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Abstract—Service-Centric Networking (SCN) is a Future In-
ternet architecture extending ICN with support for services,
in which addressing and routing centers around services. SCN
provides session support, however, recovery mechanisms do not
exist in SCN session management. Therefore, SCN sessions suffer
from link and node failures. In this paper, we present the design,
implementation, and evaluation of three link failure recovery
techniques for sessions in SCN. The first mechanism is based
upon propagating session identifiers within the network using
Bloom filters, the second design is based upon the propagation
of service provider identifiers, and the third design uses piggy-
backing for the propagation of service provider identifiers.

Index Terms—Service-Centric Networking; SCN; Service Ses-
sion Support; Fault-tolerance; Service; Session Management;
Named Data Networking; Information-Centric Networking; Fu-
ture Internet architecture;

I. INTRODUCTION

The current Internet is based upon the host-to-host commu-
nication principle. A content requester establishes a connec-
tion to the content provider before the requested content is
retrieved. To establish a connection from one host to another,
the current Internet uses the TCP/IP protocol architecture.
The Internet development has expanded in multiple dimen-
sions, pushing researchers to investigate solutions that satisfy
emerging requirements such as mobility and enhanced support
for services. The evolution of the Internet has also prompted
researchers to focus on the development of fundamentally new
Future Internet architectures such as Information-Centric Net-
working. ICN shifts the current host-centric Internet paradigm
towards a Future Internet architecture that forwards packets
based on the content name instead of the content location. ICN
aims to enable content addressing through content identifiers.
A content requester sends an Interest, which carries a unique
content identifier. The content identifier is used by intermediate
nodes to forward the request from the content requester
towards any content replica in the network. One of the most
prominent implementations of the ICN concept is Named Data
Networking (NDN) [1].

Service-Centric Networking (SCN) [2] introduces service
support within ICN. SCN does not alter ICN primitives, but
rather extends them with service support capabilities and
benefits from the existing ICN architecture. In SCN, service
providers offer services in the network. Services, being func-
tions implemented in software, can be consumed by service
consumers, which send Interest requests for desired services.
Sessions, which allow us to establish a semi-permanent com-
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munication channel between a service consumer and a ser-
vice provider, are a substantial element of service delivery.
Moreover, sessions are important, because they allow us to
establish an execution context between a service provider and
a service consumer to process a series of operations in the
created context. For example, sessions can be beneficial in
the cloud for applications that require the instantiation of
virtual machines. Without sessions, the underlying forwarding
mechanism of ICN could redirect service queries towards
different service providers, hence, requesting the instantiation
of a virtual machine and context among multiple entities.
Moreover, context-related information that has been already
transmitted towards one provider cannot be recognized at
another service location. The context is, therefore, considered
lost and requires retransmissions.

In our previous research [3], we presented and evaluated the
first session support for SCN. Our session mechanism allows a
service consumer to establish a session with a service provider
through a two-way handshake. When the handshake is com-
pleted, the communicating parties can exchange data through
the newly created session, which is identified by a unique
session identifier. A session is only recognized at intermediate
routers along a single path through which the session has been
established. Alternative paths from the service provider to the
service consumer are not available, meaning that the session
breaks down when a link failure on the path occurs. Alternative
paths from the service provider to the service consumer offer
recovery from link and node failures as well as load-balancing
mechanisms in the case of overload. The aim of this work is
to integrate routing over alternative paths into our previously
designed SCN session mechanism. Alternative paths provide
fault-tolerance and improve other important network metrics
such as network utilization.

In this paper, we present fault-tolerant session management
using three different fault-tolerance mechanisms. The first
mechanism uses Bloom filters [4] to propagate service session
identifiers. The second mechanism propagates service provider
identifiers to the network. The third mechanism uses piggy-
backing for propagating service provider identifiers, which
significantly reduces the traffic overhead.

This paper is structured in the following way. Section II
elaborates on the related work. Our three fault-tolerance mech-
anisms are presented in Section III. In Section IV, we evaluate
these mechanisms. Finally, we conclude in Section V.



II. RELATED WORK

ICN has three main components: Forwarding Information
Base (FIB), Pending Interest Table (PIT), and Content Store
(CS). The FIB is a lookup table containing a match between
outgoing faces (i.e., interfaces) and prefixes; it enables us to
select an appropriate outgoing face towards the object name
of Interest. The PIT stores pending Interests that have been
forwarded further but have not yet been satisfied. CS is a
locally disposed cache that temporarily stores incoming Data
packets. CS allows incoming Interest requests to be satisfied
directly from the local cache without forwarding the Interest
request further on [1].

SCN is an extension of ICN. In our previous work, we have
extended SCN with the first session management mechanism.
To our knowledge, currently, there is no other session manage-
ment mechanism available in SCN. However, in case of link
or node failures, the SCN session management mechanism
does not provide alternative paths. In this section, we present
an overview of existing ICN architectures providing service
support. We focus on important aspects related to session
management.

SoCCeR [5] combines ICN and Ant Colony Optimization
(ACO) [6] to upgrade ICN with service request forwarding.
The ACO population-based meta-heuristic mechanism is used
to broadcast special Interest messages for randomly selected
services. The information maintained in Interest messages is
used by intermediate nodes to classify outgoing forwarding
faces. Incoming service requests are forwarded by using
appropriate faces for a given service. SoCCeR does not provide
session support.

NextServe [7] extends ICN with service support. NextServe
uses an object-oriented programming language style as the
naming scheme. NextServe enables service composition by
allowing a chain of services to be executed one after another.
NextServe does not integrate session and fault-tolerance mech-
anisms.

Serval [8] extends the TCP/IP protocol stack with a service
layer that enables applications to communicate using service
identifiers. The newly added layer lies above the network
layer. It stores mapping information on service names, flow
identifiers, network addresses, and outgoing faces, which al-
lows service flow-based routing. Serval modifies the TCP/IP
protocol stack and uses special routers used for service re-
lated actions such as service discovery. The flow identifier
mechanism can be extended to integrate fault-tolerant session
support. However, Serval was designed for data centers and
is based on a centralized router organization that introduces a
central point of failure.

SOFIA [9] is a service-oriented ICN architecture similar to
Serval. It integrates session-based service routing. However,
its implementation does not rely on ICN primitives for ser-
vice session forwarding, it forwards session messages using
the TCP/IP protocol suite. SOFIA dramatically modifies the
TCP/IP stack. It, therefore, creates deplorability problems and
compatibility issues.
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NEN [10] is an ICN architecture that extends ICN with ser-
vice support capabilities. NFN uses a A-expression language-
like naming scheme. An NFN service request contains data
and a set of functions that have to be executed over this data.
Sessions are not supported by NFN.

Other architectures exist [11], [12], but none of them
provides session support.

In our previous work [3], we have implemented and evalu-
ated the first SCN session support mechanism. Our designed
session mechanism uses a two-way handshake to establish a
session between a service provider and a service consumer.
The session is established through the exchange of session
identifiers generated by a service consumer and a service
provider. Our design has three phases: session establishment,
session use, and session termination. A session is only known
by intermediate routers along the single path, over which the
session was established. A session is lost when a node or link
failure occurs, while there is no alternative path for an already
established session. Therefore, our previous solution enables
session support. However, it is not fault-tolerant. In this work,
we enhance our previously designed SCN session management
with alternative paths.

III. FAULT-TOLERANT SESSION SUPPORT

In this section, we present our three newly designed mech-
anisms that enable fault-tolerant session support for SCN. The
first mechanism consists of Bloom filter-based propagation of
session identifiers, the second proposal is based on dissemina-
tion of service provider identifiers, and the third approach uses
piggybacking for the exchange of service provider identifiers.
Each mechanism has its advantages and disadvantages, which
will be elaborated in detail in the remaining part of this section.
Before starting the description of our mechanisms, in the
following subsection, we explain the essential components of
the previously designed session support [3].

A. Session Support

Sessions allow two communicating parties to establish
a semi-permanent communication channel for message ex-
change. A session is identified by a session identifier. Our
designed session support mechanism for SCN uses the session
identifier, which is a concatenation of two identifiers generated
by the service consumer and the service provider. The session
mechanism has three phases: session establishment, session
use, and session termination. This section will describe these
parts and emphasize important elements in fault-tolerant ses-
sion management.

Session establishment: To use a session, we need to first
establish it between two communicating parties. Our session
mechanism uses a two-way handshake to exchange and estab-
lish a unique session identifier (ID) for a given session. The
mechanism works as follows: the service consumer sends a
Session Start Interest (SSI) request to the network. SSI is a
regular ICN Interest message, which follows a specific naming
convention of SCN. The SSI name is composed of three
parts. The first part such as “/service/getServiceA” indicates
an Interest for a service through the “/service” prefix, which

313



Forwarding Information Base (FIB)

Prefix Face(s)

provider/id/9dngchroSxaw469w7pc7gd6ofrmxsic3 1

1

D SSI Message -
_ 6 E
Consumer C NL
5 2
& =
N4 N3

SSD Reply

Provider P1

Forwarding Information Base (FIB)

Prefix Face(s)

9

‘provider/id/9dngechroSxaw469w7pc7gd6ofrmxsic3

9

/service/getServiceA/session/'kd14i4307dwdgnmhoOtpSuseocOpwmOk

3
4

Provider P2

Figure 1: Session Establishment

is followed by the service name, e.g., “getServiceA”. The
second part contains two consecutive components: “session”
and “request” keywords: “/session/request”. They specify that
the SSI starts a new session. The last component of the
SSI name holds the unique session identifier generated by
the service consumer. It is a randomly generated identifier
of size equal to 16 characters. The service identifier is
composed of 16 characters, e.g., “kd14i4307dwdgnmh”. An
example SSI request name for the “getServiceA” service has
the following structure: “/service/getServiceA/session/request/
kd14i4307dwdgnmh”.

The SSI message is forwarded by the underlying forwarding
scheme of the ICN network as a regular ICN Interest request.
Fig. 1 illustrates an example topology composed of two service
providers P1 and P2, one service consumer C, and three
intermediate routers N1, N2, and N3. Three dashed arrows
(i.e., 1-3) show the path traveled by the SSI message from
consumer C to a provider that possesses the requested service.
In this example, consumer C sends the example SSI message
described in the previous paragraph. The SSI message arrives
at node N1, which forwards it to N3 using ICN Interest
forwarding. In turn, N3 forwards the SSI to the service
provider P3 that offers the requested service.

Upon receiving the SSI message (c.f., Fig. 1), P2 replies
with a Service Start Data (SSD) message. SSD is a regular
ICN Data reply issued in response to an ordinary Interest
request received. SSD contains a randomly generated unique
identifier, e.g., “o0tp8u8eocOpwmOk”, which is generated by
the provider for a given session. The reply is forwarded
backwards towards the consumer C (Fig. 1, dashed arrows 4-
6) through the intermediate nodes previously forwarding the
corresponding SSI. Prior to the forwarding of the SSD reply,
the intermediate nodes have to populate their FIB tables to
enable further forwarding of session Interest messages towards
a given service provider (P2 in our example). The intermediate
nodes add a FIB entry (i.e., in the FIB table), which contains
both unique identifiers generated by the consumer and the
service provider. The session identifier of the service consumer
is gathered from the SSD response name prefix, while the

identifier of the service provider is collected upon receiving
the SSD reply. The concatenation of the two unique identifiers
derives the final session identifier.

Fig. 1 depicts the two-way handshake realized through
the exchange of SSI and SSD messages. Let us continue
the previous example. The SSI message carries ‘““/service/
getServiceA/session/request/kd14i4307dwdgnmh” in the ser-
vice name field and the service provider stores a unique
ID “o0tp8u8eocOpwmOk™ in the SSD reply. During the for-
warding phase of the SSD reply, intermediate nodes (Fig. 1,
dashed arrows 4-6) insert ‘/service/getServiceA/session/
kd14i4307dwdgnmhoOtp8u8eocOpwmOk” pointing towards
the faces through which the service provider P2 is reachable
into their FIB tables, where the session identifier is the con-
catenation of the requester’s unique ID “kd14i4307dwdgnmh”
and the provider’s unique ID “00tp8u8eocOpwmOk”. Please
notice that the Interest name and newly created FIB entries
contain a keyword “service” indicating a service request,
followed by the service name, the keyword “session”, which
indicates a session request/entry, and the unique session iden-
tifier. Consumer C can start sending session requests upon
receiving the SSD reply from provider P2. The next paragraph
briefly explains the use and termination of a session.

Session use and termination: A consumer can start us-
ing a session when the session is established meaning
that the service consumer successfully received the SSD
reply to its initial SSI message. To use a session, the
consumer creates Interest requests that use the same nam-
ing convention as the FIB entries previously described
in the previous paragraph. In our example, a request for
the “getServiceA” service using the previously instanti-
ated session of ID “kd14i4307dwdgnmhoOtp8u8eocOpwmOk™
has the following structure: “/service/getServiceA/session/
kd14i4307dwdgnmhoOtp8u8eocOpwmOk”, where the first
component is the keyword “service”, the second component
is the name of the requested service, the third component
indicates a session request, and the last component is the
session identifier. The intermediate nodes can properly forward
this name prefix, while the two-way handshake appropriately
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Figure 2: Bloom filter broadcast.

configured the FIB entries among the forwarding routers for a
given session, as explained in the previous paragraph. When
the session is not needed, the service consumer terminates it
by sending another specific Interest. The Interest’s name is a
regular session Interest with the keyword terminate provided
at the end of the Interest name. The service provider replies to
this Interest message with an empty Data message. The reply
traverses through the intermediate nodes towards the service
consumer. Upon forwarding the reply, the intermediate nodes
remove the FIB entries related to the terminated session. In
our example, the Interest sent by the service consumer to ter-
minate the example session instantiated in previous paragraphs
has the following structure: ‘/service/getServiceA/session/
kd14i4307dwdgnmhoOtp8u8eocOpwmOk/terminate”. For fur-
ther details concerning our session management, please refer
to our previous work [3].

This session support for SCN is not fault-tolerant; it sup-
ports only one path, through which the communication be-
tween a service consumer and a service provider is provided.
This is due to the fact that the session identifier of a session
is only known by the intermediate routers, through which the
session was established.

B. Fault-Tolerant Session Support Mechanisms

This section presents three fault-tolerance approaches for
SCN session management. The central goal of the three
strategies is to provide alternative paths to sessions. Alter-
native paths, which connect a service provider and a service
consumer, allow for fault-tolerance. When links or routers fail
along the currently used path, we can use an alternative path
to uninterruptedly forward messages between communicating
entities of a session. Our session management is based on
information propagation in the network allowing for the recog-
nition of currently maintained paths by other routers that do
not forward messages for a given session. The first mechanism
is based upon propagation of session identifiers using Bloom
filters, the second design is based on the propagation of service
provider identifiers, and the third design uses piggybacking for
the dissemination of service provider identifiers.
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1) Session Information Propagation Using Bloom Filters:
Bloom filters [4] are a useful tool for representing sets in a
compact way. A Bloom filter consists of a bit vector and hash
functions. If a Bloom filter is used, false positive errors of the
search operation might occur. However, false negatives are
not possible. If N is the number of mapped elements onto a
Bloom filter, M is the bit vector size, K is the number of hash
functions, and P is the desired probability of false positive
errors, the trade-off between the bit vector size and the false
positive rate is given by [4]:

N1n(P)

In?(2)

Bloom filters provide efficient search operations in a set of
elements. If set S is represented using a regular array, the
computational complexity of finding an element is equal to
O(N), where N is the cardinality of S. However, if S is
represented using a Bloom filter, the complexity of the search
operation is O(K). If S is a big set and K << N, then
O(K) << O(N). In the literature, Bloom filters have been
already proposed for efficient routing protocols in ICN [12]-
[15].

The first fault-tolerant session management uses Bloom
filters to propagate a set of session identifiers in the network
(i.e., the element set consists of session identifiers). Bloom fil-
ters disseminate session identifiers currently maintained in the
network. The propagation of Bloom filters is realized through
the broadcast of regular ICN Interests (i.e., Broadcast Interests)
having a name, in which the prefix “/broadcast/sessionids/”
is followed by a randomly generated identifier. In our exam-
ple illustrated in Fig. 2, P2 can use the following naming
structure: ““/broadcast/sessionids/dsa2dj7wloude7au”, where
“dsa2dj7wloude7au” is P2’s unique randomly generated iden-
tifier. The first two name components indicate a broadcast
Interest containing provider’s session identifiers. The third
Interest name component ensures that Broadcast Interests from
distinct providers cannot be discarded by ICN as redundant
forwarding due to unique name components (i.e., different
random identifiers of different providers). Furthermore, loop-
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Figure 4: Session Establishment.

free Interest propagation is guaranteed by the Interest’s Nonce
field [16].

When a node receives Broadcast Interests, it forwards
them over all faces except the Interest’s face of arrival (i.e.,
incoming face). Similar to regular Interest messages, Broadcast
Interest messages are stored in PIT tables. As regular PIT
entries they will be removed from the PIT table when their
timeout elapses. When a node receives two distinct Broadcast
Interests originated from different service providers, it adds
two separate entries in its PIT table, i.e., one for each distinct
Interest. Fig. 2 shows an example propagation of session
identifiers using Bloom filters. In this example, provider P2
propagates a Bloom filter containing session identifiers. The
identifiers are propagated in the network (dashed arrows),
because routers forward Interests containing Bloom filters
further also adding entries among PIT tables.

Fig. 2 shows two PIT tables belonging to consumer C and
intermediate node N2. Both tables contain the broadcast entry
added upon receiving an Interest request. The PIT table of
consumer C has two entries in its face column, because it
received Interests from two different faces. In our example,
consumer C can reach provider P2 through N2 and N4,
which can enhance session management with fault-tolerance.
In Fig. 3 consumer C and provider P2 have established a
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session through nodes N2 and N3. All sessions are then
advertised by provider P2, which periodically broadcasts its
session identifiers (c.f., Fig. 2). In the case of the link failure
between N2 and N3, consumer C can use the alternative
path via N4. When a pre-defined number of session Interest
retransmissions fails along a given path, consumer C and the
intermediate router N4 find an alternative path by checking
the session identifier in the received Bloom filters stored in
PIT tables. Intermediate router N3 knows about the session,
because the session was set up over N3.

Bloom filters do not have false negative errors, however,
false positive errors may occur. In the case of false positive
matches, the Interest will be forwarded through one or multiple
wrong faces, then the Interest will be discarded by recipient
nodes. Please notice that Bloom filters drastically compress the
size of information broadcast in the network and, therefore,
increase the scalability of the protocol with an increasing
number of nodes in the network.

2) Service Provider Identifier Propagation: Our first fault-
tolerant session management is based upon the propagation
of session identifiers using Bloom filters. There is, however,
a session identifier for each created session. Therefore, each
provider has to propagate multiple session identifiers in the
network.
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The second derived mechanism uses provider identifiers
instead of session identifiers. Propagating provider identifiers,
instead of session identifiers (i.e., as in the first strategy), has
two main advantages. The first advantage is that there is only
one identifier for a given provider. This means that only one
identifier per provider needs to be propagated in the network.
We equip each service provider with a randomly generated
unique identifier composed of 32 characters. This identifier
is propagated through the network by Interest messages.
Broadcasting provider identifiers instead of session identifiers
requires, however, the adaptation of the initial session man-
agement, while the request forwarding is based upon session
identifiers. It requires us to perform changes in the presented
session support mechanism integrating provider identifiers into
the forwarding scheme.

Fig. 4 illustrates a regular SSI/SSD handshake between
consumer C and provider P2 (c.f., Section III-A). Typically,
the SSD reply possesses a session identifier. In addition to
previous fields, we include the provider identifier within the
SSD reply. Upon SSD forwarding, the intermediate nodes add
two FIB entries in their FIB tables as shown in Fig. 5. The first
entry contains the provider identifier. It starts with the prefix
“/provider/id” which holds the keywords “provider” and “id”,
it is then followed by the provider identifier extracted from
the SSD content. The second entry is the session identifier
extracted from SSD.

Once a session has been established, consumers can
use the session by sending service requests using the
following Interest naming convention /service/[service-
identifier]/session/[provider-identifier]/[session-identifier].

In our above example the Interest name used by the
service consumer C to utilize the newly created session
would look as follows: “/service/getSearviceA/session/
9dngchroSxaw469w7pc7gd6ofrmxsic3/
kd14i4307dwdgnmhoOtp8u8eocOpwmOk™.

The name contains two keywords “service” and “session”,
The “service” keyword is followed by the service name, while
the “session” keyword is followed by the session and provider
identifiers. This information enables us to forward the request
to the appropriate service provider by using both session or
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provider identifiers. The session identifier is only known by the
intermediate nodes, through which the session was established.
The provider identifier is broadcast with Interest messages
to the entire network using a Provider Identifier Broadcast
Interest (PIBI) message. Therefore, the provider identifier is
recognized by all nodes in the network.

Fig. 5 shows FIB entries in consumer C and intermediate
nodes N2 and N3 after broadcasting PIBI messages. We
continue using the example from the previous paragraph.
Intermediate nodes N2 and N3 have two FIB entries created
upon the forwarding of the SSD reply. The first entry enables
the request to be forwarded using the provider identifier.
The second entry allows for regular session forwarding (c.f.,
Section III-A). Consumer C, as well as intermediate nodes
N4 and N1, maintain the identifier prefix added to their FIB
tables, which was created upon receiving the PIBI message.

This strategy extends the initial session support mechanism,
explained in Section III-A. We integrate service provider
identifiers (SPI). The SPI is broadcast with PIBI messages
to the whole network and is used for FIB population by the
nodes in the network. Additionally, compared to the regular
session support mechanism [3], the service requests do not
only contain the session identifier, but also the provider iden-
tifier. This offers alternative paths for service session request
forwarding. For example, in Fig. 5, when node N2 is down,
the request from consumer C can be forwarded using the
service provider identifier through node N4. The introduction
of service provider identifiers lowers the message overhead
dramatically, since a provider identifier is rarely changed.

3) Provider Identifiers Piggybacking: The third strategy
is an alternative specification of the second strategy. We do
not use PIBI messages to broadcast SPI. Instead, we only
rely on piggybacked SPI using SSD messages. This strategy
does not create any message overhead, because it piggybacks
information. Table I compares the three proposed mechanisms.

IV. EVALUATION AND RESULTS

A. Evaluation

This section presents an evaluation of our three fault-
tolerant strategies for SCN session support. We implement
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Table I: Comparison of three fault-tolerant mechanisms.
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Figure 6: Evaluation topology.

and compare them in ndnSIM [17]. ndnSIM is an ns-3 based
simulator for the NDN [1] implementation.

The three strategies were evaluated in a network topology
composed of 100 nodes. The created topology is shown in
Fig. 6. It resembles the topology of the Internet at a small
scale with high connectivity hub nodes and single connectivity
leaf nodes.

We have selected three leaf nodes as service consumers and
one leaf node as a service provider. The service consumer
nodes establish consecutive sessions with the service provider.
Each session is used by sending 48 service Interest requests.
Finally, the session is terminated. In total, 50 Interest messages
are sent for each session: 1 Interest to establish a session,
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Figure 7: Delivered session messages for the three fault-
tolerant mechanisms and the session mechanism without fault-
tolerance for the four evaluation setups.
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Figure 8: Normalized message overhead for the three fault-
tolerant mechanisms and the four evaluation setups.

48 Interests that use the session, and 1 Interest to terminate
the session. We have set four evaluation setups where each
service consumer sends 100, 200, 300, and 400 service Interest
messages that need to be satisfied with the responses of the
service provider. We have simulated link failures by randomly
selecting links located in between the service provider and
service consumers. The link failure time is randomly selected
using a uniform distribution in the range [1 s, 7], where T’
is the simulation execution time. The chosen link location is
randomly selected among links connecting service consumers
and the service provider. We do not, however, select links that
divide the network into two disconnected components. The
request frequency is set to one Interest per second. In the case
of the first mechanism, the Bloom filters of size 1450 bits
are broadcast every 10 seconds, but only if new sessions are
created. In the second mechanism, the identifier information
is broadcast at the request time of the instantiation of the
first session. The third mechanism uses piggybacking with a
piggybacked payload of size equal to 16 bytes, hence, there
is no broadcast. For the four evaluation setups, in total, there
are 300, 600, 900, and 1200 messages sent in the network
to create, use, and terminate sessions. Each experiment is
repeated ten times. The mechanisms are compared on a
statistical basis.
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Figure 9: Mean session link failure recovery time of all service
session requests for the three mechanisms.

B. Results

Fig. 7 compares the three mechanisms and the state-of-
the-art session mechanism [3] that does not support session
recovery. The mechanisms are evaluated in terms of success-
fully transmitted session Interests against the total number
of session Interests sent in the network. Please notice that
Interest messages are used to start, use, and terminate sessions.
Circles in Fig. 7 display the mean number of successfully
exchanged session messages. The circles are accompanied
with respective 95% confidence intervals for different numbers
of Interest messages sent (c.f., x-axis). The provider identifier
mechanism delivers all service session messages because
the provider identifier is broadcast at the beginning of the
evaluation execution. Network participants can save and use
the provider identifier for future forwarding decisions. The
Bloom filter broadcast and provider identifier piggybacking
strategies do not deliver all session messages. This is due
to the fact that the information about alternative paths is
not immediately available after a link failure. The confidence
intervals for Bloom filter and provider identifier broadcast
mechanisms overlap for different numbers of session messages
sent. This suggests that there is no significant difference
between the mean delivered session messages for these two
mechanisms. The overlap can be explained by the delayed
propagation of routing information in the network. More-
over, all our newly developed strategies clearly surpass the
state-of-the-art mechanism [3], which is not equipped with
any session recovery mechanism. The previously introduced
session support [3] satisfies around 50% of Interest requests
(c.f., the ratio between the number of messages delivered and
messages sent for the state-of-the-art strategy [3] in Fig. 7).
The newly delivered strategies display much better values with
the provider identifier broadcast mechanism reaching 100% for
all experiments performed.

Fig. 8 shows the normalized message overhead (NMO) for
the three fault-tolerant mechanisms. The message overhead
consists of messages sent by the service provider to inform
the network about the existing session or provider identifiers,
which enable us to use alternative paths. To draw a fair
comparison, we compute the normalized message overhead

(NMO) by using the formula NMO = A/B, where A is the
number of transmissions concerning the propagation of session
and provider identifier information for a given evaluation
setup, and B is the number of distinct nodes that have
received the message. Therefore, the NMO cost is expressed
in overhead messages per node. Fig. 8 shows the NMO for
the three mechanisms for the different number of service
Interests sent. The provider identifier broadcast mechanism
has a normalized message overhead of 1.77 and offers a
successful delivery of all session messages. The identifier
is broadcast at the beginning. Later on, when a link failure
occurs, all the messages are redirected successfully by us-
ing the provider identifier. The Bloom filter broadcast and
piggybacking strategies deliver successfully a similar number
of service messages; some messages are lost since there is a
delay between the session establishment and the session id or
provider identifier propagation. The Bloom filter strategy has
the highest overhead, because it periodically broadcasts Bloom
filters in the case a new session has been created since the last
broadcast. The message overhead of the Bloom filter strategy
grows linearly in relation to the number of requests, because
of its periodically broadcasting nature. The provider identifier
piggybacking mechanism has no broadcast and reaches a
similar ratio of successfully delivered session messages as the
Bloom filter-based mechanism. Fig. 9 shows the mean session
recovery time with respective confidence intervals for our three
mechanisms. Broadcasting of provider identifiers delivers the
best recovery time, as in the case of a failure, the nodes
can immediately switch to an alternative path. The remaining
mechanisms suffer from an increased recovery time caused by
periodical dissemination of session identifiers in broadcasting
of session identifiers and poor network penetration of SSD
messages piggybacked on regular interest messages in the
piggybacking method.

V. CONCLUSIONS

According to our knowledge, we present the first fault-
tolerant session management for SCN. The first of the three
mechanisms uses Bloom filters for the propagation of session
identifiers, the second mechanism relies on the propagation of
provider identifiers, and the third strategy uses piggybacking
propagating provider identifiers. We have evaluated the pre-
sented mechanisms in terms of successful session message
forwarding and message overhead in an environment with
failing links. However, the solution could also be applicable
for load balancing in the SCN network. The Bloom filter
forwarding strategy does not rely on provider identifiers, which
is an advantage if one does not want to depend on address-
based forwarding. However, it displays the highest message
overhead among the three mechanisms. The second strategy
introduces provider identifier broadcast and has the best results
in terms of successful forwarding. The third strategy relies on
piggybacking; it does not have any message overhead, but it
suffers from a high number of lost messages compared to the
provider identifier broadcast mechanism.
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