SWIFT: Bringing SDN-Based Flow Management to
Commodity Wi-Fi Access Points

Seppo Hitonen*, Petri Savolainen*, Ashwin Rao*, Hannu Flinck’ and Sasu Tarkoma*
*University of Helsinki, TNokia Bell Labs

Abstract—Wi-Fi networks are largely served using over-the-
counter commodity Wi-Fi routers, access points (APs), and
possibly with wireless controllers. Existing approaches to bring
the benefits of Software-defined Networking (SDN) to such Wi-
Fi networks suffer from availability, hardware requirements, and
scalability issues. For instance, these approaches do not support
enterprise APs whose firmware cannot be modified. Furthermore,
we observe that using SDN controllers for managing all the
flows traversing these APs and routers requires more than just
installing an SDN switch on these devices. In this paper, we
present our solution called SWIFT: Software-defined Wi-Fi Flow
Management, for bringing SDN-based flow management to Wi-
Fi networks using commodity Wi-Fi APs, Wi-Fi routers, and
Wi-Fi controllers. We also detail its benefits, shortcomings, and
possible use cases. Specifically, our solution significantly lowers
the barrier-to-entry for deploying and conducting research on
software-defined Wi-Fi networks.

Index Terms—Network Management, SDN, Wi-Fi.

I. INTRODUCTION

Wi-Fi is becoming the communication medium of choice
in our homes and offices. This has compelled manufacturers
of televisions, home-entertainment systems, and other devices
that traditionally used wires for connectivity, to support Wi-
Fi. Paralleling the growth of Wi-Fi is the growing demand to
programmatically compose and manage communication net-
works using Software-Defined Networking (SDN) principles.
However, in spite of its growing presence and importance,
Wi-Fi has received significantly less attention in the SDN
community compared to its wired siblings.

The growing importance of Wi-Fi and SDN, and the limited
Wi-Fi support in existing SDN solutions, highlights the impor-
tance of addressing the roadblocks in bringing the benefits
of SDN to networks which use commodity Wi-Fi access
points (APs). The key roadblock is that commodity Wi-Fi APs
are typically Wi-Fi hubs/bridges that simply forward packets.
These include both open-source solutions such as hostapd [1]
and OpenWrt [2], and also proprietary APs used in enterprise
or home networks. Furthermore, these APs cannot take in-
telligent forwarding decisions because they cannot implement
the match/action rules used by SDN switches such as Open
vSwitch (OVS) [3]. As detailed in §II-B, simply installing an
OpenFlow switch such as OVS on an AP is not enough for
managing the network traffic flows traversing the AP.

The seminal work on bringing the SDN to Wi-Fi networks
was OpenRoads [4] which used protocols such as the Simple
Network Management Protocol (SNMP) for managing the
Wi-Fi APs. The insights from OpenRoads were leveraged

ISBN 978-3-903176-08-9 (©2018 IFIP

by several solutions such as ZtherFlow [5], BeHop [6], and
OpenSDWN [7]. However, these solutions cannot be used as-is
in existing Wi-Fi networks because they suffer from scalability,
hardware, and availability issues (see §II). We therefore focus
on bringing SDN-based flow management to Wi-Fi networks
built using over-the-counter commodity APs and controllers.

In this paper, we present SWIFT, an architecture for bring-
ing SDN-based flow management to existing Wi-Fi networks.
Our architecture leverages on commonly available technolo-
gies: Client Isolation and SDN switches such as OVS. Client
Isolation prevents the Wi-Fi clients associated with an AP
from communicating with each other. This feature is supported
by a wide range of enterprise and consumer APs.! We bring
SDN functionality to Wi-Fi networks by leveraging on Client
Isolation to take control of all flows in the Wi-Fi network.
The Intelligent AP technique achieves this by empowering
devices running OpenWrt with OVS. In contrast, the Thin AP
technique allows Wi-Fi APs that support Client Isolation to
offload the flow management to external SDN switches.

Our key contributions are as follows.

« We enable existing SDN controllers to manage the network
traffic flows in Wi-Fi networks built using commodity APs
and routers. This significantly lowers the barrier-to-entry to
deploy and experiment on software-defined Wi-Fi networks.

e Our Thin AP technique offloads the management of flows
traversing APs to external SDN switches. This technique can
be used in Wi-Fi networks and testbeds which use APs that
cannot run an SDN switch such as OVS within the AP. For
example, enterprise APs typically do not allow installation
of custom firmware such as OpenWrt, and custom software
such as OVS. Similarly, legacy commodity APs may not
have the resources for running SDN switches.

o Our Intelligent AP technique integrates OVS with OpenWrt,
and leverages the computational power of modern APs for
implementing the forwarding decisions mandated by the
SDN controller. This enables SDN controllers to manage
the traffic flows at the edge of Wi-Fi networks.

Roadmap. In §II, we discuss related works and our motiva-
tion. We then detail our two techniques and their use cases in
§III, and present the results of experimental evaluation of our
techniques in §IV. We finally conclude in §V.

IClient Isolation has many aliases such as Wireless Isolation, AP or Station
Isolation, Peer-to-Peer Blocking etc. In this paper we use Client Isolation.

TABLE I
COMPARISON TO THE STATE OF THE ART

) 4

& '§ E =
§ g% =32 £
S1E|Z12 2| ¢
Metric | O | O | R |& | Q| &
Association control at controller | v - - Viiv|VY
Association control at AP | - v |V - - v
Configure AP using OpenFlow | - - VIV - -
Configure AP using other protocols | v/ | Vv - - vV | Vv
Manage and control commodity APs Siviliv|v|¥
Manage and control enterprise APs | v v
Packet forwarding at the controller | v - - - - -
Packet forwarding atthe AP | v | v | vV | V | V | V

Existing approaches come with a trade-off of scalability versus the
ability to manage the flows between clients associated to the same

AP AV implies that SWIFT allows AP management tools including
enterprise AP management tools such as the Cisco Wireless LAN
Controller to manage the APs.

II. BACKGROUND AND MOTIVATION

In this section, we first present other proposed approaches
for bringing SDN functionality to Wi-Fi networks. We then
motivate our work by discussing the roadblocks preventing
these approaches from being used in Wi-Fi networks using
commodity APs and routers.’

A. Existing approaches to integrate Wi-Fi networks with SDNs

In Table I, we compare the existing approaches for bringing
SDN functionality to Wi-Fi networks, namely, a) the Con-
trol and Provisioning of Wireless Access Points (CAPWAP)
protocol [8], [9], b) OpenRoads [4], ¢) ZAtherFlow [5], d)
BeHop [6], and e) OpenSDWN [7].

The CAPWAP protocol is one of the seminal techniques for
managing Wi-Fi APs. While CAPWAP predates SDN, they
share the same underlying principles: a logically centralized
CAPWAP controller manages the APs and takes decisions
based on the network state. The specifications of the CAPWAP
protocol are fairly detailed, and its proprietary siblings from
Cisco [10], Aruba Networks [11] and Ubiquiti Networks [12]
manage vendor-specific Wi-Fi hardware. In spite of its limited
support in open source solutions such as OpenWrt, CAPWAP
serves as a cornerstone for Software-defined Wi-Fi networks.

OpenRoads, AtherFlow, BeHop, and OpenSDWN, primar-
ily differ on the techniques used for managing client associ-
ations and client mobility. Client association can be handled
either at the AP or at the controller. While handling client
associations at the AP is easy to implement, a controller han-
dling associations can be extended to manage hand-overs for
implementing seamless connectivity. OpenRoads and Zther-
Flow handle client associations at the AP, while OpenSDWN
and BeHop handle associations at the controller.

OpenSDWN and BeHop support client mobility by creating
virtual APs (VAP) for the Wi-Fi clients. The Wi-Fi interface

ZPlease note that, in this paper we use the terms Wi-Fi router and Wi-Fi
AP interchangeably. A Wi-Fi AP typically acts as a bridge between Wi-Fi and
wired networks. In contrast, Wi-Fi routers also include routing capabilities.

of APs typically support multiple networks (BSSID), which
are extended as VAPs. OpenSDWN creates a unique VAP for
each client, and during client mobility the controller migrates
this VAP from one physical AP to another AP. BeHop uses
a similar approach, where a single VAP can serve multiple
clients. BeHop can also allow clients to locally select the best
physical AP. However, OpenSDWN and BeHop do not scale
as commodity APs may limit the number of VAPs that can
simultaneously run on a physical AP; e.g. a Cisco 3700 AP
supports 16 networks, i.e. 16 VAPs [13]. Furthermore, running
multiple VAPs incurs significant performance overheads due
to beacon frames [14]. This is a serious shortcoming given the
increasing number of Wi-Fi devices at home and at work [15].

Each approach presented in Table I uses a different tech-
nique for managing APs. While OpenRoads uses SNMP,
ZtherFlow and BeHop extend OpenFlow to include com-
mands to manage APs. AtherFlow uses a modified CPqD [16]
OpenFlow switch to change AP configuration while BeHop
uses a local agent. Similarly, OpenSDWN uses an agent at the
AP that exposes configuration hooks to the controller.

B. Shortcomings of existing approaches

The existing approaches have limitations when dealing with
flows between clients associated to the same AP. OpenRoads,
ZtherFlow, BeHop, and OpenSDWN are all built on top
of OpenWrt, which in turn uses the Linux IEEE mac80211
driver [17]. This driver maintains a list of clients associated
with the AP, which is used to directly forward packets between
associated clients; packets between clients do not traverse the
networking stack of the AP. A consequence of this optimiza-
tion is that an SDN switch such as OVS or CPgD running
on an AP is unable to manage the flows between Wi-Fi clients
associated with the same AP. OpenSDWN and BeHop address
this issue by creating VAPs. However, many APs support only
a limited number of VAPs, limiting the number of clients
served by a physical AP. Multiple VAPs, i.e. SSIDs, also incur
heavy overheads in the Wi-Fi due to beacon frames, making
them unsuitable for dense Wi-Fi networks or locations with
multiple overlapping networks [14]; the current Wi-Fi design
principles set the maximum number of SSIDs to only four.

The existing SDN approaches are also not suitable for
enterprise APs such as those from Cisco. Typically enterprise
APs neither offer support for SDN controllers nor do they
support customization by third parties. While these APs can
be configured to operate with a proprietary Wi-Fi controller
or work autonomously, the limited customization support
currently makes them impractical for many SDN research
activities or integrating them to SDN-based networks.

Similarly, the existing approaches are also not suitable for
legacy APs with limited storage space and limited compu-
tational capacity. The match-action rules mandated by SDN
are computationally expensive compared to the direct packet
forwarding. The legacy APs typically also have limited storage
space (in the order of a few MB [18]) which might not be
sufficient to add the binaries of SDN switches.

173

SWIFT SDN
Controller

Wireless
Controller

SDN
Switches

Thin APs and Intelligent APs

Fig. 1. Example SWIFT topology. The SWIFT SDN controller manages the
flows traversing the network, while the Wireless Controller manages the APs.

C. Motivation

Existing approaches suffer from scalability, hardware, and
availability issues for bringing the benefits of SDN-based
traffic management to Wi-Fi networks built using commodity
APs. This motivates us to find a solution which achieves
this requiring only minimal changes to the APs and can be
deployed on existing networks.

Programmatically managing a Wi-Fi network involves a)
managing and provisioning the APs and b) managing the flows
traversing these APs. The AP management and provisioning
includes managing the radio interface parameters such as
signal strength, channel, etc. This can be done either through
existing wireless LAN controllers such as Cisco Wireless Lan
Controller (WLC) [10], or through other network management
systems. These are solid and mature solutions for managing
commodity and enterprise APs. At the same time, SDN
switches such as OVS [3] and SDN controllers® such as Open-
Daylight [19] and Ryu [20] are solid and mature solutions for
flow management. However, the existing approaches cannot
combine SDN solutions with existing Wi-Fi networks built
using commodity and enterprise APs. In particular, the SDN
controllers cannot manage the flows between Wi-Fi clients
associated with the same AP, while existing Wi-Fi APs do not
support SDN.

In the following, we present our SWIFT architecture for
bringing SDN-based flow management to existing Wi-Fi
networks. Our solution enables existing SDN controllers to
manage all the Wi-Fi traffic flows, including the flows between
clients associated with the same AP, while allowing existing
Wi-Fi controllers such as WLC to continue to manage the
client associations, the radio interfaces, etc., of these APs.

III. SWIFT: SOFTWARE-DEFINED WI-FI FLOW
MANAGEMENT

In this section, we present SWIFT, our software-defined Wi-
Fi flow management architecture. The SWIFT architecture is
illustrated in Figure 1, which depicts an enterprise network
with a Wi-Fi controller. The Wi-Fi controller is used to manage
the existing commodity APs, while the SWIFT controller
manages the network traffic flows.

3In the rest of the paper we use the term SDN controller to refer to SDN-
based network and flow management systems such as OpenDaylight and Ryu.

174

Radiol
5GHz)))

Radio0
2.4GHZ)))
|_ Hardware Switch
WAN—TAN[[LAN[[LAN[[LAN
Port| | port || Port || Port || Port

Fig. 2. A Wi-Fi router that internally uses VLANs. Using VLANs to
separate WAN and LAN ports reduces costs as only one physical interfaces is
needed at the CPU.

'@_ Radiol
| 5GHz

Radio0
2.4GHz

=,

)
)

br0

Bridge

=,

Hardware Switch
bl LAN [|LAN [|LAN | LAN
Port Port || Port || Port || Port

Fig. 3. Interfaces on an OpenWrt router. Regardless of the internal wiring,
OpenWrt uses a Software bridge to manage the Wi-Fi network and the LAN.

A key building block for SWIFT is Client Isolation, a
feature for preventing Wi-Fi clients from communicating with
other clients associated to the same AP. When Client Isolation
is enabled on an AP, the AP stops bridging the traffic between
Wi-Fi clients associated with that AP. In III-A, we discuss
Client Isolation and present ways in which it can be used
to enable SDN switches to manage the Wi-Fi network traffic
flows. We then detail the following two techniques for bringing
SDN-based flow management to Wi-Fi networks.

a) Intelligent AP: In this technique (see §III-B), we run
OVS inside the AP. This enables APs to exert fine-grained
control over flows traversing its communication interfaces.

b) Thin AP: In this technique (see §III-C), an AP offloads
the flow management to a remote SDN switch and in essence
becomes a remote Wi-Fi interface on this switch; the AP and
the SDN switch form the Thin AP.

In III-D, we discuss the steps the SWIFT SDN controller
needs to take to manage flows traversing APs implementing
our techniques, and why simply adding OVS to an AP is not
enough to bring SDN to Wi-Fi networks.

A. Client Isolation

We now use the internals of OpenWrt running on commod-
ity Wi-Fi routers to present an overview of Client Isolation.

In Figure 2, we present the connectivity between the inter-
faces of widely used commodity Wi-Fi routers. A typical Wi-
Fi router has a WAN interface for the Internet connectivity,
an Ethernet switch for the wired LAN ports, and at least
one Wi-Fi interface. These interfaces are typically exposed
to the CPU using Virtual LANs (VLANSs). In Figure 2 we
present a router (Netgear WNDR4300v1) that internally uses
two VLANSs, one VLAN for the WAN and another VLAN
for the LAN. As shown in Figure 3, OpenWrt abstracts these
wiring internals and exposes a software bridge that connects

Radiol
5GHz)))

Radio0
2.4GHz)))

Hardware Switch
Vl;’AN LAN[|LAN[|LAN[JLAN
ort Port || Port | | Port || Port

Fig. 4. AP configured for the Intelligent AP. OVS replaces the default
bridge provided by OpenWrt, and Client Isolation is enabled on the AP. This
allows the OVS to manage the flows traversing the AP.

the Wi-Fi and wired LAN interfaces. However, because of the
internal optimizations in the wireless LAN driver discussed in
II-B, the packets exchanged between the clients associated
with the same Wi-Fi interface do not traverse this bridge.

This can be mitigated by enabling Client Isolation. However,
we have observed the three following implementations in
enterprise and consumer APs [2][10].

a) Permissive Isolation: The driver sends all traffic flows
to the AP’s network stack. An SDN switch running on the AP
can therefore be used to manage the flows traversing the AP.

b) Restrictive Isolation: The driver only allows Address
Resolution Protocol (ARP) messages to reach the network. An
external SDN switch connected to the AP can use these ARP
messages to impersonate the other hosts in the network. This
can be achieved by using various techniques such as a) Proxy
ARP for Private VLANs (PVLAN), also known as VLAN
Aggregation [21][22], or b) the SDN controller sending an
ARP reply with the MAC address of the switch in response
to ARP requests from clients associated with the AP.

c) Total Isolation: The driver discards all traffic between
wireless clients, which makes it impossible to extend Client
Isolation to allow SDN switches to manage the traffic flows.

OpenWrt-based APs use Permissive Isolation, and enterprise
APs may use any of the above implementations; the supporting
documentation may provide hints on the implementation used
by a given AP. For example, the Cisco 1131ag AP and Cisco
WLC can be configured to either use Restrictive Isolation
or Total Isolation [10]. In the following, we present two
techniques to combine SDN switches with APs that implement
either Permissive Isolation or Restrictive Isolation.

B. Intelligent AP

In this technique we run OVS on an OpenWrt-based AP.
As shown in Figure 4, we replace the Linux Bridge created
by OpenWrt (see Figure 3) with OVS. All interfaces that
were plugged to the bridge are moved to the OVS, and Client
Isolation is enabled on the Wi-Fi interfaces. Client Isolation
forwards all packets arriving on these interfaces to the OVS.
This allows the OVSS to manage all flows between Wi-Fi clients
and the flows traversing the AP to the wired network.

The Intelligent AP technique also supports multiple Wi-Fi
networks (SSID) on the same AP. Each SSID appears as a
logical Wi-Fi interface on OpenWrt, which is then plugged
to the OVS. To manage the flows between Wi-Fi clients in

SDN Switch

APs with wireless isolation enabled

Fig. 5. APs configured for the Thin AP. The APs have Client Isolation
enabled, and an external SDN switch manages the network traffic flows
traversing the AP.

different SSIDs, the SDN controller only needs to know the
OVS port corresponding to a given SSID. The key benefit
of this technique is the implementation of SDN match/action
rules at the edge of the Wi-Fi network.

C. Thin AP

This technique is suitable for APs falling into one or more

of the following categories.

o A custom firmware such as OpenWrt cannot be installed
on the AP. For example, the flash memory size of the AP
is not large enough to install OpenWrt.

e A custom software such as OVS cannot be installed on
the AP. For example, the AP runs proprietary firmware
which does not allow customization of the AP.

e The hardware restrictions make it impractical to imple-
ment the Intelligent AP approach.

Most enterprise APs fall into one or more of the above
categories as they may not allow installation of third-party
firmwares or software. Similarly, many legacy APs which sup-
port OpenWrt but have either limited storage or computational
capacity to run OVS can use our Thin AP technique.

In this technique, the AP acts as a remote Wi-Fi interface for
an SDN switch, and each Wi-Fi network of the AP becomes a
port on that switch. This port and the AP connected to it form
the Thin AP, which is now responsible for the flows traversing
the AP. Furthermore, multiple APs can be connected to a single
SDN switch, i.e. only a single SDN switch is required to turn
a small Wi-Fi network into an SDN-managed one.

As discussed in §III-A, if the Client Isolation on an AP is of
the type Restrictive Isolation then the SDN controller will be
required to provide ARP responses to ARP queries made by
clients associated with the AP. However, this impersonation
may cause issues with device discovery, for example. We
discuss these issues in Section §III-F. In contrast, Intelligent
APs do not require the controller to handle ARPs because
these APs do not redirect traffic to an external SDN switch.

The key benefit of the Thin AP technique is that it only
requires Client Isolation on the AP. This enables the transfor-
mation of existing Wi-Fi networks to support SDN.

D. Flow Management using an SDN Controller

We now discuss the steps an SDN controller such as
OpenDaylight or Ryu must take to manage flows traversing
APs configured as either Intelligent AP or Thin AP.

175

1) Managing flows traversing Intelligent APs: The SDN
controller must perform the following additional tasks to man-
age the flows traversing Intelligent APs. First, the controller
must know which SDN switches are APs configured as Intel-
ligent APs. Second, the controller also has to keep track of the
hosts in the network that are associated with these APs, which
is essential for forwarding packets between wireless clients
associated with the same AP. For such flows, the packets
received from the wireless interface of an Intelligent AP must
be sent back to the wireless interface. The client’s MAC
address can be used for this. Additionally, for an Intelligent
AP to support encrypted Wi-Fi traffic, packets with EtherType
Ox888e (EAP over LAN) must be sent to the AP’s network
stack to be processed by the AP’s WPA2 module.

2) Managing flows traversing Thin APs: A Thin AP has
a few more requirements from the SDN controller than an
Intelligent AP. In addition to Intelligent AP requirements,
the SDN controller has to track the IP addresses of all the
clients associated with each Thin AP. The SDN controller is
expected to examine the ARP queries made by Wi-Fi clients
for discovering the other wireless clients associated with the
same Thin AP. If the clients are allowed to communicate with
each other, the controller responds with an ARP reply with
the MAC address of the SDN switch connected to the AP,
for which the IP tracking is required. As a consequence of
this, a Wi-Fi client &« communicating with Wi-Fi client 3
will send a packet with the source MAC address of client
«, source IP address of client «, destination MAC address of
the SDN switch, and destination IP address of client 3. For
such packets the SDN controller commands the SDN switch to
replace the source MAC address with the MAC address of the
SDN switch, and replace the destination MAC address with
the MAC address of client 3, and finally send the packet to the
wireless interface of the Thin AP. This allows the SDN switch
to forward packets between clients associated with the Thin
AP. Unlike the Intelligent AP, the Thin AP does not require
any specific rules to support Wi-Fi encryption because these
frames are managed locally by the AP or by a Wi-Fi controller.

3) Supporting Client Mobility: Most Wi-Fi controllers offer
support for client mobility [10]. For the SDN controller to
support mobility, the controller must update the flow table
rules in SDN switches to ensure that packets are forwarded
to the AP which the client is associated to. Both Wi-Fi and
the SDN controllers can coordinate this using their respective
north-bound APIs or react to network changes.

The above actions are straightforward to implement in any
SDN controller, and we have implemented them in our SWIFT
SDN controller based on the Ryu controller framework.

E. Use Cases

We now discuss some of the use cases of our work.

1) Bringing SDN-based flow management to enterprise Wi-
Fi networks: Current enterprise APs are typically managed
using a proprietary Wi-Fi management solutions and do not
allow installation of custom firmwares. If these APs support
either Permissive Isolation or Restrictive Isolation, and if SDN

176

switches are added to the network, the Wi-Fi traffic flows can
be controlled by SWIFT. With the steps discussed in §III-D,
the existing Wi-Fi controllers can now function alongside
SWIFT and manage both Wi-Fi APs and traffic flows.

2) Using existing Wi-Fi testbeds for SDN research: Many
Wi-Fi testbeds contain a large number of legacy devices.
The hardware in these devices might be obsolete by modern
standards; for example, APs may have only 4MB of flash
storage [18]. However, these devices can run OpenWrt, and
our Intelligent AP or Thin AP techniques can be used on these
devices as OpenWrt supports Permissive Isolation. This allows
conducting SDN research in existing Wi-Fi testbeds.

3) Programmable Network-wide access control: An SDN
controller with a fine-grained view of the devices in the
network allows the implementation of network-wide access
control. The SDN controller can be used to dynamically grant
or deny devices access to network services and resources.
This level of control has many use cases especially for Wi-
Fi networks where many clients can enter and leave at will.
First, guest devices can be granted only a limited Internet
access while known devices have full access. Second, SDN
controllers can coordinate with AP management controllers
for creation of location specific access rules. By determining
where each client is located, the SDN controller can manage
which devices each client has access to. For example, access
to streaming devices such as Chromecast or AppleTV can
be restricted only to devices near the clients. Third, Wi-Fi
networks are increasingly being used to connect Internet-
of-Things (IoT) devices such as baby-monitors and security
cameras, which are known to have vulnerabilities. With our
techniques, these devices can be protected by creating an SDN-
based security overlay which controls the set of devices with
which such vulnerable devices can communicate.

4) Limit the number of SSIDs: Combined with the network-
wide access control, the SWIFT can limit the number of
SSIDs used to only a few while retaining the benefits of
multiple SSIDs. Different security or group memberships can
be allocated to Wi-Fi clients, allowing the dispensation of
specific networks such as “guest” or “accounting”.

F. Discussion

In this section, we presented our SWIFT architecture and
the techniques it is built on. The techniques combine off-the-
shelf components, mainly Client Isolation and SDN switches
such as OVS, to provide SDN-based management of all traffic
traversing a Wi-Fi network.

The Intelligent AP technique empowers routers and APs
which are supported by open-source firmwares such as Open-
Wrt, and allow installation of an SDN switch such as OVS.
The Thin AP technique can be used with existing Wi-Fi
APs which do not allow custom firmwares, or are otherwise
incapable of processing the computationally intensive SDN
match-action rules. Our two techniques can be used to bring
SDN-based traffic management to existing Wi-Fi networks.

Our techniques are straightforward to implement in any
SDN controller. The Intelligent and Thin AP approaches have

SDN
Switch

SDN
Controller

TP-Link
Stock/Intelligent/Thin Stock/Intelligent/Thin

Cisco 1131
Stock/Thin

NetGear

Fig. 6. Testbed topology. The Netgear and TP-Link APs can be configured as
Stock, Intelligent, or Thin APs, while the Cisco AP can be configured as Stock
or Thin AP. We built our custom SDN controller using the Ryu framework.

some specific needs that must be addressed. For example,
when an AP is configured as a Thin AP, and a client sends
out a broadcast packet, the SDN switch to which the AP is
connected, sends broadcast packets back to the AP. This may
trigger a loop detection algorithm on the AP, causing the AP to
momentarily drop all packets sent back to it. This can either be
disabled in the AP, or it can be circumvented with application-
specific controller modules. For example, DHCP requests can
be routed directly to a DHCP server.

Our two techniques can also be combined with the other
solutions discussed in Table I. This would be beneficial as we
currently lack the remote AP configuration capabilities, offered
by for example Cisco WLC. At the same time, our techniques
address the scalability issue of multiple networks on a radio
interface; this is a serious shortcoming of existing solutions.

IV. EVALUATION

In this section we present results of experiments conducted
to a) quantify the overheads incurred by APs implementing our
two techniques, and b) address scalability. Please note that the
results presented here are for qualitative purposes only.

A. Experiment Setup for Quantifying Overheads of SWIFT

1) Devices Used and Network Topology: We used three
commodity APs for our experiments: a) Netgear WNDR-
4300v1, b) TP-Link WR1043NDv2, and c¢) Cisco 1131ag.
The Netgear and TP-Link can run OpenWrt while the Cisco
does not support custom firmware; each of these APs have
different hardware capabilities. The Netgear and TP-Link can
be configured either as a Stock, Intelligent, or Thin AP. We
run these two APs in their Stock OpenWrt configuration for
the baseline measurements. For the Intelligent AP tests, we
install OVSS on these APs, enable Client Isolation, and include
a patch for hostapd to detect and exchange data with OVS to
support WPA2 encryption. For the Thin AP tests, the default
Linux bridge is used with Client Isolation enabled and the
OVS is located in a remote host. The Cisco is used in its Stock
configuration for baseline measurements, and Client Isolation
is enabled only when the AP is configured as a Thin AP. The
testbed topology is shown in Figure 6. We use a FIT-PC3
Pro as the main SDN switch for the testbed, and also as the
external SDN switch for our Thin APs. In addition, we used
two identical laptops as test clients.

2) SWIFT Controller: Our SWIFT controller extends Ryu
SDN to support our Thin and Intelligent AP implementations.
For each traffic flow, SWIFT installs corresponding flow rules
after an SDN switch receives the flow; in our implementation,
the forwarding decisions are based on the MAC addresses of
the clients. These give a lower bound on overheads, while
additional overheads can be incurred depending on the policies
that determine the rules. Our main focus was on the overheads
incurred by the redirection of packets to an SDN switch.

3) Test Scenarios: We use the following three scenarios.
We believe that these three scenarios emulate small Wi-Fi
networks and also testbeds used for Wi-Fi experiments.
Scenario A. In this scenario, our two laptops are associated
with the same AP. This scenario emulates a small Wi-Fi
network such as a home network with a single AP.

Scenario B. In this scenario, the two laptops are associated
with different APs. This scenario emulates a Wi-Fi network in
a small-office home-office scenario where the clients can be
associated with different APs.

Scenario C. In this scenario, one laptop is associated with an
AP, while the second laptop is in a high-speed wired network.
This scenario emulates a network such as a university network
where Wi-Fi clients communicate with servers present in a
high-speed wired network. The client in the wired network is
connected to the switch using a 1 Gbps Ethernet cable.

4) Traffic Generation: We use the Flent network bench-
marking tool [23] for quantifying the overheads incurred by
our changes to the APs. Our motivation for using Flent was
that it includes a Realtime Response Under Load (RRUL) test
for testing Bufferbloat [24]. During an RRUL test multiple
TCP flows between our clients traverse our network at the
same time. Furthermore, these competing flows can be con-
figured to have different priorities. For different priorities, the
Flent uses the Differentiated Services Code Point (DSCP) field
in IP packets; all the packets of a given TCP flow have the
same value in the DSCP field. This allows us to emulate the
network traffic where clients use different applications such
as VoIP and web browsing at the same time. This test is
particularly important as OpenWrt internally uses the Linux
networking stack where the default queue of the networking
interfaces is pfifo_fast. In the pfifo_fast configura-
tion, a queue has three bands labeled O, 1, and 2, and the
DSCEP field in the IP header determines the band of a packet;
packets in band O are served with a higher priority than those
in band 1 which in turn have a higher priority than those
in band 2 [25]. Each band is served First In First Out, and
packets in a band are served only when there are no packets
in a lower numbered band; for example, packets in band 2 are
served only when there are no packets in band 0 and band 1.
We use Flent’s RRUL tests in the following three modes.

a) RRUL (default): In this mode, the Flent on each client
creates multiple TCP and UDP flows with different priorities.
b) RRUL Best Effort: The Flent running on each client
generates multiple TCP and UDP flows. However, in this test
all traffic flows have the same priority, i.e., all TCP and UDP
packets have the same value in the DSCP field in the IP header.

177

¢) RRUL Ping: The Flent uses only ICMP messages to
measure the round-trip time (RTT) without network load.
This provides a baseline measurements on the impact of the
Intelligent AP and Thin AP approach on the network latency.

We conduct the following experiments to quantify the
overheads incurred by of our two techniques. For each of the
three scenarios—Scenario A, Scenario B, and Scenario C—we
run the Netgear and TP-link AP in the Stock, Intelligent AP,
and Thin AP configuration, and the Cisco AP in the Stock and
Thin AP configuration. Furthermore, we run 30 iterations of
Flent in the default RRUL mode and the RRUL Best Effort
mode; during each iteration Flent generated the TCP flows
for 180 seconds. We also run one iteration of Flent for 300
seconds in the RRUL Ping mode.

B. Experiment Results on SWIFT Overheads

In Figure 7, we present the results of our experiments
conducted to quantify the overheads incurred by our two
techniques. In the Stock configuration, the packets between
two clients associated with an AP by-pass the kernel network
stack of the AP because they are forwarded directly by the
radio interface driver. Our Intelligent AP technique causes
these packets to be redirected to the OVS running on the
AP, while our Thin AP technique causes these packets to be
redirected to an external SDN switch. We quantify the impact
of these redirections using the mean TCP goodput and RTT
observed in the different scenarios discussed above.

In Figure 7(a) we present the RTTs observed during the
RRUL Ping test. The mean TCP goodput and the mean RTT
observed during the RRUL (default) test are presented in
Figure 7(b) and Figure 7(c) respectively; the corresponding
observations of RRUL Best Effort test are presented in Fig-
ure 7(d) and Figure 7(e) respectively. In each figure, S, I, and
T denote the Stock, Intelligent AP, and Thin AP configurations
respectively; cisco, ng, and tp denote the Cisco, Netgear,
and TP-Link AP respectively. The numbers above the X-
axis represent the percentage change in the value over the
corresponding Stock configuration. For instance, in Scenario
B when the Netgear and TP-Link APs are configured as
Intelligent APs for the RRUL BE test (ng-tp,I-I), we observe
a 1.2% decrease in the mean TCP goodput in Figure 7(d) and
a 226% increase in mean RTT in Figure 7(e) compared to the
mean goodput and mean RTT observed when the APs were
used in their Stock configuration (ng-tp,S-S).

Scenario A. In this scenario, two clients associated with
the same AP communicate with each other. The Thin AP
configuration is expected to incur a larger increase in RTT
compared to the Intelligent AP configuration because the
packets have to traverse an external switch. This increase is
clearly visible in Figure 7(a), Figure 7(c), and Figure 7(e);
the increase in RTTs for the Intelligent AP configuration
are smaller than the increase in the RTTs for the Thin AP
configuration. Note that the amount of increase in RTT is
dependent on the network latency between the AP and the
external SDN switch; for instance, the latency between our
external switch and our APs was under 1 ms. Furthermore, for

178

the Cisco and Netgear APs, the impact of this redirection on
the RTT is small compared to the increased queuing delays
faced when the network is loaded; the increase in RTT for
Cisco APs in the Thin AP configuration reduces from 55%
under no load (see Figure 7(a)) to 0.2% under load from
Best-Effort traffic (see Figure 7(e)). In RRUL Best Effort
Test, the mean round-trip for the Netgear AP configured as
a Thin AP is 5.7% lower while the TCP goodput is 1.4%
higher than the corresponding RTT and goodput in the Stock
configuration; we make similar observations in the RRUL Best
Effort test when the Netgear AP is configured as an Intelligent
AP. While the increases are mostly marginal, we believe that
these are due to more optimal efficient processing of queues
by OVS. In contrast, we observe an opposite behavior when
using the TP-Link in the Intelligent AP mode. These changes
in performance point to the hardware of the APs; the TP-
Link has the weakest hardware in terms of CPU capacity,
and this is evident from the high RTTs observed in the Stock
configuration in Figure 7(a).

Scenario B and Scenario C. In Scenario B, the two laptops
are associated with different APs. While in Scenario C, one
laptop is connected to an AP and the other is in the wired
network. With the help of Figure 6 one can see that for
Scenario B the path traversed by the packets in the Stock-
Stock configuration and Thin-Thin configuration are identical;
similarly, the Stock-Wired configuration and Thin-Wired con-
figuration are identical for Scenario C. The overheads incurred
between these configurations are therefore marginal.

We observe a small difference between the TCP goodput in
the Int-Int configuration and the goodput in the Stock-Stock
configuration for Scenario B in Figure 7(b) and Figure 7(d).
However, in Figure 7(c) and Figure 7(e), we can see that ICMP
messages sent by Flent during the RRUL test and RRUL BE
test incur a significantly higher RTT. Furthermore, for the Best
Effort test, while the TCP goodput decreases by only 1.2%
the RTT of the ICMP messages increases by 226%. Clearly,
the Thin-Thin configuration performs better than the Int-Int
configuration; this highlights the benefits of offloading the flow
management from commodity APs to an external switch.

For Scenario C, the difference in the TCP goodput and RTT
between the Intelligent-Wired configuration and the Stock-
Wired configuration is marginal. In Scenario C, we observe a
higher RTT compared to Scenario B and Scenario A because
of the 1 Gbps wired link; the TCP flows from the faster wired
network ensure that the queues at the AP are saturated.

Across all scenarios, we observe that values for the TCP
goodput and RTT in the RRUL test are significantly different
from those in the RRUL Best Effort test. In the RRUL test,
the ICMP messages used for the RTT measurements have the
least priority and therefore have higher queuing delays. In the
RRUL Best Effort test, all packets have the same priority; we
therefore observe smaller RTTs compared to the RRUL test.

C. Experiment for Testing Scalability of SWIFT

We also performed an experiment to showcase the scala-
bility of our architecture. As discussed in §II, the previous

4 s I T . s-s I-I T-T T-I ‘ S-W I-W T-W
| |
| |
m 3 i - T i
: Pt t ‘
£l g1 pt oertid PR By ;
- ! ! - - -
0 3.6 24 55 18.3 19 i 3.4 0 0 0 1.1 29 1.1 09 i 41 -6.7 0 0 0
[T | T | T T I T T T T T T T T T T T | T T | T | T T 1
SEE S8 LEL/ORE £ O/R SLRLS /LR S8 pO8
& & /S SEe & S8 $§8LL /S T &
e @ L o § /
// S O S O S O //
Scenario-A Scenario-B Scenario-C

(a) Mean round-trip times during RRUL Ping test. The error bars represent the standard deviation of the observed round-trip times. The numbers above
the X-axis present the percentage change in the measured value (mean round-trip time) over the value observed in the corresponding stock configuration.

- s I T ‘ s-s I-I T-T T-I ‘ S-W I-W T-W
2 80 I i
a | i - - -
£ o 3 3
5 40 | |
o - - - i - - - - - - - - 1~ - - - -
3 2 - - i B - - !
8 0 04 45 01 -22 45 | 0.1 0 0 0 13 01 01 01 | -01 0.1 0 0 o
[T 1
$ES S8 588 /ST F SFF SRS g 88 g8
S S /SSE & S8 FS5ed /) F S
. // © o . o // .
Scenario-A Scenario-B Scenario-C
(b) Mean goodput during the default RRUL test. The error bars represent 99% Confidence Intervals for the mean TCP goodput.
12000 s I T ‘ s-s I-I T-T T-I ‘ S-W I-W T-W
| i
. 10000 ! ! = - =
£ 8000 3 - = = z £
= 6000 i i
E 4000 i £ * |
& 2000 = = gl E e .
0 - - 01-213 | 6B 8175 | T~ 54.2 T 0 o 52 T3 684105 | 2 65 0 0 o0
[T 1
SEL L& LSRR /SRR R HRR SRRI/S/ LR SR S &R
K .9 /D d s d s d VAN &
& S S SSE & S5 S5 L /T S
. // © o . o / .
Scenario-A Scenario-B Scenario-C
(c) Mean round-trip time during the default RRUL test. The error bars represent 99% Confidence Intervals for the mean round-trip time.
= 80 s I T ‘ S-S I-I T-T T-I ‘ S-W I-W T-W
o ; |
g o 3 3
= 40 | A - I
g‘ 20 i - - - - - - - - = i
3 - - - - - - - - !
3 0 1.5 -0.6 04 14 -18 | 1.2 0 0 0 56 33 -23-08 | 05 -07 0 0 0
1 T T 1T T T 1 T T 1 T T T | T T 1 1 1
SEE L8 L8/ H8R & L8R8 OR/LS/SOS S8 &S
. . / / . .
& & /S SSEe & S$8E S EER /T &
Scenario-A Scenario-B Scenario-C
(d) Mean goodput during the RRUL BE test. The error bars represent 99% Confidence Intervals for the mean TCP goodput.
600 s I T ‘ s-s I-I T-T T-I ‘ S-W I-W T-W
- 500 i ES i = = = = = = = =
g 400 i !
= 300 | * z |
E 200 | ;
o 100 - - - - - _ - % _ - % _ i
0 72 34 02 57 50 | 226 0 0 o 51 -47.1187 422 | 17 -2 0 0 o
[T T T T T T T I T T T T T T T T T T T I T T T T T T T 1
g &8 geS 028 & FFE SLES /89T % gofF
. & & .
<o o /’/\‘o&a& & & \é?(?o & @(’oé’(’) ¢°’~&// S <
/O (&) [¢) /
Scenario-A ’ Scenario-B ’ Scenario-C

(e) Mean round-trip time during RRUL BE test. The error bars represent 99% Confidence Intervals for the mean round-trip time. Note the lower
round-trip times compared to the default RRUL test. The ICMP messages have the same priority as the TCP flows in this test.

Fig. 7. Experiments Results. In each figure, S, I, and T denote the Stock, Intelligent AP, and Thin AP configurations respectively; cisco, ng, and tp denote
the Cisco, Netgear, and TP-Link AP respectively. For instance, T-1 with cisco-ng represents a scenario where the first client was associated with a Cisco AP
configured as a Thin AP and the second client was associated with a Netgear AP configured as an Intelligent AP. Similarly, W represents a scenario when one of the
clients was in the wired network. For instance, I-W with ng represents a scenario where one client was associated with the Netgear AP configured as an Intelligent
AP and the second client was in the wired network. The numbers above the X-axis represent the percentage change in the value over the corresponding Stock
configuration. For instance, in Scenario B when the Netgear and TP-Link APs are configured as Intelligent APs for the RRUL BE test (ng-tp I-I), we observe
a 1.2% decrease in the mean TCP goodput in figure (d) and a 226% increase in mean round-trip time in figure (e) compared to the mean goodput and mean
round-trip time observed when the APs were used in the Stock configuration (ng-tp S-S). We observe that our two approaches incur negligible overheads in terms
of goodput, however their impact on the round-trip time varied with the tests.

179

approaches are limited to a single client per VAP if all traffic
flows need to be managed; however, the maximum number of
VAPs is limited by the hardware and drivers of the APs. We
show that our system can scale beyond the maximum number
of available SSIDs on the Cisco AP hardware, i.e. beyond 16.

In the experiment, we used the same testbed as above with a
single SSID. However, we used 20 different devices, including
laptops, mobile phones, and a Chromecast. We associated the
devices to the Cisco AP operating as Thin AP, and through
the SWIFT controller we pushed isolation rules to the AP to
isolate several of the devices from other devices.

As expected, the SWIFT controller was able to control all
the traffic flows traversing the Thin AP. The isolated devices
still retained the Internet access, but could not communicate
with other devices, i.e. full control of the flows was achieved.

D. Evaluation Summary

The goal of our evaluation was to quantify the impact of our
two techniques, and address the scalability of our architecture.
The overhead results presented in this section show that our
two techniques can be used on commodity APs. Furthermore,
the differences in performance between Stock, Intelligent, and
Thin configurations are negligible, and the performance largely
depends on an AP’s hardware capabilities. Specifically, the
performance of the Intelligent AP technique depends heavily
on an AP’s hardware capabilities. In contrast, the Thin AP
technique has fewer demands from the AP’s hardware than
the Intelligent AP, making it more suitable for APs with less
powerful hardware. Our results also highlight the benefits of
offloading the flow management from commodity APs to an
external switch. This implies that switches procured for SDN
research can be used in Wi-Fi testbeds having commodity APs.

The scalability experiment shows that our architecture can
support networks with a large number of clients with only a
single SSID, i.e. we can limit the overheads caused by a large
number of SSIDs, and push beyond the hardware limitations
of the APs which limit the other approaches.

Note that our goal was not to evaluate the performance of
OVS; this has been done by Pfaff et al. [3]. We are also
not quantifying the overheads of SDN policies because the
observed latencies and goodputs can be policy specific and
some policies can flood the switch with rules [26].

V. CONCLUSIONS

In this paper, we presented SWIFT, an architecture for
bringing SDN-based traffic flow management to Wi-Fi net-
works built using commodity enterprise and consumer devices.
SWIFT combines widely available technologies—Client Iso-
lation and SDN switches such as OVS—and can therefore
be used in almost all existing networks. The techniques used
by SWIFT require only a small number of tasks, which
are straightforward to implement in any SDN controller. We
strongly believe that our techniques provide a deployable way
to bringing SDN-based traffic management to Wi-Fi networks,
and significantly lower the barrier-to-entry for conducting
SDN research on Wi-Fi networks. For instance, our techniques

180

can be used to bring new features such as AP-specific access
control to enterprise networks, or conduct research on eval-
uating the benefits of SDN-based flow management in IoT
networks which use Wi-Fi.

The instructions for deploying SWIFT are available at [27].

ACKNOWLEDGMENT

This work is supported by the Nokia Center for Advanced
Research (NCAR), the Tekes PraNA project, and Tekes Take-5
project.

REFERENCES

[1] “hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS
Authenticator,” http://w1.fi/hostapd/.

[2] “OpenWrt,” https://openwrt.org/.

[3] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” in In Proc. of
USENIX NSDI, 2015.

[4] K-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “OpenRoads: Empowering Research
in Mobile Networks,” ACM SIGCOMM CCR., pp. 125-126, 2010.

[5] M. Yan, C. J. Casey, P. Shome, A. Sprintson, and A. Sutton, “Ztherflow:
Principled wireless support in SDN,” CoRR, vol. abs/1509.04745, 2015.

[6] Y. Yiakoumis, M. Bansal, A. Covington, J. van Reijendam, S. Katti, and
N. McKeown, “BeHop: A Testbed for Dense WiFi Networks,” in Proc.
of ACM WINTECH ’14, 2014, pp. 1-8.

[71 J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann,
“OpenSDWN: Programmatic Control over Home and Enterprise WiFi,”
in Proceedings of SOSR ’15. New York, NY, USA: ACM, 2015.

[8] P. Calhoun, M. Montemurro, and D. Stanley, “Control And Provisioning
of Wireless Access Points (CAPWAP) Protocol Specification,” Internet
RFCs, vol. RFC 5415.

, “Control and Provisioning of Wireless Access Points (CAPWAP)

Protocol Binding for IEEE 802.11,” Internet RFCs, vol. RFC 5416.

“Cisco Wireless LAN Controller,” www.cisco.com/c/en/us/products/

wireless/wireless-lan-controller/index.html.

[9]

[10]

[11] “Aruba Networks Mobility Controller,”
www.arubanetworks.com/products/networking/controllers.

[12] “Ubiquiti Networks UniFi,” www.ubnt.com/enterprise.

[13] “Cisco Aironet 3700 Deployment Guide,”

http://www.cisco.com/c/en/us/td/docs/wireless/technology/apdeploy/8-
0/Cisco_Aironet_3700AP.html.

“SSID Overheads,” http://www.revolutionwifi.net/revolutionwifi/2013/10/
ssid-overhead-how-many-wi-fi-ssids-are.html.

“Total wi-fi device shipments to surpass ten billion this month,”
http://www.wi-fi.org/news-events/newsroom/total-wi-fi-device-
shipments-to-surpass-ten-billion-this-month, January 2015.

[14]

[15]

[16] “CPgqD OpenFlow 1.3 Software Switch,”
http://cpqd.github.io/ofsoftswitch13/.

[17] “Linux Wireless,” wireless.wiki.kernel.org.

[18] “Linksys WRTS54G Series,” https://en.wikipedia.org/wiki/Linksys
_WRT54G_series.

[19] “The OpenDaylight Platform,” https://www.opendaylight.org/.

[20] “Ryu SDN Framework,” https://osrg.github.io/ryu/.

[21] D. McPherson and B. Dykes, “VLAN Aggregation for Efficient IP
Address Allocation,” Internet RFCs, vol. RFC 3069.

[22] S. HomChaudhuri and M. Foschiano, “Cisco Systems’ Private VLANS:
Scalable Security in a Multi-Client Environment,” Internet RFCs, vol.
RFC 5517.

[23] T. Hgiland-Jgrgensen, “Flent: The flexible network tester.”

[24] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Communications, pp. 57-65, January 2012.

[25] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing & traffic
control,” in Ottawa Linux Symposium, 2002, p. 213.

[26] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in IEEE Local Computer Network Con-
ference, Oct 2010, pp. 408-415.

[27] “SWIFT,” https://version.helsinki.fi/swift/.

