
Exploring the Effects of Coordination and
Communication Tools on the Efficiency of

Open Source Projects using Data
Envelopment Analysis

Stefan Koch
Vienna University of Economics and Business Administration, Institute for

Information Business
Augasse 2-6, A-1090 Vienna, Austria

stefan.koch@wu-wien.ac.at
WWW home page: http://wwwai.wu-wien.ac.at/~koch/

Abstract. In this paper, we propose to explore possible benefits of
communication and coordination tools in open source projects using data
envelopment analysis (DEA), a general method for efficiency comparisons.
DEA offers several advantages: It is a non-parametric optimization method
without any need for the user to define any relations between different factors
or a production function, can account for economies or diseconwhile omies of
scale, and is able to deal with multi-input, multi-output systems in which the
factors have different scales. Using a data set of 30 open source project
retrieved from SourceForge.net, we demonstrate the application of DEA,
showing that the efficiency of the projects is in general relatively high.
Regarding the effects of tool employment on the efficiency of projects, the
results were surprising: Most of the possible tools, and overall usage, showed a
negative relationship to efficiency.

Keywords. Open Source Software Development, Efficiency, Data
Envelopment Analysis, Software Repositories

1 Introduction

Considerable uncertainty has for a long time surrounded the topic of the efficiency of
open source software development, and the factors influencing this efficiency.
Currently, any comparison of open source software projects is very difficult. There is
increased discussion on how the success of open source projects can be defined
[21,22,9,10], using for example search engine results as proxies [23]. In addition, the
process applied in these projects can differ significantly, and several elements of

98 Stefan Koch

both process and infrastructure could have an impact. For example, [19] has used a
sample of projects from SourceForge.net to uncover whether the process maturity
has had any on success of open source projects. In this analysis, the notion of success
was based on the downloads achieved, and a relationship to version control, mailing
lists and testing strategies was found.
In this paper, we apply the method of Data Envelopment Analysis (DEA) to compare
open source projects according to their efficiency in transforming inputs into outputs.
For any production process, this efficiency and productivity is a key indicator in
comparison to other processes. DEA is a non-parametric optimization method for
efficiency comparisons without any need for the user to define any relations between
different factors or a production function. In addition, DEA can account for
economies or diseconomies of scale, and is able to deal with multi-input, multi-
output systems in which the factors have different scales.
Efficiency and productivity in software development is most often denoted by the
relation of an effort measure to an output measure, using either lines-of-code or,
preferably due to independence from programming language, function points [1].
This approach can be problematic even in an environment of commercial software
development due to missing components especially of the output, for example also
[15] agree that productivity measures need to be based on multiple size measures. In
open source development, there are additional problems which point towards DEA
as an appropriate method.

In open source projects, normally the effort invested is unknown, and therefore
might need to be estimated [2,16,17], and is also more diverse than in commercial
projects, as it includes core team member, committers, bug reporters and several
other groups with varying intensity of participation. Besides that, also the outputs
can be more diverse. In the general case, the inputs of an open source project can
encompass a set of metrics, especially concerned with the participants. So, in the
most simple case, the number of programmers and other participants can be used.
The output of a project can be measured using several software metrics, most easily
the number of LOC, files, or others. This range of metrics both for inputs and
outputs, and their different scales necessitates application of an appropriate method
like DEA.

The main result of applying DEA for a set of projects is an efficiency score for
each project. This score can serve different purposes: First, single projects can be
compared accordingly, but also groups of projects, for example those following
similar process models, located in different application domains or simply of
different scale can be compared to determine whether any of these characteristics
lead to higher efficiency.

In a prior paper, DEA has been explored in this context, but with a different
dataset mostly relying on in-depth CVS analysis [18]. This has demonstrated that
DEA can indeed be applied in this context, and has also shown that neither
inequality in contributions, nor licensing scheme nor intended audience have a
significant impact on efficiency. In this paper, we will employ the results of a DEA
to investigate whether the adoption of communication and coordination tools like
mailing lists or particular source code control systems have any impact on efficiency.

Exploring the Effects of Coordination and Communication Tools using DEA 99

2 Data Envelopment Analysis

The principle of the border production function was introduced by Farell for
measuring the technical efficiency [12] and enhanced by Charnes, Cooper and
Rhodes [6] into the first Data Envelopment Analysis model (the CCR model). The
object of analysis the DEA considers is very generally termed Decision Making Unit
(DMU). This term includes relatively flexibly each unit which is responsible for the
transformation of inputs into outputs, for example hospitals, supermarkets, schools,
bank branches and others.

The basic principle of DEA can be understood as a generalization of the normal
efficiency evaluation by means of the relationship from an output to an input into the
general case of a multi-output, multi-input system without any given conversion
rates or same units for all factors. In contrast to other approaches, which require the
parametric specification of a production function, DEA measures production
behavior directly and uses this data for the evaluation of all DMUs. The DEA
derives a production function from mean relations between inputs and outputs
(whereby it is only assumed that the relation is monotonous and concave), by
determining the outside cover of all production relations (see also Figure 1), while
for example a regression analysis estimates a straight line through the center of all
production relations. The DEA identifies "best practicing" DMUs, which lie on the
production border. A DMU is understood as being efficient if none of the outputs
can be increased, without either or several of the inputs increasing or other outputs
being reduced, as well as vice versa.

100 Stefan Koch

Fig. 1. Data Envelopment Analysis for the case of one input and two outputs with 7 DMUs (A
– G), out of which C – F are efficient, and depicting inefficiency of A for which D and E form
the reference set

For each DMU an individual weighting procedure is used over all inputs and outputs.
These form a weighted positive linear combination, whereby the weights are
specified in such a way that they maximize the production relationship of the
examined unit, in order to let these become as efficient as possible. The efficiency of
an examined unit is limited with 1. That means that no a-priori weightings are made
by the user, and that the weights between the DMUs can be different. For each
evaluation object the DEA supplies a solution vector of weighting factors and a DEA
efficiency score. If this score is equal to 1, then the DMU is DEA efficient. In this
context, DEA efficiency means that no weighting vector could be found which
would have led to a higher efficiency value. DEA efficient are thus all those DMUs
which are not clearly DEA inefficient compared with the others. Any inefficiency
can therefore not be ruled out completely. For each inefficient DMU the DEA
returns a set of efficient DMUs which exhibit a similar input/output structure and lie
on the production border near to the inefficient DMU (reference set, see also Figure
1). Using this information, an idea in which direction an increase in efficiency is
possible can be gained.

The first model of the DEA was introduced by Charnes, Cooper and Rhodes [7]
and is therefore designated as CCR model. They pose four assumptions for the
production possibility set, which are convexity, possibility for inefficient production,
constant returns to scale and minimum extrapolation. The different basic models of

Exploring the Effects of Coordination and Communication Tools using DEA 101

the DEA can be divided on the basis of two criteria: This is on the one hand the
orientation of the model, on the other hand the underlying assumption regarding the
returns to scale of the production process. With input-oriented models the reduction
of the input vector maximally possible with the given manufacturing technology is
determined, whereas with output-oriented models the maximally possible
proportional increase of the output vector is determined. The returns to scale can be
assumed either as being constant or variable. With constant returns to scale size-
induced productivity differences are considered into the efficiency evaluation, with
variable returns to scale the differences are neutralized by the model. The most
common example of a model with variable returns to scale is an advancement to the
CCR model by Banker, Charnes and Cooper, the BCC model [3]. This model
includes an additional measuring variable in the fundamental equation to capture
rising, falling or constant returns to scale.
In the area of software development, DEA was so far only rarely applied. Banker and
Kemerer use this approach in order to prove the existence of both rising and falling
returns to scale [4]. Banker and Slaughter use the DEA in the area of maintenance
and enhancement projects [5]. It can be proven that rising returns to scale are
present, which would have made a cost reduction of around 36 per cent possible
when utilized. An investigation of Enterprise Resource Planning (ERP) projects was
done by [20], using 30 SAP R/3-projects of a consulting firm for the application of
the DEA. [14] gives an in-depth discussion on the application of DEA in software
development.

3 Data Selection and Set

Based on the date January 8th 2007, we selected the thirty most often downloaded
projects from SourceForge.net, as presented by the website based on the past 7 days.
This statistic is updated daily, the current standings can be seen anytime from the
respective web page1. This was done in order to arrive at a relatively homogeneous
set of projects. Potential problems and pitfalls in using this approach are described in
the following.

For each of these projects, a number of variables was retrieved from the
respective homepage. We define and use the following variables in this study, with
binary variables later on employed for distinguishing between groups of projects:

ê Project: This simply gives the project's name.
ê Donations: This binary variable shows whether the project has activated the

donations feature.
ê GNU-style licence: This binary variable codes whether a project is under a

GNU GPL licence (true) or not (false), to give an impression of whether a
strict copyleft-scheme is followed by the project.

1http://sourceforge.net/top/toplist.php?type=downloads_week

102 Stefan Koch

ê Audience: Again, the intended audience of a project is coded as a binary
variable, depending on whether the intended audience is developers or
system administrators (true) or not (false).

ê Age: The age of the project in years, which is computed based on the year
in which the project was registered on SourceForge.net (using 2007 minus
registration year).

ê Developers: This is the number of developers as reported by the project's
page on SourceForge.net.

ê Downloads: This is the number of downloads of the project within the last 7
days, as given by the respective statistics page described above.

ê Status: The development status from the web page. This is assigned by the
project's administration, and has seven possible values, reaching from
planning, pre-alpha, alpha, beta to production/stable and mature, and to
inactive.

ê Translations: The number of different translations available, from the
project's page, with all languages counted equally as one.

ê Operating Systems: As translations, but with the respective operating
systems (or families thereof, e.g. all Windows versions are counted as one).

ê Tracker: This binary variable codes whether the project employs the tracker
service of SourceForge.net (true in that case).

ê Tracker total: This is the total number of entries summed over all different
active trackers of a project.

ê Mailing list: This binary variable codes whether the project employs the
mailing list service of SourceForge.net (true in that case).

ê Mailing list total: This is the total number of postings summed over all
mailing lists of a project.

ê Forum: This binary variable codes whether the project employs the forum
service of SourceForge.net (true in that case).

ê Forum total: This is the total number of messages summed over all different
active forums of a project.

ê Tasks: This binary variable codes whether the project employs the task
service of SourceForge.net (true in that case).

ê Tasks total: This is the total number of tasks (in any status like open or
closed) summed over all different subprojects of a project.

ê CVS: This binary variable codes whether the project employs a CVS
repository (true in that case).

ê CVS commits: The total number of commits to the CVS repository as given
on the project's page.

ê SVN: This binary variable codes whether the project employs an SVN
repository (true in that case).

ê SVN commits: The total number of commits to the SVN repository as given
on the project's page.

ê Size: The size in byte of software offered, summing over all packages of the
project in the latest release.

Exploring the Effects of Coordination and Communication Tools using DEA 103

The first, and a major source of possible threats is construct validity. Several
measures used for conceptualizing different aspects for the following analyses might
be problematic and need to be discussed in this context. First is the notion of
developer, which is taken directly from the web page. In some projects, people could
be contributing code without relevant account, which sometimes is only granted to
long-time participants, by sending it to one of those persons who then does the actual
commit. Therefore, the number of developers might actually be higher than the
number reported here. This fact is very problematic to check. In a case study of the
OpenACS project under participation of project insiders and using the strict
standards for CVS comments, [11] have found that only 1.6% of revisions pertained
to code committed for someone without CVS privilege. Other metrics suffer from
similar possible problems, for example a project might have existed before it was
registered on SourceForge.net, and also the size might be affected by several factors
like different compression algorithms employed. In addition, several parts of the
coordination and communication tools might be in use, but not opened to the public,
and thus disregarded in this context, or tools completely distinct from the platform
might be employed. This is for example true for the source code versioning systems
in our dataset. Also [13] give an overview of problems associated with mining data
from Sourceforge.net. Lastly, the external validity of the results depends on the
selection of an appropriate dataset. In our case, the approach is still mostly
exploratory, but using the definition above, a coherent dataset was aimed at. For,
example, this shows in the intended audience, which in no case is developers or
system administration alone, or the fact that all projects save one use a GPL-licence.
Table 1 gives descriptive statistics for some relevant metrics.

Table 1. Descriptive Statistics of Dataset (N=30)

Median Mean Std.Dev. Min. Max.
Downloads 97,682.00 285,507.53 538,548.91 63,122 2,457,185
Developers 9.00 10.23 9.53 1 39
Status 5.00 n/a n/a 4 6
Age 5.00 4.87 1.76 2 8
Translations 1.50 7.90 11.19 1 35
Size 21,220K 106,780K 232,072K 2,832K 998,118K
Tracker total 175.00 1,313.73 4,095.57 0 22,527
Mailing list
total

29.00 10,070.13 31,792.62 0 169,574

Forum total 0.00 3,659.40 9,520.53 0 44,272
Tasks total 0.00 2.33 9.83 0 52

4 Analysis and Results

Based on the data set and variables as described above, we set up an DEA with the
following parameters, using the program accompanying [8]: The first choices to be

104 Stefan Koch

taken concern the definition of input and output factors, as well as the model to be
applied. Based on the literature on DEA in the context of IT-projects [4,5,14,20],
variable returns to scale are selected. Regarding the orientation of the model, an
output-orientation might seem more appropriate. Given a certain input which can be
acquired, i.e. participants attracted, the output is to be maximized. According to this
reasoning, the BCC-O model is applied.

Regarding the definition which factors are to be used as inputs and outputs, it is
to be considered that with an increase in the number of factors more DMUs are
estimated to be efficient. Also the availability of factors in the data set limits the
possibilities. In this case, we selected to use the number of developers and years of
existence as inputs, downloads, size, status and translations as outputs. Naturally,
this selection is based on the available data, and could be changed.

For an overview of the results, see Table 1. In this table, statistics on the
efficiency scores in the total population are given. Overall, 11 different projects have
been classified as DEA efficient, the mean efficiency score with 0.922 seems
relatively high. For each efficient project, the number of times it appears in the
reference sets of non-efficient projects is also given. This can be used as an indicator
of the relative importance of this project in determining efficiency scores.

Table 2. Results of Applying DEA to the dataset

No. of DMUs 30
Average 0.922
Std. Dev. 0.096
Median 0.953
Minimum 0.706
Maximum 1.000
Number of DEA-efficient DMUs 11
Frequency in Reference Set
Peer set Frequency
eMule 8
Ares Galaxy 0
Azureus 3
GTK+ and The GIMP installers for Windows 10
eMule Plus 0
emule Xtreme Mod 15
Portable Apps 6
CDex 16
Gaim 2
MediaCoder 0
WinSCP 0

As one of the results is an efficiency score for each project, we can now use this
score for analysing potential effects on this efficiency. As explanatory variables,
information concerning the communication and coordination tools employed by the

Exploring the Effects of Coordination and Communication Tools using DEA 105

projects is used. As a start, correlations between the efficiency scores and these
metrics are explored to uncover any relationships. All of the following analyses were
performed using R (version 2.4.0), a free software environment for statistical
computing and graphics. Specifically, tracker, mailing lists, forums, tasks and both
CVS and SVN were explored as possible influences. In addition, a new metric was
computed summing up the binary variables depicting whether or not a tool was
employed, to give an indication of the overall diversity of a project in this context.
This shows out of a maximum of 6 a mean of 2.53 with median 3 and 1.48 standard
deviation.

The results are not conclusive: Regarding correlation coefficients, these are
mostly small (below 0.3) and for all tools except forums negative. Also the
correlation to the overall number of tools employed is with -0.257 negative. Using
non-parametric Mann-Whithney U-tests, these results were tested for statistical
significance: The negative relationships with overall tool usage (p<0.01), CVS
(p<0.05), tasks (p<0.01), and the positive relationship with forum employment
(p<0.01) are statistically proven. The results from [18] regarding licensing scheme
and audience could not be checked due to minimal respectively no variance in these
attributes, the inequality in contributions was not available in this data set.
These results seem rather surprising, given that [19] found a relationship between
process maturity and success, but there are two different explanations: First, the tools
as provided by SourceForge.net are not giving relevant help to the projects
employing them, so projects using other tools, or even none at all for a given task
perform better. The second explanation would be that all the tools for
communicating with users and potential co-developers are more of a hindrance to
efficient software development, detracting attention and time from the developers,
which might be better spent on actual development work. Naturally, the view on this
might also depend on the output factors included: Employing mechanisms like bug
tracking might help to achieve higher quality in the released software, and it is
unclear whether this effect is currently incorporated. Naturally, it could be assumed
to higher quality projects achieve a higher number of downloads, but including
quality aspects in the list of output factors might give additional insights.

5 Conclusion and Future Research

In this paper, we have used a method to compare the efficiency of open source
projects to analyse potential impacts of different communication and coordination
tools. The method used is the DEA, which is well-established in other fields and
offers several advantages in this context as well: It is a non-parametric optimization
method without any need for the user to define any relations between different
factors or a production function, can account for economies or diseconomies of
scale, and is able to deal with multi-input, multi-output systems in which the factors
have different scales. Using a data set of 30 open source project retrieved from
SourceForge.net, we have demonstrated the application of DEA. Results show that

106 Stefan Koch

the efficiency of the projects is in general relatively high with low variance.
Regarding the effects of tool employment on the efficiency of projects, the results
were surprising: Most of the possible tools, and overall usage, showed a negative
relationship to efficiency. This could be either due to more efficient tools being
available elsewhere, or a negative influence of all activities except software
development per se.

In future research, additional work has to be done on arriving at a common
understanding of input and output factors and their definitions. For example, using
the size in bytes instead of lines-of-code might be problematic, but on the other hand
captures other output aspects like audio or others as well. Also the selection of
projects to be included might be worked on, to preclude projects without real
development work, which only serve as assemblers of others. Further, additional
analyses based on the results using other project characteristics would be of high
interest. For example, the definition of different process models would be of high
interest for efficiency comparisons. These could also include comparisons within
application areas, different project scales, and comparisons to commercial or mixed-
mode development projects.

References

[1] Albrecht, A.J., & Gaffney, J.E. (1983). Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation.
IEEE Transactions on Software Engineering, 9(6), 639-648.

[2] Amor, J.J., Robles, G., & Gonzalez-Barahona, J.M. (2006). Effort
Estimation by Characterizing Developer Activity. In Proceedings 8th

International Workshop on Economics-Driven Software Engineering
Research (ICSE 2006), Shanghai, China.

[3] Banker, R.D., Charnes, A., & Cooper, W. (1984). Some Models for
Estimating Technical and Scale Inefficiencies in Data Envelopment
Analysis. Management Science, 30, 1078-1092.

[4] Banker, R.D., & Kemerer, C. (1989). Scale Economies in New Software
Development. IEEE Transactions on Software Engineering, 15(10), 416-
429.

[5] Banker, R.D., & Slaughter, S.A. (1997). A Field Study of Scale Economies
in Software Maintenance. Management Science, 43(12), 1709-1725.

[6] Charnes, A., Cooper, W., & Rhodes, E. (1978a). A Data Envelopment
Analysis Approach to Evaluation of the Program Follow Through
Experiments in U.S. Public School Education (Management Science
Research Report No. 432). Carnegie-Mellon University, Pittsburgh, PA.

[7] Charnes, A., Cooper, W., & Rhodes, E. (1978b). Measuring the Efficiency
of Decision Making Units. European Journal of Operational Research, 2,
429-444.

Exploring the Effects of Coordination and Communication Tools using DEA 107

[8] Cooper, W., Seiford, L., & Tone, K. (2000). Data Envelopment Analysis: A
Comprehensive Text with Models, Applications, References and DEA-
Solver Software, Boston, MA: Kluwer Academic Publishers.

[9] Crowston, K., Annabi, H., & Howison, J. (2003). Defining Open Source
Software Project Success. In Proceedings of ICIS 2003, Seattle, WA.

[10] Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Towards A
Portfolio of FLOSS Project Success Measures. In Collaboration, Conflict
and Control: The 4th Workshop on Open Source Software Engineering
(ICSE 2004), Edinburgh, Scotland.

[11] Demetriou, N., Koch, S. & Neumann, G. (2006). The Development of the
OpenACS Community. In Lytras, M. & Naeve, A. (eds.) Open Source for
Knowledge and Learning Management: Strategies Beyond Tools, Hershey,
PA: Idea Group.

[12] Farell, M.J. (1957). The Measurement of Productive Efficiency. Journal of
the Royal Statistical Society, Series A 120(3), 250-290.

[13] Howison, J. & Crowston, K. (2004). The perils and pitfalls of mining
SourceForge. In Proceedings of the International Workshop on Mining
Software Repositories, pp. 7-11, Edingburgh, Scotland, UK.

[14] Kitchenham, B. (2002). The question of scale economies in software - why
cannot researchers agree? Information & Software Technology, 44(1), 13-
24.

[15] Kitchenham, B., & Mendes, E. (2004). Software Productivity Measurement
Using Multiple Size Measures. IEEE Transactions on Software
Engineering, 30(12), 1023-1035.

[16] Koch, S. (2004). Profiling an open source project ecology and its
programmers. Electronic Markets, 14(2), 77-88.

[17] Koch, S. (2005). Effort Modeling and Programmer Participation in Open
Source Software Projects (Arbeitspapiere zum Tätigkeitsfeld
Informationsverarbeitung, Informationswirtschaft und Prozessmanagement,
Nr. 03/2005). Wirtschaftsuniversität Wien, Vienna, Austria.

[18] Koch, S. (to appear). Measuring the Efficiency of Free and Open Source
Software Projects Using Data Envelopment Analysis. In Sowe, S.K.,
Stamelos, I. and Samoladas, I. (eds.): Emerging Free and Open Source
Software Practices.

[19] Michlmayr, M. (2005). Software Process Maturity and the Success of Free
Software Projects. In Zielinski, K. and Szmuc, T. (eds.): Software
Engineering: Evolution and Emerging Technologies, pp. 3-14, IOS Press,
Amsterdam, The Netherlands.

[20] Myrtveit, I., & Stensrud, E. (1999). Benchmarking COTS Projects Using
Data Envelopment Analysis. In Proceedings of 6th International Software-
Metrics-Symposium, pp. 269-278, Boca-Raton.

[21] Stewart, K.J. (2004). OSS Project Success: From Internal Dynamics to
External Impact. In Collaboration, Conflict and Control: The 4th

108 Stefan Koch

Workshop on Open Source Software Engineering (ICSE 2004), Edinburgh,
Scotland.

[22] Stewart, K.J., & Ammeter, T.A. (2002). An Exploratory Study of Factors
Affecting the Popularity and Vitality of Open Source Projects. In
Proceedings of ICIS 2002, Barcelona, Spain.

[23] Weiss, D. (2005). Measuring Success of Open Source Projects Using Web
Search Engines. In Proceedings of the 1st International Conference on
Open Source Systems, pp. 93-99, Genoa, Italy.

