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Abstract—In recent years, Distributed Denial-of-Service
(DDoS) attacks have escalated both in frequency and traffic
volume, with outbreaks reaching rates up to the order of terabits
per second and compromising the availability of supposedly
highly resilient infrastructure (e.g., DNS and cloud-based web
hosting). The reality is that existing detection solutions resort
to a combination of mechanisms, such as packet sampling and
transmission of gathered data to external software, which makes
it very difficult (if at all possible) to reach a good compromise for
accuracy (higher is better), resource usage footprint, and latency
(lower is better). Data plane programmability has emerged as
a promising approach to help meeting these requirements as
forwarding devices can be configured to execute algorithms and
examine traffic at line rate. In this paper, we explore P4 primitives
to design a fine-grained, low-footprint, and low-latency traffic
inspection mechanism for real-time DDoS attack detection. Our
proposal – the first to be fully in-network – contributes to shed
light on the challenges to implement sophisticated security logic
on forwarding devices given that, to operate at high throughput,
the inspection (and overall processing) of packets is subject to a
small time budget (dozens of nanoseconds) and limited memory
space (in the order of megabytes). We evaluate the proposed
mechanism using packet traces from CAIDA. The results show
that it can detect DDoS attacks entirely within the data plane
with high accuracy (98.2%) and low latency (≈250ms) while
keeping device resource usage low (dozens of kilobytes in SRAM
per 1Gbps link and a few hundred TCAM entries).

I. INTRODUCTION

Despite consistent efforts towards effective detection and
mitigation mechanisms, Distributed Denial-of-Service (DDoS)
attacks remain among the top networking security concerns as
outbreaks escalate both in frequency and traffic volume [1].
Reports of recent attacks targeting Dyn [2] and GitHub [3]
reveal peak rates of up to the order of terabits per second
compromising the availability of (supposedly) scalable and
resilient infrastructure. Given this trend, we should expect
events like these to get even worse in the future [1].

Existing defensive mechanisms typically rely on standard-
ized monitoring primitives such as packet sampling (e.g.,
sFlow [4]) and flow-based accounting (e.g., NetFlow [5] and
OpenFlow [6]). However, these primitives present significant
overheads regarding packet processing and resource utilization
to provide fine-grained traffic visibility. While packet sampling
conveys information from a reduced set of packets to keep
a reasonable load in terms of CPU processing and network
management traffic [7], flow-based accounting is limited to
aggregated volume metrics due to elevated memory footprint

[8]. Resulting from these limitations, we advocate that the
existing tooling for monitoring falls short in either accuracy
or resource usage when it comes to DDoS attack detection.
Furthermore, these approaches are subject to a long control
loop, resulting in non-negligible detection latency.

As a promising alternative to these issues, the emerging con-
cept of data plane programmability offers flexibility to readily
implement novel in-switch packet processing algorithms [9].
These algorithms assume a packet stream as input and are
modeled as a pipeline of elementary primitives, memory
accesses, and table lookups. Human operators are thus able to
define monitoring functions and delegate them to forwarding
devices across the whole network. This still relatively unex-
plored concept has the potential of enabling all packets of
a stream to be examined without processing/communication
overheads and achieving low-latency anomaly detection. Yet,
to operate at line rate on high-speed links, this processing is
constrained to a small time budget (dozens of nanoseconds)
and a limited memory space (e.g., ≈50MB SRAM and
≈5MB TCAM) [10].

Meeting the aforementioned constraints is a difficult chal-
lenge that limits the scope of the existing data plane monitor-
ing solutions. For example, Sonata [11] and Marple [12] take
advantage of data plane programmability to configure adaptive
filters which determine packet streams to be forwarded to and
examined by the control plane. This approach requires continu-
ous communication incurring in non-negligible network usage
and potentially high attack detection latency. StateSec [13],
in turn, is a DDoS attack detection mechanism fully imple-
mented on Software-Defined Networking (SDN)/OpenFlow-
based forwarding devices. It extends the match/action table
structure and semantics to keep track of harmful packet ex-
change patterns. Nevertheless, it does not take into account the
requirement of scaling to run at line rate on high-throughput
hardware packet processors.

In this paper, we give a consistent step towards in-network,
programmable network security. We explore a promising data
plane programming technology, namely P4 [9], to design and
implement a mechanism1 to perform low-latency, fine-grained
traffic inspection for real-time DDoS attack detection. In con-
trast to existing solutions in the context of SDN, the proposed
mechanism is fully implementable on forwarding devices. It
comprises a processing pipeline to estimate the entropies of
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both source and destination IP addresses of incoming packets.
The entropy measurements are used to both characterize the
traffic and calculate anomaly detection thresholds (as func-
tions of a parameterizable sensitivity coefficient). In order to
meet the strict time and memory constraints of forwarding
devices, we approximate the frequencies of distinct IP ad-
dresses through specially tailored count sketches [14]. Further,
compute-intensive arithmetic functions are solved with the aid
of a memory-optimized longest-prefix match (LPM) lookup
table. Based on realistic datasets of legitimate traffic and DDoS
attacks, we assess the entropy estimation error and evaluate
the detection performance in terms of accuracy and resource
consumption. We also compare the effectiveness and efficiency
(i.e., latency) of the proposed mechanism with those of the “de
facto” approaches.

The primary research contributions of this paper are three-
fold. First, we stress data plane programmability primitives
(in this work, of P4) – known for their limited functionality –
to design a reasonably sophisticated in-network DDoS attack
detection mechanism. Second, we demonstrate, through an
extensive evaluation, the performance benefits that security
mechanisms can reap from a data plane-based design. Third,
we discuss challenges and present insights associated with the
development of security mechanisms in the data plane that can
be valuable for new research initiatives in the area.

The remainder of this paper is structured as follows. In
Section II, we discuss recent work related to DDoS attack
detection and network monitoring on programmable data
planes. In Section III, we describe the proposed DDoS attack
detection mechanism. In Section IV, we present the evaluation
methodology and results. In Section V, we discuss the major
lessons learned in the process of designing the proposed
mechanism. In Section VI, we conclude the paper with final
remarks and perspectives for future work.

II. RELATED WORK

DDoS attack features have been extensively investigated for
outbreak detection and mitigation [15]. Nonetheless, real-time
security solutions are limited by the monitoring functionality
currently implemented on most forwarding devices, in which
accuracy necessarily translates into high overheads [8]. It is in
this context that programmable data plane-based approaches
emerge as promising alternatives, being subject of consistent
research work concerning, for example, scalable in-network
packet processing models and fine-grained traffic measurement
capability. Next, we review some of the most prominent
investigations in the area.

Based on SDN/OpenFlow, Xu and Liu [16] propose meth-
ods to detect DDoS attacks and identify their sources and
victims. On top of the control plane, a software application
classifies flows regarding their volume and rate asymmetry
through an unsupervised learning algorithm. This traffic data
is collected from the counters associated to flow table entries
(in forwarding devices). Since the number of entries is limited,
their aggregation granularity is adaptively changed to enable
zooming into abnormal traffic patterns. This process is iterative

and highly dependent on the control plane, introducing non-
negligible latency (in the order of several seconds) to the
detection of an ongoing attack.

To offload monitoring functions to the data plane, StateSec
[13] is a DDoS attack detection mechanism based on in-switch
processing capabilities. StateSec is based on an OpenFlow ex-
tension in which flow tables can be used to specify finite-state
machines for packet processing [17]. The detection results
from entropy analysis of both source/destination IP addresses
and transport-layer ports. These metrics along with their mean
and standard deviation are supposed to be calculated within
the data plane. However, the mechanism requires a flow table
entry for every distinct observed IP/port 4-tuple value, which
implies unbounded table utilization. Furthermore, it does not
elaborate on how to measure entropy while meeting the time
budget to operate on high-throughput forwarding devices.

Advancing from more traditional SDN/OpenFlow-based
measurement approaches to ones in which accounting is fully
delegated to the data plane, OpenSketch [18], UnivMon [19],
and Elastic sketch [20] provide flexible hash table-based
designs that enable network operators to implement a wide
range of measurement tasks in the data plane. The forwarding
devices are responsible for maintaining sets of hash tables
(named sketches) with summarized up-to-date traffic counters.
The control plane periodically collects this data for further
processing. As a result, these solutions achieve high generality
and accuracy in traffic measurement. However, they are subject
to a trade-off between the data polling rate (which is directly
related to anomaly detection latency) and network overhead
due to additional management traffic.

In an attempt to offload additional monitoring logic to the
data plane, Sonata [11] allows operators to define packet
stream filtering queries. These queries are executed on pro-
grammable forwarding devices so that only the traffic of
interest is sent to external stream processors. Packet headers
are abstracted as tuples of field values, which – in addition
to be filtered – can be sampled in the data plane. Based
on these abstractions, network operators can optimize packet
sampling to detect priorly known anomalous traffic patterns,
but potentially missing novel attack strategies. Following a
similar concept, Marple [12] is a language for expressing
monitoring queries that are compiled to target programmable
forwarding devices. It enables in-network execution of func-
tions over aggregation of packets backed by a new key-value
store primitive. Despite providing forwading devices with the
ability to measure traffic features, the inspection of such
metrics is still delegated to external servers (again, incurring
additional detection latency).

The area of in-network security management is flourishing,
with the potential to allow operators to devise novel attack
detection mechanisms within a much shorter design and
deployment cycles. The aforementioned proposals represent
consistent steps towards devising mechanisms to be executed
in the data plane, but (i) resort to considerable communication
with external controllers (delaying the detection of attacks and
leading to a high network utilization) and (ii) use coarse-
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grained measurements to cope with the massive amount of
data traversing high-speed links (degrading accuracy). Our
proposed mechanism goes a significant step further than
previous work by enabling DDoS attack detection entirely
within the data plane. Our design explores data plane pro-
grammability functionality to its limit and achieves accuracy,
low intrusiveness, and timeliness, as we describe next.

III. OUR DESIGN FOR IN-NETWORK DDOS DETECTION

In this section, we introduce the proposed in-network DDoS
attack detection mechanism. First, in Section III-A, we de-
scribe both the attack scenario considered and the threat
model. Next, in Section III-B, we overview the foundations
of the anomaly detection strategy. Then, in Section III-C, we
detail the packet processing pipeline devised to run at line rate
on programmable forwarding devices.

A. Attack Scenario and Threat Model

The term distributed denial-of-service comprises a multitude
of attack strategies to degrade or disrupt external facing
services. In this work, we assume an attacker capable of
coordinating globally distributed hosts to send illegitimate
service requests to a single victim. These requests may either
saturate the victim’s network with high traffic volume or
exploit a specific protocol semantic vulnerability to consume
the computing resources of the target server. The attacker
uses spoofed IP addresses to hinder the characterization and
detection of the attack packets.

In the aforementioned situation, the spread of attacking
hosts among independent administrative domains imposes
challenges to source-based detection mechanisms, because it
is hard to coordinate security efforts across administrative
borders. At the other extremity of the attack, i.e., the victim’s
infrastructure, the malicious traffic is aggregated and promi-
nent for detection, but it may have already saturated both in-
path and local resources. Thus, our proposed mechanism is
expected to be deployed at the Autonomous Systems (ASs)
closest to the victim as they benefit from a privileged traffic
view and high-throughput links to timely uncover and deter
even voluminous outbreaks without exhausting their resources.

In order to detect attacks and enable mitigation before reach-
ing lower-capacity links, our mechanism should run on nodes
peering with other ASs. P4 allows a flexible deployment and
parameterization of our mechanism on top of programmable
hardware nodes, granting the processing power to keep up with
high packet rates.

B. Detection Strategy Foundations

Given that the strict time and memory constraints for
high-rate in-network packet processing translate to limited
programming primitives, it is paramount to resort to a simple,
yet powerful detection strategy. We assume DDoS attacks
characterized by a large number of hosts converging traffic
to one or few victims [21] in which case the source and
destination IP addresses distributions tend to deviate from the
legitimate pattern in the presence of malicious activity. In this

regard, we design our mechanism based on the calculation of
the Shannon entropy [22], which is recognized as a reliable
method to identify such deviations accurately [23], [24].

Considering X the set of IP addresses within a total of
m packets, and f0, f1, ..., fN the frequencies of each distinct
address, the entropy of X is given by:

H(X) = log2(m)− 1

m

N∑
x=0

fx log2(fx), (1)

where the summation S =
∑N

x=0 fx log2(fx) is the entropy
norm. Note that the entropy norm has a negative relation
to the entropy itself. The minimum entropy H = 0 occurs
when all addresses are the same such that S = m log2(m).
Dispersed distributions result in higher entropy values reaching
the maximum H = log2(m) when all addresses are distinct,
i.e., S = 0.

In the course of a DDoS attack, we expect the entropy
of source IP addresses to increase as the malicious packets
introduce new values to the distribution. Conversely, we expect
the entropy of destination IP addresses to decrease with the
victim becoming more frequent as a destination. This effect is
only observable when the number of packets m encompasses
an adequate, robust representation of the current distributions.
One must keep in mind that increasing m comes at the cost
of higher attack detection latency, as more packets must be
received for each measurement. On the other hand, when
calculating the entropy over few packets, malicious traffic-
related changes to the distributions may be indistinguishable
from short-term fluctuations of legitimate traffic.

To address the mentioned trade-off, we propose setting
dynamic thresholds to the entropies of the source and the
destination IP addresses considering a preset value of m. In
the following subsection, we present the packet processing
pipeline devised to implement this approach.

C. Packet Processing Pipeline

We build the detection mechanism on top of the P4 behav-
ioral model reference implementation (BMv2) [25], which has
a constrained set of processing primitives reflecting the limi-
tations of the current programmable hardware devices. In this
subsection, we describe how we overcome these restrictions
to perform real-time DDoS attack detection.

Figure 1 depicts the top-level scheme of our proposed
mechanism. The entropies of IP addresses are estimated for
consecutive partitions of the incoming packet stream, named
observation windows (Section III-C1). At the end of each
observation window, the traffic characterization units read
the entropy values to generate a legitimate traffic model
(Section III-C2). In turn, the anomaly detection unit calculates
detection thresholds as functions of this model issuing an
attack alarm when they are exceeded by the last entropy
estimates (Section III-C3).

1) Entropy Estimation: As the P4 behavioral model does
not support the binary logarithm function, we assume a fixed
value (yet parameterizable) for the observation window size

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 21



Source IP

Destination IP

Entropy
Estimation

Entropy
Estimation

Traffic
Characterization

Anomaly
Detection

Alarm

Traffic
CharacterizationObservation Window

(m packets)

P4

Figure 1. DDoS Attack Detection Top-Level Scheme

m so that the first term in Equation 1 becomes a constant.
Consequently, the real-time entropy estimation processing is
reduced to the calculation of the second term, which is a
function of the frequencies of each distinct observed address.

Next, we detail the approximation of these frequencies from
the packet stream while meeting processing constraints. Then,
we elaborate on the computation of the entropy norm without
resorting to an offline processing stage. Finally, we show
how to obtain the entropy estimate. Figure 2 illustrates the
processing pipeline in its entirety.

a) Frequency approximation: We base the approximation
of address frequencies on a count sketch data structure [14],
which uses sub-linear space to represent a frequency table of
events in a data stream. It requires the computation of hash
functions and a two-dimensional array of counters to obtain
unbiased probabilistic frequency approximations.

Let X be the set of all possible IP address values and
C be a matrix of counters with depth d and width w (i.e.,
C ∈ Zd×w), where Ci,j indicates the counter at row i and
column j (see Figure 2). We define two sets of independent
hash functions {h1, ..., hd} and {g1, ..., gd}, where each pair
(hi, gi) is associated with a sketch row i ∈ {1, ..., d}. All
hash functions have as input an IP address x ∈ X . Hash
function hi maps IP addresses to columns in row i (i.e.,
hi : X 7→ {1, ..., w}). Hash function gi decides, for each
IP address, if the counter Ci,hi(x) should be incremented or
decremented (i.e., gi : X 7→ {−1, 1}). The count sketch
algorithm defines two operations:

Update(C, x):
for i = 1, ..., d :

Ci,hi(x) ← Ci,hi(x) + gi(x)

Estimate(C, x):
return median(g1(x)C1,h1(x), ..., gd(x)Cd,hd(x))

Update(C, x) updates all depth levels of the sketch C to
count the occurrence of x. Estimate(C, x) returns an estimate
of the frequency count of x, which we denote as f̂x (see
Figure 2). The mechanism uses the set of hash functions gi
to deal with the event of hi colliding for multiple distinct
IP addresses. In that event, it is expected that some of the
addresses will increase the counter value and others will
decrease it, making the counter assume a clearly inconsistent
value. When compared with the other counters of the same
address stored on all depth levels, counters with collisions
become outliers. The sketch avoids getting tainted by such
outliers by using the median (instead of the mean, which is
very sensitive to outliers) of the values stored in all depth
levels as the frequency estimate.

In P4, the mentioned data structure can be implemented
using registers, which persist general purpose data across
packets. IP address hashing is possible through the definition
of custom hash functions. We use functions of the type
(aix + bi) mod p, where ai and bi are co-prime coefficients,
and p is a prime number. These functions have been success-
fully used before in programmable data planes [26].

Obtaining independent consecutive entropy estimates would
require to reset all sketch counters at the transition of observa-
tion windows. To avoid such a bursty processing overhead, we
associate an additional register to each sketch counter to store
the identifier of the observation window in which it was last
updated (WID). We employ an observation window counter to
generate these identifiers. Hence, whenever a counter is read,
its value is only taken into account if the associated register
holds the current window identifier; otherwise, it is presumed
zero and updated accordingly.

Finally, we take the median value comparing the results
of each sketch row. Note that the sketch depth is equal to the
number of inputs to the median operator. Thus, such parameter
is intrinsically related to the processing complexity of this step.

b) Entropy norm estimation: Right after an IP address
is read, and its current frequency on the observation window
is retrieved, we compute its respective term in the summation
composing S. We use this result to update the entropy norm
estimate Ŝ (stored in a register). As IP addresses are expected
to appear numerous times in a single observation window, we
update Ŝ by incrementing the difference between the newly-
computed term and its previous value (if f̂x > 1), as follows:

Ŝ ← Ŝ + f̂x log2(f̂x)︸ ︷︷ ︸
newly-computed term

− (f̂x − 1) log2(f̂x − 1)︸ ︷︷ ︸
previous term value

. (2)

Since the P4 behavioral model does not support floating-
point numbers, we represent Ŝ in a fixed-point format to allow
fractional precision. The required arithmetic operations can be
derived from integers.

As an important building block for implementing Equation 2
in the data plane, we must compute the binary logarithm,
which is not as straightforward. To overcome this challenge,
we build an LPM lookup table with pre-calculated values for:
f̂x log2(f̂x)− (f̂x − 1) log2(f̂x − 1). Unlike a typical lookup
table requiring an entry for each domain value, longest-prefix
matching allows the aggregation of domain values to a single
entry. This data structure is typically supported in a forwarding
device by a Ternary Content-Addressable Memory (TCAM).
Thus, we replace real-time compute-intensive operations with
efficient TCAM table lookups.

Our pre-computed function is plotted in Figure 3. The
dashed lines illustrate the aggregation of the domain values
[147 456, 155 647] to a single entry with the result set to
y = 18.65214. In this case, the maximum approximation error
is ≈0.04 when fx = 147 456. In general, the magnitude of the
error depends on the function curve within the aggregation
interval. One should wisely populate the table to meet an
adequate trade-off between table entry count and error.
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Figure 3. LPM lookup table pre-computed function: the dashed lines illustrate
how fx values can be aggregated to a single table entry with reduced
approximation error.

Throughout processing, every incoming packet x triggers
Update(C, x) and f̂x ← Estimate(C, x). Then, the values
of f̂x are used as keys to obtain the increment to the entropy
norm (Equation 2). By the end of each observation window,
we calculate the entropy estimates from Ŝ as shown below.

c) Entropy measurement: In the interest of reducing the
processing requirements, we constrain the observation window
size to a fixed power of two so that log2(m) results in an
integer constant and S/m can be implemented as a simple
arithmetic shift. Therefore, the entropy estimate is given by:

Ĥ ← log2(m)− (Ŝ � log2(m)), (3)

where� denotes an arithmetic shift. We store log2(m) within
a register so the network operator can change m at runtime.

2) Traffic characterization: Anomaly-based intrusion de-
tection has the advantage of dealing with attacks of un-
known anatomy and different strengths, but usually requires
a bootstrapping, training phase with legitimate traffic. In our
proposed mechanism, we also build a model of the legitimate
traffic, through the processing of successive entropy estimates.

The entropy time series of the source and the destination
IP addresses are summarized independently in terms of an
index of central tendency and an index of dispersion. Since
the address distributions are legitimately subject to changes
throughout time, the proposed mechanism updates this model
in real-time. The entropy measurements identified as malicious
by the anomaly detection unit are discarded from the charac-
terization.

a) Index of central tendency: We represent the central
tendency of the recent entropy estimates by their Exponentially
Weighted Moving Average (EWMA) [27], as follows:

Mn ← αĤn + (1− α)Mn−1 with M1 = Ĥ1, (4)

where α ∈ (0, 1) is known as the smoothing coefficient and
n is an index representing the observation window. This met-

ric allows parameterizable filtering of short-term fluctuations
while giving prominence to the most recent values. In our P4-
based design, we make use of a fixed-point representation for
the smoothing coefficient.

b) Index of dispersion: Likewise, we measure the dis-
persion of entropy values through an Exponentially Weighted
Moving Mean Difference (EWMMD), as follows:

Dn ← α|Mn − Ĥn|+ (1− α)Dn−1 with D1 = 0. (5)

This index denotes the typical spread of entropy measurements
relative to the EWMA, being a fundamental feature to the
definition of anomaly detection thresholds.

3) Anomaly Detection: The anomaly detection is performed
according to the following conditions:

source IP addresses: Ĥn > Mn−1 + kDn−1 (6)
destination IP addresses: Ĥn < Mn−1 − kDn−1 (7)

A DDoS attack alarm is triggered whenever any of these two
conditions hold. k is a configurable parameter proposed as a
sensitivity coefficient, which scales the detection thresholds.
Since it is multiplied by the index of dispersion, this effect is
proportional to the traffic characteristics. Increasing k results in
more rigorous detection conditions, i.e., higher assertiveness.
“Stealthier” attacks may go unnoticed, nevertheless. A lower
value for k, in turn, may expand anomaly detection coverage
with the cost of escalating false alarms. It is up to the network
operators to determine and adaptively change a value for k to
reach an adequate balance between true-positive and false-
positive rates.

IV. EVALUATION

As far as we are aware of, this work is the first to explore
data plane programmability, more specifically P4, to devise a
sophisticated anomaly detection mechanism. Given the limited
primitive set made available by P4 and the consequent simpli-
fications that were mandatory in our design, it is paramount
to assess the accuracy, resource utilization and timeliness of
our proposed mechanism, comparing it with state-of-the-art
approaches. In this section, we evaluate it aiming to answer
the following three research questions:

• RQ1: How accurate is the entropy estimation processing
pipeline as a function of resource utilization footprint?

• RQ2: Assuming decent entropy estimation (RQ1), how
accurate is the DDoS attack detection mechanism under
different tuning parameters and attack strengths?

• RQ3: How does our mechanism compare to existing
monitoring approaches regarding detection accuracy and
latency?
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First, in Section IV-A, we describe the experimental setup and
the evaluation methodology. Then, in each of the remaining
subsections, we discuss one of the questions above.

A. Experimental Setup and Evaluation Methodology

Given the novelty of P4 and the still scarce availability of
equipment implementing it, we evaluate the proposed DDoS
attack detection mechanism using a software-based P4 infras-
tructure. This setup does not limit our assessment, as both
accuracy and resource utilization are expected to be equivalent
regardless of the P4 target.

We use as legitimate traffic packet traces from the CAIDA
Anonymized Internet Traces 2016 [28] dataset, recorded from
high-speed Internet backbone links. To represent DDoS at-
tacks, we take packets from the CAIDA DDoS Attack 2007
dataset, consisting of an attempt to consume the computing
resources of a target server and to congest the network links
connecting this server to the Internet. Despite not recent, this
dataset was carefully built to only include attack-related traces
and, for this reason, is consistently employed in high-impact
publications in the area of network security. Furthermore, this
choice is consistent with the scenario we introduced earlier in
Section III-A.

We set the observation window size m to 218, representing
approximately 250ms for the given workload average packet
rate. We partition the workload into a training and a detection
phase with respectively 250 and 500 observation windows.
The training phase consists of only legitimate traffic serving
the purpose of setting up the characterization model. For the
detection phase, we take the subsequent legitimate traffic and
superimpose it with attack packets from the 126th to the
375th observation window. We perform such superimposition
at different malicious-to-legitimate packets proportions (3%,
3.5%, ..., 6%), generating a total of 7 workloads.

Table I summarizes the system factor levels set throughout
the experiments. We select varying ranges for data structure
size and sensitivity coefficient to allow a broad assessment of
the proposed mechanism. We execute 15 repetitions for each
configuration with random hashing coefficients and present
the results using a 95% confidence level. In Section IV-B, we
examine the relative error of the entropy estimates for different
count sketch depth and width. In Section IV-C, we investigate
the detection True-Positive Rate (TPR), False-Positive Rate
(FPR), and accuracy with respect to the sensitivity coefficient,
the memory footprint, and the different proportions of ma-
licious traffic volume. Finally, in Section IV-D, we compare
our mechanism with approaches based on packet sampling
regarding detection accuracy and latency.

B. Entropy Estimation Error

Instead of focusing on the calculation of exact entropy
values, we propose an estimation processing pipeline that min-
imizes memory space and processing time. However, the loss
of accuracy in this process has the potential to undermine the
detection performance by hiding anomalous traffic patterns.
On that account, we assess the relative error of the estimates

TABLE I
SYSTEM FACTOR LEVELS

Levels Used in Each Subsection
System Factors IV-B IV-C IV-D

Hashing Coefficients (ai, bi) random

Count Sketch Depth (d) {4, 8, 16} 4 4

Count Sketch Width (w) {64, 368, 672, 976, 1280} 1280

Sensitivity Coefficient (k) NA {0, 0.5, 1, ..., 8} 4

5120
entries

5888
entries

Figure 4. Relative error of the entropy estimation as a function of the count
sketch width and depth.

as a function of the count sketch dimensions, which represent
the dominant influential factors to correctness (RQ1).

We allocate a 32-bit register for each sketch counter and an
8-bit register for its associated observation window identifier.
We store Ŝ and Ĥ in 32-bit registers considering a fixed-
point representation having 4 fractional bits. We build the LPM
lookup table ensuring a maximum error of 2−4 for each entry,
resulting in a total of 245 TCAM entries.

Figure 4 presents the relative estimation error for the count
sketch depth and width levels listed in Table I (first column).
The sketch width is directly related to the probability of
hashing collisions on each row. Along the horizontal axis, it is
possible to observe how this parameter affects the estimation
error. The errors reduce as we increase the width, but this
reduction attenuates for larger widths and stabilizes close to
1%. Note that this error also results from the approximations
present in the pre-computed LPM lookup table entries.

The increment of the sketch depth reduces the probability
of getting the estimate from a counter that has been affected
by collisions. We observe this effect examining the different
error values for a single sketch width. However, increasing
the sketch depth implies (i) processing more hash functions
for each IP address and (ii) increasing the complexity of the
median operation. The annotations of Figure 4, indicating
the total number of sketch entries (5 888 and 5 120) in two
specific configurations (d = 16 and d = 4, respectively), reveal
that, for comparably sized sketches, the use of more hashes
(rows) does not result in significantly better estimates. Thus,
we choose to set d = 4 in the subsequent experiments.

C. DDoS Attack Detection Performance

The proposed mechanism allows network operators to adjust
the trade-off between the TPR and the FPR using the sensitiv-
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Figure 5. Impact of the sensitivity coefficient k on the true-positive and
false-negative rates. The area in green highlights the desired operating zone.

ity coefficient k. To answer RQ2, we first take these metrics
into account to tune this parameter (Section IV-C1). Then, we
investigate the detection accuracy regarding malicious traffic
volume and memory utilization (Section IV-C2).

1) Sensitivity Coefficient Effect: Figure 5 presents the true-
positive and false-negative detection rates in terms of the sen-
sitivity coefficient. The results are for the sketch dimensions
d = 4, w = 1280, and the smoothing coefficient α = 20 ·2−8.
The proportion of the malicious traffic to the overall traffic
during the attack is 5%.

Lower sensitivity coefficient values tighten the detection
thresholds resulting in higher detection ratios at the cost of
false positives. As we increase the coefficient, both the TPR
and the FPR decrease to the point where the detection is utterly
insensitive. The FPR starts to decrease from k = 0 and reaches
less than 10% for k within [3.25, 4.75], while the TPR is
still close to 100%. This region (green hachure) represents the
configuration in which the detection thresholds are expected
to be set, i.e., between the entropy estimates of legitimate and
malicious traffic. It characterizes the desired operating zone.
Given the dynamic nature of traffic in production networks,
the value of k may need to be adapted on a periodic basis.
This will be addressed in future work.

2) DDoS Attack Detection Accuracy: With the sensitivity
coefficient k set to 3.5, we now consider the resulting attack
detection accuracy achieved with our proposed mechanism
(see Figure 6). The analysis is carried out considering various
attack proportions and count sketch widths (see Table I).

As malicious traffic becomes more aggressive, i.e., assumes
a higher proportion when compared to the legitimate traffic,
the detection accuracy achieves increasingly higher rates (ex-
ceeding 90%). This accuracy is profoundly influenced by the
count sketch width. Note that even lower magnitude attacks
(3.5%) can be decently detected (with rates higher than 80%)
as one parameterizes the mechanism with larger w (greater
than 976). However, one must recognize that for the cases of
lower volume attacks, the anomalous variation of entropy is
attenuated and consequently harder to detect. This difficulty is
intrinsic to anomaly-based attack detection and is exacerbated
when considering lower count sketch widths, which result in
less accurate entropy estimates.

Figure 6. DDoS Attack Detection Accuracy in terms of Memory Utilization
for Different Proportions of Malicious Traffic

If on the one hand, the use of larger sketches leads to higher
attack detection accuracy, on the other, it implies a larger
memory footprint. Considering 32 bits are allocated for each
sketch counter and 8 bits for its associated observation window
identifier, the cost for the source and destination IP addresses
sketches is 38.125 kB when d = 4 and w = 976. This value
is the memory space required for monitoring a single 1Gbps
link. For higher traffic rates, we would need to increase the
observation window size to get a robust representation of the
addresses distribution. Since the count sketch estimation error
is proportional to 1/

√
w and to the square root of the observa-

tion `2 norm [14], we would have to use proportionally larger
sketches to obtain an equivalent entropy estimation accuracy.
Hence, considering a 24x10Gbps programmable forwarding
device [10], we extrapolate our mechanism memory footprint
to 9MB2, which represents 18% of the available SRAM.

D. Comparison with Packet Sampling

By collecting information from every packet, programmable
forwarding devices have the potential to detect very subtle
traffic anomalies. In contrast, packet sampling approaches
provide information at a coarser granularity, thus being less
sensitive to such conditions. We investigate this difference by
comparing our mechanism with an implementation of the same
detection strategy fed by an sFlow collector (RQ3).

We evaluate the sFlow implementation with the sampling
rate set to 1:1 000, as it is the suggested for a 1Gbps link
[7], and to 1:100 aiming to get even more optimized results.
In order to analyze our approach and the two sFlow-based
scenarios considering a comparable baseline, we set different
values for m in each implementation seeking to represent
approximately the same time duration. For instance, during
the time our proposed mechanism reads m packets, the sFlow
collector outputs only about m/1 000 or m/100 depending on
the chosen sampling rate. Hence, we use such scaled values
of m for the sampling implementations to normalize the time
frame after which they trigger DDoS attack alarms.

Figure 7 depicts the DDoS attack detection accuracy for
each approach considering different volume proportions for
the malicious traffic. With the sampling rate at 1:1 000, the

2We assume the `2 norm increases proportionally to the traffic rate.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 25



Figure 7. DDoS attack detection accuracy: comparison with packet sampling
approaches.

detection performance is severely degraded. At a 1:100 rate,
the sFlow approach results are greatly improved, but our work
still outperforms its accuracy in every observed condition.

We also consider the detection latency by measuring the
time between the timestamp of the first malicious packet
and the timestamp of the last packet of the observation
window which set off the alarm. For the case of low-intensity
attacks (≤4%), we observe increased latency – in the order
of seconds – to detect an attack when using packet sampling.
Our proposed mechanism for a similar condition requires a
fraction of the time (a few hundred miliseconds). The higher
sensibility of our proposal may lead to earlier triggering of
mitigation actions, possibly preventing service outages.

V. LESSONS LEARNED AND INSIGHTS

The instruction set available in P4 is very restricted. For
example, there is no support for iteration/recursion (except for
header parsing), floating-point arithmetic, and non-elementary
mathematical functions. These language limitations are due to
constraints in the current programmable hardware and help to
prevent stalls in the processing pipeline. As a consequence,
implementing sophisticated network functions (e.g., anomaly
detection, load balancing) in P4 may be challenging. Next, we
discuss the major lessons learned in the process of designing
the proposed mechanism.

1) Iterative procedures need to be carefully decomposed
into small tractable steps triggered by incoming packets: In
our work, this observation came from two design challenges:
(i) the summation of individual address frequencies for entropy
estimation (Equation 1) and (ii) resetting the sketch counters
between observation windows to avoid using outdated values.
Iterating over the entire sketch during the processing of a
single packet would violate line rate packet processing require-
ments. Our mechanism handles the challenge (i) by calculating
the entropy gradually; it only accesses entries relative to the
addresses of each incoming packet. We deal with the challenge
(ii) by augmenting entries with observation window identifiers.
A counter value is only used when its identifier is current and
its value is only reset when it needs to be updated.

2) Non-elementary mathematical functions may be approx-
imated using LPM lookup tables: Mathematical functions that
build upon functions such as logarithm cannot be directly

implemented in current programmable devices. When adapting
one of these functions to run at the data plane, it is important to
analyze its image and argument bounds. Our mechanism uses
LPM lookup tables with pre-calculated values to approximate
the function for updating the entropy estimate (Equation 2).
This function has well-defined argument bounds (i.e., each
frequency cannot be higher than the observation window size)
and a strict image set (Figure 3). Both of these properties
enable having a memory-efficient LPM table by compressing
entries with close values without significant loss in accuracy.

3) Floating-point support may not be essential to express
numbers with a specific precision in a confined known range:
Traditional packet forwarding does not require floating-point
arithmetic. Thus, forwarding devices typically only provide
instructions over integers. As an upside, integer arithmetic can
be applied to handle fractional numbers assuming a fixed-point
representation. Throughout our work, we use a fixed-point
representation with a 24 scaling factor to express real numbers.
These numbers in our mechanism are the entropy norm, the
entropy itself, the smoothing coefficient, and both the indices
of central tendency and of dispersion. Our evaluation shows
that it is sufficiently accurate to detect DDoS attacks.

4) The absence of dynamic memory allocation functionality
in the data plane can hamper mechanism self-tuning: The
proposed mechanism has some parameters (i.e., m, k, and
α) that can be modified at runtime through register updates.
Other parameters (i.e, d and w) cannot be changed by the in-
switch logic, demanding a new P4 program to be deployed
on the forwarding devices by an external controller. The
reason is that a P4 program cannot allocate dynamic memory.
The implementation of more complex self-tuning capability,
therefore, requires the investigation of novel data structures.

VI. CONCLUSION

In this paper, we presented a real-time DDoS attack de-
tection mechanism, implemented with P4, to be executed
entirely in the data plane. This work underscores the po-
tential of our P4-based design towards meeting increasingly
strict monitoring requirements. The evaluation results show
that the mechanism can detect DDoS outbreaks quickly and
accurately, especially when compared with existing monitoring
approaches, while meeting strict memory space and processing
time budgets associated with in-network packet processing.
As another significant contribution, we shared lessons learned
with our design and implementation, expecting they are valu-
able for new developments in the area. In future work, we
intend to explore further the possibilities of P4 by proposing
an Artificial Intelligence-based Anomaly Detection unit and
providing the mechanism with self-tuning capability.
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