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Abstract—Situation awareness is important to plan relief work
in emergency response. However, impaired communication and
computation infrastructure makes it difficult to acquire and an-
alyze information. Accordingly, complex and resource-intensive
information processing can be offloaded through opportunistic
ad hoc contact to, e.g., first responder mobile devices, leveraging
their idle resources. Ensuring complete service execution without
overloading individual devices is a challenging task in such dy-
namic networks. In this work, we propose handover mechanisms
that utilize the current context of individual mobile devices
to balance load and achieve complete task execution without
requiring a global view on the opportunistic network. We study
their scalability and performance by combining them with our
unified message template for distributed service processing in the
OMNeT++ simulation environment. The evaluation shows that
our handover mechanisms increase the success rate significantly
and achieve distributed load balancing.

I. INTRODUCTION

In recent years, mobile services become more computation-

intensive and more complex, requiring multiple processing

stages and highly-specialized hardware. Executing such ser-

vices on a single device is therefore impractical. To alleviate

a device with limited computing capacity, a complex mobile

service can be offloaded as a task to a remote cloud for

execution. However, offloading to the cloud is not always

possible due to overloaded or impaired infrastructures, which

can occur, for instance, in emergency situations such as

disaster scenarios. Opportunistic offloading [1] has been in-

troduced as an emerging solution for offloading computation.

Hereby, the computation tasks can be offloaded to a nearby

stationary computing unit such as cloudlet [2], or to an

opportunistic network formed by mobile devices [3]. While

both approaches share the common idea of leveraging nearby

available computing resources, offloading in an opportunistic

network provides more flexibility and more advantages in

favor of executing complex tasks with multiple processing

stages. A complex task can be divided into several subtasks,

and distributed to the participating mobile devices, leveraging

their idle, and heterogeneous capabilities. Besides ensuring

successful execution of the offloaded tasks, balancing services

execution among the participating devices is also essential, and

beneficial. On the one hand, load balancing relieves overloaded

devices, effectively leading to improved overall performance.

On the other hand, the energy consumption for executing

the offloaded tasks by participating devices can be decreased

through load balancing, resulting in (i) longer lifetime of op-

portunistic networks, which serves as communication medium

during critical situations, and (ii) more acceptance of users to

contribute their resources. Most approaches dealing with load

balancing in mobile systems are based on global knowledge

of the network to formulate the load balanced assignment

as an optimization problem. In line with the dynamic nature

of opportunistic networks, the optimization problem can also

be solved in a distributed manner, as proposed in [4]. Still,

rapidly changing environments require a flexible and adaptive

approach to load balancing that takes changing conditions,

resource constraints, heterogeneity of tasks and services, and

mobility into account.

In this work, we propose several handover mechanisms for

load balancing in complex services offloading based on the

currently available context of single devices. To this end, we

extend our previous work [5] on a task message template that

allows the user to define a task and the services required to

accomplish the defined task. Our message template bundles

the control information and the corresponding payload data

into a single message. This enables mobile devices to decide

autonomously whether and how to participate in service pro-

cessing. We implement our proposed mechanisms within the

OMNeT++ simulator [6], allowing for an in-depth evaluation

of their performance in terms of load balancing and success

rate and their cost in terms of message overhead and latency.

In summary, the contributions of this paper are threefold:

• We propose several load balancing (LB) mechanisms for

distributing complex tasks across devices in an oppor-

tunistic network, optimizing resource utilization and suc-

cess rate, while minimizing the communication overhead.

• We develop a simulation environment based on OM-

NeT++, which integrates our earlier work on an adaptive

task oriented message template [5].

• We conduct an extensive evaluation of our LB mecha-

nisms within the OMNeT++ simulation environment. We

show the overall performance gain, improved fairness,

and inherited trade-offs of our proposed LB mechanisms.ISBN 978-3-903176-08-9 c© 2018 IFIP



The remainder of this paper is organized as follows. First,

we discuss related work. Second, we give a brief introduction

in our adaptive task message template (namely ATMT) for

distributed in-network processing, and highlight an impor-

tant open research challenge, namely, distributed fair load

balancing. Third, we present our load balancing handover

mechanisms and an in-depth evaluation relying on OMNeT++

simulations, before concluding the paper.

II. RELATED WORK

Offloading computational workload in mobile systems, aim-

ing to reduce network traffic have been studied in several

research work. [7] propose a decentralized optimization model

for the underlying operator placement problem. This ap-

proach, however, does not consider dynamic changes of the

environment. Recent research on Complex Event Processing

(CEP) in the context of vehicular networks has put more

attention to adaptive mechanisms; an example is CEP operator

migration [8]. Another research direction is edge computing,

in which computation tasks are offloaded to nearby computing

resources such as cloudet-upgraded router for processing [2].

In the aforementioned work, balancing computational work-

load is neglected.

Load balancing or fair resource allocation have always been

an important research aspect in mobile networks. To analyze

fair resource allocation, Fossati et al. [9] propose to extend

the Jain’s fairness index with a satisfaction factor of users.

The problem of resource allocation is modeled through game

theory, using their proposed metric. Tham et al. [4] target mo-

bile edge networks and formulate a constrained optimization

problem to achieve load balancing. The problem, however, has

to be solved by a central entity. Fernando et al. [10] incorporate

work stealing concepts in mobile crowd computing, allowing

a worker device to take over workload from other devices.

The authors focus on the practical implementation using

mobile devices and, thus, do not consider work stealing in

a large scale setup. Centralized coordination is impractical

in an opportunistic network. Consequently, Benchi et al. [11]

study the consensus problem in opportunistic networks, which

allows each node to make a consent decision upon receiving

enough votes from others. Comparable to our work is load

balancing for services composition in opportunistic networks.

Viswanathan et al. [12] use a time deadline for services

composition to formulate an optimization problem, which can

be solved by service providers in a distributed manner. The

complexity of such optimization formulation is high, thus

cannot cope well with the rapid changes of an opportunistic

network. In [13], Sadid et al. introduce a hop by hop compo-

sition model designed for opportunistic networks, considering

load and mobility of the devices. The authors propose to

let each service provider decide on the next composition to

cope with dynamic changes. Our work differentiates from [13]

in that we explicitly incorporate uncertainty factors in our

local optimization mechanisms to increase their robustness.

Furthermore, we provide a thorough evaluation focusing on

the quality of load balancing.

III. SCENARIO: IN-NETWORK DATA ANALYSIS IN

EMERGENCY SITUATIONS

A. Scenario Description

To plan relief operations in emergency response situations

efficiently, the relief workers need to have situational informa-

tion. The required raw sensing data can be obtained through

built-in sensors on the mobile devices as shown in [14].

Thereafter, these data have to be processed and analyzed to

extract valuable information. A concrete example can be found

in [15]. In this work, image processing techniques are applied

to extract faces of victims through pictures shot by smart

phones. To capture the situational overview, a large amount

of data might be required. Processing all these data in a

single device of the relief worker is inefficient. Two options

are possible: (i) offloading the data analysis to cloud servers,

(ii) offloading the data analysis to several surrogate devices

for distributed processing. The first option is not always

possible in case of impaired communication infrastructure,

which often occurs in disaster situations. The second option

provides a more flexible solution to analyze data, leveraging

idle resources available in opportunistic network.
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Fig. 1: Abstract system model of disseminating ATMT task

messages in opportunistic networks for processing.

To facilitate distributed processing through mobile devices

in the elaborated scenario, the adaptive task-oriented message

template (ATMT) is proposed in [5]. The objective of this

message template is to allow users to define an analysis goal

and the operations/services required to accomplish this goal.

Using the task message template, the data analysis is handed

over from one device to the next device, wheres each device

can perform one or several operations. Hence, the task is

divided and processed in a distributed manner. The workflow

of processing an ATMT message is illustrated in Figure 1.

In this illustration, a device (called delegator) with required

domain knowledge of how to process the data analyis, defines

n operations (op1..opn) and disseminate the message into the

opportunistic ad hoc networks. Each device participating in the

processing (called operator) executes the operations provided

by this device and hands over the processed message upon

opportunistic contact with other devices for further executions.
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B. Adaptive Task Message Template

The construction of the ATMT task message template

designed in our previous work [5] is illustrated in Figure 2. To

facilitate distributed processing in opportunistic networks, one

of the objectives of ATMT is to allow the participating devices

to cooperate without having to rely on any centralized coordi-

nation. Due to this reason, an ATMT message contains both

meta-information required for processing and the belonging

payload data. The meta-information is stored in the ATMT

header, consisting of two parts, i.e., message header and

analysis header. The first part is the fix-sized message header,

which contains an UUID for identification, a checksum on

the status of the processing and the length of the header. By

comparing the checksum in the message header, a device can

check on the current status of the processing and decides

to merge, drop or to handover a task, without parsing the

whole message content. The analysis header composes of an

operations graph and a data dictionary. The operations graph

is based on an acyclic directed graph, that is used to model

the processing goal, the required operations/services, and the

processing order. The data dictionary in the header maps the

operations in the operations graph to the respective data pieces

in the ATMT payload. When an operation is completed by

a device, this device can replace the old payload data with

the processed result. All in all, the construction of an ATMT

message allows each device to make autonomous decision.

ATMT Header

Message Header

(UUID, Checksum, 

Length)

Analysis Header

Operations Graph

ATMT Payload

OP1
OP3

OP2
OP4

Data#1 Data#2 Data#3 ..
Data 

Dictionary

Fig. 2: Construction of ATMT task message template as

designed in [5].

A system utilizing ATMT message to perform in-network

data analysis as the aforementioned scenario depends on

the heterogeneous capabilities of the devices, which can be

translated into different roles. Four roles are conceived, i.e.,

sensors for obtaining raw data, delegators with the domain

knowledge for constructing the operations graph which can

be understood as a way to coordinate the devices in a dis-

tributed manner, operator for performing operations/services,

and forwarder to handover the ATMT messages. As briefly

described in the previous section, Figure 1 shows a sample

workflow using ATMT concept. Sensor devices are omitted

in the illustration. A delegator device receiving data from the

sensors constructs an ATMT message, and hands over this

message to its directly connected operators via WiFi ad hoc

communication. Each operator processes the ATMT message

and executes the operations/services required in the operations

graph according to its available resource and services. The

resulting ATMT messages can be forwarded through store,

carry and forward concept of opportunistic mobile networks to

another operator at later time for further processing. In doing

so, the chances for successful execution of a complex analysis

task can be increased.

IV. CHALLENGES AND ASSUMPTIONS

Based on the description of the ATMT construction and the

in-network data analysis workflow, we can identify several

challenges. (i) A centralized coordination with the complete

view over the services available in all mobile devices does

not exist. Consequently, each device only has a partial view

of the network. (ii) The devices considered in this work are

highly dynamic and mobile. This requires adaptive mecha-

nisms. (iii) Due to the challenges elaborated in (i) and (ii),

the handover of ATMT messages in an uncoordinated way

might lead to massive communication overhead and processing

redundancies, i.e., workload waste. Optimizing both successful

execution of complex ATMT tasks and load balancing under

the aforementioned challenges is thus our main target.

With respect to the challenges and the elaborated application

scenario, the following assumptions are made:

• Decentralized opportunistic ad hoc network: we focus on

complex services offloading and distributed processing in

an opportunistic ad hoc network. Thus, we assume that

the devices are mobile and they are able to communicate

if they are in WiFi range of each other.

• Heterogeneous resource and services: we assume that

the participating devices possess different capabilities,

i.e., each device has different resource capacity left, can

provide different services, perform different operations.

• Cooperative behaviour: we assume that no participating

device has malicious intention. To establish a trustworthy

distributed processing environment in a mobile system,

trust measurement concept such as in [16] can be utilized.

• Location-aware: we assume that each device is able to

determine its own location.

V. HANDOVER MECHANISMS

We design our handover mechanisms with special focus

on load balancing. Our target is to improve the distribution

of workload among participating devices in an opportunistic

network, taking into account the challenges and assumptions

as previously discussed. According to Alakeel [17], we have

to consider three main aspects when designing load balancing

mechanisms for distributed systems, i.e., transfer strategy,

location strategy, information strategy. Transfer strategy is

the decision whether to offload/handover the task, location

strategy indicates which destinations should the tasks be

offloaded to, and information strategy refers to the context

information which can be used to devise transfer strategy

and location strategy. Accordingly, the information strategy

is the most important component of handover mechanisms.

W.r.t. our scenario, the information strategy is limited, since a

global view of all devices in an opportunistic network is not

possible. Therefore, a device in an opportunistic network can

only use either (i) its own context information or (ii) a partial

view of the network through information shared by other

devices via opportunistic contact. Based on this observation,
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we devise three categories for handover mechanisms, i.e.,

naive, work stealing, and local optimization. A device using

naive mechanism only requires its own resources utilization

as context to make handover decision; while a device using

work stealing and local optimization requires shared context

from other devices. The details of each devised mechanisms

will be elaborated in the following.

A. Naive

Naive mechanism does not require any sophisticated shared

context; the decision is made by single device’s context with

respect to the resource utilization on this device. To this end,

each participating device in our system maintains a queue of

ATMT tasks. The size of ATMT tasks queue indicates the

total resource, which a device can contribute. Two options

are possible for naive handover. (i) Since an ATMT message

represents a complex task that requires the execution of several

services in a predefined order, the successful completion of a

task is not guaranteed in opportunistic network. Consequently,

to increase the success rate, a naive node simply contributes

all of its resource available in ATMT tasks queue and passes

the processed ATMT tasks to all neighbours. This behavior

resembles the well-known epidemic routing [18]. Hence, the

common observed characteristics of epidemic routing can also

be applied for our naive mechanism; i.e., the success rate

is improved by scarifying communication and computation

overhead. Due to this reason, a naive mechanism utilizing full

resources of participating devices, serves well as the baseline

for benchmarking purpose. (ii) It can also be observed that,

in dense opportunistic networks, a high number of devices

providing similar services can exist. On the one hand, the

resource on these devices will be used redundantly, following

a greedy naive behavior. On the other hand, the success rate

when reducing the size of ATMT tasks queue and rejecting

ATMT tasks upon reaching a limit, can be compensated by the

high number of participating devices with similar capabilities.

In such cases, reducing the size of the ATMT tasks queue

and rejecting tasks can decrease the number of redundantly

executed operations, while preserving the high success rate

and leading to improved load balancing. This intuition will be

analyzed later in the evaluation (cf. Section VI). In summary,

a naive device in our system will either fully utilize all its

available resource, i.e., epidemic flooding of ATMT tasks in

the whole network, or a device can intentionally reduce its

tasks queue and drop upcoming received tasks.

B. Work Stealing

The term work stealing is coined in the context of parallel

computing [19]; it refers to the act of an underutilized pro-

cessor stealing threads from over-utilized processor, aiming

to relieve over-utilized processors from high workload, thus

a better load balancing among processors can be achieved.

Fernando et al. [10] incorporates the concept of work stealing

in the context of mobile crowd computing. Our devised work

stealing strategy extends this idea for a more decentralized

dynamic system, i.e., mobile devices in opportunistic network

with the ability to act autonomously.

In our system, each operator device is qualified as a work

stealer, i.e., if an operator device deems itself to be under-

utilized, this device can ask to take over ATMT tasks from

the nearby devices. Underutilization is determined based on

the current number of ATMT tasks in the tasks queue. If this

number is less than a work stealing limit, then an operator

device will ask the surrounding operators to handover ATMT

tasks. An operator device triggers the work stealing process

by sending a work stealing message, indicating the number of

ATMT tasks (nws) that this work stealing operator is willing to

accept and the list of its providing operations. In order not to

exhaust the maximum resource of the work stealing operator,

nws should not exceed the maximum size of the ATMT tasks

queue on the device. Furthermore, to avoid egoistic behavior of

the participating operators, when receiving the work stealing

message with the indicated capacity nws, a device is allowed

to handover maximum up to nws tasks, however a minimum

number of task nkeep should always be kept back in the tasks

queue. To decide how many tasks should be handed over to

the work stealing operator, three options are conceived: (i)

Devices receiving work stealing message try to exploit the

maximum capacity indicating by the work stealing operator

without any coordination from the work stealing device. (ii)

The work stealing device assumes the local coordination and

divides the number of allowed ATMT tasks equally for its

neighbors. (iii) The work stealing device accepts tasks from

its neighbors following first come first serve principle. As soon

as the maximum threshold is reached, the work stealing device

will notify the neighboring devices to stop handing over tasks.

Assignment of next

Service

Operator

OPi OPn...

Message

Operator

i

Operator

Operator

x

Operator

x

Operator

j

OPj OPn...

Message

Context Information 

Exchange

Fig. 3: Illustration of local optimization concept, choosing to

the best next handover destination benefiting load balancing.

C. Local Optimization

Local optimization is inspired by the observation of Eager

et al. [20], that a simple load adaptation locally in a distributed

environment can lead to the overall improved performance

of the whole system. Additionally, in the context of services

composition in opportunistic network, Sadid et al. [13] show

that the overall performance of opportunistic hop by hop

composition is comparable to the performance of composition
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orchestrated by a centralized entity. Following this line of

thought, we devise strategies for tasks handover decision at an

operator device in our system, requiring only local knowledge

obtained through shared context of the neighboring devices.

Our target is to optimize the load sharing among several

devices locally by handing over the tasks to the next best

destination within a close proximity. The local optimization is

done by single devices autonomously, but still in a collabora-

tive manner through shared context. The overall workflow of

local optimization strategy is illustrated in Figure 3.

In opportunistic networks, the context of devices can be

shared either in a reactive or proactive manner. Reactive

context sharing is triggered only if a device receives an explicit

query asking for its context. However, in a highly dynamic

environment, a long time might elapse since the query is sent,

until the information comes back to the query initiator. Due

to this reason, proactive context sharing seems to be more

favorable in opportunistic network. The context information is

thus exchanged at any opportunistic contact of two devices in

our system. Two devices exchange the summary of the context

information about themselves and about the other devices that

these two have seen in the past. Through this way, every

devices have a snapshot of the shared context information.

The context information required for local optimization of load

balancing are generated by each device as a list of available

operations (opi..opj), the currently-used capacity (nu), the

current position ((long, lat)), moving direction (~v) and a time

stamp (tinfo) when generating context information. When an

operator device triggers the local optimization, it checks the

current shared context and filters the nodes within a proximity

of distance dmax, that possess the required operations, as

potential destinations for task handover. The potential des-

tinations can be further filtered, omitting devices that have

distance around dmax and currently move farther away from

the initiating device. To choose destinations benefiting the

load balancing, we use a cost function covering three aspects

for local optimized assignments, which are the currently-

used capacity in the tasks queue (nu), the distance and the

uncertainty of the shared context information about operator

O, i.e., (µ(NO)). The cost function is defined as follows:

c(NA, NO,#OP ) = (wl ∗ cl ∗#OP + wd ∗ cd) ∗ µ(NO) (1)

in which:

µ(NO) = 1 +
tcurrent − tinfo

tkeepAlive

cl(NO) =
nmax − nu

nmax

cd(NA, NO) =
d(NA, NO)

dmax

(2)

In Equation 1, NA is the node that wants to trigger the

handover, to assign some of its tasks to other operator; NO

is a potential destination operator, to which the tasks can

be assigned. #OP is the number of operations that will be

handed over. wl and wd are weighting factors for cost values

of load (cl) and distance (cd), respectively. In Equation 2, the

uncertainty factor µ(NO) is captured using the time elapsed

since the context information of operator O are generated until

recently. The main cause of the uncertainty is the high dynamic

of the network, caused by mobility or by disappearance upon

exhaustive utilization of the devices. Consequently, outdated

context information, which results in a higher uncertainty

factor µ(NO), can lead to a negative handover decision,

increasing the total cost. The cost for load component in

the equation is considered based on the number of currently

utilized tasks in the tasks queue and the maximum size of

the task queue (nmax). The distance component is determined

by the ratio between the current distance d(NA, NO) from

the assigner to the operator and the search radius (dmax),

as in Equation 2. This is based on the intuition, that the

communication overhead for a nearer node is less than that

for the farther node; since more hops might be required to

reach an operator at larger distance.

In order to improve load balancing, each device can trigger

the local optimization to find the best destination with mini-

mum handover cost for the upcoming operations of an ATMT

task. We propose two modes to trigger local optimization

to find the best next handover destination, i.e., (i) proactive

mode: every time the shared context information are updated,

indicating possible better destination for the next handover or

(ii) reactive mode: only when a device receives more tasks than

the current size of its task queue, indicating over-utilization.

Regardless of trigger modes, to ensure effective dissemination

of shared context information, every time a device detects a

new neighbor, this device exchanges its summarized context

information with the new neighbor.

VI. EVALUATION

We implement and evaluate the task handover mechanisms

as detailed in Section V, using a customized OMNeT++

module compatible with our designed ATMT message [5]. In

this section, we first elaborate on the evaluation methodology,

the simulation setup, and the evaluation metrics. Next, we

study each handover mechanisms independently w.r.t. the

evaluation metrics to identify the best performing option

within each category. Last, we compare the proposed handover

mechanisms against each other and point out the trade-off

between the performance and load-balancing metric.

A. Scenario Modelling, Setup and Evaluation Metrics

Since the main target of our evaluation is the analysis of

computation balancing, we model a simulation scenario to

enable the dissemination of ATMT tasks into an opportunistic

network. This network consists of several mobile nodes that

move around a 500× 500m2 simulation area. Two nodes can

communicate within 75m WiFi range. We abstract from a

WiFi ad hoc model to enhance the scalability of the simulation

and assume that the congestion will be handled by Link

Layer mechanisms [21]. We set up five static nodes, one main

delegator and four helper delegators which are connected to the

main delegator. The main delegator generates ATMT-tasks and
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Fig. 4: Contacts among nodes for varied number of devices.

(a) Contact duration

20 40 60 80
Number of devices

1

2

3

4

5

6

N
um

be
r 

of
 n

ei
gh

bo
ur

s

(b) Number of neighbors

Fig. 5: Average contact duration and number of neighboring

devices according to the used Levy Walk mobility model.

injects these tasks to the network through the helper delegators.

The reason for this particular setup is to allow the initial

ATMT tasks to reach more operator nodes even under sparse

network as in case of 20 devices (cf. Fig. 4a), aiming solely

at generating a similar start configuration in both dense and

sparse setups. The performance of the handover mechanisms,

which rely on the behavior of the participating nodes during

the simulation run, is not affected by this setup. We create two

types of task; a simple task which contains between two or

three operations, and a complex task which always contains

five operations. The delegator nodes are marked in red as

shown in Fig. 4. To control the movement of the simulated

mobile nodes, we use the Levy Walk mobility model. This de-

cision is based on the fact, that the Levy Walk mobility model

is reported in [22] to resemble the human mobility patterns. We

generate mobility traces accordingly using BonnMotion [23].

The direct contacts among mobile nodes from the generated

traces are illustrated in Fig. 4. Fig. 5 shows the observed

characteristics of the generated traces, which suggest a longer,

more stable contact duration and an increasing number of

direct neighbors with more devices in the network. As such, 20

nodes represent a sparse opportunistic network, while 80 nodes

represent a dense opportunistic network. The most important

simulation parameters are summarized in Table I.

TABLE I: Simulation Setup

Simulated Area Size 500× 500m
2

Simulation Time one hour

Number of Nodes 20, 40, 60, 80

WiFi Transmission Range 75 m

Mobility Model LevyWalkMobilityModel

#ATMT-Tasks 100, 1000

Naı̈ve Greedy full, limited

Work Stealing full, FCFS, equalized

Local Optimization proactive, reactive

We repeated each simulation ten times and plotted all

obtained results with 90% confidence intervals. The following

evaluation metrics were used to analyze the results:

(a) Success rate denotes the ratio between the number of

successfully completed ATMT tasks that can be delivered

back to the main delegator and the total number of tasks.

(b) Communication overhead is defined as the total number

of ATMT messages that are generated and duplicated by

the handover strategies.

(c) Completion time is the time elapsed since the main del-

egator injects tasks into the network, until all processed

results come back to the main delegator.

(d) Jain index is proposed by Jain et al. in [24] as follows:

JI(x1, x2, ..., xn) =
(
∑

n

i=1
xi)

2

n∗
∑

n

i=1
x2

i

, wheres xi denotes the

resource consumed (in our scenario the number of oper-

ations executed) by node i. Jain index with value closer to

1 indicates higher fairness among the resources consumed

by all nodes. Thus, Jain index is able to quantify the

quality of load balancing mechanisms.

(e) Redundancy factor is defined as the ratio between the

number of redundantly executed operations and the orig-

inal number of operations in the network.

B. Handover Mechanisms Analysis

Naive: The evaluation for naive mechanisms has two objec-

tives: (i) assessment of ATMT tasks dissemination in scarce

and dense opportunistic networks and (ii) identification of

suitable tasks queue’s size which benefits load balancing

quality as a baseline for further analysis.

In our simulation, each node possesses a number of prede-

fined services which this node can execute. For evaluation of

naive mechanisms, we set up three different classes character-

izing the availability of the services on all nodes, i.e., high,

medium, low. The distribution of the services availability on

the nodes in each class follows a normal distribution. The high

class assigns 50% of the nodes with all 5 available services

required for the operations defined in the ATMT task; the

medium class assign 50% of the nodes with between 2 and

3 available services; and the low class assign 50% of the

nodes with no services, the majority of the rest are assigned

only 1 single service. Fig. 6a and 6b show the dependency of

success rate on the availability of the services. Low services

availability decreases the success rate, which is visible in case

complex tasks are executed in sparse network with only 20
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Fig. 6: Analysis of naive handover.

nodes. The success rate in this case only reaches around 20%

(cf. Fig. 6a). However, the success rate despite low services

availability can be compensated through higher number of

devices as we anticipated. Fig 6b shows, that the success

rate for complex tasks with low services availability can be

improved from 20% (with 20 nodes) to 80% (with 80 nodes).

The effect of tasks queue’s size on the performance and the

quality of load balancing was examined. Fig. 6c shows slightly

better values for Jain index over the executed operations when

decreasing task queue’s size, compared to the maximum size

(100 in our simulation), indicating slightly improved fairness

in the system. Shorter queue size also means less resource has

to be contributed by the nodes. With respect to the completion

time, a shorter tasks queue does not have any negative effect.

Rather, the completion time depends on the number of devices,

i.e., faster completion time can be achieved with more devices

in the network as shown in Fig. 6d. Overall, the analysis of

naive handover mechanisms suggests reducing the size of the

tasks queue, thus frees resources for participating nodes.

Work Stealing: We compare thee options for work stealing

as introduced in Section V-B against naive flooding handover

mechanisms (N-Full). The 3 options for work stealing are

respectively: WS-Full which tries to exploit the full capacity of

the work stealing node, WF-Equal in which the work stealing

node divides the accepted capacity equally among neighbors,

and WS-FCFS which follows first come first serve principle.

It can be observed that greedy behavior when handing over

tasks in WS-Full decreases the success rate (down to 70%

with 80 nodes), while generating even more communication

overhead compared to the naive handover N-Full. This neg-

ative effect is due to the redundant task handovers triggered

by the neighbors in WS-Full, which the work stealing nodes

have to drop at overloaded capacity. On the contrary, the two

other work stealing options, WS-Equal and WS-FCFS slightly
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improve the success rate and even the completion time in some

cases compared to N-Full (cf. Fig. 7a, 7c). The reason is,

work stealing with WS-Equal and WS-FCFS can free some

resources of the nodes locally; in contrast, naive handover

mechanism generates more redundant operations (cf. overall

comparisons, Fig. 9b). However, depending on the distribution

of the nodes in the area, the chance for a work stealing node

and an overloaded node to meet cannot always be guaranteed.

Correspondingly, Jain index values obtained through work

stealing display no major load balancing improvement using

work stealing concept (cf. Fig. 7d).

Local Optimization: Since the local optimization looks for

the best next destination within a search radius to assign the

handover, we anticipate the size of this search radius affects
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Fig. 9: Comparison of handover mechanisms.N-Full denotes the flooding based naive handover; N-Limited denotes the naive

handover with limited task queue; WS-FCFS represents work stealing, using first come first serve; LOpt-P denotes the proactive

local optimization; LOpt-R denotes the reactive local optimization.
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Fig. 10: Completion time of handover mechanisms.

all evaluation metrics. Hence, we vary the size of the search

radius and analyze the corresponding influences. The results

are shown in Fig.8. We evaluate two modes of the local

optimization as introduced in Section V-C, i.e., proactive mode

which triggers the local optimized handover upon receiving

new shared context, and reactive which triggers the local

optimized handover only for overloaded situations.

The success rate for both proactive and reactive modes

are high (almost always at 100%) regardless of the size of

the search radius. Obviously, larger search radius leads to

more communication overhead. Proactive local optimization

generates more communication overhead compared to reactive

local optimization; since the context in an opportunistic mobile

network tends to change rapidly, leading to more frequent

information exchange in proactive mode (cf. Fig. 8b). A

longer completion time for proactive mode is visible when

increasing the size of the search radius, which is the trade-

off for obtaining better result for optimization. In contrast,

the completion time for reactive mode is quite stable, since

it only triggers the local optimization at circumstances (cf.

Fig. 8c). Fig. 8d shows improved Jain index values with

larger search radius. With proactive mode, the Jain index

value increases from 0.37 with 75 m search radius, up to

0.75 with 125 m search radius. Reactive mode increases the

Jain index value from 0.5 at 75m, up to 0.65 at 125 m.

Increasing the search radius more than 125 m shows no more

fairness improvement, suggesting converge quality for load

balancing. Hence, the search radius should be restricted in

order not to waste communication overhead. Between two

modes, proactive local optimization yields better quality for

load balancing than reactive mode at larger search radius. This

can be explained by the fact, that proactive mode reacts on the

context changes of the network, while reactive mode waits for

an overloaded situation.

C. Handover Mechanisms Comparison

Having analyzed the handover mechanisms individually in

Section VI-B, we now compare all mechanisms against each

other. To cover the performance indicators for both sparse and

dense network situations, we use two setups: (i) a low load

setup with 100 tasks distributed to 20 or 40 nodes and (ii)

a high load setup with 1000 tasks distributed to 60 or 80

nodes. Selected results for the comparison regarding the Jain

index, redundancy factor, success rate and completion time

are presented accordingly in Fig. 9a, 9b, 9c, 10. For a sparse

network, the quality for load balancing fluctuates, regardless

of handover mechanisms. It is to be expected, since a sparse

opportunistic network tends to be partitioned; many nodes

are therefore isolated the whole time, providing no way for

their resources to be exploited. Evidently, the quality for load

balancing can be improved with more nodes in the network.

Fig. 9a shows that our proposed proactive local optimization

can achieve the best Jain index value (around 0.8 in case of 80

nodes), outperforms other handover mechanisms. The quality

of load balancing obtained by reactive local optimization,

despite being less than proactive local optimization, is still

comparable to flooding based naive handover (both achieve

Jain index values at around 0.65 with 80 nodes). Proactive

local optimization yields the lowest redundancy factor (at avg.

1.5), compared to a very high redundancy factor of N-Full

(at avg. 2.5, the worst case up to more than 4) (cf. Fig. 9b).
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This confirms that the resources in naive mechanisms are used

redundantly, while our proposed local optimization mecha-

nisms help to alleviate this problem. As already discussed in

the analysis of work stealing, work stealing cannot improve

the overall load balancing, but can achieve higher success

rate compared to naive mechanisms. The result shown in

Fig. 9c again confirms this observation. The same result also

demonstrates that our proposed local optimization mechanisms

not only outperform other mechanisms w.r.t. load balancing,

but are also able to outperform others w.r.t. success rate. More-

over, the marginal variances shown in the box plot obtained

from the results of both local optimization modes, prove the

robustness of the mechanisms, against the rapid changes in

dynamic, mobile networks. The improvements achieved by

local optimization mechanisms, however, have to take into

account longer completion time (cf. Fig. 10).

VII. CONCLUSION AND FUTURE WORK

In this paper, we extended the adaptive task-oriented mes-

sage template (ATMT) defined in our previous work [5]

and proposed several handover mechanisms that enable load

balancing for distributed processing of complex tasks. Our

proposed mechanisms were designed focused mainly on op-

portunistic networks, thus do not require any centralized

coordination. The evaluation results show that we were able

to achieve better load balancing through local optimization,

leveraging only locally shared context information. Overall,

our proposed task message template facilitates distributed

coordination and is thus suitable for decentralized, highly

dynamic environment.

Several directions are possible as our future work. First,

the load balancing mechanisms proposed in this work can be

further evaluated using real hardwares, which allows us to

determine over-utilized situation in realistic conditions, e.g.,

based on CPU load or energy consumption level. This will also

allow us to incorporate, and consequently study the effect of

heterogeneity in terms of hardware configuration, energy con-

sumption when executing a complex operation on distributed

load balancing. Second, the handover mechanisms, especially

work-stealing can be further augmented by prioritizing tasks,

i.e., setting higher handover priority for nearly completed

tasks can benefit the success rate, while setting higher priority

for computation-intensive tasks will work in favor of load

balancing. Third, within the context of information centric

ad hoc network (ICN), it is shown that situational data can

be collected by mobile devices [14]. Hereby, we want to

combine the design of ATMT with data transport phase in ICN

to deliver processed high-valuable information to the query

initiator.
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[15] P. Lampe, L. Baumgärtner, R. Steinmetz, and B. Freisleben, “Smart-
face: Efficient face detection on smartphones for wireless on-demand
emergency networks,” in IEEE ICT, 2017.

[16] R. Dwarakanath, B. Koldehofe, Y. Bharadwaj, T. A. B. Nguyen, D. Ey-
ers, and R. Steinmetz, “TrustCEP: Adopting a Trust-Based Approach
for Distributed Complex Event Processing,” in IEEE MDM, 2017.

[17] A. M. Alakeel, “A Guide to Dynamic Load Balancing in Distributed
Computer Systems,” International Journal of Computer Science and

Information Security, vol. 10, no. 6, pp. 153–160, 2010.
[18] A. Vahdat and D. Becker, “Epidemic Routing for partially connected

Ad Hoc Networks,” Duke University, Tech. Rep., 2000.
[19] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Compu-

tations by Work Stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[20] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive Load Sharing
in homogeneous Distributed Systems,” IEEE transactions on software

engineering, no. 5, pp. 662–675, 1986.
[21] C. Lochert, B. Scheuermann, and M. Mauve, “A Survey on Congestion

Control for Mobile Ad Hoc Networks,” Wireless communications and

mobile computing, vol. 7, no. 5, pp. 655–676, 2007.
[22] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On

the Levy-Walk Nature of Human Mobility,” IEEE/ACM transactions on

networking (TON), vol. 19, no. 3, pp. 630–643, 2011.
[23] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn,

“BonnMotion: A Mobility Scenario Generation and Analysis Tool,” in
SIMUTools, 2010.

[24] P. N. D. Bukh and R. Jain, “The Art of Computer Systems Performance
Analysis, Techniques for experimental Design, Measurement, Simulation
and Modeling,” 1992.

513


