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Abstract—Offering Virtualized Network Functions (VNFs) as
a service requires automation of cloud resource management to
allocate cloud resources for the VNFs dynamically. Most of the
existing solutions focus only on the initial resource allocation.
However, the allocation of resources must adapt to dynamic
traffic demands and support fast scaling mechanisms. There are
three basic scaling models: vertical where re-scaling is achieved
by changing the resources assigned to the VNF in the host server,
horizontal where VNFs are replicated or removed to do re-
scaling, and migration where VNFs are moved to servers with
more resources. In this paper, we present an Iterated Local
Search (ILS) based framework for automation of resource re-
allocation that supports the three scaling models. We, then, use
the framework to run experiments and compare the different
scaling approaches, specifically how the optimization is affected
by the scaling approach and the optimization objectives.

Index Terms—Virtualized Network Functions, Cloud Re-
sources Management, Iterated Local Search

I. INTRODUCTION

Most of the existing work on automation of VNF resource
management, deal with the initial resource allocation for new
requests. In the initial resource allocation, clients provide
requirements in the form of NFs chains with specification of
expected traffic volume. Then the NF Cloud Service Provider
(CSP) allocates resources to run the NFs as virtual machines
and configure the network, so that the traffic passes through
the required VNFs in the appropriate order [1]-[5]. The initial
resource allocation for VNFs can be done in the order of
minutes, and then the new VINFs can be deployed accordingly.

However, following the initial resource allocation, over time,
without over-provisioning, resources have to be reallocated to
adapt to dynamic changes in traffic volumes. When traffic
increases, the CSP needs to adjust the resource allocation
to fulfil service levels agreed with the client (scale out) and
when traffic decreases, the CSP needs to recover underutilized
resources that can be assigned to other clients (scale in). The
resource re-allocation for the scaling requirements happens
during the ongoing operations, where the already deployed
VNFs are processing traffic. Therefore, it is a time critical
on-line problem. Solutions must be provided in the order of
seconds or even milliseconds, so that disturbances to current
operations are minimal.
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In this paper we focus on issues related to automating
the resource re-allocation to satisfy scaling requirements, and
assume the existence of a module that triggers the re-allocation
when needed. Despite some initial efforts [6], [7] the automa-
tion of dynamic scaling of VNFs still has open challenges.
Deciding what scaling method to use, i.e., whether to use
vertical scaling (i.e., allocation/release of host and bandwidth
resources to/from a VNF instance), migration scaling (i.c.,
running VNFs are paused, its state is serialized and transferred
to different servers with more resources), or horizontal scaling
(i.e., installation/removal of VNF instances), is not obvious
because of potentially conflicting optimization objectives: re-
allocating resources in a way that minimizes changes to cur-
rent configuration and therefore current network activities are
minimally disturbed, and at the same time optimizing usage
of server and network resources [8]. To our knowledge, there
is no systematic study comparing the three scaling models.

The contributions of this paper are: (1) a Integer Linear
Programming (ILP) model for automation of dynamic scaling
of VNFs in situations where there might not be feasible
solutions, i.e., there are not sufficient resources to cover the
demands under the restrictions of resource re-allocations im-
posed by the scaling method. In practice, no feasible solution
doesn’t mean that no service will be provided. Instead the
service will be provided with a lower quality, such as a lower
throughput. Hence, our optimization goal is to fulfil as much
as possible of the bandwidth requested. We have defined
bandwidth dropped (presented in the results in percentage)
as the amount of the bandwidth that has been requested,
but cannot be covered by the resources allocated, and the
optimization as the minimization of the bandwidth dropped.
(2) an Iterated Local Search (ILS) method that efficiently solve
the problem and can be implemented in real-life and (3) a
comparison on the different scaling models. For automation
of dynamic scaling of VNFs, the ILP models allows us to
understand the complexity of the problem and evaluate the
quality of the ILS heuristics proposed.

The ILS heuristics has proved to be one of the best
approximation methods to solve many complex optimization
problems efficiently [9]. For the comparison of scaling models,
we compare the scaling approaches in terms of the resource al-
location efficiency produced by each approach, the bandwidth
dropped and changes required by the reconfiguration.

We developed the ILS based framework to handle the three
scaling methods and various optimization objectives, including



bandwidth dropped minimization. With the framework imple-
mentation, we have conducted experimental simulations using
the data generation process described in [10], [11] which
is based on published information about the use of VNFs
in enterprises and traffic patterns from a real network. Our
simulations showed that, on average, the bandwidth dropped
was 49.6% for vertical scaling, 3.89% for migration and
0.12% for horizontal scaling, pointing that in any autonomic
scaling method selection, the less intrusive vertical scaling
alone should be avoided. However, even though there is a
clear difference in the average bandwidth dropped between
migration and horizontal scaling, further results showed, not
surprisingly, that horizontal scaling accepts more requests at
the cost of one, allocating more CPUs, and two, causing
more changes to the running configurations. The more changes
are done, the more likely services will affected during re-
allocation of resources.

The rest of the paper is organized as follows. Section II gives
an insight to the existing work on the same domain. Section
III formalizes the bandwidth dropped optimization problem
within ILP and Section IV describes the implementation of the
ILS based resource allocation framework. Section V presents
the evaluation set-up and the results of our scaling model
comparison. Our final remarks can be found in Section VI.

II. RELATED WORK

The VNF placement problem, as it generalizes the VM
allocation problem, is NP-hard [12]. Hence, instead of optimal
solutions which take long time to find, heuristic-based solu-
tions are preferred. [2] provides a dynamic programming based
heuristic to solve larger instances of the VNF placement prob-
lem. [13] uses a greedy algorithm and tabu based local search
techniques. But most work on automating cloud resource
management focuses on the initial placement of VNFs [1]-
[5], [13]-[15]. However, to offer a flexible service, following
the initial placement, VNFs have to be rescaled over time.

Work on automation of the resource re-allocation for scaling
VNFs is very limited [6], [7], [10]. The common strategy is to
avoid the hard problem of finding a global optimal, partitioning
the problem, and approximating to local optimal of the sub-
problems. The approach in [6] works with VNF chains and
can solve the initial placement problem by iterating over initial
input chains. Scaling is achieved by duplicating full instances
of VNF chains, and by reshuffling chains and migrating
traffic. The optimization is very dependent on the data center
architecture. The approach in [7] pushes the locality to the
limit and tries to deal with the optimization of one VNF at
a time, independent of the location in the chain of VNFs.
They take as input a set of individual VNFs demands and they
might migrate, duplicate or remove VNF instances, trying to
optimize server and bandwidth utilization as well as the cost of
making the modifications. Our previous work [10], [16] takes
the middle approach. It works with NF chains, assuming that
for a chain, it is likely that resources demand changes happen
in isolated NFs, but the optimization is done in the context of
the chain.
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Furthermore, research work on scaling of VNFs has focused
only on the complexities of the scaling technologies. They do
not consider the resource allocation or optimization aspects of
the scaling methods. [17], [18] studied the re-scaling of VMs
using vertical approach, according to the dynamic changes
in the demand for the applications that they host. [19]-[22]
proposed optimizations for VM migrations.

Our work is inspired by these existing work, but it focuses
on comparing scaling approaches based on the effects of the
scaling method on the resource allocation.

III. ILP MODEL FOR DYNAMIC SCALING OF VNFs
PROBLEM

In this section, we introduce our ILP model to solve the
problem of dynamic scaling of VNFs which builds on the
previous work done in VNF in [23] and in [6]. In our
formalization, we consider a network function center (NFC) to
be a cloud center providing VNF services, having M servers
and L links.

A link [ connects a server to a switch, or a switch to another
switch. The amount of resource capacity (number CPUs as
basic resource) of server m is denoted H,,, and network
capacity of link [ is denoted K. A path p between two servers
(a source and a destination server pair), comprises two or more
links (there is at least one switch between connected servers).
P denotes the set of available paths between all source and
destination server pairs in the NFC. Given a path p (in P)
that connects servers m1 and m2, @), represents the source
server (ml), and R, represents the destination server (m2).
The variable E;’ indicates whether link [ is used on path p.

We assume the existence of a module that triggers the re-
allocation when needed. A resource allocation request has the
following specifications: (1) the initial policy configuration
given by the types of required VNFs, numbered 1 to N,
and interconnectivity between them (policy), given by pairs
(n,n’), indicating that VNF n’ follows n in the policy'; (2)
the maximum expected delay d, and (3) the expected input
traffic load By to be processed by these VNFs.

This traffic load is not necessarily the load that will flow
through the paths between NFs of the policy. Depending on
the type of NF, the traffic output by a VNF can decrease (e.g.
WAN optimizer) or increase (e.g., VPN) with respect to the
input traffic. This scaling factor will be known to the system.
The traffic will be re-scaled accordingly and set in a constant
B,, for each VNF n. The constant B,, is, therefore, computed
as a function of the scaling factor of the VNF n: sf, and
the input traffic load expected by the VNF. For the special
case of first VNF in the chain, the input traffic load, By, is
part of the re-allocation specification. The input traffic load
for the remaining VNFs will depend on the scaling factor of
the preceding VNF and its input load.

Table I lists all the constants and dynamic variables relevant
for the formalization.

't is assumed the policy is a chain of NFs.
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The minimal bandwidth dropped rate is given by the mini-
mization of:
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Constraints (2a) and (2b) model the server resource con-
straints of the problem. Constraint (2a) guarantees that each
VNF in a policy is placed on one and only one server.
Constraint (2b) guarantees that the total capacity allocated to
all VNFs placed on a server does not exceed total capacity of
that server.

Constraints (2¢) to (2h) model the network resource con-
straints of the problem. If a VNF is not the last VNF of a
policy, constraint (2c) guarantees that the VNF has a path
to its successor. Constraint (2d) guarantees that for each
link allocated to transport traffic output by a VNF, the link
has sufficient bandwidth capacity left to accommodate the
traffic generated by the VNF. Constraint (2e) guarantees that
a link is counted as “used”, only if it is actually used in the
configuration solution. Constraints (2f) and (2g) guarantee that
the path selected for a VNF to send traffic to its successor,
starts from the server where the VNF resides (source server),
and ends in the server where the VNF’s successor resides
(destination server). Constraint (2h) guarantees that the delays
introduced by traversing VNFs in VNF chain and traversing
links in the path allocated inside the NFC, does not exceed
the delay accepted by the client.
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Constants characterizing the NFC architecture

M No. of servers, indexed by m =1, ...., M

Hp, Capacity of server m

L No. of links, indexed by [ =1, ...., L

K; Bandwidth of link {

P No. of paths, indexed by p =1, ...., P

Qp Source server of the path p

R, Destination server of the path p

E? Indicates whether the link  is used on path p, (0,1)
w1, w2, w3  Weighting factors

Constants characterizing the re-scaling policies to be served

N No. of VNFs, indexed by n =1,....; N
Sn Server capacity required for VNF n

Bn Bandwidth required for VNF n

By Input bandwidth required by the re-scaling
d Max delay

dy delay caused by traversing a VNF

dj, delay caused by traversing a link

Dynamic variables for new policy requests provisioning

zZ0 A binary decision for placing VNF n on server m
AP A binary decision for routing traffic of VNF n on path p
Gm Server m is used/not
F; Link [ is used/not
Sy, Server capacity allocated for VNF n
B, Bandwidth allocated for VNF n
Bj) Input bandwidth allocated to the re-scaling
TABLE T

SUMMARY OF KEY NOTATIONS

If a new VNF needs to be allocated, there is a minimum
number of CPU unites required and it depends on the VNF
type. The minimum number of CPU unites required for a
particular VNF type, also constrains the number of CPU unites
that can be requested for scaling. The number of CPU unites
that can be requested for scaling can only be multiples of
minimum number of CPU unites required for a particular
VNF type. For example, if an IP firewall implementation that
handles 900 Mbs loads requires 4 CPUs, the minimum number
of CPUs that can be allocated to handle a 1000 MBs load
would be 4 more CPUs. This is a simplification of the typical
offer made by VNF vendors of products with discrete jumps in
capacities. This is also important to capture horizontal scale up
where the replication is done for a new full VNF instance. The
constant cpu,, denotes the number of CPU unites required by a
single scaling (in or out) of VNF n. Constraint (2i) bounds the
CPUs required for a VNF type. Constraint (2j) forces that the
allocation of CPUs to a VNF is never more than the minimum
necessary to handle the incoming traffic load — cap,, is the
traffic load capacity associated to an instance of the type of
VNF n. The constant sf, is the traffic scaling factor associated
to the type of VNF n. Given that the traffic output by a VNF
can decrease (e.g. WAN optimizer) or increase (e.g., VPN)
with respect to the input traffic based on the scaling factor,
Constraint (2k) guarantees that, if the bandwidth reserved for
VNF n—11is B;L_l, then the bandwidth reservation for VNF
n is calculated considering the scaling factor of the VNF:
sfy. Constraint (21) forces that the bandwidth allocation to the
input traffic is never larger than the allocated VNF capacity.
Examples of cpu,s, cap,s and sf,s will be found in the

127



experiment section (Sec. V).

The optimization objective is to minimize the bandwidth
dropped rate. Exact solutions to this optimization problem are
difficult to obtain. It takes minutes to hours to solve when
there are hundreds of servers connected through different paths
using a typical data center architecture such as k-fat trees or
BCubes.

For this purpose we build upon our previous work [10],
[16], [23] where we developed an approximation algorithm
to address the computationally complexity of finding optimal
resource re-allocation during scaling. In [16], [23], we used
Genetic Programming (GP) techniques for the approximation.
Since then, we have developed a much effective algorithm
based on Iterated Local Search (ILS) [9]. There are two
(interrelated) benefits of using the new ILS algorithm. The
first is that the space and time requirements of GP algorithms
are proportional to the size of the genetic population times the
space needed to represent a resource allocation state of the sys-
tem (i.e., the resource allocation represented by each solution
of the population). In contrast, ILS requires information about
a single state, the current state of the system. The second
is that the empirical evaluations show that ILS consistently
returns better approximations than the GP algorithms. A third
intangible but nevertheless crucial benefit of adopting the new
implementation is the simplicity and flexibility of the ILS
approach to adapt well to many situations. This allowed us
to evaluate different scaling methods easily. Modifying our
GP implementation would have been much harder.

In the next section we present our approximation algorithm
based on Iterated Local Search.

IV. ITERATED LOCAL SEARCH (ILS) APPROACH

The essence of the ILS meta-heuristic is to iteratively build
a sequence of solutions generated by an embedded heuristic
search, leading to far better solutions than if one were to use
repeated random trials of that heuristic [9]. ILS extends a
problem-specific local search method by introducing a pertur-
bation at each new local optimal solution, before restarting
the search for a new local optimal solution. As shown in
Algorithm 1, ILS comprises four main steps: (1) Generation of
an Initial Solution, (2) Local Search, (3) Perturbation and (4)
Acceptance Criterion. ILS aims at avoiding the disadvantages
of random restarts by exploring the region of feasible solutions
using a walk that steps from one local optimal solution S*
to a nearby one. Given the current solution S*, a change or
perturbation is first applied leading to an intermediate feasible
solution, S’. Then, a Local Search is applied to S’ to obtain
a new local optimal solution, S*'. If S*' passes an acceptance
test, it becomes the new solution; otherwise, one returns to the
previous one, S*.

The ILS process starts with the first phase of generating
a feasible solution for the scaling requirement. We call our
implemented solution for dynamic scaling of VNFs problem
as the Cloud Resources Management Program (CRMP).

The CRMP starts with the current state and searches for
the re-assignment of resources (new servers and paths) for
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Algorithm 1 Iterated Local Search for CRMP

1: procedure ITERATED LOCAL SEARCH

2 So = Generatelnitial Solution

3 S* = LocalSearch(Sy)

4 Repeat:

5: S’ = Perturbation(S*, history)
6.

7

8

S* = LocalSearch(S")
S* = AcceptanceCriteria(S™*,S* history)
until termination condition met

the set of VNFs that are scaling using Depth First Search
(DFS) method. The search is performed based on the scaling
approach that is used. In all three scaling approaches, the
CRMP tries to find resources (server and bandwidth)
to satisfy the total bandwidth demand, while ensuring
the traffic of the policy request meet its deadline. If the
required resources cannot be allocated, then the CRMP
tries to allocate resources to accept as much as possible
bandwidth demand.

With Vertical scaling, when a policy has to be scaled out,
for each VNF of the scaling policy, the CRMP checks whether
the server and the path, that is currently used by the VNF, can
handle the bandwidth demand. When a policy has to be scaled
in, for each VNF of the scaling policy, the CRMP decreases
server resources from the server where the VNF currently
resides, and decreases bandwidth resources from the paths that
VNF currently uses.

With migration scaling, when a policy has to be scaled out,
we treat as if it is a new policy. Also, we assume that the
new policy’s bandwidth request is the total bandwidth demand:
(current bandwidth plus traffic change). For each VNF of the
scaling policy, the CRMP searches for a server and a path to
handle the bandwidth demand. After the new policy has been
implemented, the resources allocated to the existing policy
are removed. This is done because, it is expected that both
implementations would need to co-exist for sometime to be
able to handle session affinity to ensure the correct behaviour
of the VNF. When a policy has to be scaled in, for each VNF of
the scaling policy, the CRMP decreases server resources from
the server where the VNF currently resides, and decreases
bandwidth resources from the paths that VNF currently uses.

With horizontal scaling, when a policy has to be scaled out,
we again treat it as a new policy, and that the new policy’s
bandwidth request is the extra bandwidth demand (the traffic
change) of the existing policy. We called it the “child policy”.
For each VNF of the policy that is scaling, the CRMP searches
for a server and a path to handle the extra bandwidth demand,
using a DFS method. When a policy has to be scaled in,
for each VNF of the scaling policy, the CRMP decreases
server resources from the server where the VNF currently
resides, and decreases bandwidth resources from the paths that
VNF currently uses. If this decrease means removing all the
resources from a child policy, then we remove that child policy
entirely.

The current solution that describes the current state of the
system is modified according to the new servers and paths
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found. The seconds phase of ILS is the local search. We apply
a simple iterative improvement local search, i.e., as soon as
a better solution is found, the process will restart using this
solution as the current one. A neighborhood for the local
search is defined by first choosing a type of transaction to
obtain a new feasible solution from the current one: move,
and then defining the neighborhood as the set of solutions
that can be obtained from the current one by applying the
same type of move. For migrations and horizontal scaling,
we define a simple move — changing a scaling VNF from
one server to another feasible server: “1-opt-VNF move”, and
afterwards changing paths of the VNF affected. For each VNF,
its neighbors can be found by applying “1-opt-VNF moves”.

The perturbation process in our algorithms is implemented
by applying n “1-opt-VNF moves”, where 2 < n <Number of
VNFs. It works by randomly selecting n VNFs in randomly
selected scaling policies, and changing each selected VNF
from one server to another feasible server by applying “I-
opt-VNF move”, and afterwards changing paths of the VNF
affected. The acceptance criteria phase uses the objective
function given in equation 1. A solution obtained after the
perturbation and local search is accepted only if it improves the
current solution. The acceptance criteria (step 7 in Algorithm
1) is an improvement in the objective function.

For the initial resource allocation (before any scaling hap-
pens), the CRMP performs a simple Depth First Search (DES),
and selects a server and a path for each VNF in each initial
policy request considering the expected traffic load by the
policy. The initial resource allocation generated by DEFS is
further improved by an ILS algorithm, with the following
modifications: within the local search procedure, CRMP tries
to perform a “global ILS” to the given solution, where it
applies “l1-opt-VNF move”, to all VNFs of any policy (a
standard full local search). In the perturbation process, “1-opt-
VNF move” is applied to n randomly selected VNFs from all
the policies. In the acceptance criteria phase, the objective
function is as in [10] where the objective functions is to
minimize the number of servers and links used.

A. Verification of the ILS implementation

Before we move to the comparison of scaling approaches
we would like to say a few words about the ILS imple-
mentation. We have conducted a comprehensive evaluation of
the performance of the ILS CRMP. We followed the same
experimental regime reported in [10] used to evaluate our
resource allocation system based on Genetic Algorithms (GA).
The experiments verified the stability of the ILS system when
parameters such as initial conditions or order of processing
requests were varied.

With regards to its performance when compared to the
optimal solutions we needed to limit our experiments to small
network cloud scenarios to get the ILP implementation to
finish. We used a small network with 4 servers, and ran
simulations to allocate resources for up to 10 VNFs. Our ILS
based algorithm was able to find the optimal solutions within

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)

few milliseconds while the ILP implementation in CPLEX
[24] took several minutes.

For the comparison to the performance of the GA imple-
mentation, we ran experiments in which we, first, found initial
solutions with DFS, and then improved the initial solutions
using ILS with 20 repeated procedures and GP with 200
generations separately in three different clould center architec-
tures, k-fat trees, BCubes and VL2s. The ILS approximations
were always as good or better than the approximations found
by the GA system. It was observed in [23] that after the
200 generations, the improvements are very rare for the GP
approach. However, for the ILS approach, if one continue
repeating procedures the solutions improved.

As the main goal of the optimization in [23] was also to
reduce the average link utilization, so that the network is less
congested, we repeated the tests and the results produced by
ILS reduced the average link utilization by 32%, 27.2% and
7% when compared to the initial DFS solution for the three
architectures, while the results produced by GP were 28.7%,
14.9% and 3.2%. In addition, ILS was faster than GP.

V. SCALING METHODS EVALUATION

There are two different aspects to look at when selecting
a scaling method: (1) the impact of its implementation and
(2) the optimization goals. Existing work has shown that each
scaling method has advantages and disadvantages [25].

Vertical scaling: (1) needs less time for reconfiguration as
it needs only metrics adjustment, (2) does not need additional
software licenses, (3) does not affect the quantity of VNF
instances and (4) does not introduce a coordination or a traffic
distribution among multiple VNF instances. However, vertical
scaling is limited by the capacity of individual servers and
links, because it cannot increase the resources more than
their maximum capacity. The duration of reconfiguration for
migration scaling is higher, because it includes the time to du-
plicate the scaling VNF in a new server (VNF migration) and
then initialize the instance [26], [27]. Even though, horizontal
scaling has more freedom in terms of space, it needs to create
new VNF instances and therefore, it needs a workload balancer
to distribute the traffic to multiple VNF instances [28], [29].

The second aspect is to select a configuration solution
based on the optimization goals. This has not been studied,
hence, we decided to run simulations to explore on how
the optimization is affected by the scaling approach and the
optimization objectives.

A. Experimental set-up

The work in this section is based on our previous experi-
mental setting reported in [16] and [10]. For a more realistic
evaluation, we used the data generation process described in
[10] which is based on published information about the use of
VNFs in enterprises and traffic patterns from a real network.
The data generation and data modeling programs can be found
in [11], [30].

Following [10], we assumed that we are providing services
for policy requests of 6 large enterprises. Therefore, the system
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NF type Processing capacity | CPU cores required
IP firewall 900 Mbps 4
Application firewall 900 Mbps 4
WAN optimizer 900 Mbps 4
Proxy 900 Mbps 4
Gateway 900 Mbps 4
VPN 900 Mbps 2
Load balancer 900 Mbps 4
IDS/ IPS 600 Mbps 8

TABLE II

PROCESSING CAPACITIES AND CPU REQUIREMENTS OF VNFS

NF type Traffic scaling | Traffic scaling factor
IP firewall No

Application firewall No -
WAN optimizer Yes 0.65
Proxy Yes 0.65

Gateway No -
VPN Yes 1.5

Load balancer No -
IDS/ IPS Yes 1.5

TABLE III
BANDWIDTH DEMAND TRANSFORMATIONS OF VNFS

handles around 130 policies with 600 NFs which were chains
with at least 2, but no more than 7 VNFs, that followed a
truncated power-low distribution with exponent 2. We assumed
a 128 server environment in a 4-fat tree architecture where
each server has an initial capacity of 24 cpu cores and each
link has an initial capacity of 10 Gbps.

We considered 7 types of VNFs: IP firewalls, Application
firewalls, WAN optimizers, Proxies, Gateways, VPNs, Load
balancers, and IDS/IPS as used in [10]. We also made more
precise specifications of the VNFs. The computational require-
ments for each VNF to serve a specific amount of traffic,
can be derived using the inbound traffic rate and the resource
profile of each VNF type. A resource profile for each NF
includes: (1) processing capacity of the VNF in Mbps, (2)
required minimum number of CPU cores and (3) bandwidth
demand transformation by the VNF (compress or amplify
traffic).

Following the existing works [2], [31], Table II shows the
assumed processing capacities and the required number of
CPU cores for different VNFs in our experiments.

The bandwidth demand transformations are associated with
traffic-scaling VNFs. Following the existing works [32], Table
IIT shows the assumed traffic scaling factors for different VNFs
in our experiments. A traffic scaling factor smaller than 1
implies traffic compression while a traffic scaling factor greater
than 1 implies traffic amplification.

As in [33], we take the end-to-end delay requirement (dead-
line) for a packet within a CSP network to be 1 ms. In our
model, we assumed that the end-to-end delay experienced by
each packet (inside the NFC) is composed of: (1) processing
delays of VNFs in the policy request, and (2) transmission
delays between VNFs of the policy request [6]. We assumed
that the processing delay of a VNF is equal to ﬁ, where cap
is the processing capacity of that VNF [6]. The transmission
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delay between two VNFs is calculated based on the allocated
path, where the delay caused by a link in the path is assumed
to be 0.001 ms [34]. Even though we limited the end-to-end
delay to these two components and considered only the delay
inside the cloud, one can easily add more delay components
such as the extra delay caused by moving NFs to the cloud or
migrating traffic from one VNF instance to another.

For the VNFs scaling methods evaluation, we considered
traffic changes of every hour, to get the scaling triggers and
derived the scaling requirements. We will refer to the scaling
requirements of each hour a “scaling event” and therefore, we
have 20 scaling events in a full day.

B. Evaluation

All experiments were carried out in a machine with an Intel
core i3 processor and 20GB of RAM. For each experiment
round, we started with two initial resource allocations: (1)
Depth First Search (DFS) and (2) random. Then we used the
solutions of the two methods separately to test resource re-
allocation for scaling over time. We ran the algorithm with
the three scaling methods (vertical, migration and horizontal)
separately. We repeated this process for 10 experiment rounds,
where for each experiment round, we derived a fixed set of
policies (average of 130 policies) that included a total of 600
VNFs. For each experiment round, scaling events were derived
based on the policy set used and the traffic data. All the results
are the averages of the 10 experiment rounds.

1) Percentage of bandwidth dropped: Our optimization
goal was to minimize the bandwidth dropped rate of scaling
requests with a constraint that ensures the delay experienced
by each packet of accepted scaling requests, did not exceed
their deadlines. Therefore, we checked the percentage of
bandwidth dropped, for each scaling approach, starting with
DFS and random based initial allocations to have a better
comparison.

There are two reasons for dropping bandwidth requests:
(1) the cloud infrastructure does not have enough resources
or (2) the cloud infrastructure has enough resources, but the
resources cannot satisfy the deadline constraint. We calculated
the percentage of bandwidth dropped for each event as (Total
of dropped bandwidth for all the scaling policies of the event
/ Total bandwidth requested by all the scaling policies of the
event * 100). Vertical scaling had the highest percentage of
bandwidth dropped: average of 49.6%. The next was migration
scaling: average of 3.89%, while horizontal scaling had the
lowest: average of 0.12%, making it the best scaling approach,
in terms of the optimization goal of minimizing the bandwidth
dropped rate.

Figure 1 shows the percentage of bandwidth dropped for the
vertical scaling, over scaling events of the day. The vertical
scaling is always limited by the spare computational resources
of the VNF’s current server. However, starting with a random
initial allocation and continuing the day with vertical scaling,
provided significant better results than starting with a DFS
initial allocation. Since DFS follows a bin-packing strategy,
it did not leave free CPU units in the servers to be used for
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Fig. 1. Percentage of bandwidth dropped: Vertical

future bandwidth demands. On the other hand, with a random
initial allocation, servers were not fully packed, therefore there
were CPU units left in servers to be used for future bandwidth
demands.

Figure 2 shows the percentage of bandwidth dropped for the
migration and horizontal scaling, over the scaling events of the
day. Note that the X axes are in different orders of magnitude
in the two plots of the figure 2 and in the plot of figure 1,
making the horizontal scaling, the best minimizing bandwidth
dropped rate. The first observation with the migration scaling
is that, as expected, when the bandwidth demand increased
over time, the migration scaling faced the problem of physical
resources limitation of a server, thus, limiting the resources
that can be allocated to a VNF. Therefore, the CRMP was
not able to find servers to satisfy the total bandwidth demand.
The second observation is that for the scaling events at the
beginning of the day (until the 8th event), there was no
significant difference between starting with a DFS or a random
initial allocation. However, when the system gets tighter over
the time, the percentage of bandwidth dropped tended to
be slightly different for the two methods. For some events,
starting with the DFS initial allocation gave better results
while for other events, starting with a random initial allocation
gave better results. In other words, a DFS or a random based
initial allocation has not significant effect on average within
the migration scaling. The factors affecting the migration
scaling were the tightness of the system and physical resources
limitations of the servers.

The main observation with the horizontal scaling is that
most of the time, regardless of whether the system was tight
or not, the CRMP was able to find resources to satisfy the
total extra demand, and the percentage of dropped bandwidth
was minimal. For the scaling events at the beginning of the
day (until the 8th event), there was no significant difference
between starting with a DFS or a random initial allocation.
However, when the system gets tighter over the time, starting
with DFS initial allocation gave better or equal results, having
a low percentage of bandwidth dropped.
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Fig. 2. Percentage of bandwidth dropped: Migration and Horizontal
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Fig. 3. Comparison of allocated CPU units

2) Allocated CPU units: The optimization goal of our
algorithm was to minimize the bandwidth dropped rate of
scaling requests. We can equate that value with earning and
contrast that against the CPU units allocated for the VNFs to
process the accepted bandwidth as a measurement of expenses.
This implies an approximated measurement of profit.?

The number of allocated CPU units for the VINFs to process
the accepted bandwidth when following different approaches
are shown in Figure 3. We compared the allocated CPU units
by these approaches with a base line: the minimum number
of CPU units required to satisfy the total bandwidth demand
of the system (for all policies) at each scaling event. This
is calculated without considering the maximum capacities of
servers or links, making it an over-optimistic scenario.

As described in the previous section, the vertical scaling has
the highest percentage of dropped bandwidth. Therefore, it has
the lowest number of CPU units allocated. However, starting
with a random initial solution was better than starting with
DFS. The migration scaling’s number of CPU units allocated
is closer to the baseline.

According to the baseline, the horizontal scaling has allo-

2We haven’t explicitly converted accepted bandwidth requests and allocated
CPU units to monetary values, but once this is done, we can calculate profit.
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cated more than required. With the horizontal scaling, when
a policy has to be scaled out, we assumed it as a new
policy. Also, we assumed that the new policy’s bandwidth
request was the extra bandwidth demand (the traffic change)
of the existing policy. We have observed that some VNFs
in the existing policy, had enough resources to satisfy the
total bandwidth demand, while some VNFs did not. As the
maximum processing capacity of a VNF for a given amount
of resources depends on the VNF type, the capability to handle
the total bandwidth demand with already allocated resources
also depends on the VNF type.

A strategy of re-using VNFs of the existing policy that
could satisfy the total bandwidth is complicated. We might
need to create new instances for some VNFs of the policy
that can’t satisfy the total bandwidth, and distribute the traffic
by having workload balancers within the policy chain [28],
[29]. Therefore, even though there were VNFs in the existing
policy that could satisfy the total bandwidth demand with the
already implemented VNF instance, we still created a new
VNF instance, because the concept was to implement a new
policy to satisfy the extra bandwidth demand, as it needs a
single workload balancer to distribute the traffic over policy
instances.

For both the migration scaling and horizontal scaling, start-
ing with a DFS or a random initial solution did not provide
significant difference in the results.

3) Changes to the current configuration: As we men-
tioned earlier, when scaling VNFs to satisfy the new traffic
amount, there might be different conflicted objectives. When
re-allocating resources to minimize the bandwidth dropped,
we might also want to minimize changes to the current
configurations.

We use the term “a server change”, to refer to the event
when the placement of a VNF changed. For the migration
scale, “a server change” means the existing VNF instance has
to migrated to a new server and traffic has to be re-directed
to the new server. For the horizontal scale, “a server change”
means, that a new VNF instance has to be instantiated and
traffic has to be balanced between multiple VNF instances.
When using vertical scale, there are no server changes, because
scaling is done by adjusting CPU and memory metrics in the
server that the VNF is currently residing.

Figure 4 shows the comparison of server changes when
horizontal and migration scaling are used over the scaling
events. For both horizontal and migration scaling, there was no
significant effect when starting with a DFS or a random initial
allocation, with respect to the number of server changes. Fur-
thermore, horizontal scaling caused more server changes than
migration scaling. This is because the horizontal scaling was
accepting more bandwidth requests than the migration scaling,
at the cost of changing servers. However, the consequence
is that during the system adjustments, the horizontal scaling
might cause more traffic loss, directly affecting earnings and
profit.
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Fig. 4. Number of server changes

VI. FINAL REMARKS

In this paper we proposed: (1) a Integer Linear Program-
ming (ILP) model for automation of dynamic scaling of VNFs,
(2) an Iterated Local Search (ILS) method that efficiently solve
the problem and can be implemented in real-life and (3) a
comparison on the different scaling models: vertical, migration
and horizontal.

First, our results showed that For a small network with
4 servers, when trying to implement 10 VNFs, our ILS
based algorithm was able to find optimal solutions within
few milliseconds where the Integer Linear Programming (ILP)
implementation in CPLEX [24] took several minutes. Next
we explored how the optimization is effected by the different
scaling approach and the optimization objectives. We com-
pared the different characteristics of the solutions provided
by scaling approaches such as accepted bandwidth ratio and
resource utilization. To our knowledge, this is the first study
that focuses in the effect on the optimization goals of the
different scaling methods.

As future work, we are planning to explore more on
automating resource management for scaling VNFs in two
aspects. First, to explore the problem of monitoring the re-
sources and determining when to scale the VNFs according
to the dynamic traffic changes. Next, how to handle scaling
out/in situations, where it might need VNFs migration and
traffic splitting or re-direction. Specifically we are interested
in how to split the traffic load between VNFs instances with
minimum traffic loss and delay. We are working on a consistent
hashing based session-aware load balancing algorithm.
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