
 

FOCSE: An OWA-based Evaluation 
Framework for OS Adoption in Critical  

Environments 

Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
University of Milan - via Bramante 65, Crema (CR), Italy  

{ardagna,damiani,frati}@dti.unimi.it 

Abstract. While the vast majority of European and US companies increasingly 
use open source software for non-key applications, a much smaller number of 
companies have deployed it in critical areas such as security and access 
control. This is partly due to residual difficulties in performing and 
documenting the selection process of open source solutions. In this paper we 
describe the FOCSE metrics framework, supporting a specific selection 
process for security-related open source code. FOCSE is based on a set of 
general purpose metrics suitable for evaluating open source frameworks in 
general; however, it includes some specific metrics expressing security 
solutions' capability of responding to continuous change in threats. We show 
FOCSE at work in two use cases about selecting two different types of 
security-related open source solutions, i.e. Single Sign-On and Secure Shell 
applications. 

1 Introduction 

In the last decade, open source operating systems and middleware platforms have 
been widely deployed [4].  In the security area, the adoption of open source solutions 
has been much slower, since most users do not completely trust the open source 
community and consider open source middleware a potential “backdoor” for 
attackers, potentially affecting overall system security. However, proprietary security 
solutions have their own drawbacks such as vendor lock-in, interoperability 
limitations, and lack of flexibility. Recent research suggests that the open source 
approach can overcome these limitations [3, 21]. According to some researchers, 
open source solutions may even in the end improve security, as they give greater 
visibility of software vulnerabilities [11], giving the possibility to fix them as soon as 
a threat is described. In our opinion, what is still missing to boost open source 
adoption in security is a selection framework allowing the users to evaluate the level 
of suitability of different open source security solutions.  In itself, comparative 
evaluation of OSS is a time-honored subject, and several researchers [8, 12] have 
proposed complex methodologies dealing with the evaluation of open source 



4 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
 
products from different perspectives, such as code quality, development flow and 
community composition and participation. General-purpose open source evaluation 
models, such as Bernard Golden's Open Source Maturity Model (OSMM) [14] do 
not address some specific requirements of security software selection. However, 
these models assess open source products based on their maturity, i.e. their present 
production-readiness, while evaluating security solutions also involves trying to 
predict how fast (and how well) a security component will keep abreast of new 
attacks and threats. A security-oriented software evaluation framework should 
provide potential adopters with a way to compare open source solutions identifying 
the one which i) best suits their current non-functional requirements and ii) is likely 
to evolve fast enough to counter emerging threats. 

In this paper, we develop on our previous work [5] to obtain a specific technique 
for evaluating open source security software, including access control and 
authentication systems. Namely, we describe a Framework for OS Critical Systems 
Evaluation (FOCSE) based on a set of metrics aimed at supporting open source 
evaluation, through a formal process of adoption. FOCSE evaluates an open source 
project in its entirety, assessing the community composition, responsiveness to 
change, software quality, user support, and so forth.  

The remainder of this paper is organized as follows. After a brief introduction of 
the basic concepts of comparative software evaluation (Section 2) we present our set 
of evaluation metrics (Section 3). Then, Section 4 presents the aggregator used to 
integrate different metrics in a single estimation, allowing for ranking analyzed 
solutions. Finally, Section 5 provides two use cases where the defined framework 
evaluates open source Single Sign-On (SSO) and Secure Shell (SSH) solutions. 
Section 6 gives our conclusions.  

2 Basic Concepts 

In this section, we provide a review of the technologies used in the context of 
FOCSE evaluation. In particular, we describe the FLOSSmole project [13] used to 
gather and store data about the open source solutions to be evaluated. An essential 
prerequisite of FOCSE is the availability of the raw data necessary to compute the 
metrics defined in Section 3. The availability of a database can greatly improve the 
reliability and the effectiveness of FOCSE. FLOSSmole (formerly OSSmole) [10,13] 
is a platform designed to gather, share and store  data supporting comparative 
analysis of open source software. FLOSSmole  is aimed at: i) collecting raw data 
about open source projects; ii) providing summary reports about open source 
projects; iii) integrate data from other research teams; iv) provide tools to gather the 



FOCSE: An OWA-based Evaluation Framework for OS Adoption 5
 

 

data of interest. In the following analysis, we relied on FLOSSmole for collecting 
information about the projects subject to our analysis.1

3 FOCSE: a Framework for OS Critical Systems Evaluation  

Generally speaking, few organizations rely on internal guidelines for the 
selection of open source products. Our experience has shown that in most cases 
project leaders select an open source solution based on its being readily available and 
fulfilling their functional requirements [5, 6]. FOCSE evaluation criteria are aimed at 
evaluating each open source project in its entirety, highlighting the promptness of 
reacting against newly discovered vulnerabilities or incidents. Applications success, 
in fact, depends on the above principle because a low reaction rate to new 
vulnerabilities or incidents implies higher risk for users that adopt the software, 
potentially causing loss of information and money. 

3.1 Evaluation principles 

FOCSE evaluation is based on six macro-areas [5]:  
 
x Generic Aspects (GA). i.e. all quantitative attributes expressing the solution's  

non-functional features, i.e. those not related to its purpose or scope (for a 
complete list, see [8]). 

x Developers Community (DC). i.e. quantitative attributes expressing the 
composition and diversity of the developers community.  A high number of 
developers from different countries allows sharing of diverse backgrounds 
and skills, giving vitality and freshness to the community and helping in 
solving problems, including bugs definition and fixing.  

x Users Community (UC). The success of an open source application can be 
measured in terms of number and profile of the users that adopt it and rely 
on it. Obviously, measuring and evaluating the users community is less 
simple than doing so for developers because users interacting with an open 
source project are often anonymous. The users community, however, can be 
quantitatively estimated by means of parameters like the number of 
downloads, the number of requests, the number of posts inside the forum, 
and the number of users subscribed to the mailing list. A qualitative measure 
of this macro-area can also be given by the profile of the users adopting the 
project: if users belong to well-known companies or organizations and report 
positive results, the solution's UC indicators can be enhanced. 

1 Of course, FOCSE does not mandate the use of FLOSSmole, as data can be gathered 
manually by the evaluator. However, companies interested in comparative evaluation of 
OSS solutions should rely on a certified and repeatable data collection technique. 



6 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
 

 

x Software Quality (SQ). This area include metrics of quality built into the 
software by the requirements, design, code and verification processes to 
ensure that reliability, maintainability, and other quality factors are met.2 

x Documentation and Interaction support (DIS). This macro area is composed of 
two major sub-areas:  traditional documentation, that explains the 
characteristics, functionalities and peculiarities of the software and support, 
in terms of time allotted by developers to give feedback via forums, mailing 
lists, white papers, and presentations. 

x Integration and Adaptability with new and existing technologies (IA). A 
fundamental tenet of OS projects is full integration with existing 
technologies at project startup and a high level of adaptability to new 
technologies presented during project life. Another fundamental aspect is the 
ability of the developers’ community to solve and fix bugs and react to new 
vulnerabilities.  

3.2 Evaluation parameters 

We now provide the detailed description of some metrics (see Table 1 and 2) and 
their distribution in the six macro-areas described above. These metrics are then 
used (Section 5) to evaluate and compare open source security applications. 
Regardless of the macro-area they belong to, our quantitative metrics are 
orthogonally divided in: i) Core Metrics (CM), and ii) Advanced Metrics (AM). 

Core Metrics 
Core Metrics include all metrics that can be readily computed from current 
information on the projects. These metrics are based on data that can be usually 
found in the projects web sites; however structured data sources like FLOSSmole 
[13] can make the evaluation process stronger and more trustworthy. 
 
x Age, that represents the age in days of the project, calculated from the date of 

the first stable release. 
x Last Update Age, that represents the age in days of the last stable project 

update. It is calculated as the difference between the date of the last update 
and the current date. Differently from Age metric, Last Update Age measures 
the level of freshness of the last application update, and it allows the 
identification of dead projects.  

x Project Core Group, a boolean value that evaluates the existence of a stable 
core group of developers who have been working on the project from its 
inception (or for at least three-quarters of its Age). Core developers are 

2 Open source security solutions lend themselves to quality assurance and evaluation based on 
shared testing and code walk-through as outlined in [1]. However, comparing reference 
implementations of security solutions based on code walk-through is outside the scope of 
this paper. 



FOCSE: An OWA-based Evaluation Framework for OS Adoption 7
 

defined as the ones that contribute both to project management and code 
implementation. 

x Number of Core Developers, strictly related to the above Project Core Group 
metric, measures the number of core developers.  

x Number of Releases, that measures the number of releases from the project 
start up. A high number of releases could indicate the vitality of the 
community and its promptness on reacting against new threats and 
vulnerabilities. 

Table 1. Evaluation Metrics Definition: Core Metrics  

Core Metrics 
Name Definition Values Area 

Age Age of the project. Days GA 
Last Update Age Age of the last project update. Days GA 

Project Core Group 
Evaluate the existence of a group of core 
developers. 

Boolean GA,DC 

Number of Core 
Developers 

Number of core developers contributing the 
project. 

Integer DC 

Number of Releases Number of releases since project start up. Integer SQ,IA 
Bug Fixing Rate Rate of bugs fixed. Real SQ,IA 

Update Average 
Time 

Vitality of developers group, i.e. mean number 
of days to wait for a new update (release or 
patch). 

Days SQ,IA 

Forum and Mailing 
List Support 

Check forum and mailing list availability. Boolean GA,DIS 

RSS Support Check RSS availability. Days GA,DIS 
Number of Users Number of users adopting the application. Integer UC 
Documentation 
Level 

Level of project documentation, in terms of 
API, user manuals, whitepapers. 

Mbyte DIS 

Code Quality Qualitative measure of code quality.  SQ,IA 

Community Vitality 
Vitality of the community in terms of number 
of forum threads and replies. 

Real DC,UC 

 
x Bug Fixing Rate, which measures the rate of bugs fixed looking at bugs and 

fixings reports of each product. To prevent young projects with few bugs 
fixed from outperforming old and stable projects with hundreds of bugs 
fixed, the bug fixing rate is weighted over the total number of bugs detected. 
This rate is computed as: 

� �� �## 1 # 1 1 ofBugsDetectedofBugsFixed ofBugsDetected e�� � � . 

We stress the fact that this metrics is available from well known security-
related sources, such as the Computer Emergency Response Team (CERT) 
[9], providing detailed information about discovered bugs.  



8 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
 

 

x Update Average Time, measuring the vitality of an open source community. It 
indicates the average number of days between releases of major and minor 
versions (patches) of the product. This metric is calculated as: 
age/(#ofPatches + #ofReleases). 

x Forum and Mailing List Support, a boolean value expressing availability of 
forum and mailing lists at the products' web sites. This is an important 
feature of open source products since it hints at a strict collaboration 
between users and developers communities. 

x RSS Support, a boolean value expressing availability of RSS (Really Simple 
Syndication), i.e., a family of web feed formats, used to publish frequently 
updated digital content. This is an important feature of open source products 
since it allows users who download and rely on a particular project to be 
fully informed of the project news. 

x Number of Users, expressing the number of users adopting the product; this 
value can be roughly approximated as: #ofDownloads/#ofReleases. 
This parameter is also an indicator of the product's popularity. 

x Documentation Level, expressing the documentation level (in Mbyte) in terms 
of APIs documentation, user manuals, whitepapers, and so on. 

x Code Quality, that measures the intrinsic quality of the software product.3 
x Community Vitality, that measures the vitality of the community in term of 

answers given in the forum in response to specific users questions.  
This value is computed as: #ofForumReplies/#ofForumThreads. 

 
The core metrics set is summarized in Table 1. 

Advanced Metrics 
Advanced Metrics include evaluation parameters requiring privileged access to 
the developers’ community [5]. Otherwise, they can be estimated basing on raw 
data.  
 
x Group/Developers Stability, that measures the degree of stability of developers 

group and, consequently, the stability of the product itself. Each developer is 
classified as stable or transient, where stable is a developer that continuously 
contributes to code, transient in the other cases. The exact number of 
contributions to make a developer stable is project-dependent. This value is 
computed as: #ofStableDevelopers/#ofDevelopers*100. 

x Project Reputation, which estimates the reputation of the project by 
aggregating the evaluations provided by the project developers and users. 
Several algorithms for assessing reputation are available [16]. 

x Repository Quality, that provides an estimation of the repository where project 
is hosted.4 It can be computed in several different ways; we chose to 

3 This metric is included for completeness, but its measurement is out of the scope of this 
paper (see Section 3.1). 

4 For self-hosted projects this metrics is set to 0. 



FOCSE: An OWA-based Evaluation Framework for OS Adoption 9
 

measure it as the number of active projects hosted by the repository (an 
active project is defined as one that has released at least an update within a 
year), over the total number of hosted projects: 
#ofActiveProjects/#ofProjects. 

x Reaction Rate, that estimates the average time the developers community takes 
to find solutions to newly discovered vulnerabilities. This parameter 
measures the community's promptness in terms of reaction against 
discovered software vulnerabilities. 
Given V as the set of vulnerabilities, this metric is defined as: 

� � � � � �
1

*
n

i i
i

n UpdateAverageTime FixingDate V DiscoveringDate V
 

�¦  

where  andiV V� n V . 

x Incident Frequency, that measures the robustness of the application with 
respect to newly discovered vulnerabilities. This parameter is computed as 
#ofIncidents/|V| where V is the set of vulnerabilities. 

 
Table 2. Evaluation Metrics Definition: Advanced Metrics  

Advanced Metrics 
Name Definition Values Area 

Group/Developers 
Stability 

Measures the degree of stability of a 
developers group. 

[0..100%] DC 

Reaction Rate 

Average time needed by the developers’ 
community to find solutions for newly 
discovered vulnerabilities. More specifically, it 
represents the project developers’ ability in 
reacting to the set of vulnerabilities. 

 IA 

Repository Quality Estimator of the project repository quality.  GA 

Incident Frequency 
Measures the number of incidents due to 
vulnerabilities. 

 IA 

Project Reputation 
Measure the project reputation by aggregating 
the evaluation provided by project developers 
and users. 

 GA 

 

The first metrics, Groups/Developers Stability, is not easy to estimate from 
outside the developers’ community. It may be however available to insiders, e.g. 
to companies that adopt an open source product and actively contribute to its 
community. Finally, regarding the computation of the last two parameters, we 
stress the fact that various security-related Web portals provide databases that 
contain information about vulnerabilities and related incidents summaries. In 
particular, three main portals stand out: Secunia (http://secunia.com/) that offers 
monitoring of vulnerabilities in more than 12,000 products, Open Source 



10 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
 

Vulnerability Database (OSVDB) (http://www.osvdb.org/) an independent 
database that provides technical information about vulnerabilities and, finally, 
CERT, which provides a database containing information about vulnerabilities, 
incidents and fixes. 
In summary, most of the information required to compute FOCSE advanced 
metrics is already available on the Net. Unfortunately, this information being in 
raw format makes it difficult to automate the computation, as substantial pre-
processing is needed to compute these metrics. 

4 Aggregating Heterogeneous Results 

To generate a single estimation, it is necessary to aggregate the metrics values. 
This way, two or more projects, each one described by its set of attributes, can be 
ranked by looking at their FOCSE estimations. Below, the Ordered Weighted 
Average (OWA) operator, used to aggregate the defined metrics, is introduced. 

4.1 OWA Operator 

Ordered Weighted Averaging (OWA) operators, originally introduced by Ronald 
Yager [24, 26], provide a parameterized family of mean-type aggregation operators. 
An important feature of these operators is the reordering step, which makes OWA a 
nonlinear operator. OWA operator is different from the classical weighted average in 
that coefficients are not associated directly with a particular attribute but rather to an 
ordered position. The structure of these operators is aimed at combining the criteria 
under the guidance of a quantifier. 

 

Definition 1 (OWA Operator) Let > @1 2, , , nw Z Z Z �  a weight vector of 

dimension n, such that > @0,1iZ � and 1ii
Z  ¦ . A mapping : n

OWAf R R��o  

is an OWA operator of dimension n if 

� � � �1 2, , ,OWA n i i
i

f a a a aVZ ¦�

 
where � � � �^ `1 , , nV V�  is a permutation of {1,...,n} such that  for 

i=2,…,n. 

� � � �1i ia aV V �d

We adopt the monotonic quantifiers Qmean [26]. The pure averaging quantifier has 
wj=1/n for all j=1,…,n having Qmean(K)=K/n as its linear quantifier.  

The previous quantifier represents the set of weights used in our experimentation 
(i.e., [1/n, 2/n,…,(n-1)/n, 1]). All decision process involving multiple criteria like 



FOCSE: An OWA-based Evaluation Framework for OS Adoption 11
 
software selection involve some compensatory trade-offs. Trade-offs occurs in the 
presence of conflicting goals, when compensation between the corresponding 
compatibilities is allowed. OWA operators can realize trade-offs between objectives, 
by allowing a positive compensation between ratings, i.e. a higher degree of 
satisfaction of one of the criteria can compensate for a lower degree of satisfaction of 
other criteria to a certain extent. OWA operators provide for any level of 
compensation lying between logical conjunction and disjunction. An interesting 
feature of OWAs is their adaptability. To any specific software selection problem we 
can tailor an appropriate OWA aggregation operator from some rules and/or samples 
determined by the decision makers. 

5 Applying FOCSE to Existing Critical Application 

We introduce two categories of open source security solutions: SSO systems and 
SSH clients. Then, we show how selection can be made by first evaluating the 
FOCSE metrics, and then by aggregating them by means of OWA operator. 

5.1 Single Sign-On Frameworks 

The SSO [15] approach is aimed at co-ordinating and integrating user log-on 
mechanisms of different domains. In particular, SSO provides a technique where a 
primary domain is responsible for managing all user credentials and information 
used during the authentication process, both to the primary domain itself and to each 
of the secondary domains that the user may potentially require to interact with. SSO 
also provides the users with a transparent authentication to the secondary domains. In 
this scenario, the following subset of SSO frameworks has been evaluated by 
FOCSE metrics (for more details, see [2]). 

 
x Central Authentication Service. Central Authentication Service (CAS) [7] is an 

open source authentication system originally developed at Yale University. 
It implements a SSO mechanism aimed at providing a Centralized 
Authentication to a single server through HTTP redirections. 

x SourceID. SourceID [22], first released in 2001 by Ping Identity Corporation, 
is an open source multi-protocol project for enabling identity federation and 
cross-boundary security. SourceID also implements Liberty Alliance SSO 
specifications.  

x Java Open Single Sign-On (JOSSO). Java Open Single Sign-On (JOSSO) is an 
open source SSO infrastructure based on J2EE specifications. In detail, 
JOSSO provides a solution for centralized platform-neutral user 
authentication [17], combining several authentication schemes (e.g., 
username/password or certificate-based) and credential stores.  

x Open Source Web SSO. The Open Source Web SSO (Open SSO) [18] project 
relies on the consolidated Web SSO framework developed by Sun 



12 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
 

 

Microsystems, that was opened to the open source community in July 2005. 
It provides services and functionalities for implementing transparent SSO as 
an infrastructure security component.  

5.2 SSH Clients 

SSH is a communication protocol widely adopted in the Internet environment 
that provides important services like secure login connections, file transfers and 
secure forwarding of X11 connections [27]. SSH protocol allows also a 
communication approach named Tunneling as a way to encapsulate a generic 
communication flow in SSH packets, implementing a port forwarding mechanism 
and securing data that use untrusted communication protocols, exploiting SSH 
encryption features. The FOCSE framework has been applied for evaluating the 
following SSH clients. 

 
x Putty. Putty [20] is a popular open source SSH client for Microsoft Windows 

platforms. It supports versions 1 and 2 of SSH protocol, terminal emulation, 
and provides a complete and essential user interface. 

x WinSCP. WinSCP [25] allows safe copying of files between remote internet 
machines through the SSH protocol. It also offers basic remote management 
operations, such as file duplication, renaming and deleting, and supports all 
the encryption features of SSH protocol.  

x ClusterSSH. ClusterSSH [23] allows users to open and manage several 
terminal windows with connections to specified hosts and an administration 
console. The tool is also intended for cluster administration.  

5.3 SSO Comparison 

Table 3 gives a comparison of SSO implementations based on FOCSE metrics.5 
Focusing on evaluation, as shown by Table 3, all systems are quite stable due to the 
fact that their start-up happened more than a year ago. Even Open SSO, i.e. the most 
recent one, can be considered as a stable implementation since it represents an open 
source extension of a well-established proprietary implementation, named Sun Java 
System Access Manager. A common characteristic shared by all analyzed solutions is 
that they are managed by a consolidated core group providing stability to the project 
and coordination to open source community. By contrast, these solutions have 
different documentation levels. Specifically, whereas CAS provides a good amount 
of documentation, i.e. 28.55 MB, SourceID presents on its Web sites only a limited 
amount of information, i.e. 8.96 MB. Although at the first sight the number of 
releases could seem a good estimation of projects vitality, this is not entirely true. 
Often, in fact, the number of releases is highly dependent on the project age. To the 

5 Due to the fact that only JOSSO and Open SSO data have been gathered by FLOSSmole, our 
evaluation is sensitive to errors due to obsolete information. 



FOCSE: An OWA-based Evaluation Framework for OS Adoption 13
 
purpose of clearly evaluating the liveness of a project, the number of releases should 
be coupled with the Update Average Time. In particular, Table 3 seems to suggest 
that Open SSO is the liveliest project. However, its low update average time is due to 
the fixing of youth problems that hints to keep Open SSO out of this metric 
comparison. We argue, then, that the more active and viable implementation is 
JOSSO, because it provides a new release every 44 days. Also, the Bug Fixing 
Rate metric suggests that JOSSO is the most reactive project between the analyzed 
solutions. Concerning Last Update Time, CAS implementation achieves the best 
results, i.e. 18 days. Also, CAS is the only project providing a certified list of 
users. Here we do not consider the Number of Users, Repository Quality, and 
Community Vitality parameters for all solutions, because relatively few solutions 
provide enough information to clearly and unambiguously compute them. In 
particular, CAS provides a certified list of the CAS' deployers, and JOSSO and Open 
SSO make possible to easily compute the community vitality. 

 
Table 3. Comparison of proposed SSO implementations at 31 December 2006. 

Metrics CAS SourceID JOSSO Open SSO 
Age (GA) 1865 days 1177 days 854 days 570 days 
Last Update Age (GA) 18 days 236 days 217 days 21 days 
Project Core Group (GA,DC) Yes Yes Yes Yes 
Number of Core Developers (DC) 5 N/A 2 N/A 

Number of Releases (SQ,IA) 28 7 7 
1 (since code 
opening) 

Bug Fixing Rate (SQ,IA) N/A N/A 0.78 0.53 
Update Average Time (SQ,IA) 67 days 168 days 44 days 27 days 
Forum and Mailing List Support 
(GA,DIS) 

Mailing 
List Only 

Mailing List 
Only 

Yes Yes 

RSS Support (GA,DIS) Yes Yes No Yes 

Number of Users (UC) 
48 
(certified) 

N/A 
7072 
(approx.) 

N/A 

Documentation Level (DIS) 28.55 MB 8.96 MB 16.96 MB 14.3 MB 
Community Vitality (DC,UC) N/A N/A 1.87 3.56 

5.4 SSH Comparison 

Table 4 gives a comparison of SSH client implementations. Differently from 
SSO systems, all the analyzed SSH frameworks lie in FLOSSmole database.   

 
Table 4. Comparison of proposed SSH implementations at 31 December 2006. 

Metrics Putty SourceID JOSSO 
Age (GA) 2911 days 1470 days 1582 days 
Last Update Age (GA) 636 days 238 days 159 days 
Project Core Group (GA,DC) Yes Yes Yes 



14 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
 

Number of Core Developers (DC) 4 2 2 
Number of Releases (SQ,IA) 15 32 15 
Bug Fixing Rate (SQ,IA) 0.67 N/A 0.85 
Update Average Time (SQ,IA) 194 days 46 days 105 days 
Forum and Mailing List Support (GA,DIS) N/A Forum Only Yes 
RSS Support (GA,DIS) No Yes Yes 
Number of Users (UC) N/A 344k 927 
Documentation Level (DIS) 1.39 MB 10 MB N/A 
Community Vitality (DC,UC) N/A 3.73 5.72 

 
Focusing on the evaluation, it is clear that all the projects are stable since their 

startup happens more than four years ago. This results in stable and consolidated 
project core groups of at least two core developers, and in a good number of releases. 
Concerning the Bug Fixing Rate metric, whereas for WinSCP no data are available, 
Putty and ClusterSSH provide a good bug fixing rate, 0.67 and 0.85 respectively.  

To conclude, the number of users adopting WinSCP (i.e., 344K of users) is 
impressive, suggesting that it is very attractive for users to take advantage of open 
source SSH solutions. 

5.5 Applying OWA Operator to FOCSE Critical Application Comparison 

We now apply OWA operator to provide a single estimation of each evaluated 
solution. For the sake of conciseness, we shall only show the details of OWA 
application to CAS solution. All other solutions can be processed in the same vein. 

First, the adoption of OWA operator together with the Qmean quantifier results in 
the following set of weights:  

3 5 6 7 8 9 101 2 4 11
12 12 12 12 12 12 12 12 12 12 12 =[ , , , , , , , , , , ,1]w  

 In particular, the Qmean identifier is used to mitigate the impact of too high and 
too low values on the overall aggregation process.6 Then, after normalizing the 
vector of weights: 

78 5 7 3 51 1 1 2 1 4 11 2
12 78 39 26 39 78 13 78 39 26 39 78 13= / =[ , , , , , , , , , , , ]nw w  

we normalized the vector of CAS attributes as attrValuek/maxAttrValue, where 
attrValuek is the value of the k-th attribute and maxAttrValue is the maximum 
attribute value among all the analyzed solutions. It is important to underline that 
attributes such as Last Update Age, where low values mean better evaluations, are 
normalized as 1- attrValuek/maxAttrValue. The normalization process results in the 
ordered vector a=[1, 1, 1, 1, 1, 1, 0.93, 0.5, 0.4, 0.01, 0, 0]. 

Now, we calculate the final value of CAS system as: � � 12

1
0.45OWA i ii

f a w a
 

  ¦ . 

 
6 Different quantifiers could be adopted depending on the scenario. 



FOCSE: An OWA-based Evaluation Framework for OS Adoption 15
 

When the same process is applied to all solutions, one obtains the two tables 
depicted in Table 5. To conclude, from Table 5 is clear that whereas among SSO 
systems the best solution is CAS, followed by JOSSO implementation, concerning 
SSH clients, the solution more likely to be adopted is WinSCP. 

Table 5. OWA-based Comparison. 
(a) SSO Comparison 

 CAS SourceID JOSSO Open SSO 
fOWA 0.45 0.19 0.36 0.34 

 Putty SourceID JOSSO 
fOWA 0.23 0.51 0.47 

(b) SSH Comparison

6 Conclusions and Future Work 

We presented our FOCSE framework aimed at the definition of a quantitative 
approach to the comparative evaluation of security-related open source systems. A 
structured set of metrics used in the evaluation process and specifically designed for 
such systems, a formal aggregation is introduced to deal with the heterogeneity of 
such metrics. This aggregation allows the FOCSE evaluation to be expressed by 
means of a single value and to be more user-friendly. Then as case-studies, we 
compared some well-known implementations of SSO and SSH applications. Future 
work will study the integration of FLOSSmole-like databases in FOCSE, allowing 
the definition of an infrastructure able to gather the requested data by itself and then 
provide the evaluation in a transparent way to the user. Also the definition of a 
validation system of open source projects based on community inputs [19], as well as 
the definition of an extended version of the framework able to evaluate whatever 
open source solution will be subject of future research. 

Acknowledgements 

This work was supported in part by the European Union within the PRIME 
Project in the FP6/IST Programme under contract IST-2002-507591, and by the by 
the Italian Ministry of Research under FIRB contracts n. RBNE05FKZ2_004 
TEKNE and n. RBNE01JRK8_003 MAPS. 

References 

1. S. Abiteboul, X. Leroy, B. Vrdoljak, R. Di Cosmo, S. Fermigier, S. Lauriere, F. Lepied, R. 
Pop, F. Villard, J.P. Smets, C. Bryce, K.R. Dittrich, T. Milo, A. Sagi, Y. Shtossel, and E. 



16 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati 
 

Panto. Edos: Environment for the development and distribution of open source software. In 
Proc of The First International Conference on Open Source Systems, pages 66–70, Genova 
(Italy), July 2005. 

2. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, F. Frati, and P. Samarati. CAS++: an 
open source single sign-on solution for secure e-services. In Proc. of the 21st IFIP 
International Information Security Conference “Security and Privacy in Dynamic 
Environments”, May 2006. 

3. C.A. Ardagna, E. Damiani, F. Frati, and M. Madravio. Open source solution to secure e-
government services. Encyclopedia of Digital Government, 2006. 

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using open source middleware for 
securing e-gov applications. In Proc. of The First International Conference on Open Source 
Systems, pages 172–178, Genova (Italy), July 2005. 

5. C.A. Ardagna, E. Damiani, F. Frati, and S. Reale. Adopting open source for mission-critical 
applications: A case study on single sign-on. In Proc. of IFIP Working Group 2.13 Foundation 
on Open Source Software, volume 203/2006, pages 209–220, Como, Italy, 2006. 

6. C.A. Ardagna, E. Damiani, F. Frati, and S. Reale. Secure authentication process for high 
sensitive data e-services: A roadmap. Journal of Cases on Information Technology, 9(1):20–
35, 2007. 

7. P. Aubry, V. Mathieu, and J. Marchal. Esup-portal: open source single sign-on with cas 
(central authentication service). In Proc. of EUNIS04 – IT Innovation in a Changing World, 
pages 172–178, Bled (Slovenia), 2005. 

8. A. Capiluppi, P. Lago, and M. Morisio. Characteristics of open source projects. In CSMR, page 
317, 2003. 

9. CERT-CC. Cert coordination center. Available: www.cert.org/. 
10. M. Conklin. Beyond low-hanging fruit: Seeking the next generation in floss data mining. In 

Proc. of IFIP Working Group 2.13 Foundation on Open Source Software, volume 203/2006, 
Como, Italy, 2006. 

11. C. Cowan. Software security for open-source systems. IEEE-SEC-PRIV, 1(1):38–45, 
January/February 2003. 

12. J. Feller and B. Fitzgerald. A framework analysis of the open source software development 
paradigm. In ICIS, pages 58–69, 2000. 

13. FLOSSmole. Collaborative collection and analysis of free/libre/open source project data. 
Available: ossmole.sourceforge.net/. 

14. B. Golden. Succeeding with Open Source. Addison-Wesley Professional, 2004. 
15. The Open Group. Single sign-on. Available: www.opengroup.org/security/sso/. 
16. A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service 

provision. In Decision Support Systems, 2005. 
17. JOSSO. Java open single sign-on. Available: sourceforge.net/projects/josso. 
18. OpenSSO. Open web SSO. Available: opensso.dev.java.net/. 
19. E. Damiani P. Ceravolo and M. Viviani. Bottom-up extraction and trust-based refinement of 

ontology metadata. IEEE Transaction on Knowledge and Data Engineering, 19(2):149–163, 
February 2007. 

20. PuTTY. A free telnet/ssh client. Available:   
 www.chiark.greenend.org.uk/~sgtatham/putty/. 

21. E.S. Raymond. The cathedral and the bazaar. Available: 
www.openresources.com/documents/cathedral-bazaar/, August 1998. 

22. SourceID. Open source federated identity management. Available: www.sourceid.org/. 
23. Cluster SSH. Cluster admin via ssh. Available: sourceforge.net/projects/clusterssh. 
24. V. Torra. The weighted OWA operator. International Journal of Intelligent Systems, 

12(2):153–166, 1997. 
25. WinSCP. Free sftp and scp client for windows. Available: winscp.net/eng/index.php. 
26. R.R. Yager. On ordered weighted averaging aggregation operators in multi-criteria decision 

making. IEEE Transaction Systems, Man, Cybernetics, 18(1):183–190, January/February 1988. 
27. T. Ylonen. Ssh - secure login connections over the internet. In Proc. of Sixth USENIX Security 

Symposium, page 3742, San Jose, California, USA, 1996. 


