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Abstract—The advent of 5G technology along with the high
proliferation of mobile devices entail an explosion of mobile
traffic. Due to their resource-limitation constraint, mobile devices
resort to connect to Cloud servers so as to offload computational
tasks and improve, hence, resource usage. Unfortunately, the
conventional Mobile Cloud Computing (MCC) solution involves
high transmission latency. Recently Mobile Edge Computing
(MEC) is envisioned as a promising technique for enhancing
the computation capacities of mobiles and reducing latency. The
key insight of MEC is to push mobile computing and storage
to the network edge (i.e., base stations and access points). The
main challenge of MEC solution is to find an efficient assignment
of tasks with local or edge devices, while minimizing energy
consumption and latency. In this paper, we propose a new joint
task assignment and resource allocation approach in a multi-
user WiFi-based MEC architecture. The main novelty of our
work is that optimal offloading decision is jointly performed
with the radio resource allocation. The objective of our scheme
is to minimize the energy consumption on the mobile terminal
side under the application latency constraint. To do so, we first
formulate the problem as a new online Reinforcement Learning
problem while considering both delay and device computation
constraints. Then, we propose a new strategy based on a
Q-Learning algorithm, named QL-Joint Task Assignment and
Resource Allocation (QL—JTAR) to solve it. Based on extensive
simulations conducted in NS3 simulator and using real input
traces, we show that our approach outperforms the related
prominent strategies in terms of energy consumption and delay,
while ensuring near-optimal solution.

Keywords: Mobile Edge Computing, offloading, rein-
forcement learning, optimization, resource allocation, IEEE
802.11ac.

I. INTRODUCTION

With the impressive increase of the Smart Mobile Devices
(SMDs) popularity, a myriad of new mobile applications are
emerging, such as face recognition, augmented reality and
video streaming. Particularly, experts assure that the impres-
sive proliferation of SMDs along with the advent of 5G
network, will lead to the explosion of mobile traffic demand. In
fact, the recent forecast of CISCO [1] expects that the number
of mobile devices worldwide will reach 11.5 billion by 2019.

However, due to their limited processing power, mobile
devices struggle to resist to such traffic explosion. Indeed, ef-
ficiency of mobile devices is still limited by the low evolution
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of battery capacity. For instance, battery capacity of iPhone
has increased by only 29% since its initial release!.

Faced with such exponential traffic growth, a promising
solution proposes to take advantage of the remote Cloud
resources for processing and computing of heavy applications.
In this regard, during the last few years, research efforts have
been devoted to Mobile Cloud Computing (MCC) solutions
[2]. Nevertheless, a key limitation of MCC is the latency
produced during data propagation. Indeed, servers are located
far from SMDs, which entails high transmission delay.

To get rid of such limitation, a recent approach, named Mo-
bile Edge Computation (MEC), has been proposed allowing
mobile devices to use the powerful computing capability at
the network edge. The main insight behind MEC approach
is to bring both communication and computational capacities
in close proximity to users. Actually, this concept was firstly
introduced as Cloudlet [3], a nearby server to which users are
connected through wireless links. Latter on, several edge cloud
infrastructures have been propounded in research commu-
nity [2], and industry like ETSI Mobile edge Computing [4].

To efficiently perform computation, code partition is re-
quired in order to decide which tasks should be run locally
and which parts should be computed in the MEC server. Code
partition decision depends on some parameters such as: i) CPU
needed for each task, ii) the size of the execution output, iii)
delay constraints, etc. Several MEC mechanisms have been
propounded in literature. Particularly, offloading is one of the
most relevant techniques that is orchestrated by SMDs. For
instance, some offloading systems proposed in literature like
MAUI [5] aim at overcoming resource limitations of mobile
devices and reducing response delay.

Motivated by the benefits of mmWave wireless commu-
nications in MEC system [3], we envision, in this paper,
a WiFi-based MEC architecture based on: i) ETSI MEC
framework [4], and ii) IEEE 802.11ac standard [6]. In our
architecture, multiple MEC servers are deployed. Then, we
address the issue of joint task assignment and resource allo-
cation in the WiFi-based MEC architecture. The main goal is
to jointly optimize the task assignment and wireless resource

Uhttps://www.theverge.com/circuitbreaker/2017/6/28/15885636/iphone-
10th-anniversary-hardware-specifications-comparison-apple-ios



allocation. For each incoming mobile application, the objective
is to minimize the total energy on the mobile terminal side,
while considering the following constraints: i) latency and
ii) dependencies between tasks. To do so, we formulate the
problem as a Reinforcement Learning approach where the state
space corresponds to the set of tasks along with dependency
links, while the actions represent the computation assignment
decision. We propose a Q-Learning-based Task Assignment
and Ressource Allocation approach, named QL-JTAR. The
latter learns the optimal policy that minimizes the edge
system’s expected long-term cost (i.e., energy consumption).
QL—-JTAR proceeds as follows. First, initialization phase, our
approach defines, for each state, a Q-function value that returns
the cost and stands for the “Quality” of the action selected in
that state. Second, the learning phase, the system is simulated.
Particularly, in each visited state, some action is selected and
the system allows transition to the next state. The Q-function is
updated using the immediate cost generated in the transition.
Finally, by the end of the learning phase, for each state, the
action having the lowest Q-function value is declared to be the
optimal. Accordingly, the optimal policy is determined.

Based on extensive network simulations conducted within
NS3 simulator while considering the full protocol stack layers,
we evaluate the performance of our proposal QL-JTAR. We
consider the traces of real mobile applications, in the context
of a football stadium. Obtained results show that our solution
outperforms the related strategies in terms of energy consump-
tion and latency, while ensuring near-optimal solution.

The outline of the paper is as follows. In section II, we give
a summarized review of related work dealing with offloading
strategies in MEC. Section III describes our WiFi-based MEC
architecture. Next, we detail our system model in section IV.
The formulation of joint offloading and resource allocation
problem based on Reinforcement Learning will be presented
in section V. In sections VI and VII, we, respectively, detail
our proposal and present the performance evaluation results.
Finally, we conclude this paper in section VIII.

II. RELATED WORK

Mobile Edge Computing related strategies can be classified
into: i) Single-User MEC system, dealing with one user for
a dedicated MEC server, and ii) Multi-User MEC system,
where many mobile devices share one MEC server.

The single-User MEC system strategies presented in lit-
erature deal, in general, with two task models, namely: 1)
binary and ii) partial, task offloading models. First, the binary
offloading consists in deciding whether a particular task has
to be offloaded to edge or locally computed. Second, the
partial task offloaded was addressed in [7] by decomposing
heavy mobile applications into set of sub-tasks. The authors
tackled the joint optimization of partial offloading and CPU-
frequency scaling in order to minimize the energy consumption
or latency. In [8], the authors formulate the task assignment
as a latency minimization problem under resource utilization
constraints. As in [9], they propose a new approximation
algorithm to solve the problem while minimizing complexity.
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Fig. 1. WiFi-based MEC Architecture: Stadium Use case

For multi-user MEC solutions, the authors in [10] propose
MECO, a Mobile-edge computing offloading scheme to offload
intensive mobile computation for multi-user system. The au-
thors propose to jointly optimize the radio resource allocation
and computation. In [11], the authors propound a new joint
radio resource and code partition in MEC approach based on
relaxation technique. They investigate the call graph model to
select the procedures to be computed remotely. However, the
authors assume that the set of sub-tasks are independent and
can be computed/offloaded simultaneously.

In this paper, we propose a new joint offloading and radio
resource allocation approach to jointly: i) select the sub-tasks
for remote execution and ii) allocate resources. Unlike [11],
we consider applications with dependent tasks. Moreover,
unlike [7] [8] [9], we consider multi-user multi-MEC server
system, where each SMD can use many MEC servers.

III. WIFI-BASED MEC ARCHITECTURE

In this paper, we envision a MEC system architecture, based
on ETSI framework [4], composed by MEC servers and a
set of mobile users. Typically, our architecture is dedicated to
the stadium and public venues use case. Indeed, ETSI argues
in [12] that stadiums are considered good candidates for MEC
because of the important venue services they host during sport
events. Basically, our MEC system is deployed over a wireless
access network having a backhauling wired infrastructure used
to interconnect MEC servers. We hierarchically model the
backhauling network based on a three-layers of nodes as
illustrated in Fig. 1: i) Field layer containing the Access Points
(APs), ii) Aggregation nodes connecting APs, and iii) Core
backbone nodes connecting the MEC to the Internet. Note that
APs could be based on either: i) WiFi only, ii) cellular only or
iii) hybrid, wireless communication technology. In this paper,
we assume that wireless network is based on WiFi technology
to transmit data from SMDs to the server as argued in [5].

As depicted in Fig. 1, we deploy MEC over power-
ful servers, i.e., cloudlets, responsible of tasks computation.
Cloudlets can be flexibly deployed on either field, aggregation
or core level. In our MEC architecture, we assume a WiFi
network based on IEEE 802.11ac standard [6].

IV. SYSTEM MODEL

In this section, we present the task model of mobile appli-
cations. Then, we detail the computation model for the task
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assignment in our hybrid WiFi-based MEC architecture.
A. Task Model

We assume that a mobile application is presented by a
directed graph G=(V, &), where the nodes in V refer to the
tasks, while the directed edges stand for data dependencies
between tasks. Note that an edge e = (i,7) € £ means that
the computation of task j depends on the output of task ¢. In
other terms, the task j cannot start unless it gets results of
task ¢. Each node ¢ in V' has a weight w; that represents its
computing workload, i.e., the number of CPU cycles required
to compute the task ¢. Let a; and 8, denote respectively the
input and output data size of the task ¢. It is worth noting that
the output of the task (i —1) represent the input of the i" task,
i.e., a;=p,_;. Each edge e = (4,j) € £ is characterized by a
weight N; ; which specifies the size, in bits, of the program
exchanged to switch the execution from task ¢ to task j.

Let N denote the set of tasks constituting the ongoing
mobile application M.A, and M the number of CPUs in
the network. The root node represents the initial task of the
application, while the final node is terminating the execution.

We assume that each task can be computed by only one
CPU. Particularly, it can be either locally executed by the SMD
(i.e., CPU 0) or remotely in one of the MEC servers, i.e., CPU
i,i € {1,..,,M}. Each CPU can compute a set of tasks.

In this paper, we consider, as in [9], a static scenario where
all SMDs and the wireless network remain stationary during
the offloading period. Note that this assumption holds for
several applications, such as face recognition, natural language
processing, etc. In fact, in such kind of mobile applications,
usually the offloading could be achieved during a period
estimated to be shorter than the timescales of SMDs mobility
in the wireless networks. We sequentially perform the joint
optimization of offloading decision and resource allocation for
each new incoming application demand requested by an SMD.

We assume that each AP and MEC server k provides the
mobile device with a fixed service rate, i.e., CPU frequency
(speed), denoted by 7 expressed in cycles/sec.

B. Computation Model

We consider a joint task computation model between the
SMDs and the MEC servers. Particularly, each task in graph
G can either be locally executed or offloaded to the MEC
server, based on the context of the task and the system.

Let X € {0, ..., M}N denote the task assignment strategy,
where the i*" component indicates the device on which task
1 is computed. Specifically, x; = k if task ¢ is offloaded to
CPU k € {1,..., M}. Otherwise, z; = 0. We denote by D
the computation delay of task ¢ on CPU k.

1) Local Computation Energy Consumption Model: If task
1 of the mobile application is computed locally by the SMD,
then the consumed energy consists mainly in the CPU and
the screen. Note that since the latter firmly depends on the
user behaviour, it is not considered [13]. Hence, the local
computation time basically includes CPU operations:

w;

Dy = —
70

av.n

where 7 is the clock frequency (i.e., CPU speed) of the SMD.
The total local computation energy of the mobile device can
be, thus, written as follows: :
>, Du

ieN,z;€{0}
where o is a constant (o > 2).

2) Offloading Model: For mobile tasks that are offloaded
to a MEC server, we assume that a software clone is already
associated with each application in the cloudlet. In doing so,
only the latest offloading data, such as generated data, and the
computation output, need to be transmitted between the mobile
devices and the MEC servers. During offloading process, three
main steps are considered: i) Sending input data, ii) MEC
computation, and iii) Receiving output data.

The two main objectives of our approach is to: i) minimize
the mobile energy consumption and ii) satisfy the execution
latency constraint. Hereafter, we will evaluate with close-
formulas the above parameters.

a) Transmission energy consumption: The minimum
transmission time required to send or receive N;; bits of
symbol duration 7} through the wireless channel is:

Ni,j . Tb
Dr- NS .Cr - 8bits
where the numerator (N; ; - T}) represents the number of bits
per symbol, D" represents the wireless data rate, N'° is the
number of spatial streams, and C” is the code rate.

Accordingly, if task ¢ is locally executed while task j is
offloaded to a MEC server, then the energy consumption
associated to the data transmission is as follows:

Tx __ tx .
& =piy-Tij

Loc _ o
gComp =DPm -

IV.2)

T, = (IV.3)

(IV.4)

On the other hand, if j is locally computed, then the energy
needed by the SMD to decode the N;; bits of the output
program transmitted back by the AP is denoted by ¢; ;. Note
that the latter depends only on the size of the program but
not on the mobile transmitted power. Let y;, € {0,1} be a
binary variable indicating whether task 7 is computed on CPU
k or not. The total wireless transmission energy of the mobile
application on the SMD side is, hence, defined as follows:

M M
ETR = Z(i,j)eg [%ITJI ) ZkzlAy{jk + € Zk:1 Yik
_(&Tf +€ig) Dopmr Yik * Dp—1 Yik]

Iv.s)
The total energy consumption of a SMD is given by:
E(X) = &g, +ET (IV.6)

b) Total offloading Delay: The total delay includes both
the: i) computation and ii) transmission (sending and receiv-
ing), delays. The time needed to compute the task i € V
locally (i.e., z;=0) is given by the equation IV.1. Hence, the
total local computation time is computed as follows:

T = Z Do

i€V,z; {0}

IV.7)
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Note that when a component computation is delegated to
a MEC server, the mobile device remains in idle state and
its wireless network interface is turned off during execution.
Let DiC];omp denote the completion time of the " task on
the MEC server with CPU k. DS°™” depends on both the: i)
computation time and ii) waiting time in the queue. The latter
incarnates the queueing time of the ongoing residual workload

in device k. Formally, Dgcomp is given by:
DG™ = Dig + Tix (V)
where the computation time D,y 1}? defined by:
D, = — (Iv.9)
Tk

and T} represents the waiting delay defined as follows:
n ZjeV,j;éi Wj * Yjk
Tk Tk

res
Wi,

Tk =

(IV.10)

where 7, represents the fixed service rate (i.e., CPU frequency)
provided by the MEC server k. The latter is much higher than
the mobile CPU frequency. y;, represents a binary variable
indicating whether task j, a predecessor of task ¢, is computed
by CPU £ or not. The second term corresponds to the waiting
delay in the queue of the device k. Then, the total completion
time required to compute task ¢ remotely (i.e., z; € {1, .., M})
or locally (i.e., x; = 0) is defined as follows:
TP =" DL (IV.11)
iev

Computation offloading requires the transmission of the
input program from one site to the other, e.g., the SMD
to the AP, and vice versa. The induced total transmission

(sending/receiving) delay is hence defined as follows:

T = Z(i,j)es [Ti; - 22/[:1 Yik + Vig 22/[:1 Yik
~(Tig + 1) Xl v - Xl vl
av.12)
where v, ; is the time required to get the data back from the
AP. Note that this time does not depend on the transmitted
power but only on the size of the program, N, ;.

V. PROBLEM FORMULATION

In this section, we formulate the joint offloading and
resource allocation in MEC as an online Reinforcement
Learning (RL) problem [14] [15], in order to minimize the
system cost (i.e., energy consumption).

A. Reinforcement Learning Formulation

The MEC system state changes from one time slot to the
other. The time slot is defined as the period during which
a task is computed. Hence, the problem can be cast as
Markovian Decision Problem (MDP). The latter can be solved
by either: i) iteratively solving a linear system of Bellman
equations [14], or ii) using the Bellman transformation in
an iterative way to compute the optimal value function. In
this regard, Reinforcement Learning has recently emerged as
value-iteration approach that provides optimal or near-optimal
solutions to large MDPs [14]. Basically, MDP is defined by

four elements: i) the state space S, ii) the action space A4, iii)
the cost function, and iv) the policy 7.

1) State Space: Let Cj, denote the set of available wire-
less channels in the Wi-Fi-based MEC system. We define
a state of the MEC system by the tuple s = (i,¢e,ch,m),
where ¢ € Ve € £,ch € C,,m € {0,..,M}. The state
space is defined by the set of states for all the task graph,
S ={s=(i,e,ch,m)}.

2) Action Space: The actual actions taken for each task
i € Vinasate s € S by the edge system are a; s € {0, .., M},
where a; > 1 refers to an offloading action to a MEC server,
while a; , = 0 corresponds to a local computation action.
Accordingly, the action space is defined by: A = {a;, €
{0,., M}, i € {0,....|V|},s €{0,...,|S]|}.

3) Cost function: We define the immediate cost of taking
action a; 5 for task ¢ € V on state s € S as follows:

Co(s,a:s) ifa;s>1
d)(sa ai,s) - ( l ) .
Ci(s,a;s) ifa;s=0

where Co(s,a;) = 53: a, . represents the offloading cost, and
Ci(S, ai,s) = E52%,,(@) is the local computation cost.
We define the expected long-term cost (named delayed cost)

as the expected sum of the component immediate costs:

GRS = D d(s,ai) (V.13)

i€V, seS

4) Policy: The policy is a mapping function 7 : Sx. A — S.
It corresponds to the joint offloading and resource allocation
policy in the MEC system. The policy maps each state to an
action. The agent, represented by the MEC manager process,
aims at optimizing the policy 7 to minimize the edge system’s
expected long-term cost. Thus, the optimal offloading policy,
denoted by 7*, should minimize the system cost given by:

™ = argmin, Z (S, ais) (V.14)

1€V, sES

B. Joint Task Assignment and Resource Allocation Optimiza-
tion Problem

The main objective is to find the task assignment strategy
X that minimizes the total energy consumption on the mo-
bile side, while considering latency constraint. Formally, the
objective function of our optimization problem is given by:

L . M M
minimize Y-, e (€77 30000 Y + €0 Dopmy Yik
M M
_(5236 + €i5) " Dk=1 Yik D=1 Yik]
2 iev,miefoy Prn - Dio
(V.15)
To ensure the latency constraint, the total computation and

transmission delay should be less than the maximum latency
dictated by the application. Formally, this is ensured by the
following constraint:

TComp L TTR < [ (V.16)

where £ denotes the maximum latency of the application,
assumed to be equal to the local execution delay.

Note that the task assignment vector X indicates for each
task ¢ either it should be computed locally (i.e., z; = 0) or
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remotely (i.e., x; = k, k € {1,.., M}). Hence, x; is an integer
variable that should satisfy the following constraint:

2 € {0, . M}, VieV (V.17)

Moreover, each task i of the mobile application, MA,
should be assigned to only one CPU (i.e., the local SMD or one
MEC server). Hence, single CPU computation is guaranteed
with the following constraints:

SM oy =1VieV
vir € {0,1},Vk € {0,..., M}, VieV

In addition, to ensure the computation dependency between
tasks, we denote by L; the list of predecessor nodes of task ¢
on the call graph G. We define a binary variable z; € {0,1}
indicating whether the task is assigned or not yet. To guarantee
that each task ¢ is assigned only after the allocation of all its
predecessor tasks, we add the following constraint as follows:

Zq :ngw:oyika VieV
zi €{0,1},Vi eV
Zi S Zj,Vj S [:7;, Vi eV

(V.18)

(V.19)

Formally, the joint task assignment and resource allocation
(JTAR) optimization problem is formulated as follows:

L - M M
Minimize 3 »eel€lF 30021 vk + €5 2h— Yin
T M M
—(E"F +€ig) - Yopmy Vik Dop—1 Yik]
+ 2 icv P - Dio - yio
TComp 1 TTR <
Zﬁio ik =L, VieV
vir € {0,1},Vk € {0,..., M}, VieV
Z2i = Ziwzo Yik, Vi €V
Z; € {0,1},Vl ey
2 < Zj,Vj eL;, VieV

subject to :

Note that JTAR problem is an Integer Programming prob-
lem since the variables y;; and z; are integer.

VI. PROPOSAL: QL-JTAR

To solve the aforementioned JTAR problem based on RL
technique, we propose a new approach using the Q-Learning
algorithm [14], named QL-JTAR. Particularly, Q-Learning is
a value-based RL algorithm. Its goal is to learn, in an online
way, a policy which tells the agent what action to take under
which condition. Note that the online learning process does
not require knowing the transition probabilities ahead of time.
The main strength of RL lies in its ability to obtain near-
optimal solutions of complex large-scale MDPs. Specifically,
given a policy 7, the objective is to learn the state-action value
function, named Q-function, Q(s,a) of each state-action pair.
In order to compute the actual values of each state, we make
use of the model-free learning [14]. The value of Q-function is
the expected sum of the discounted costs for an agent starting
at state s, taking action a, and then following policy 7. Our
approach records for each trial the Q-function value. After a
finite number of iterations, these values will converge.

The optimal Q-function is defined as the best Q-function that
can be learned by any possible policy. A policy that selects
for every state the action with the smallest (optimal) Q-value,
is optimal. Note that a policy that minimizes a Q-function in
this way is said to be greedy in that Q-function. Therefore, to
find an optimal policy, we first start by finding Q*, and then
we compute a greedy policy in Q*.

It is worth noting that our QL-JTAR algorithm requires
the updating of Q-function whenever the system visits a new
state. For each state-action pair, the so-called Q-function is
stored. Our approach proceeds as follows. First, initialization
phase, the Q-function values are initialized to suitable num-
bers in the beginning, as explained in section VI.A. Second,
learning phase, the system is simulated using the Q-Learning
algorithm. Particularly, in each visited state s, some action
a is selected and the system allows transition to the next
state. The immediate cost C(s,a) that is generated in the
transition is recorded as the feedback. The latter is used to
update the Q-function for the action selected in the previous
state. If the feedback is good, the QO-function, Q(s,a), of
that particular action and the state in which the action was
selected is decreased using the advanced version Relaxed-
SMART algorithm [15], first introduced in [14]. Otherwise,
i.e., the feedback is poor, the Q(s, a) is punished by increasing
its value. Afterwards, the same reward-punishment policy is
carried out in the next state. This process is iteratively repeated
for a large number of transitions. By the end of the learning
phase, for each state s the action a* having the lowest Q-
function value is declared to be the optimal action for s.
Accordingly, the optimal policy is determined.

Hereafter, we will detail the steps of QL.—JTAR algorithm.
A. Initialization Phase

The Q-function are Initialized to some arbitrary values (e.g.,
0). For the iteration count k, set to 1, let C k denote the average
cost in the k' iteration of the algorithm. Set C! to 0. Let 4
denote the first state. Let A(¢) denote the set of actions allowed
in state ¢ (i.e., offloading or local computation). We denote by
p* and 7% the two learning rates, that should be positive values
typically less than 1. Note that the learning rates should also be
a function of k. Our approach must ensure that 7% converges
to 0 faster than p¥. To satisfy these conditions, we set the step

sizes to p* = % and 7F = 99 ag in [15]. Accordingly,

X (100+k)
as k tends to infinity, ;—kf should tend to zero.

Then, we set the long-term cost and the long-term transition
time to zero. Let ITERMAX denote the number of iterations
for which the algorithm is run, initialized to a large number.
Finally, as in [15], we set 7, a scaling constant needed, to 0.99.

B. Learning Phase

The steps of the learning phase are as follows.

. Step 1 (Q-function Update): QL-JTAR determines the
action associated to the lowest Q-function value in state i.
The determined action is called the greedy action. Then,
for each iteration count k, the greedy action is selected
with probability (1 —p(k)). Commonly, p(k) is given by:
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Algorithm 1: QL-JTAR pseudo-algorithm

1

Inputs: S, A, MA

2 Output: 7* /* optimal task assignment policy */

3 Initialization:

4 Q(s,a) < 0,VseS,Vace A k<« 1,C «+0

5 i + First_State, A(i) < set of actions allowed in state

1

6 pF = 50 o < 005

7 total_cost < 0, total_time < 0, n < 0.99

8 repeat

9 Qmin(s) — minaeA(s) Q(S, Cl)

10 GreedyAction < The action associated to Q,in(s)

| op(k) = ooty

12 RandomNumber < Generate random number in

0, 1]

13 if RandomNumber < (1 — p(k)) then

14 L a + Greedy_Action, ¢ < 0

15 else

16 L a + Exploratory_Action, ¢ < 1

17 j < Next_State(s,a)

18 | Q(s,a) « (1-p*)Q(s,a) +p*(C(s, a, ) —C*t(s,a, j)

1 | +nminge(5) ), b)]

20 if » = 1 then

21 | Go to Step 32

22 else

23 total_cost < total_cost + C(s, a, j)

24 total_time < total_time + t(s,a, j)

25 CF + (1 —7h)CF + Tk[%]

26 k<—k+1,1+7

27 if i = Last_State then

28 L 1 + First_State

29 until K > ITERMAX;

30 for i € S do

31 a* + The action associated t0 Q,in(S)

32 7 — 1 U {s,a*}

33 Stop
p(k) = &, where G2 > G1, and G and G4 are large
positive constants, e.g., 1000 and 2000 respectively. Then,
one of the other actions is chosen with a probability p(k).
The non-greedy actions are called exploratory actions,
and selecting an exploratory action is called exploration.
Note that the probability of exploration will decay with
the number of iterations k. Let denote the selected action
by a. If a is a greedy action, then set ¢ = 0; otherwise,
set @ = 1. Next, our approach simulates action a. To
do so, let j be the next state, and C(i,a,j) denote the
transition cost. Let ¢(i,a,j) denote the transition time,
i.e., the computation/offloading time induced from state ¢
to state j. Then, the state-action value function, Q(i,a),
will be updated as follows:
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Q(Zv a) — (1 - pk)Q(Z7 a) + pk [C(la avj) - th(lv aaj)
+nminge 4(5) (7, b)]

where mingec 4(;) Q(j,b) denotes the minimum Q-
function value of the state j.

. Step 2 (Average Cost Update): If ¢ = 1, i.e., the action
a was non-greedy, go to Step 3. Otherwise, update the
total cost and total transition time respectively as follows:

total_cost «+ total_cost + C(i,a, j)
total_time < total_time + t(i, a, j)
Then, update the average cost as follows;

CF (1= 7h)ek 4 [ 22PCOst )y )

total_time

. Step 3 (Check for Termination): Increment k by 1. Set
1+ j. If Kk < ITERMAX, return to Step 1. Otherwise,
go to Step 4.

. Step 4 (Outputs): For each state i, declare the action
for which Q(i,.) is maximum to be the optimal action,
in order to generate a policy, and STOP.

The QL-JTAR is summarized in the pseudo Algorithm 1.

VII. PERFORMANCE EVALUATION

In this section, we provide series of network simulation
results to assess the performance of our proposed joint of-
floading and resource allocation solution QL—JTAR. Hereafter,
we describe the simulation set up and define the performance
metrics considered to evaluate our proposal. Then, we analyze
the results and discuss the effectiveness of our proposal.

A. Simulation Environment and methodologies

1) Experiment Design: We conduct our simulations within
NS32 network simulator, which is a discrete-event driven
network simulation platform based on C++ language and
widely used by research community. To realize WiFi links,
we make use of IEEE 802.11ac standard.

We set the propagation parameters based on the IEEE
802.11ac [6]. We configure the physical layer with free-space
propagation model. Besides, we build WiFi-based stadium
MEC system. The geographical dimensions of the the stadium
correspond to the dimensions of a football stadium, i.e., 200m
x 100m, and thus with a total perimeter of 600m. It forms a
grid composed of 12 wireless cells, each cell corresponds to
a wireless communication range of IEEE 802.11ac, i.e., 50m.
On each cell, we deploy 6 Access Points (APs), making use of
the 6 available wireless channels, and a set of mobile devices.
Each SMD is associated to the less heavy AP. Moreover,
the APs of each cell are connected to one aggregation MEC
server based on high-speed wired links. The aggregation MEC
servers are connected to: i) each other based on ring topology
as argued in [16], and ii) a core Cloudlet node, via 10 Gbps
links. Similarly to [11], we assume that the propagation delay
of wired links is set to 1ms. Finally, we implement our
proposed solution based on C++ language and CPLEX? solver.

Zhttps://www.nsnam.org
3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
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TABLE I
AVERAGE NETWORK METRICS
D, (second) E, (Joule)
QL-JTAR 93.46 + 0.09% 9.36 £ 0.04%
JOR-MEC 89.32 + 0.24% 4.03 £0.12%
Full-Local | 4002.23 +3.81% 94.44 + 0.0%
Full-Cloud 164.39 + 0.05% 4.27 +0.001%
TABLE II
AVERAGE RUNNING TIME METRIC
QL-JTAR JOR-MEC

T (seconds) | 0.00026 £ 0.000005% | 0.028 £ 0.00007%

We compare QL-JTAR to the related strategies, namely:
i) JOR-MEC, corresponding to the optimal Joint Offloading
and Resource allocation exact solution, ii) Full-Cloud,
referring to a full Cloud computation and ii) Full-Local
representing a total local mobile computation.

2) Simulation setup: We assume that application demands
arrival on each cell of the stadium follows a Poisson process
with arrival rate A\ 4 set to 5 requests per second. Moreover, the
traffic generated by each mobile device follows a Constant Bit
Rate (CBR) model. We consider in our simulations a realistic
call graph corresponding to a face recognition application [9]
running on SMDs. The offloading data size of the tasks follows
a uniform distribution with mean ranging from 100 Mbis
t0 Nyaz. The latter varies between different values during
simulations. We set the CPU speed to 10 cycles/sec for
mobile devices, and 10'° cycles/sec for MEC server, as in [9].
We make use of TCP protocol to transmit traffic of tasks from
one site to another. We run the simulations for 100 application
requests for each cell, and thus for 1200 demands in all the
stadium. Note that each performance value of the implemented
strategies is equal to the average of 5 simulations. Furthermore,
our simulation results are always presented with confidence
intervals corresponding to a confidence level of 95%.

B. Performance metrics

Hereafter, we define the performance metrics used to eval-
uate our approach:

o TTot: corresponds to the cumulative completion delay of
all the completed application demands in the network.
ETot: represents the cumulative energy consumption
(computation and transmission) on the mobile side.

e T%: corresponds to the average completion delay of all
the completed application demands in the network.

o &% represents the average energy consumption (compu-
tation and transmission) on the mobile side.

o T°%: refers to the running time of the proposed approach.

C. Simulation Results

To assess the efficiency of our joint computation offloading
and ressource allocation approach, we consider the call graph
of realistic face recognition application. Basically, our simula-
tions include two scenarios. In the first scenario, Offloading-
Comparison scenario, we set the maximum exchanged data

Nz to 250 Mbps, and the transmit power of mobile
devices to 10 mW. We calculate the cumulative/average
metrics as well as the running time T for the four ap-
proaches: i) QL—-JTAR, ii) JOR-MEC, iii) Full-Cloud, and
iv) Full-Local. In the second scenario, N, .q.-Variation
scenario, we evaluate the performance of our proposed solu-
tion while varying the maximum exchanged data size N;,qz.

1) Offloading-Comparison Scenario: Fig. 2(a) shows that
our proposal QL-JTAR reduces the total completion delay
by 43.8% compared to the Full-Cloud approach and by
97% compared to the Full-Local method. On the other
hand, QL—-JTAR ensures a near-optimal delay, as the gap with
the optimal solution is approximately equal to 6.4%. Obtained
results corroborate those illustrated in TABLE I which show
that the average delay is alleviated compared to Full-Cloud
and Full-Local methods. Note that QL-JTAR increases
D, by only 4.4% compared to the optimal solution JOR-MEC.

Fig. 2(b), illustrates the cumulative energy for each request.
It is straightforward to see that QL-JTAR reduces the to-
tal energy consumption by approximately 89% compared to
Full-Local approach. In contrast, Full-Cloud achieves a
lower cumulative energy by the end of simulation. This can
be explained by the fact that all tasks are computed in the MEC
side and hence, mobile computation energy is not considered.
The optimal solution alleviates the cumulative energy by
approximately 36% compared to Full-Cloud. These results ap-
prove those illustrated in TABLE I that shows that: QL-JTAR
alleviates IE, by roughly 90% compared to Full-Local,
and the energy by 56% compared to Full-Cloud .

Although the optimal solution outperforms our approach in
terms of delay and energy, TABLE II shows that QL—-JTAR
impressively reduces the computation time compared to the
exact solution. Indeed, T“* is roughly 100 times lower thanks
to the reinforcement learning algorithm.

2) Npjaz-Variation Scenario: Fig. 3(a) shows that the
larger the value of Nj,q. is, the higher is the average delay
T of the ended application demands. This is due to the
increase in the amount of exchanged data from one side to the
other, which induces higher transmission latency. Moreover,
we notice that the average completion delay is dramatically
reduced compared to Full-Cloud and Full-Local. In addition,
it is clear that QL-JTAR reduces the average delay in a
close way to the optimal solution. Indeed, the average delay
is impressively alleviated with a gap of 6.7% compared to
optimal when N4, = 150 Mbps and with a gap of 4.1% for
Ninaz = 400 Mbps. This is can be explained by the fact that
our approach minimizes both the delay and energy as shown
in Q-function given in formula (V1.20), while JOR-MEC only
minimzes energy and considers delay as constraint.

Similarly, Fig. 3(b) depicts the variation of £% when N, 4.
ranges from 150 Mbps to 400 Mbps. We remark that the
average energy consumption increases as the size of exchanged
data increases which corroborate the above results. We notice,
in addition, that the larger N, the closer to optimal
our approach QL-JTAR becomes. Indeed, while the average
energy is reduced with a gap of 73% compared to optimal
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Fig. 2. Cumulative completion delay and energy spent for processing

when N,q. = 150 Mbits, it is impressively alleviated with a
gap of 19.5% for N4 = 400 Mbps. Therefore, our approach
performs well for heavy mobile applications.

VIII. CONCLUSION

In this paper, we addressed the problem of joint computation
offloading and resource allocation in Mobile Edge Cloud. We
envisioned a MEC architecture based on ETSI system and
using wireless IEEE 802.11ac standard. We formulated the
problem based on reinforcement learning technique. To do
so, we proposed a novel joint task assignment and resource
allocation solution based on Q-Learning algorithm, named
QL-JTAR. The objective of our proposal is to minimize
energy consumption on the mobile terminal side, while con-
sidering the application delay constraint. The conducted simu-
lations in NS-3 simulator for a real foot-ball stadium MEC use
case, show that our proposal outperforms the related strategies
in terms of energy consumption and latency. Moreover, the
obtained results show that QL-JTAR ensures near-optimal
solution, while reducing the computation time.
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