9074 0.0185 0.9691 0.0062 0.8519 0.0123
P-value 2.0e-04 5.1e-23 6.1e-35 3.4e-49 7.9e-16 3.4e-49 2.1e-28 2.4e-43 3.1e-40 5.6e-47 1.2e-20 4.5e-45
Global Significant? Facebook v/ Google+ v Akamai v/ Facebook v/ Google+ v/ Akamai v/
N. America Hot Fetch Comparison N. America Cold Fetch Comparison
ca,Bw frac. 0.7761 [ 0.0149 0.9701 | 0 0.9104 ] 0 0.9403 | 0 0.9403 0 0.806 [ 0.0149
P-value 6.5¢-06 | 9.2e-19 3.0e-17 | 1.4e-20 1.5e-12 | T1.4e-20 I.Ie-14 | T1.4e-20 1.4e-20 1.Te-14 4.5e-07 [ 9.2e-19
N. America | Significant? Facebook v/ Google+ v/ Akamai v/ Facebook v/ Google+ v/ Akamai v/
Europe Hot Fetch Comparison Europe Cold Fetch Comparison
ca,B,v frac. | 05949 [ 0.2278 0962 | 0 0.7595 ] 0 0.8734 [ 0.0253 0.9873 0.0127 0.8734 [ 0.0127
P-value 1.2e-01 [ 1.3e-06 27e-19 | 3.3e-24 4.2¢-06 | 3.3e-24 5.5e-12 | T1.1e-20 3.3e-24 2.7e-22 55e-12 | 27e-22
Europe Significant? X Google+ v/ Akamai v/ Facebook v/ Google+ v/ Akamai v/

Table III—Hot and cold fetch results for Flickr against other Photo CDNs. Ticks denote a significant comparison, The coverage includes the total set of

nodes, nodes in North America and nodes in Europe.

is also the finest granularity permitted by our data. Another
study which has greater number of vantage points may choose
to group vantage points at much more finer granularities such
as cities or metro areas.

We then apply DBit to these two groups as well the global
set of vantage points. When comparing Flickr to a given
Photo CDN we frame two hypothesis to test both sides of the
comparison. For example, when comparing with Facebook,
the framed hypothesis are “Facebook is faster than Flickr”
and “Flickr is faster than Facebook”. Table III shows the
results of both the second and third stage of DBit for Flickr
in comparison to other Photo CDNs for both hot and cold
fetches. The c4 B, row shows the total fraction of nodes
where the hypothesis is true, whereas the p-values show if
the fraction of true nodes is significant. Since majority of
the comparisons reveals statistically significant differences in
performance between Flickr and other Photo CDNs, we can
conclude with sufficient confidence that for our given dataset,
Flickr’s performance is indeed inferior.

Notice that when comparing Facebook and Flickr in Europe,
even though 59% of the nodes accept the hypothesis that
Facebook is faster than Flickr, the final verdict is ruled to
be insignificant by DBit. This points towards the conservative
approach taken by DBit which detects performance difference
only when there are statistically significant reasons to do so.

For complete comparison of all Photo CDNs we refer the
reader to the accompanying tech-report [21].

C. What is the magnitude of differences?

In this section, we try to understand the magnitude of dif-
ferences based upon which DBit detects statistical differences.
To this end, we employ the following methodology for a
quantitative evaluation. Say that DBit determines Flickr to be
slower than Google+, then at the second stage of DBit we
are able to select all those nodes where Flickr is slower than
Google+. For these set of nodes, the measured latency will be
higher for the Flickr nodes than the Google+ nodes on average.
We calculate the magnitude of the differences between Flickr
and Google+ fetch by subtracting each Google+ sample from
Flickr sample, where both samples were acquired at the same
time of day.> We then repeat the same procedure for a pair of

3Say that a Google+ sample is denoted by T@,v,t, and a Flickr sample is
denoted by x ¢, at node v at time ¢ = n. Then the difference between
the sample is £p v,¢, = TFv,t,, — TG,v,t,- We can then obtain a single
CDF of the differences over all the nodes in the V.

CDNs where DBit does not identify statistical differences.

Figure 4(a) shows the CDF of the differences between
Flickr and other Photo CDNs for hot fetches. The difference
between Flickr and other Photo CDNs at the medians is ~
80-95 milliseconds and increases to ~ 900 milliseconds at
the 90th percentiles. This shows that DBit is able to detect
differences even when they exist at the scale of tens or
hundreds of milliseconds. Figure 4(b) shows the CDF of the
absolute differences between Flickr and other Photo CDN5s for
cold fetches. The median differences for cold fetch are ~600
msec for all Photo CDNs, likely large enough to be easily
detected by DBit.

When DBit does not identify a statistical difference, what
does the magnitude of the differences look like? Figure 4(c)
shows two CDFs one for the difference between Flickr and
Facebook, the case where DBit indicates a statistical difference
and another between Facebook and Akamai, the case where
DBit does not detect statistical performance differences. Ob-
serve that the latter CDF lies above the former, implying that
on average the magnitude of the differences for the Facebook-
Akamai case is smaller. Moreover, the Flickr-Facebook case
shows a larger proportion of nodes for which Flickr shows
worse behavior than Facebook than vice versa, but the CDF
for the Facebook-Akamai case is more symmetric.

This is better understood by looking at Figure 4(d), which
shows the scatter plot of all the Photo CDNs at the 95th
percentile for each Planetlab node for Flickr’s comparison with
other Photo CDNs. Note that Flickr is clearly slower at many
vantage points when compared to other Photo CDNSs as evident
from the spread in the plot. In contrast, Figure 4(e) shows the
scatter plot of the 95th percentile of latencies for Facebook
and Akamai, the case where DBit does not identify perfor-
mance difference. In this case, there is no clear performance
separation between the two Photo CDNs. From these results
we conclude that DBit is sensitive enough to detect differences
where they exist and correctly hides differences where they do
not exist or are not significant.

D. Is DBit General?

We now explore the range of questions which can be
answered using DBit. Our goal here is to demonstrate the
generality of DBit as a methodology for detecting statistical
differences.

Constrained datasets. In this section we evaluate DBit’s
ability to work with constraind datasets to detect performance
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Global Hot Fetch Comparison

Facebook Vs Flickr | Flickr Vs Akamai | Flickr Vs Google+

Global Facebook v/ Akamai v/ Google+ v/

Africa X X Google+ v/

Asia X Akamai v/ Google+ v

Europe Facebook v/ Akamai v/ Google+ v/

N. America Facebook v/ Akamai v/ Google+ v/
Oceania Facebook v/ X X

S. America Facebook v/ Akamai v/ Google+ v/

Table IV—Results for Hot Fetch from RIPE Atlas probes using 1x1 pixel
photo (size ~750 B). Latency here does not include DNS time.

Comparison at 90th %ile

Hot Fetch Cold Fetch
Facebook Vs Google+ Akamai Vs Google+ Facebook Vs Google+
FB >G+ | G+ >FB | AK >G+ | G+ >AK | FB >G+ | G+ >FB
ca,B,v frac. 0.7037 0.216 0.784 0.1542 0.6975 0.2716
P-value™ 2.3e-07 1.0-e13 1.9e-13 6.6e-20 5.4e-07 5.3e-09
Global | Significant? Google+/ Google+/ Google+/

Table V—Tail latency for both hot and cold photo fetches from the global
set of Planetlab Clients

differences. Towards this end we use the data obtained from
RIPE Atlas testbed. Recall that, on the RIPE Atlas, we are only
able to obtain hot-fetch, because of platform limitations (§ IV).
Moreover, on the RIPE Atlas platform, we are only able to use
1x1 pixel photos. The summarized version of RIPE results
are shown in Table IV which shows that DBit is indeed able
to detect significant differences and the results are consistent
with those obtained from the PlanetLab results (for Global, N.
America and Europe). We refer the reader to [21] for RIPE
results comparing all Photo CDNs.

Tail latency. Because latency impacts revenue, content
providers are interested in engineering for tail latency [24].
DBit can also be used to study whether the tail latency
distributions of different CDNs differ significantly, by appro-
priately truncating the original distributions. For example we
can obtain the data at the tail by only considering the samples
at the 90th percentile and above. Table V shows the results

for interesting performance differences that we find from our
dataset. The results show that at the 90th percentile Google+
shows better performance compared to Facebook for both hot
and cold fetches. Additionally, Google+ also performs better
than Akamai for hot fetches at the 90th percentile. This sug-
gests that while Facebook’s optimized photo stack [5] allows
comparable performance for the common case but Google’s
massive scale and full control over its serving infrastructure
gives it advantage over Facebook and Akamai at the tail of
the distribution.

QOutliers: Using DBit, we can also detect outliers: “good”
(“bad”) clients which experience faster (slower) performance
than all other clients. We find that most of the good clients
are in North America or Europe. Two of our clients, located
in Boston and Washington, are best across all Photo CDNs.
We find other good performing clients in Canada and USA
(4), Germany (3), France (2), Ireland and UK one each. We
find the worst client in Cyprus, and we find bad clients in
Spain (3), Portugal (3), Greece (2), Brazil (2), Ecuador (1)
and Jordan (1).
VI. RELATED WORK

Prior work on CDN performance analysis ranges from
modelling to measurement studies for CDN comparison [4],
[13], [22], [20], [25]. Our work is complementary to these
and proposes a methodology to rigorously compare aspects
of CDN performance. Other notable work attempts to under-
stand peer-to-peer content delivery systems [8] and ISPs [7].
Their methodology compares totals, and first and second-order
statistics across a variety of properties: content object sizes,
bandwidth demands, transaction rates, path latency, and path
stretch. By contrast, our work focuses on a different setting
(photo sharing) and on one metric, latency, but explores distri-
butional differences. Finally, Tariq et al. [26] propose a What-



If scenario evaluator to understand how changes to network
infrastructure will translate to user perceived performance. By
contrast, DBit can help a CDN understand what aspects of its
network infrastructure it needs to improve in order to match
a competitor’s performance.

VII. FUTURE WORK

We have designed DBit to be used on data which is either
routinely collected by real systems or can be obtained without
a need for sophisticated measurement methodologies. Such
data sets are collected through number of approaches (1)
regular server side measurements [24] (2) through client-side
injected measurements [9], [27] or (3) through emulated clients
such as [11], [28]. As future work, we plan to use DBit in
determining CDN performance difference on data collected
from real world clients. Towards this end, we plan to take
approach 2 from above by implementing a browser plugin
which can be installed by users opting in to the measurement
study. This allows us to capture data which is representative
of user performance in the wild and exposes opportunities to
use DBit in understanding real world performance comparison.
Additionally, it allows to instrument a range of web applica-
tions such as video streaming and search efc.

Further, DBit can currently only be used to compare per-
formance for a single metric (e.g., latency, or throughput); we
leave it to future work to explore extending this methodology
to multiple metrics.

VIII. CONCLUSION

In this paper, we propose a novel methodology to detect
statistical differences in performance for Content Distribution
Networks and large scale distributed systems in general. DBit
is powerful, enabling not only comparisons across CDNs,
but can also be used to answer a range of questions such
as identifying differences in tail performance and regional
performance. DBit is a first step towards a comprehensive
methodology for CDN evaluation and much work remains:
exploring other CDNs (e.g., for video) and other metrics such
as throughput.
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