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Abstract—Blockchain technology has the potential to decen-
tralise many traditionally centralised systems. However, scalabil-
ity remains a key challenge. A horizontally scalable solution,
where performance increases by adding more nodes, would
move blockchain systems one step closer to ubiquitous use. We
design a novel blockchain system called CHECO. Each node
in our system maintains a personal hash chain, which only
stores transactions that the node is involved in. A consensus is
reached on special blocks called checkpoint blocks rather than
on all transactions. Checkpoint blocks are effectively a hash
pointer to the personal hash chains; thus a single checkpoint
block may represent an arbitrarily large set of transactions.
We introduce a validation protocol so that any node can check
the validity of any transaction. Since transaction and validation
protocols are point-to-point, we achieve horizontal scalability.
We analytically evaluate our system and show a number of
highly desirable correctness properties such as consensus on the
validity of transactions. Further, we give a free and open-source
implementation of CHECO and evaluate it experimentally. Our
results show a strong indication of horizontal scalability.

I. INTRODUCTION

The first blockchain system—Bitcoin—is almost ten years
old. Its market capitalisation is nearly $200 billion USD at
the time of writing [1]. We can be reasonably sure that such
systems, even if their application is still somewhat limited, are
here to stay in the foreseeable future. Driven by the success of
Bitcoin, we see a renaissance of consensus research [2]–[4],
where the primary focus is to improve the scalability of
blockchain systems, which is due to the inefficiencies of
the consensus mechanism—proof-of-work (PoW). For exam-
ple, Bitcoin can only do 7 transactions per second (TPS)
at most [5]. While adjusting the block size (which Bitcoin
has recently done via SegWit [6]) and/or the block interval
may increase TPS, it also leads to centralisation as larger
blocks take longer to propagate through the network, putting
miners that do not have a fast network at a disadvantage [7].
Furthermore, due to the bandwidth and latency of today’s
network, it is not possible to achieve more than 27 TPS from
simply adjusting the block size or block interval [7].

Related work. Many approaches exist for improving the
scalability of early blockchain systems. Off-chain transactions
make use of the fact that if nodes make frequent transactions,
then it is not necessary to store every transaction on the block-
chain, only the net settlement is needed. The best examples

are Lightning Network [8] and Duplex Micropayment Chan-
nels [9]. It promises significant scalability improvements, but
complicates user experience and leads to centralisation. That
is, each node must deposit a suitable amount of Bitcoins into a
multi-signature account. A low deposit would not allow large
transactions. A high deposit locks the user from using much of
their Bitcoins outside the channel. In addition, the user must
proactively check whether the counterparty has broadcasted
an old channel state so that the user does not lose Bitcoins.
Moreover, creating channels with sufficient balance and also
keeping it online to act as a router is expensive. A casual user
is not capable of such tasks, leading to centralisation.

Another way to improve transaction rate is to use traditional
Byzantine consensus algorithms such as PBFT [10] in a per-
missioned ledger such as Hyperledger Fabric [11]. In essence,
such systems contain a fixed set of nodes, called validating
peers, that run a Byzantine consensus algorithm to decide on
new blocks. They can achieve much higher transaction rates,
e.g., 10,000 TPS if the number of validating peers is under
16 for PBFT [12, Section 5.2]. However, these systems do
not scale, e.g., the transaction rate drops to under 5000 TPS
when the number of validating peer is 64 [12, Section 5.2].
Moreover, the validating peers are predetermined which makes
the system unsuitable for the open internet.

Recent research has developed a class of hybrid systems
which uses PoW for committee election, and Byzantine con-
sensus algorithms to agree on transactions, e.g., ByzCoin [3]
and Solidus [13]. This design is primarily for permissionless
systems because the PoW leader election aspect prevents the
Sybil attack [14]. It overcomes the early blockchain scalability
issue by delegating the transaction validation to a Byzantine
consensus protocol. A tradeoff of such systems is that they
cannot guarantee a high level of fault tolerance when there is
a large number of malicious nodes (but less than a majority).
ByzCoin and Solidus all have some probability of electing
more than t Byzantine nodes into the committee, where t is
typically just under a third of the committee size (a lower
bound of Byzantine consensus [15]). Again, because these
systems must reach consensus on all transactions, none of
them achieves horizontal scalability.

Finally, a technique that does achieve horizontal scalability
is sharding, e.g., Elastico [2] and OmniLedger [4]. It involves
grouping nodes into multiple committees of constant size,
also known as shards, and nodes within a single shard run aISBN 978-3-903176-08-9 c© 2018 IFIP



Byzantine consensus algorithm to agree on a set of transactions
that belong to that specific shard. The number of shards grows
linearly with respect to the total computational power of the
network; hence the transaction rate also grows linearly. The
limitation of sharding is that it is only optimal if transactions
stay in the same shard. In fact, Elastico cannot atomically pro-
cess inter-shard transactions. OmniLedger has an inter-shard
transaction protocol but choosing a shard size that matches
the transaction characteristics of the network is difficult. An
inadequate shard size would result in a large number of inter-
shard transactions which would hinder scalability.

Research question. Thus far, there are no systems that
achieve horizontal scalability in the general case, which leads
to the goal of this work. Hence, the research question which
we wish to answer is as follows.

How can we design a horizontally scalable block-
chain consensus protocol?

Concretely, a blockchain consensus protocol should be ap-
plication neutral. For example, PoW is application neutral
because transaction semantics does not affect it, i.e. it can
be applied in different applications such as cryptocurrency
(Bitcoin) and domain name system (Namecoin [16]). Further,
we are interested in horizontal scalability in the general case
as it enables ubiquitous use. That is, adding more nodes to the
network should result in higher transaction throughput.

Contribution. The key insight is not to reach consensus
using an existing consensus algorithm on transactions them-
selves, but on special blocks called checkpoint blocks, such
that transactions are nevertheless verifiable at a later stage
by any node in the network. Our main contributions are the
following.
• We formally introduce a blockchain system—CHECO1.

It uses individual hash chains and checkpoints on every
node to achieve horizontal scalability in the general case
for the first time.

• We analyse CHECO to ensure correctness according to
our definition.

• We provide an implementation and then experiment with
up to 1200 nodes, our results show strong evidence of
horizontal scalability.

Roadmap. In Section II, we give the problem description
and our system model. Section III gives the formal system
architecture. In Section IV, we discuss a few design variations
and their tradeoffs. We argue the correctness and fault toler-
ance properties of our system in Section V. Then we evaluate
our system experimentally in Section VI. Finally, we conclude
our work in Section VII.

II. PROBLEM DESCRIPTION

We introduce the problem as a modified Byzantine consen-
sus problem. The modification is primarily derived from the
need of horizontal scalability, which is not a part of a typical
Byzantine consensus problem. In our model, we consider N
nodes, t of which are Byzantine. Nodes in our system make

1Derived from “CHEckpoint COnsensus”.

transactions with each other. Transactions can be in one of
three states—valid, invalid and unknown. We seek a protocol
that satisfies the following properties.
• Agreement: If any correct node decides on the validity of

a transaction, except when it is unknown, then all other
correct nodes are able to reach the same conclusion or
decide unknown.

• Validity: If a transaction is valid, then it must have been
created by two honest nodes.

• Scalability: If every node makes transactions at the same
rate, then as N increases, the global transaction rate
should increase linearly w.r.t. N .

Note that the agreement property is similar, but a relaxed
version of what is often seen in a Byzantine consensus
problem. Namely, the property only holds if honest nodes do
not output unknown. For example, for a transaction, it is fine if
two honest nodes output valid and unknown, but they should
never output valid and invalid. Our problem does not have a
termination property. Instead, nodes are incentivised to com-
plete the protocol execution otherwise they risk economical
loss; we describe this phenomenon in Section V-B.

The problem is purposefully made to be application neutral,
i.e. there are no constraints on the semantics of transactions.
This formulation is so that the protocol can act as a building
block to many applications. Thus, we do not consider global
fork prevention or detection, as some application may not
need such strong guarantees such as the accounting of internet
traffic in Tribler [17], [18]. On the other hand, we give
two alternative constructions that do perform fork detection
in Section IV-C.

System model. We assume purely asynchronous channels
with eventual delivery. Thus, in no stage of the protocol are
we allowed to make timing assumptions. The adversary has
full control of the delivery schedule and the message ordering
of all messages.

Security assumptions. The malicious nodes are Byzan-
tine, meaning that there are no restrictions on the type of
failure. We use a static, round-adaptive corruption model. That
is, if a round has started, the corrupted nodes cannot change
until the next round. We assume there exists a Public Key
Infrastructure (PKI), and nodes are identified by their unique
and permanent public key. This assumption implies that we
work in the permissioned model. Finally, we use the random
oracle (RO) model, i.e. calls to the random oracle are denoted
by H : {0, 1}∗ → {0, 1}λ, where {0, 1}∗ denotes the space
of finite binary strings and λ is the security parameter. Under
the RO model, the probability of successfully computing the
inverse of the hash function is negligible with respect to λ [19].

III. SYSTEM ARCHITECTURE

To describe CHECO, we first give an informal overview and
then move on to the formal description.

Early blockchain systems that use a global ledger are
difficult to scale because every node must reach consensus on
all the transactions that ever existed. Instead, we introduce an
alternative architecture where every node has their own genesis
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block and hash chain. The nodes only store transactions (TX)
that they are involved in on their hash chains. Transactions
are stored in TX blocks, and every block only contains
one transaction. A transaction between two nodes should,
therefore, result in two TX blocks on their respective hash
chains. We introduce a special block called checkpoint (CP)
block, which represents the state of a hash chain in the form of
a hash pointer. Then, a collection of CP blocks from all nodes
would represent the state of the whole system. A visualisation
can be seen in Figure 1.
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Fig. 1: Visualisation of the data structure used in CHECO. tu,i
represents a TX block on u’s chain with a sequence number
i. cv,j represents a CP block on v’s chain with a sequence
number j. The blocks at the ends of the dotted lines are pairs
of each other. Blocks of sequence number 0 (e.g., cc,0) are
genesis blocks.

CHECO consists of three protocols—consensus protocol,
transaction protocol and validation protocol—all interacting
with the distributed hash chain data structure described above.
The primary protocol is the consensus protocol, which can
be seen as a technique of running infinitely many times of
an existing Byzantine consensus algorithm (in this work we
use the asynchronous common subset protocol described in
HoneyBadgerBFT [12]), starting a new execution immedi-
ately after the previous one is completed. Nodes create new
CP blocks at the end of every execution. This approach is
necessary because blockchain systems always need to reach
consensus on new values proposed by the nodes in the system,
or CP blocks in our case.

The communication complexity of Byzantine consensus
algorithms typically grows polynomially w.r.t the number
of nodes, which prohibits us from running it on a large
network. Thus, at the beginning of every Byzantine consensus
algorithm execution, we randomly elect a set of nodes—called
facilitators—to collect CP blocks from every other node and

use those blocks as the input to the Byzantine consensus al-
gorithm. After the algorithm completes, the facilitators output
a set of CP blocks which we call the consensus result, which
is then propagated to the network. Using the result, nodes are
allowed to create new CP blocks, and then the next algorithm
execution begins.

The transaction protocol is a simple request and response
protocol. The nodes exchange one round of messages and
create new TX blocks on their respective chains. Thus, as
we mentioned before, one transaction should result in two TX
blocks.

The consensus and transaction protocol by themselves do
not provide a mechanism to detect malicious behaviour such as
tampering. Thus, we need a validation protocol to counteract
such behaviour. When a node wishes to validate one of its
transactions, it asks the counterparty for the agreed fragment
of the transaction. Which is a section of the counterparty’s
chain beginning and ending with CP blocks but contains the
TX block belonging to that transaction, where the CP blocks
must be in consensus. Upon the counterparty’s response, the
node checks whether the CP blocks are, in fact, in some con-
sensus result and among other conditions. The transaction is
valid if these conditions are satisfied. Since the transaction and
validation protocols only make point-to-point communication,
we achieve horizontal scalability.

The following sections give the formal description.

A. CHECO data structure

Each node u has a public and private key pair—pku and
sku, and a hash chain Bu. The chain consist of blocks Bu =
{bu,i : i ∈ {0, . . . , h − 1}}, where bu,i is the ith block of u,
and h is the height of the block (i.e. h = |Bu|). We use bu,h−1
to denote the latest block. There are two types of blocks, TX
blocks and CP blocks. If Tu is the set of all TX blocks in Bu
and Cu is the set of all CP blocks is Bu, then Tu ∪Cu = Bu
and Tu ∩Cu = ∅. The notation bu,i is generic over the block
type.

Definition 1 (Transaction block). The TX block is a six-tuple,
i.e

tu,i = 〈H(bu,i−1), sequ, txid, pkv,m, sigu〉.

We describe each item in turn.
1) H(bu,i−1) is the hash pointer to the previous block.
2) sequ is the sequence number which should equal i.
3) txid is the transaction identifier, it should be generated

using a cryptographically secure pseudo-random num-
ber generator by the initiator of the transaction.

4) pkv is the public key of the counterparty v.
5) m is the transaction message, which can be seen as an

arbitrary string.
6) sigu is the signature created using sku on the con-

catenation of the binary representation of the five items
above.

TX blocks come in pairs. In particular, for every block

tu,i = 〈H(bu,i−1), sequ, txid, pkv,m, sigu〉
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there exists one and only one pair

tv,j = 〈H(bv,j−1), seqv, txid, pku,m, sigv〉,

if the nodes follow the transaction protocol (described in Sec-
tion III-C). Note that the txid and m are the same, and the
public keys refer to each other. Thus, given a TX block, these
properties allow us to identify its pair.

Definition 2 (Checkpoint block and genesis block). The CP
block is a five-tuple, i.e.

cu,i = 〈H(bu,i−1), sequ,H(Cr), r, sigu〉,

where Cr is the consensus result (which we describe next in
Definition 3) in round r, the other items are the same as the
TX block definition.

The genesis block in the chain must be a CP block in the
form of

cu,0 = 〈H(ε), 0,H(ε), 0, sigu〉,

where ε is the empty string. The genesis block is unique
because every node has a unique public and private key pair.

Definition 3 (Consensus result). Our consensus protocol runs
in rounds, where the first round is defined to be 1 and it is
incremented after every execution of the consensus protocol.
The consensus result, output of the consensus protocol, is a
tuple, i.e.

Cr = 〈r, C〉,

where C is a set of CP blocks agreed by the facilitators of
round r.

Next we define a property which results from the interleav-
ing nature of CP and TX blocks. It is used in our validation
protocol (discussed in Section III-D).

Definition 4 (Enclosure and agreed enclosure). If there exists
a tuple 〈cu,a, cu,b〉 for a TX block tu,i, where
• cu,a is the closest CP block to tu,i with a lower sequence

number and
• cu,b is the closest CP block to tu,i with a higher sequence

number,
then 〈cu,a, cu,b〉 is the enclosure of tu,i. Some TX blocks may
not have any enclosure, then their enclosure is ⊥. Agreed
enclosure is the same as enclosure with an extra constraint
where the CP blocks must be in some consensus result Cr.

Definition 5 (Fragment and agreed fragment). If the enclosure
of some TX block tu,i is 〈cu,a, cu,b〉, then its fragment Fu,i is
defined as {bu,i : a ≤ i ≤ b}. Similarly, agreed fragment has
the same definition as fragment but using agreed enclosure.
For convenience, the function agreed fragment(tu,i) outputs
the agreed fragment of tu,i if it exists, otherwise ⊥.

B. Consensus Protocol

Our scalable consensus protocol Πc uses an asynchronous
common subset (ACS) protocol as the key building block.
The objectives of the protocol are to allow honest nodes
always make progress (in the form of creating new CP blocks),

compute correct consensus result in every round and have
an unbiased election of facilitators. We formally define the
desired properties below.

Definition 6 (CHECO consensus protocol). A CHECO consen-
sus protocol is correct if the following holds for every round
r.

1) Agreement: If one correct node outputs a set of facili-
tators Fr, then every node outputs Fr

2) Validity: If any correct node outputs Fr, then
a) |Cr| ≥ N − t2, and
b) |Fr| = n.

3) Termination: Every correct node eventually outputs
some Fr.

1) Bootstrap Phase: To bootstrap, imagine that there is
some bootstrap oracle that initiates the correct program on
every node, meaning that it satisfied the properties in Defini-
tion 6. In practice, the bootstrap oracle is most likely a group
of software developers (representing different organisations)
that agreed to work together to set up the system and assign
the facilitators of round 1. The number of facilitators is n, we
discuss the trade-offs for different values of n in Section VI.
This concludes the bootstrap phase. For any future rounds, the
consensus phase is used.

2) Consensus Phase: For any node u, the consensus phase
begins when Fr is available and the latest block is cu,h−1.
Note that Fr indicates the facilitators that were elected using
results of round r and are responsible for driving the ACS
algorithm in round r + 1. The goal is to reach agreement on
a set of new facilitators Fr+1 that satisfies the four properties
in Definition 6.

There are two scenarios in the consensus phase. First, if
u is not the facilitator, it sends 〈cp_msg, cu,h−1〉 to all the
facilitators. Second, if u is a facilitator, it waits for N − t
messages of type cp_msg. Invalid messages are removed,
which are blocks with invalid signatures and blocks signed by
the same key. With a sufficient number of cp_msg messages,
it begins the ACS algorithm and some C′r+1 should be agreed
upon by the end of it. Duplicates and blocks with invalid
signatures are again removed from C′r+1 and we call the
final result Cr+1. We have to remove invalid blocks a second
time because the adversary may send different CP blocks to
different facilitators, which results in invalid blocks in the ACS
output, but not in any of the inputs.

The core of the consensus phase is the ACS algorithm,
which is described in HoneyBadgerBFT [12]. We do not use
the full HoneyBadgerBFT due to the following. First, the
transactions in HoneyBadgerBFT are first queued in a buffer
and the main consensus algorithm starts only when the buffer
reaches an optimal size. We do not have an infinite stream of
CP blocks, thus buffering is unsuitable. Second, HoneyBad-
gerBFT uses threshold encryption to hide the content of the
transactions. But we do not reach consensus on transactions,

2Cr is a tuple but we abuse the notation here by writing |Cr| to mean the
number of CP blocks in the second element of Cr .
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only CP blocks; the content of the CP blocks are not sensitive
so there is no need to hide it.

When Fr finish the ACS execution and reach agreement
on Cr+1, they immediately broadcast two messages to all
the nodes—first the consensus message 〈cons_msg, Cr+1〉,
and second the signature message 〈cons_sig, r, sig〉. The
reason for sending cons_sig is the following. The channels
are not authenticated, and there are no signatures in Cr+1.
If a non-facilitator sees some Cr+1, it cannot immediately
trust it because it may have been forged. Thus, to guarantee
authenticity, every facilitator sends an additional message that
is the signature of Cr+1.

Upon receiving Cr+1 and at least n − t valid signatures,
u performs two tasks. First, it creates a new CP block using
new cp(Cr+1), described in Algorithm 1. Second, it computes
the new facilitators using get facilitator(Cr+1, n), described
in Algorithm 2, and updates its facilitator set to the result.
This concludes the consensus phase and brings us back to the
state at the beginning of the consensus phase, so a new round
can be started.

Our protocol has some similarities with synchronizers [20,
Chapter 10] because it is effectively a technique to introduce
synchrony in an asynchronous environment. If we consider
the facilitators as a collective authority, then it can be seen
as a synchronizer that sends pulse messages (in the form of
cons_msg and cons_sig) to indicate the start of a new
clock pulse. Every node then sends a completion messages
(in the form of cp_msg) to the new collective authority to
indicate that they are ready for the next pulse.

Algorithm 1 Function new cp(Cr) runs in the context of the
caller u. It creates a new CP block and appends it to u’s chain.

〈r, 〉 ← Cr
h← |Bu|
cu,h ← 〈H(bu,h−1), h,H(Cr), r, sigu〉
Bu ← Bu ∪ cu,h

Algorithm 2 Function get facilitator(Cr, n) takes the consen-
sus result Cr and an integer n, then sorts the CP blocks C by
the luck value (the λ-expression), and outputs the smallest n
elements.
〈r, C〉 ← Cr
return take(n, sort by(λx.H(Cr||pk of x), C))

C. Transaction Protocol
The TX protocol Πt, shown in Algorithm 4, is run by

all nodes. Nodes that wish to initiate a transaction calls
new tx(pkv,m, txid), described in Algorithm 3, with the
intended counterparty v identified by pkv and message m.
txid should be a uniformly distributed random value, i.e.
txid ∈R {0, 1}256. Then the initiator sends 〈tx_req, tu,h〉
to v.

A key feature of Πt is that it is non-blocking. At no time in
Algorithm 3 or Algorithm 4 do we need to hold the chain state

Algorithm 3 Function new tx(pkv,m, txid) generates a new
TX block and appends it to the caller u’s chain. It is executed
in the private context of u, i.e. it has access to the sku and
Bu.

h← |Bu|
tu,h ← 〈H(bu,h−1), h, txid, pkv,m, sigu〉
Bu ← Bu ∪ {tu,h}

Algorithm 4 Πt runs in the context of node u.

Upon 〈tx_req, tv,j〉 from v
〈 , , txid, pkv,m, 〉 ← tv,j
new tx(pku,m, txid)
store tv,j as the pair of tu,h
send 〈tx_resp, tu,h〉 to v

Upon 〈tx_resp, tv,j〉 from v
〈 , , txid, pkv,m, 〉 ← tv,j
store tv,j as the pair of the TX with identifier txid

and wait for some message to be delivered before committing
a new block to the chain. This allows for a high level of
concurrency where we can call many new tx(·) and send
multiple tx_req messages simultaneously without waiting
for the corresponding tx_resp messages.

D. Validation Protocol

Up to this point, we do not provide a mechanism to detect
tampering. The validation protocol Πv aims to solve this
issue. The protocol is also a request-response protocol. Before
explaining the protocol itself, we first define what it means for
a transaction to be valid.

1) Validity Definition: A transaction can be in one of
three states in terms of validity—valid, invalid and unknown.
Given a fragment Fv,j , the validity of the TX block tu,i with
its corresponding fragment Fu,i is captured by the function
get validity(tu,i, Fu,i, Fv,j) in Algorithm 5. Note that tu,i and
Fu,i are assumed to be valid, otherwise the node calling the
function would have no point of reference. This is not difficult
to achieve because typically the caller is u, so it knows its own
TX block and the corresponding agreed fragment. If the caller
is not u, it can always query for the agreed fragment that
contains the transaction of interest from u.

We stress that the unknown state means that the verifier
does not have enough information to make progress in Πv . If
enough information is available at a later time, then the verifier
will output either valid or invalid.

Note that the validity is on a transaction, i.e. two TX blocks
that form a pair. It is defined this way because the malicious
sender may create new TX blocks in their own chain but
never send tx_req messages. In that case, it may seem
that the counterparty, who is honest, purposefully omitted TX
blocks. But in reality, it was the malicious sender who did not
follow the protocol. Thus, in such cases, the whole transaction
identified by its txid is marked as invalid.
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Algorithm 5 Function get validity(tu,i, Fu,i, Fv,j) validates
the transaction represented by tu,i. We assume Fu,i is always
correct and contains tu,i. Fv,j is the corresponding fragment
received from v.

if Fv,j is not a fragment created in the same round as Fu,i
then

return unknown
〈 , , txid, pkv,m, 〉 ← tu,i
if number of blocks of txid in Fv,j 6= 1 then

return invalid
tv,j ← the TX block with txid in Fv,j
〈 , , txid′, pku,m′, 〉 ← tv,j
if m 6= m′ ∨ txid 6= txid′ then

return invalid
if tu,i is not signed by pku∨tv,j is not signed by pkv then

return invalid
return valid

2) Validation Protocol: Our validation protocol Πv , shown
in Algorithm 6, is designed to classify transactions according
to the aforementioned validity definition. If u wishes to
validate some TX with ID txid and counterparty v, it sends
〈vd_req, txid〉 to v. The desired properties are as follows.

Definition 7 (CHECO validation protocol). A CHECO valida-
tion protocol is correct if the following properties hold.

1) Agreement: If any correct node decides on the validity of
a transaction, except when it is unknown, then all other
correct nodes are able to reach the same conclusion or
decide unknown.

2) Validity: The validation protocol outputs the correct
result according to the validity definition above.

3) Liveness: Any valid (invalid) transaction is marked as
valid (invalid) eventually.

Algorithm 6 Πv which runs in the context of u

Upon 〈vd_req, txid〉 from v
tu,i ← the transaction identified by txid
Fu,i ← agreed fragment(tu,i)
send 〈vd_resp, txid, Fu,i〉 to v

Upon 〈vd_resp, txid, Fv,j〉 from v
tu,i ← the transaction identified by txid
if Fu,i and Fv,j are available and Fu,i is the agreed fragment
of tu,i then

set the validity of tu,i to get validity(tu,i, Fu,j , Fv,j)

We make two remarks. First, just like Πt, we do not block
any part of the protocol. Second, suppose some Fv,j validates
tu,i, then that does not imply that tu,i only has one pair tv,j .
Our validity requirement only requires that there is only one
tv,j in the correct consensus round. The counterparty may
create any number of fake pairs in later consensus rounds. But
these fake pairs only pollutes the chain of v and can never be
validated.

IV. DESIGN VARIATIONS AND TRADEOFFS

In this section, we explore a few design variations, some
of them require a relaxed version of our original model. They
enable better performance and allow us to apply our design in
the fully permissionless setting.

A. Open membership using timing assumption

At the start of our consensus phase (Section III-B2), facili-
tators must wait for N − f cp_msg messages. The use of N
makes our system unsuitable for the open membership setting,
where nodes may join and leave at will (churn). We over come
this problem by introducing a timing assumption. Concretely,
instead of waiting for N−f messages, we wait for some time
D, such that D is sufficiently long for honest nodes to send
their CP blocks to the facilitators. Consequently, this removes
the need for a PKI because the collected CP blocks may be
from nodes that nobody has seen in the past.

The new protocol handles churn as follows. Suppose a new
node wish to join the network and the facilitators are known
(this can be done with a public registry). It simply sends its
latest CP block to the facilitators. Then, in the next round,
the node will have a chance to become a facilitator just like
any existing node. To leave the network, nodes simply stop
submitting CP blocks. There is a subtlety here which happens
when the node is elected as a facilitator in the following round.
In this case, the node must fulfil its obligation by completing
the consensus protocol, but without proposing its own CP
block, before leaving. Otherwise, the n ≥ 3t + 1 condition
may be violated.

B. Optimising Validation Protocol Using Cached Agreed
Fragments

One more way to improve the efficiency of Πv is to use
a single agreed fragment to validate multiple transactions.
Concretely, for node A, upon receiving an agreed fragment
from node B, rather than validating a single transaction, A
attempts to validate all transactions performed with B, which
are in the unknown state but also in that fragment.

The benefit of this technique is maximised when a node only
transacts with one other node. In this case, the communication
of one fragment is sufficient to validate all transactions in that
fragment. In the opposite extreme, if every transaction that
the node makes is with another unique node, then the caching
mechanism would have no effect.

C. Total Fork Detection

The validation algorithm guarantees that there are no forks
within a single agreed fragment, which is sufficient for some
applications such as proving the existence of some informa-
tion. However, for applications such as cryptocurrency where
every block depends on one or more previous blocks, our
scheme is not suitable. For such applications, we need to
guarantee that there are no forks from the genesis block
leading up to the TX block of interest.

We offer two approaches to do total fork detection. First
and the easiest solution is to ask for the complete hash chain
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of the counterparty. The verifier can be sure that there are no
forks if the following conditions hold.

1) The hash pointers are correct.
2) All the CP blocks are in consensus.
3) The TX of interest is in the chain.

We use this approach in our prior work on Implicit Consen-
sus [21]. Nodes employ caching to minimise communication
costs, and we call this effect spontaneous sharding.

The second approach is probabilistic but with only a con-
stant communication overhead over our current design. For
a node, observe that if all of its agreed fragments has a
transaction with an honest node, then the complete chain is
effectively validated in a distributed manner. The only way
for an attacker to make a fork is to ensure that the agreed
fragment containing the fork has no transactions with honest
nodes. Such malicious behaviour is prevented probabilistically
using a challenge-response protocol as follows. Suppose node
A wish to make a transaction with node B. A first sends a
challenge to B asking it to prove that it holds a valid agreed
fragment between some consensus round specified by A. If
B provides a correct and timely response, then they run the
transaction protocol as usual. Otherwise, A would refuse to
make the transaction.

D. Unbiased Facilitator Election
Our consensus protocol does not guarantee unbiased facili-

tator election when dedicated attackers are present. If a mali-
cious facilitator is elected, it can delay, eavesdrop and collect
all CP block messages before sending its own. Effectively, it
can generate a CP block such that it has an unfair advantage
of being elected as a facilitator in the next round.

To address the issue above, the facilitators run an extra pro-
tocol after the consensus protocol to produce some unbiased
randomness. Concretely, they invoke RandHound [22] and
then propagated the randomness and the signatures in the same
way as the consensus result. Upon receiving the randomness,
every node uses it in the hash function of Algorithm 2
(i.e. H(randomness||Cr||pk of x)) to compute the new set of
facilitators.

V. CORRECTNESS AND FAULT TOLERANCE ANALYSIS

We evaluate our system analytically to ensure the desired
properties (Definition 6 and Definition 7) hold. An informal
argument is given in this section. We refer to [23, Chapter 4]
for an in-depth analysis.

A. Correctness of the Consensus Protocol
Πc correctly implements the CHECO consensus protocol

(Definition 6) due to the following. The agreement, validity
and termination properties hold because:
• The CP blocks sent to the facilitators are eventually

delivered, and then ACS eventually starts.
• Agreement, validity and termination hold for ACS as they

are the properties of ACS and are proven to hold in [12].
• The consensus result and signatures are eventually dis-

seminated to all the nodes, so honest nodes must hold
the same result as the honest facilitators.

B. Correctness of the Validation Protocol

Using the previous result, we show that Πv implements
the agreement and validity properties of a CHECO validation
protocol (Definition 7).

The validity property holds because we use get validity(·)
in the validation protocol. The agreement property holds
because we model H(·) as a query to a random oracle. That
is, suppose two honest nodes decided on two different states,
valid and invalid for the same transaction. For that to happen,
two agreed fragments must exist for the same transaction, but
these fragments must also have the same agreed enclosure.
Recall that blocks form a hash chain. So this is not possible
unless the adversary can compute the inverse of H(·) with high
probability.

Liveness, unfortunately, does not hold in our model. A
malicious node can act honestly when running the transaction
protocol, but then never respond to any validation requests.
Therefore some transactions can never be validated. Never-
theless, the malicious node will be at an economic loss if it is
not responsive because honest nodes are less likely to make
contact with nodes that do not respond to validation requests.
If the probabilistic fork detection proposal (Section IV-C) is
used, the uncooperative nodes will have more incentive to
participate in the protocol.

VI. IMPLEMENTATION AND EVALUATION

A free and open source implementation can be found
on GitHub: https://github.com/kc1212/checo. It implements
the three protocols and the Extended TrustChain. We also
implement the caching optimisation discussed in Section IV-B.
The cryptography primitives we use are SHA256 for hash
functions and Ed25519 for digital signatures.

We run the experiment on the DAS-53 with up to 1200
nodes. Every node makes transactions at 2 per second. Since
Bitcoin transactions are approximately 500 bytes [24], we use
a uniformly random transaction size sampled between 400 and
600 bytes.

The global throughput results are shown in Figure 2. We
consider Figure 2a as the ideal case, where nodes only make
transactions with a fixed node. Figure 2b is the worst case,
where nodes make transactions with random nodes and the
caching mechanism is unlikely to be used. Observe that the
transaction rate is much lower in Figure 2b, which is because
the communication of an agreed fragment is necessary to
verify every transaction (no caching), putting a strain on our
network infrastructure.

For Figure 2a, the magnitude of our throughput may not be
self-evident at first glance. Recall that we fixed the transaction
rate to 2 TPS, but how is it possible to have around 4800
transactions per second for 1200 nodes (which is 4 TPS)?
It is due to the way validated transactions are calculated.
Transactions are between two parties, hence if every node
makes two transactions per second, every node also expects to
receive two transactions per second. Hence, for every node, the

3https://www.cs.vu.nl/das5/
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(a) Every node make transactions with a fixed node.
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(b) Every node make transactions with a random node.

Fig. 2: Global throughput increases as the population increases when every node transact at the same rate. Making transactions
with fixed nodes results in a higher throughput because of the caching mechanism.
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Fig. 3: The consensus duration increases polynomially with
respect to the number of facilitators.

TX blocks are created at 4 per second. Validation requests are
sent at the same rate, which explains the magnitude. Overall,
the throughput has a linear relationship with the population
size. This result is a strong indication of the horizontal
scalability which we aimed to achieve.

The downside of our design is that the communication
complexity of the consensus protocol grows polynomially with
respect to the number of facilitators. Hence, the consensus
protocol will take longer to complete, and larger fragments
must be sent for transaction verification. On the other hand,
it does not significantly impact the throughput; only the
transaction verification delay is affected. The experimental
results in Figure 3 demonstrates this issue, it uses the same
experimental-setup as before. We refer the reader to [23,

Chapter 5] for additional analysis of the effect of the number
of facilitators as well as other experimental results.

VII. CONCLUSION

In this work, we described CHECO, an application neutral
blockchain system with horizontal scalability. Our novel data
structure allows nodes to efficiently store transactions and
record state using CP blocks. The round based consensus
protocol uses ACS as a building block to reach consensus
on CP blocks. The consensus result lets nodes elect new
facilitators and create new checkpoint blocks. To make trans-
actions, nodes use the simple and non-blocking transaction
protocol. Finally, we introduce a validation protocol which
ensures that if an agreed fragment for some transaction exists,
then nodes reach agreement on the validity of that transaction.
The novelty of CHECO is that it decouples consensus and
transaction validation, which enables the desirable horizontal
scalability property, without employing sharding.

We achieve the properties described in Section II. Namely,
our protocol achieves agreement on transactions as we argued
in Section V-B. Validity is achieved because honest nodes
run the get validity(·) function, which, in fact, is the validity
definition. Further, the horizontal scalability is demonstrated
in Section VI, in the ideal case as well as the worst case.

In the future, we hope to apply our system to a concrete
application and evaluate its performance. Furthermore, we
plan to explore a few useful design alternatives such as open
membership, total fork detection and fair facilitator election.
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