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Abstract—The Stream Control Transmission Protocol (SCTP)
is a message and connection oriented transport protocol using
a cookie based four-way handshake for connection establish-
ment. The intention of the four-way handshake is to provide
a robust protection against flooding attacks, like TCP SYN-
flooding. Although it protects the memory resources on the
server side, current implementations require a quite large amount
of CPU resources. For some of SCTP’s use-cases, like the
underlying transport protocol for Web Real-Time Communi-
cation (WebRTC) Data-Channels, SCTP’s cookie protection is
unnecessary and its four-way handshake delays the connection
setup unnecessarily.

We have developed an alternative handshake method which
offers a more lightweight cookie exchange and a zero round-trip
time (RTT) connection setup capability while still being fully
backwards compatible with the existing handshake procedure.
We describe the alternative handshake procedure and its ad-
vantages in common use cases like short living connections and
WebRTC Data-Channels. In addition, we evaluate the alternative
handshake’s benefit to the regular handshake with measurements
using our FreeBSD kernel implementation.

I. MOTIVATION

Reducing the connection setup time has become a more
and more important topic in the design of network protocols.
With TCP Fast Open [1], TLS 1.3 [2] and QUIC [3], many
popular protocols provide specific mechanisms to reduce the
connection setup time. This development is driven by the
perception that connection setup time has replaced insufficient
bandwidth in the context of improving the user experience.

The Stream Control Transmission Protocol (SCTP) [4]
is a reliable, connection oriented transport protocol using a
cookie based four-way handshake to provide protection against
INIT-flooding attacks, resulting in one round trip before the
client can send the first data and two round-trips until the
connection establishment is completed. Even though originally
designed for the transmission of small signaling messages in
the Signaling System No. 7 (SS7), SCTP’s use cases have
been extended over the last years, for example by Web Real-
Time Communication (WebRTC) where SCTP is used as the
underlying transport protocol for Data-Channels [5].

We have analyzed the regular SCTP handshake in multiple
scenarios and by using the FreeBSD and Linux SCTP stacks.
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Previous work [6],[7],[8],[9] and our evaluation shows that the
handshake procedure is a resource consuming operation and
vulnerable to byte amplification attacks, which is covered by
the measurement and evaluation section in detail.

In case of WebRTC Data-Channels, SCTP’s four-way hand-
shake is redundant and adds an unnecessary delay because
the SCTP communication is encapsulated within the Datagram
Transport Layer Security (DTLS) [10] protocol which already
authenticates the peer during its handshake.

Therefore, we developed an alternative handshake pro-
cedure focused on a more lightweight and flexible method
which addresses the requirements and approaches of today’s
transport protocols. Our main goal was to reduce the time to
set up a transport connection, while still being fully backwards
compatible with the regular handshake procedure defined in
RFC4960 [4].

Before we introduce our approach of the alternative hand-
shake in detail, we explain the regular handshake and show its
drawbacks with respect to setup time and resource consump-
tion. The measurement and evaluation section points out the
benefits of the new extension by running tests and benchmarks
on real hardware with our FreeBSD kernel implementation. In
the next section we describe the interaction with existing SCTP
extensions and how the new extensions have been implemented
and integrated in the existing socket API. The last section
summarizes this paper and gives an outlook on further research
activities.

II. REGULAR HANDSHAKE

An SCTP association between a server and a client is
established by a four-way handshake as shown in Figure 1.
The client sends an SCTP message containing an INIT chunk
to an SCTP server to initialize the association setup. The INIT
chunk, as shown in Figure 2, consists of several parameters
carrying a variety of information. Some of the parameters are
mandatory in every INIT and INIT-ACK chunk, while other
parameters are optional.

The mandatory parameters include the Initiate Tag, Ad-
vertised Receiver Window, number of incoming and outgo-
ing streams and the [Initial Transmission Sequence Number
(TSN). The optional parameters provide a flexible way to
store arbitrary information in those chunks, for example a list
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Fig. 1: Regular four-way handshake
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Fig. 2: INIT chunk structure

When receiving an SCTP message containing an INIT
chunk, the server responds with an INIT-ACK chunk which
consists of the same mandatory parameters as the INIT chunk
and an additional State Cookie parameter. The state cookie
contains all information the server needs to create the Trans-
mission Control Block (TCB) and establish the association. It is
digitally signed by the server to ensure its validity and neither
the format nor the size of the cookie is specified by RFC4960,
but it should be as small as possible. Since all necessary
information to create the TCB is included in the cookie, the
server does not need to allocate any client specific resources
after the state cookie has been transmitted to the client. This
mechanism is a key feature to prevent SCTP INIT-flooding
attacks, similar to the TCP SYN-flooding, where an attacker
can exhaust the server’s resources. On the other hand, this can
also be a drawback if the server stores a lot of information in
the cookie, for example a long list of supported extensions or
many address candidates. A large cookie size may be abused
by an attacker for a byte amplification attack or to exhaust
the server’s uplink capacity. Byte amplification attacks cause
the server to send a significantly larger INIT-ACK chunk as a
response to an INIT chunk sent by an attacker with a spoofed
source address of a victim. In addition to the state cookie, the
server can also add any number of optional parameters to the
INIT-ACK chunk.

Upon receiving the INIT-ACK chunk, the client returns

the received state cookie to the server in a COOKIE-ECHO
chunk to authenticate its ownership of the IP address. The
server validates the reflected state cookie, creates the TCB,
establishes the SCTP association and acknowledges the suc-
cessful process with a COOKIE-ACK chunk. This COOKIE-
ACK chunk opens the association on the client side, the four-
way handshake has now successfully finished.

To reduce the timespan between connection initialization
and transmitting the first data, the client and the server can
bundle DATA chunks with the COOKIE-ECHO chunk and the
COOKIE-ACK chunk, respectively, in a single SCTP message,
resulting in a timespan of one round-trip for a client between
initiating the connection and sending the first data.

Client Server
Re-uses state cookie
State: COOK’E-ECHO * DATA Validates state cookie
Generates TCB

ACK + SACK Acknowledges DATA

\E-
State: open coot State: open

Fig. 3: Zero-RTT connection setup by re-using the state cookie
from a previous association

In theory, the client can re-use the state cookie multiple
times for future associations with the advantage of saving one
round-trip for the connection setup, resulting in a zero-RTT
connection setup, which is shown in Figure 3. A disadvantage
of re-using the regular state cookie is that all connection
specific parameters from the previous association, exchanged
by the INIT and INIT-ACK chunk, have to stay the same which
affects the Initiate Tags and the Initial Transmission Sequence
Numbers in particular. Re-using the same Initiate Tag for more
than one association is in conflict with its purpose: providing
a key that allows a receiver to verify that the SCTP message
belongs to the current association and is not an old or stale
message from a previous association and should therefore be
unique for every SCTP association. Additionally, the client
cannot modify the supported extensions, number of streams or
announced IP address candidates. Because of the drawbacks,
this method is not implemented in the common network stacks.

III. ALTERNATIVE HANDSHAKE

With our alternative handshake approach, we wanted to
create a more lightweight cookie exchange mechanism which
reduces the resource consumption on the server side and allows
a faster connection setup in less round-trips compared to
the regular handshake. Additionally, our alternative handshake
mechanism should still be fully backwards compatible to
systems without support for the new mechanism.

The alternative handshake, as shown in Figure 4, uses the
same SCTP chunks as the regular handshake, only adding new
optional parameters. A client using the alternative handshake
method initiates an SCTP association by sending a regular
INIT chunk to the server. The only difference to a regular hand-
shake is the new ALT-COOKIE parameter which is included in
the INIT chunk. By adding this parameter to the INIT chunk,
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the client announces the support for the alternative handshake
and its willingness to use it.

A server, also supporting the alternative handshake exten-
sion, who receives the alternative cookie parameter in the INIT
chunk, generates a client specific cookie and includes it in an
ERROR chunk. The ERROR chunk is sent as a response to
the INIT chunk which is silently dropped by the server. This
is the first major difference to the regular handshake: instead
of generating an INIT-ACK chunk, containing all information
the server needs to create the TCB, the server only generates
a lightweight cookie to validate the IP address ownership of
the client, which is the only purpose of the alternative cookie.
The ERROR chunk has a specific error cause ("ALT-COOKIE
required”) and the client specific cookie in the Cause-Specific
Information field.
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OKE (€ mpty)l Responds with INIT-ACK
-CO
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Fig. 4: Alternative four-way handshake

State:

The client responds to the ERROR chunk by transmitting
the INIT chunk and, in contrast to the first attempt, including
the cookie from the server’s ERROR chunk in the INIT chunk’s
ALT-COOKIE parameter payload field. Upon receiving the
INIT chunk with a non-empty ALT-COOKIE parameter, the
server validates the alternative cookie and opens the associa-
tion if successful. In the next step, the server responds with
an INIT-ACK chunk which carries an empty ALT-COOKIE
parameter and no state cookie to acknowledge the successful
usage of the alternative handshake to open the association. This
INIT-ACK chunk establishes the association on the client side,
and the alternative handshake is finished.

If the server cannot validate the alternative cookie, for
whatever reason, it should generate a new alternative cookie

and respond with an ERROR chunk, including this new cookie.
Client Server

Includes cached ;

alternative cookie NIt [ALT'COOK[E]
State: \

COOK\E (emPW“

INIT-ACK [ALT
State: open

Fig. 5: Alternative handshake using a cached cookie

Validates cookie
Responds with INIT-ACK
State: open

The client caches the alternative cookie for future associ-

ations to the server. To establish new associations, as shown
in Figure 5, the client simply includes the previously received
alternative cookie in the INIT chunk which instantly opens the
association. This method allows an SCTP connection setup
in a single round-trip without the disadvantage of re-using
association specific parameters like the Initiate Tags and the
Initial Transmission Sequence Numbers.

A. Alternative Cookie Parameter

As already mentioned in the introduction, the INIT and
INIT-ACK chunks consist of mandatory and optional param-
eters. To distinguish the optional parameters, SCTP uses a
predefined Type-Length-Value (TLV) format to encode the
parameter types, variable length and payload.

32 Bit

Type = 0xBOO7 Length

Cookie Data

Fig. 6: ALT-COOKIE parameter

The parameter type, represented by a 16-bit field, utilizes
the two bits of the highest order to specify the action that
must be taken if the processing endpoint does not support the
parameter type. The first bit encodes if the endpoint should
process any further parameters from the current INIT or INIT-
ACK chunk when reading this unknown parameter. If set, an
endpoint will stop processing the INIT chunk and report an
error. The second bit encodes if an unknown parameter should
be reported to the remote endpoint or silently be discarded.

The alternative cookie (ALT-COOKIE) parameter uses this
particular TLV structure and is included in the INIT and
INIT-ACK chunk for multiple purposes. The ALT-COOKIE
parameter type (0xB0O7) has the highest bit set to one and
the second highest bit to zero. This encoding ensures that a
server without support for the alternative cookie mechanism
will silently discard the ALT-COOKIE parameter and continue
processing the SCTP message. The length field contains the
size of the parameter in bytes, including the length of the
parameter header. An ALT-COOKIE parameter can carry an
empty cookie. Therefore, the length value is between 4 and
65535 bytes.

B. Alternative Cookie Calculation

A fundamental requirement in the design process for the
alternative cookie was to be more lightweight than the regular
state cookie, as already explained in the introduction. This
covers the cookie size and its computation time for the server
while still offering the same protection level as the regular
state cookie. In contrast to the regular state cookie, the only
purpose of the alternative cookie is the validation of the client’s
ownership of the source IP address and, in contrast to the
regular state cookie, not to create the TCB on the server side.

The generation and validation of the cookie is in the
responsibility of the server. We suggest that an implementation
should use an appropriate cryptographic hashing mechanism to
ensure the integrity of the cookie. Since the client only reflects



the cookie, the server can embed any desired information in
the cookie but should keep it as small as possible to mitigate
the risk of amplification attacks. Our implementation uses
a SIPHASH [11] based keyed-hash message authentication
algorithm, which is also used for the TCP Fast Open cookie
in the FreeBSD kernel stack, to generate the cookie from the
client’s IP address. This method binds the alternative cookie
to a specific IP address and, therefore, a multihomed client
has to use the same path it received the alternative cookie on
for future associations. The lifetime of the alternative cookie
can be limited by changing the secret key of the cryptographic
hash function.

C. Cookieless Handshake

Both handshake methods, the regular and the alternative,
aim to prevent amplification attacks and resource exhaustion
by malicious peers. But in certain use cases this protection
is not necessary, for example if the SCTP communication
is transmitted within a protected environment. The usage of
SCTP for WebRTC Data Channels represents a typical case
for a protected environment due to DTLS encapsulation of
the SCTP communication [12]. In this case, the client and
the server already perform a DTLS handshake before the
first SCTP message is transmitted within the DTLS tunnel.
For those scenarios, the alternative handshake method allows
an SCTP server to waive the cookie exchange and open the
association upon receiving the INIT chunk with an empty ALT-
COOKIE parameter.

Client Server

INIT

[ALT-cooye (empty);

em ptV“

INIT-ACK [ALT-COOK\E (¢
State: open

Fig. 7: Cookieless Handshake

State:

Responds with INIT-ACK
Acknowledges DATA
State: open

Instead of responding with an ERROR chunk, the server ac-
knowledges the successfully established association by sending
an INIT-ACK chunk which includes an empty ALT-COOKIE
parameter, similar to the last two steps of the alternative
handshake with a cookie exchange. This method saves a full
round-trip even if both peers have never been in contact before
and requires no changes at the client side.

D. Zero-RTT connection setup

In addition to the alternative cookie parameter, our ap-
proach introduces an alternative data (ALT-DATA) parameter
and an alternative selective acknowledgment (ALT-SACK)
parameter. These parameters allow the client to embed applica-
tion data in the INIT chunk, resulting in a zero RTT connection
setup. The ALT-DATA parameter simply acts as a container for
regular DATA chunks, see Figure 8. The local endpoint embeds
one or more regular DATA chunks in the parameter’s value
field. The sender has to be aware of not exceeding the path

32 Bit

Type = 0xB008 Length

DATA / I-DATA Chunk #1

DATA / I-DATA Chunk #2

DATA / I-DATA Chunk #3

Fig. 8: ALT-DATA parameter

MTU to avoid IP fragmentation when embedding application
data.

When the server receives and accepts DATA chunks from
the INIT chunk’s alternative data parameter, it acknowledges
them by an alternative selective acknowledgment parameter
(ALT-SACK) which is included in the responding INIT-ACK
chunk. This indicates the successful usage of the alternative
data parameter to the client.

If the server receives a DATA chunk with an invalid
stream number, it drops the DATA chunk according to the
procedure specified by RFC4960 and reports it to the client
using an ERROR chunk with the Invalid Stream Identifier
cause. Another case is a server not opening the association
and requesting an alternative cookie exchange by sending an
ERROR chunk. In this case the application data is also lost
and should be retransmitted in the next INIT chunk.

Client Server

Includes cached INIT

alternative cookie [ALT'COOKJE' ALT-DATA
State: \L Validates cookie

Responds with INIT-ACK
Acknowledges DATA
State: open

COOKIE (empty):

ACK [ALT-
\N\T A A\.T‘S ACK‘

State: open

Fig. 9: Alternative Zero-RTT connection setup

A server not supporting data transmission at all via the
alternative data parameter will silently discard it and, therefore,
not include an ALT-SACK parameter in the responding INIT-
ACK chunk. The client retransmits the previously included
DATA chunks using the regular way.

E. Fallback Mechanism

A major requirement for the alternative handshake is the
seamless backwards compatibility to endpoints not support-
ing the alternative handshake method, and if the fallback
mechanism is used, it should not be unfavorable compared
to the regular handshake. As already explained in the previous
sections, we use TLV parameters in the INIT chunk to achieve
a maximum of compatibility with peers not supporting our
new extension. If a server without support for the alterna-
tive handshake procedure receives an INIT chunk with an
ALT-COOKIE parameter, the server will silently discard the
unknown parameter and respond with a regular INIT-ACK
chunk not containing the ALT-COOKIE parameter. The client
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continues with a regular handshake and reflects the received
state cookie. When the client connects to the server for the first
time, without having a cached cookie, the alternative cookie
parameter has no payload and has a length of four bytes.

The behavior of silently ignoring the unsupported param-
eter is also used for the alternative data parameter. When the
initiating peer using the alternative handshake procedure in-
cludes application data in the INIT chunk, and the server does
not respond with an INIT-ACK chunk with the ALT-COOKIE
parameter set and an included ALT-SACK parameter, the
application data is lost and has to be retransmitted using regular
DATA chunks. In contrast to wasting four bytes by sending an
unused ALT-COOKIE parameter, including application data in
an INIT chunk should be considered thoroughly because the
performance impact may be much higher. In the worst case
scenario where the client and the server support the alternative
handshake but only the client supports the alternative data
parameter, the client will transmit application data three times
before it is accepted by the server. The server responds to
the first INIT chunk with an ERROR chunk and requests the
reflection of the alternative cookie, while dropping the included
DATA chunks. The client retransmits the INIT chunk, now
including the alternative cookie which opens the association
on the server side. The server ignores the alternative data
parameter, and the client has to retransmit the application data
a third time using the regular DATA chunk.

F. Multihoming

A key feature of SCTP is multihoming which allows
the usage of multiple IP addresses for a single association,
either for automatic failover or load sharing [13]. During the
handshake, both endpoints exchange their IP address candi-
dates by including them in the INIT and INIT-ACK chunk,
respectively. After the association has been established via the
primary path, both peers probe the remote address candidates
by sending HEARTBEAT chunks. An endpoint responds to a
HEARTBEAT chunk by sending a HEARBEAT-ACK chunk
which reflects the Sender-Specific Heartbeat Info from the
HEARTBEAT chunk.

We have modified this mechanism for the alternative hand-
shake since it leads to problems in certain cases. When a
client initiates the association by sending an INIT chunk with
the alternative handshake method and the server accepts this
INIT chunk, either by successfully validating the cookie or by
waiving the cookie exchange, the INIT chunk instantly opens
the association on the server side and the server responds with
an INIT-ACK chunk. Additionally, the server will probe all
the client’s IP address candidates by sending HEARTBEAT
chunks to the particular IP addresses. If the client receives
the server’s HEARTBEAT chunk before the INIT-ACK chunk,
which may happen if the secondary path is faster than the
primary or the HEARTBEAT chunk is processed before the
INIT chunk, the client cannot match the HEARTBEAT chunk
with an existing association and will respond with an ABORT
chunk which terminates the association on the server side. To
avoid this behavior, the server will not send HEARTBEAT
chunks directly after the association has been established.
Instead the server waits until receiving the first additional
SCTP message from the client on the new association before
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sending HEARTBEAT chunks to ensure that the association
has successfully been established on the client side.

PRIMARY PATH

e SECONDARY PATH-=======- '
Client Server
State: INIT [ALT-coo g
State: open
INIT-ACK
State: open lNIT[
——t ALT-co
---------- OKIE (empty);
""" >
_.COOKIE]
ERROR [ALT-COOTT0 oo
P

Fig. 10: Alternative cookie exchange on a secondary path

Another change affects the alternative cookie. The alterna-
tive cookie only validates the source address of the client from
which the INIT chunk has been sent and not the additional
address candidates listed in the INIT chunk. Especially mobile
devices, like smartphones, often switch between cellular and
wifi networks. When establishing a connection to the server,
the smartphone uses the wifi network as its primary path
and includes its cellular IP address in the INIT chunk as
an additional address candidate. When the connection has
successfully been established using the primary path, the client
has an alternative cookie which validates the ownership of the
wifi path but is not valid for a future connection using the
cellular path.

To overcome this limitation, the client sends INIT chunks
to the server via the additional paths after the association
has been established, as shown in Figure 10. The server
generates an alternative cookie for the client’s source address
and responds with an ERROR chunk via the alternative path.
The client caches the cookie for future associations on the
alternative path.

G. Initialization Collision

Initialization collision happens if both peers initiate an
SCTP association by sending an INIT chunk simultaneously
and use the same address/port combination. The collision han-
dling is an important feature, especially for the WebRTC use-
case where both peers take the active part and initiate the SCTP
connection simultaneously, as defined in the corresponding
IETF draft [14]. The regular handshake has techniques to
detect and handle collision cases, but not all of these techniques
can be applied to the alternative handshake since the state
cookie is lacking.
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Fig. 11: Initialization collision scenario

When an endpoint receives and accepts an INIT chunk
using the alternative handshake procedure from a remote peer
while being in a state of waiting for a response for its own
INIT chunk from the same address/port combination, as shown
in Figure 11, the local endpoint opens the association and
responds with an INIT-ACK chunk, following the alternative
handshake procedure. But, in contrast to the non-collision
case, the local endpoint includes the same parameter as in
the previously sent INIT chunk. This especially affects the
initiate tag. The remote peer receives the INIT-ACK chunk
which is carrying the same initiate tag parameter as the
previously received INIT chunk. This indicates that the local
peer has successfully handled the collision case and migrated
the colliding connection attempts into a single association.

IV. EXTENSION COMPATIBILITY

It is not sufficient to design the alternative handshake mech-
anism only to match the RFC 4960 since there are additional
extensions relying on the traditional handshake mechanism.

A. User Message Interleaving

The User Message Interleaving (I-DATA) [15] extension
is a mandatory part of the WebRTC Data Channel specifi-
cation [5], solving SCTP’s sender side head-of-line blocking
issues when sending a large user message which blocks
all other streams. During the regular handshake, both peers
announce support for the I-DATA extension in the Supported
Extensions Parameter as defined in RFC 5061 [16]. If the I-
DATA extension has been negotiated, which is the case if both
peers have announced to support it, both peers must use the
[-DATA chunk instead of the DATA chunk. Using the DATA
chunk during an association when the I-DATA extension has
been negotiated results in an error. The alternative handshake,
including the cookieless variant, does not affect the I-DATA
negotiation process but if the I-DATA announcing client wants
to include application data within the INIT chunk by using the
ALT-DATA parameter, the support for this extension has not
been negotiated at this point of time. We considered several
ways to solve this issue and concluded that the client should
proactively use the I-DATA chunk instead of the DATA chunk
when including data using the alternative data parameter in the
INIT chunk.

When the alternative handshake has successfully finished,
the client handles the application data within the alternative
data parameter as lost if the [-DATA extension support has not
been negotiated and automatically retransmits the application
data using a regular DATA chunk.

A server without support for the I-DATA extension will
silently discard the I-DATA chunks carried by the alternative
data parameter and wait for the client to retransmit the appli-
cation data using a regular DATA chunk.

B. Authenticated Chunks

SCTP’s 32-bit verification tags protect the association
against a blind attacker but not against a Man-in-the-middle
attack where the attacker can easily inject SCTP messages with
the correct verification tags. The Authenticated Chunks [17]
extension solves this issue by allowing the endpoints to au-
thenticate specific peer chunks to verify that the chunks are
sent by the remote endpoint and not from a Man-in-the-middle
attacker. A sender bundles an authentication chunk with the
chunk types which should be authenticated. The authentication
chunk contains an HMAC which can be used by the receiver
to validate the chunks bundled within the received SCTP
message.

The support of this extension and the association specific
parameters, like the list of authenticated chunks and the
HMAC algorithm, are negotiated during the INIT and INIT-
ACK chunk exchange. This procedure is compatible with the
alternative handshake using the alternative cookie. However,
this extension is not compatible with the usage of the ALT-
DATA parameter to include DATA chunks in the INIT chunk
because the sending endpoint has no knowledge of the re-
ceivers capabilities.

V. IMPLEMENTATION

We have successfully implemented and tested the alterna-
tive handshake mechanism for the FreeBSD kernel stack and
the SCTP userland implementation (usrsctp) [18]. The userland
implementation is supported on all widely used operating
systems, including FreeBSD, Linux, macOS and Windows.
Additionally, the userland implementation is used for WebRTC
Data-Channels in several major browsers, including Google
Chrome, Mozilla Firefox, Opera and Apple’s Safari.

A. API extension

The alternative handshake mechanism is controllable by
using the setsockopt() and sysctl() function calls. The support
for the alternative handshake in general is controllable system
wide by sysctl variables. System administrators can choose be-
tween only allowing the regular handshake (0), the alternative
one (2) or both of them (1).

Applications, which want to use the alternative hand-
shake for future associations, use the setsockopt() function
call to control the functionality per socket. By setting the
SCTP_ALT_HANDSHAKE socket option, the alternative hand-
shake procedure is activated. The available option values are
the same as for the system wide sysctl settings. After the
association has been established, the application may use the
same options for the getsockopt() function call to determine
if the association has been established using the alternative or
the regular handshake.

If the server wants to allow the cookieless alternative
handshake, it sets the SCTP_EMPTY ALT COOKIE socket
option on a listening socket. This socket option controls if
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int sockfd = socket (...);
struct

char payload[13] = "Hello_Irene!”;
sendto (sockfd, payload, strlen (payload),

sctp_assoc_value av = { .assoc_id = 0, .assoc_value =1 };
setsockopt (sockfd, TPPROTO_SCTP, SCTP_ALT HANDSHAKE, &av,
setsockopt (sockfd, IPPROTO_SCTP, SCTP_INIT_ALT _DATA, &av,

sizeof (av));
sizeof (av));

)

Listing 1: Sample code for a client using the alternative handshake with zero-RTT connection setup

a server accepts an empty ALT-COOKIE parameter in the
INIT chunk as described in the previous section. For existing
associations, it allows to query whether the empty cookie
method has been used or not on a particular association, e.g.
for statistical usage.

If the network socket is configured to support the alterna-
tive handshake, the application may bundle application data
within the INIT or INIT-ACK chunk using the ALT-DATA
parameter. The application can enable this feature by using the
SCTP_INIT_ALT_DATA option for the setsockopt() function
call. Since the SCTP network stack needs the application
payload before sending the initiate message, application de-
velopers cannot use the typical function sequence of connect()
and send(). Calling the sendto() function initiates an implicit
connection setup and includes the given payload data in the
INIT chunk.

Listing 1 shows a simplified SCTP client example using the
alternative handshake procedure with application data included
in the ALT-DATA parameter of the INIT chunk by using an
implicit connection setup.

VI. MEASUREMENTS AND EVALUATION

To evaluate the performance of our alternative handshake
procedure and its implementation, we created a client-server
scenario as shown in Figure 12. Both nodes have the identical
hard- and software configuration: PC Engines APU2 boards
with mSATA solid state discs and two operating systems
installed. We have chosen this hardware configuration by
intention to evaluate CPU effects caused by the low perfor-
mance and energy optimized processor. In addition to FreeBSD
HEAD with release type kernel and disabled debugging op-
tions (GENERIC-NODEBUG), we used Ubuntu 17.10.

Client Server

Fig. 12: Testbed for INIT chunk flooding

A. INIT flooding

Although SCTP is robust against INIT-flooding attacks,
similar to TCP SYN-flooding, however, generating the state
cookie consumes a large amount of CPU load for the server
side, and the INIT-ACK chunk is significantly larger than the
INIT chunk. In a first step, we evaluated the performance
of the INIT chunk handling on the server side for different
scenarios where a server, running FreeBSD HEAD and Ubuntu
17.10, is flooded with INIT chunks. To send a large amount
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of SCTP messages containing an INIT chunk while having
the greatest possible control over the senders behavior, we
developed a benchmark tool using the netmap fast packet
I/O framework [19], allowing us to send and receive network
packets with a variable rate up to wire speed. To eliminate side
effects, we disabled the ethernet flow control on all nodes. The
client, running the netmap benchmarking tool, sends SCTP
messages containing an INIT chunk with different rates to the
server for a fixed timespan of 60 seconds and measures several
values during the test run, including the packet-rate, bandwidth
and average packet size in both directions. The benchmark tool
provides several options to modify the INIT chunks, which
includes extensions, address candidates and the number of
parameters. We have configured the benchmark tool to flood
the server with INIT chunks which announce support for all
officially specified extensions and additionally our alternative
handshake extension.
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Fig. 13: Comparison of Linux and FreeBSD INIT-ACK rates
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In the first test scenario, the client sends small SCTP
messages of 112 bytes, containing an INIT chunk, to the
server which does not have a listening service on the particular
IP/port combination. The server responds with an ABORT
chunk which is a cheap operation for the server, its generation
consumes only a small amount of resources and its size is only
16 bytes. Therefore, this is our baseline scenario with respect
to the responding packet rate and resource consumption on the
server side. As shown in Figure 13, we measured an ABORT
rate of 74 kpps from the FreeBSD server and an ABORT rate
of 32 kpps from the Ubuntu server.

In our second scenario, the server has a listening socket
bound to the specific IP/port combination and responds to
INIT chunks with an INIT-ACK chunk. As already mentioned



in the previous section, the INIT-ACK chunk is significantly
larger than the INIT chunk and its generation is more resource
consuming. In contrast to Linux, FreeBSD announces all
officially specified extensions in the INIT-ACK chunk by
default, even if they are not requested by the INIT chunk. To
have a more comparable result, we measured the INIT-ACK
rate on both machines with two different settings. First with
all extensions enabled, labeled as INIT-ACK MAX in Figure 13
and additionally with all extensions disabled, labeled as INIT-
ACK MIN. In contrast to the ABORT rate, the INIT-ACK rates
of Ubuntu and FreeBSD are on a similar level. The INIT-ACK
rates for both systems range between 13 kpps for an INIT-
ACK chunk with all extensions from the Ubuntu machine until
18 kpps INIT-ACK chunks without any extensions from the
FreeBSD machine.
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Fig. 14: FreeBSD’s response rate to INIT chunks

In a third step we used the alternative handshake method
where the server responds with an ERROR chunk, bundled
with the alternative cookie. The server is able to respond
with about 52k ERROR chunks per second which carry
the alternative cookie, shown in Figure 14. In addition, the
responses are much smaller compared to the regular INIT-ACK
chunk. In our scenario, the regular INIT-ACK chunk, with
extensions, has a length of 416 bytes whereas the alternative
one has a length of only 40 bytes. While the alternative
response is only 4 bytes larger than the initiating request,
the regular response is more than ten times larger than the
SCTP message containing the INIT chunk. This shows another
advantage of the alternative handshake, it successfully prevents
byte amplification attacks.

B. Time to first byte

A common use case of SCTP, since it is reliable and
message oriented, is the transmission of small messages in
a request-response manner. Typically the client sends a small
request, the server answers with a response and closes the
connection afterwards. This traffic pattern is common for sig-
naling services and measurement grids. We developed a client
and a server to evaluate the performance improvements of the
alternative handshake procedure over the regular handshake.

The client establishes a connection to the server and sends
a small request of less than 100 bytes payload. The server

1 Gbit/s
Dummynet
Router

1 Gbit,

Client Server

Fig. 15: Testbed for signaling traffic

also responds with a small message of less than 100 bytes and
closes the connection afterwards. We varied the link delay by
using the dummynet [20] network emulation tool running on a
router between the server and the client, this scenario is shown
in Figure 15. The link speed has been set to 2 Mbit/s, and we
varied the link delay.
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Fig. 16: Timespan between the connection initialization and
receiving the first bytes on the client side

Figure 16 shows the results for three different handshake
types. We measured the timespan between initiating the asso-
ciation and the arrival of the server’s response on the client
side. The regular handshake and the alternative handshake
show a nearly identical performance, the alternative handshake
is slightly faster because of the smaller cookie size. This
matches our expectations since both peers are not affected by
CPU limitations and both handshake variants take the same
amount of round-trips. When the client uses a previously
cached cookie, the connection setup time is reduced by one
round-trip. Since both DATA chunks, containing the request
and the response, fit in a single SCTP message, the timespan
until the server’s response arrives at the client is reduced by
one half when using a previously cached cookie.

C. Compatibility and Security

We have tested the backwards compatibility of our new ex-
tension with multiple SCTP implementations without support
for the extension to ensure its deployability. This includes the
implementations of FreeBSD, Linux, Solaris and the userland
stack. All of them successfully ignore the alternative parameter
in the INIT chunk and continue with the regular handshake
by sending an INIT-ACK chunk. Thus, and since introducing
new parameters is defined in the official RFC4960, we do not
expect any compatibility problems in deployment.
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Our measurements and evaluation demonstrates that an
attacker is able to exhaust the server’s CPU resources by
sending a large number of INIT chunks and, since the gener-
ated INIT-ACK chunk is mostly larger than the corresponding
INIT chunk, may also be used for a byte amplification attack.
This insight is not new and has already been treated by
RFC5062 [6] in the year 2007, where this kind of attack
is characterized as hard to avoid. RFC5062 suggests to use
the PAD parameter [21] to artificially enlarge the initiating
message and, therefore, prevent this attack pattern.

The QUIC protocol makes use of this method, the initiating
QUIC message must at least have a length of 1200 octets.
Our implementation allows the server to waive the fallback
mechanism and only support the alternative handshake. When
configured to do so, a server will always respond with an
ERROR chunk including an alternative cookie upon receiving
an INIT chunk, even if the client has not announced support for
the alternative handshake. This is an effective way to prevent
amplification attacks but requires both peers to support the
alternative handshake.

Before an application developer enables the new hand-
shake features, their possible drawbacks should be considered
carefully. While using the alternative cookie parameter should
not have any negative impact, as it has a seamless fallback
mechanism and offers the same protection as the regular
handshake, the inclusion of application data in the INIT chunk
may lead to unwanted behavior regarding security and data
integrity. The cookieless handshake should only be enabled in
protected environments, like WebRTC Data-Channels.

VII. CONCLUSION AND OUTLOOK

This paper introduces an alternative handshake mechanism
for the SCTP protocol which reduces the required round-trips
for association establishment and offers a lower resource con-
sumption. Our solution provides the same protection against
INIT-flooding attacks as the regular handshake procedure and
is fully backwards compatible to peers not supporting the
new extension. It can also prevent byte amplification attacks
in case the server waives the backwards compatibility by
only accepting handshakes using the alternative mode. In
certain scenarios, like the usage of SCTP for WebRTC Data-
Channels, our new zero RTT connection setup capability
gives a significant performance improvement, compared to the
regular handshake. We have implemented the new handshake
mechanism for the FreeBSD kernel stack and the widely used
userland stack and evaluated its impact in several test scenarios
with both implementations regarding robustness against INIT-
flooding attacks and performance improvements. Our future
work will focus on improving the alternative handshake and
its implementation for the WebRTC Data-Channel use-case.
We are also working on an IETF draft and will publish our
implementation.
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