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Abstract—Edge computing is a promising concept to enable the
Internet of Things (IoT) vision, especially for supporting time-
sensitive applications. A challenge in this topic is the service
placement problem, which concerns the decision of where to
place multiple applications according to their Quality of Service
(QoS) requirements on the one hand and the computing resource
availability on the other hand. In this paper, we jointly investigate
the load distribution and placement of scalable IoT services, both
vertically and horizontally, to minimize the potential violation of
their QoS requirements due to the limitations of edge computing
resources. We formulate the problem as an integer nonlinear
programming. In order to handle the computational complexity,
we propose two approaches, one through linearization techniques
and another based on genetic algorithm. Experiment results
show that our linearization proposal has low levels of violation
in a small-scale scenario, and both proposals outperform other
methods in a large network.

Index Terms—service placement, load distribution, edge com-
puting, Internet of Things, quality of service, service scaling.

I. INTRODUCTION

Over the past decade, the cloud computing model was
broadly adopted in Information Technology (IT) domain.
Despite its success, the cloud computing adoption has to
overcome several challenges facing the emergence of the
Internet of Things (IoT) [1], [2]. First, the rapid growth in
the number of IoT devices (e.g., sensors, actuators, mobile
phones, and other access devices) generates very large volumes
of data that may lead to traffic congestion on the network
core, data center overload, and high financial cost. Second,
the large physical distance between IoT devices and cloud data
centers results in high communication delays, which may be
unacceptable for some time-sensitive applications (e.g., high-
quality video streaming, interactive mobile gaming, augmented
reality, and mission-critical applications) requiring low end-to-
end latency (e.g., 10 ms or even 1 ms). Third, it is difficult
for applications deployed in the cloud to quickly adapt to
changes in the local context (e.g., precise user location and
local network conditions) of distributed mobile devices.

Aiming to address these cloud challenges, recent research
efforts introduced similar concepts extending the cloud com-
puting capabilities closer to end-users (i.e., at the edge of
networks), such as (i) Cloudlet [3], Fog Computing [4],
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and Mobile Edge Computing or Multi-access Edge Com-
puting (MEC) [5]. We use the term Edge Computing (EC)
to encompass these different, but partially overlapping and
complementary concepts. EC adds a new layer of distributed
computing nodes between end-user devices and cloud data
centers. Therefore, applications running on EC can perform
actions close to its users before connecting to the cloud,
thus (i) reducing the network overhead, (ii) providing faster
responses, and (iii) getting local contextual information in a
most efficient way [6], [7].

As promising as EC is, it has some limitations. In partic-
ular, the EC nodes are more heterogeneous and have fewer
capability resources (e.g., processing, memory and storage
resources) compared to cloud data centers [2]. Thus, it is
usually infeasible in a practical scenario to run all applications
on EC. Faced with this limitation, a relevant problem to be
addressed is deciding where to place multiple applications
(i.e., whether on a node in the edge or within the cloud)
according to infrastructure’s resource constraints, applications’
Quality of Service (QoS) requirements and other desired
goals. This decision issue is known as the application or
service placement problem, which is a non-trivial problem
considering the vast, distributed, dynamic and heterogeneous
edge computing environment [8].

Some studies on the service placement problem in cloud
computing can be found in the literature [9], [10]. However,
these proposed solutions cannot be directly applied to EC
because they do not take into account the aforementioned
characteristics of the edge computing environment (e.g., het-
erogeneous and distributed networks) and the time requirement
of latency-sensitive applications. Moreover, the existing works
for service placement in EC [8], [11], [12] have some limita-
tions. First, some of them assume there are enough resources
for all applications in the edge layer. In a practical scenario,
some applications are deployed in a remote cloud data center
due to resource constraints in the edge layer, which may lead
in some cases to a violation of the application’s maximum
tolerable delay requirement. Second, some solutions do not
take into account this time requirement or do not deal with
both processing and communication delays. Third, they do not
consider the vertical and horizontal scaling of applications.
Horizontal scaling refers to add or remove replicas of an
application in the system. On the other hand, vertical scaling
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means to add resources to (or remove resources from) a single
application’s replica. At last, most of the works do not examine
the impact of nodes’ workload in meeting applications’ QoS
requirements.

Motivated by the above facts, in this paper, we intend to
address the service placement problem in edge computing.
Hence, we formulate the problem taking into consideration
the infrastructure capacity constraints and applications’ char-
acteristics (QoS requirements, resources demand, scalability,
and workload) to minimize application’s QoS violation (i.e.,
time exceeded after a tolerable delay). The main contributions
of this paper are as follows:
• We present a system model where multiple replicas of an

application can be placed in different nodes and requests
for this application are distributed among the replicas.

• We formulate the service placement optimization problem
in the form of a Mixed-Integer Nonlinear Programming
(MINLP) problem considering both node assignment (i.e.,
where to deploy an application) and load distribution to
minimize the potential occurrence of QoS violations.

• In order to deal with the high computational complexity
of solving MINLP, we propose a linearization with relax-
ation approach to transform MINLP into a Mixed-Integer
Linear Programming (MILP) problem. Then, the MILP
problem can be solved using a well-known solver tool.

• We further propose a meta-heuristic solution based on
biased random-key genetic algorithm to solve the place-
ment problem as well.

• We conduct performance evaluation over a cellular net-
work with edge computing capabilities and compare the
results of our proposed solutions with those of a greedy
algorithm.

The rest of the paper is organized as follows. Section II
reviews related works. Section III presents our system model.
We formulate the MINLP problem and the linearization ver-
sion of it in Sections IV and V, respectively. Section VI
describes our genetic algorithm solution for the service place-
ment. Then, the evaluation results are shown in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Virtual Machine (VM) placement is a well-studied topic
in cloud computing. In [10], the authors review methods for
VM placement and migration in a cloud environment. Pires
and Barán [9] propose a taxonomy to classify these solutions.
However, these approaches to conventional centralized cloud
computing do not consider that an edge computing environ-
ment is more distributed, heterogeneous, latency-sensitive and
it has limited resources.

Computation offloading refers to the transfer of tasks from
a device to an external platform, such as the edge and cloud
computing. Hence, it enables running intensive computational
applications at a device with constrained resources while
reducing its energy consumption. Moreover, a crucial part
of offloading is deciding whether to offload or not. In [13],
the authors’ survey concerns computation offloading in the

context of mobile edge computing scenarios. In this work,
we are not interested in this offloading decision process, but
service placement and computation offloading can be seen as
complementary problems.

Some works address the service placement problem in the
context of edge computing. In [8], the authors intend to
optimize the problem of placing and moving applications in
an EC architecture with multiple hierarchical tiers to minimize
the overall running cost. A limitation of this work is the
assumption of having sufficient resources for all applications.
In [11], the authors jointly investigate the base station asso-
ciation, VM placement and tasks distribution problems for
medical applications in MEC to minimize the overall cost
while satisfying the maximum tolerable delay of the appli-
cations. However, the authors only examine the application
deployment in base stations. Zhao and Liu [12] also address
the problems of VM placement and load balancing in MEC.
Although the objective of the work is to minimize the average
response time of a request, it does not take into account
the deadline requirement of this response time, especially for
latency-sensitive applications.

Regarding the QoS violation, in [14], the authors propose a
strategy for VM placement and migration to minimize non-
green energy consumption of EC nodes and applications’
end-to-end delay requirement violation. However, the work
assumes EC nodes (cloudlets) have the same resource capa-
bilities, and VMs have the same resource demands. Katsalis et
al. [15] investigate VM scheduling and placement decision in
MEC with the goal of (i) maximizing infrastructure provider
revenue, (ii) minimizing Service-Level Agreement (SLA) vio-
lations, and (iii) ensuring fairness in resource allocation among
service providers. Even though the work investigates SLA
violation in terms of response time, it considers the processing
time responsible only for the response delay, neglecting the
network delay.

Few works propose a solution based on a genetic algorithm
as we do. Skarlat et al. [16] examine the application placement
in a hierarchical and distributed fog architecture to maximize
the number of applications placed on fog nodes rather than
the cloud while satisfying the execution deadline of the ap-
plications. However, the chromosome encoding proposed can
generate infeasible solutions, then a violation penalty for these
cases is added in the fitness calculation. To solve the problem
of generating invalid solutions, [17] proposes a biased-random-
key chromosome encoding to provide a resilient placement
of mission-critical applications on geo-distributed clouds. A
shortcoming of this work is that it does not consider the
applications’ delay requirement.

In order to overcome some limitations of these existing
works, in this paper, we investigate the offline service place-
ment in a distributed, heterogeneous and resources limited
edge computing environment with scalable applications aiming
to minimize QoS violations. In the offline case, we do not
consider application migration and user mobility. In addition,
the sets of applications and computing nodes are known in
advance and do not change during placement.
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III. SYSTEM MODEL

This section introduces our system model for an edge
computing environment.

A. Edge Computing System

Our EC system is a generalization of those proposed
in [11], [12] for MEC. Unlike these works, in our system,
computational nodes can be placed in different parts of a
network and not just in base stations of a cellular network.
In our proposal, the EC network consists of computational
nodes (edge and cloud nodes), end-user devices, and links
connecting the nodes. Furthermore, devices (fixed or mobile)
are connected directly with some nodes over a wired or
wireless link. Over time, devices require services from an
application. Several applications, mainly IoT services, can be
deployed and executed in different computing nodes, where
the infrastructure and service providers define the deployment
locations of these services. Then, a request sent by a device
is routed among the nodes up to a node hosting the required
application. Lastly, the request is processed, and its response
is sent back to the device.

To illustrate our proposal, we describe the use case of a
cellular network with edge computing capabilities (e.g., 5G
network), as shown in Fig. 1. In this case, applications can
be hosted on computing nodes located on the Radio Access
Network (RAN), core network, and cloud computing regions.
If an application is running on a Base Station (BS), then a
request can be routed only among neighboring Base Stations
(BSs) to reduce traffic at the core and to decrease transmission
delays. However, not all applications can be deployed to BSs
because of the limited computing resources in this region.
Hence, some applications are hosted in the core or the cloud
while carrying about not violating some placement criteria
defined by the providers.

Fig. 1. Proposed edge computing system for the 5G network case.

B. Network Model

We model the network as a unidirectional graph G = (V, E),
where the vertices V are network nodes and the edges E are
network links between the nodes. We assume all vertices are
accessible by any other vertex in the graph through multiple
hops. In addition, end-user devices and their connections are
not represented in G.

Each network link e ∈ E has the following property:
• Transmission Delay Da,e

net is the amount of time it takes
for a request for application a to be transmitted in the
network link e.

C. Resource Model

The proposed system model allows specifying different
types of resources, where R is the set of these considered
resources. For instance, the set R = {CPU,RAM,Storage}
is made up of processing (CPU), Random-Access Memory
(RAM) and disk storage resources. RAM and disk storage are
measured in bytes, while CPU can be measured in cycles per
second (clock rate in Hz) or instructions per second (IPS).

D. Node Model

A node, or vertex, in the graph G, represents a server with
specific resource capabilities to run applications. Although
multiple servers may be located on a single network node, we
view these multiple servers as a single unit. Therefore, there is
precisely one server for each network node. We use the terms
node and server interchangeably throughout this paper. We
also use the terms application and service without distinction.

Each node v ∈ V has the following feature:
• Resource Capacity Cv,r is a number describing the total

capacity of resource r ∈ R on node v.
We assume the cloud has unlimited resources, Ccloud,r =
∞, due to the capacity difference between cloud and edge
nodes.

E. Application Model

Let A be the set of all different applications to be placed
over the network. We consider that one or more instances,
or replicas, of these applications can be deployed within the
system, but these instances are independent of each other.
Furthermore, a node can host only one instance of each
application.

An application a ∈ A has the following parameters:
• Maximum Tolerable Delay Da is a number specifying

the maximum time (i.e., deadline) allowed for responding
a request for application a. The response time comprises
the network delay plus the processing delay.

• Maximum Number of Instances Na is a value describ-
ing how application a scales horizontally.

• Resource Demand fra (λ) is a non-decreasing function
specifying the (average) amount of resources r ∈ R
required by a replica of a with a workload λ ≥ 0. We
define this workload λ as the (average) arrival rate of
requests in an instance of a. This function describes how
an application scales vertically.
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• Processing Work Size Wa is a value indicating the
(average) amount of processing required to get a response
to a request for a. It is measured by the number of
instructions or clock cycles required to process a request.

• Request Rate λa is the average request generation rate
for a of each end-user device requesting this application.
It is determined by a Poisson distribution.

F. User Model

End-user devices, or users, are not aware of where applica-
tions are deployed and which application’s instance will handle
their requests. Therefore, we can distribute these requests
among multiple replicas placed on the system. For the safe
of simplicity, we assume each user requests for only one
application. Then, let Uv

a be the number of users connected to
node v requesting application a, and Ua is the total number
of users requesting application a in the system.

IV. PROBLEM STATEMENT AND FORMULATION

A. Problem Statement

In a practical scenario, it is not possible to place all applica-
tions on the network edge given the resource limitations of EC
nodes. Consequently, some applications are deployed further
(i.e., in the core network or the cloud) from their end-users.
This considerable distance between node and user may result
in the response time of a request to exceed the deadline spec-
ified by some applications. Moreover, an overloaded server
also increases response time, thus distributing the load among
application’s replicas may mitigate this issue. Therefore, we
investigate the joint problem of service placement and load
distribution to minimize the violation of QoS (maximum
tolerable delay).

The next subsection presents an estimation to determine the
response time of a request.

B. Response Time Estimation

We define a request flow Fu,v
a as the requests for a replica

of application a ∈ A hosted on node v ∈ V (target node) and
generated by users connected to node u ∈ V (source node).
Thus, (1) specifies the average response time of a request flow
Fu,v
a , where dnet is the average time to send requests to a from

users in u to node v and dproc is the average processing time
of requests on v. We estimate both network and processing
delay as follow.

d(Fu,v
a ) = dnet(F

u,v
a ) + dproc(a, v) (1)

1) Network Delay: The network delay of a request in-
cludes: (i) the communication delay between the requesting
end-user device and the node to which it is attached, and
(ii) the transmission delay from this latter node to a server
hosting the application following a multi-hop routing path. It
is important to note that a user’s attachment node can host
the application and process its requests, and therefore the
transmission delay of the second part is zero. Since we are
examining the offline problem case, the communication delay

between a device and its attachment node does not affect the
placement decision [12]. Therefore, we do not consider this
communication delay in the network delay estimation.

We estimate the average network delay of a request flow
Fu,v
a as:

dnet(F
u,v
a ) = Da,u,v

net =

{
0 if u = v∑

e∈Pu→v
Da,e

net otherwise
(2)

where Pu→v is the set of links in a routing path from u to
v. This set can be determined by some shortest routing path
algorithm, such as the Floyd–Warshall algorithm [18], [19].

2) Processing Delay: We model the request processing
time as an M/M/1 queueing model. In this model, users
continuously generate requests for an application a according
to a homogeneous Poisson process with ratio λa. Furthermore,
request arrival rate λha for application a running on node v is
defined as the sum of all requests arriving at this node. Eq. (3)
expresses this request arrival rate, where δu,va ∈ [0, Qu

a ] is an
integer variable indicating the size of request flow Fu,v

a (i.e.,
number of requests in the flow), and Qu

a = dUu
a λae is the

number of requests for a generated by users connected in u.

λva =
∑
u∈V

δu,va (3)

Service times have an exponential distribution with rate
parameter µ, where 1/µ is the average service time in an
M/M/1 queue. Thus, we express 1/µh

a as the time to perform
the request’s CPU work Wa with the resources allocated for
a replica of application a in node v as:

1

µv
a

=
Wa

fCPU
a (λva)

(4)

Finally, (5) gives the average processing time of requests
for application a running on node v according to Little’s law.

dproc(a, v) =
1

µv
a − λva

(5)

C. Problem Constraints
A solution to the offline service placement problem is

feasible only if all the following constraints are met.
1) Number of Instances: A node can only host a single

replica of a given application. Then, let ρva ∈ {0, 1} be a
binary variable to indicate whether node v hosts an instance
of application a or not. Moreover, the number of instances
deployed in the system must respect the limits defined by the
applications, and all of them need to be placed.

1 ≤
∑
v∈V

ρva ≤ Na ∀a ∈ A (6)

2) Request Flow Existence: A request flow Fu,v
a only

exists if a replica of application a is placed on v and there
are users connected in u requesting a. Let γu,va ∈ {0, 1} be a
binary variable to express whether flow Fu,v

a exists or not.

γu,va ≤ ρvaQu
a ∀a ∈ A,∀u, v ∈ V (7)
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3) Request Flow Size: If a flow Fu,v
a exists, its size must

be at least one and at most equal to the number of requests
generated by users connected in u.

γu,va ≤ δu,va ≤ γu,va Qu
a ∀a ∈ A,∀u, v ∈ V (8)

4) Load Conservation: The aggregate size of all request
flows for application a from the same source node u is equal to
the total number of requests for a generated by users connected
to this node. ∑

v∈V
δu,va = Qu

a ∀a ∈ A,∀u ∈ V (9)

5) Node’s Capacity: The total amount of resources de-
manded by applications placed on a server should not exceed
its capacity.∑

a∈A
ρvaf

r
a(λva) ≤ Cv,r ∀r ∈ R,∀v ∈ V (10)

6) Queue Stability: An M/M/1 queue is stable only if the
average service rate is larger than its average arrival rate. This
stability needs to be guaranteed for each application placed on
a node.

λva < µv
a ∀a, v (ρva = 1) , a ∈ A, v ∈ V (11)

7) QoS Violation: The response time of an existing flow
Fu,v
a should not exceed its application’s deadline plus the

system’s QoS violation level ε ≥ 0.

γu,va d(Fu,v
a ) ≤ Da + ε ∀a ∈ A,∀u, v ∈ V (12)

D. Objective Function

We define the QoS violation level of a request flow Fu,v
a

as the difference between its average response time and the
application’s deadline, i.e.,

(
d(Fu,v

a )−Da

)
. The QoS viola-

tion level of the system ε is the highest violation level among
all flows in the system. Therefore, our goal is to minimize
the QoS violation level ε. Then, the offline service placement
problem is formulated as follows:

min ε

subject to eqs. (6) to (12)
(13)

Table I lists the major notations used in this paper.

V. LINEARIZATION AND RELAXATION PROPOSAL

The optimization problem (13) is a Mixed-Integer Nonlin-
ear Programming (MINLP) problem because constraints (10)
to (12) are nonlinear. MINLP is usually difficult to solve due to
its high computational complexity [20]. One way to reduce this
complexity is to apply linearization and relaxation techniques.
Therefore, we transform (13) into a Mixed-Integer Linear
Programming (MILP) problem by employing these techniques
to the following nonlinear constraints:

Node’s Capacity. For some applications, the resource de-
mand function fra(·) may be nonlinear. In this case, it can

TABLE I
NOTATIONS USED IN THE PROPOSED SYSTEM MODEL

Symbol Description
Input Parameters

V, E,R,A set of network nodes, network links, resource types, and
applications respectively

Cv,r total capacity of resource r on node v
Da maximum tolerable response time of application (app) a
Na maximum number of replicas for app a

fra (λ)
demand of resource r for a replica of app a with
workload λ

Ka,r
1 ,Ka,r

2
constants of a linear resource demand for app a and
resource r, fra (λ) = Ka,r

1 λ+Ka,r
2

Wa CPU work size of a request for app a
λa request generation rate for app a
Uv
a number of users connected to node v requesting app a

Da,u,v
net network delay for app a between nodes u and v

Variables
ρva whatever node v deploys an instance of app a or not
γu,va whatever request flow Fu,v

a exists or not
δu,va number of requests in the flow Fu,v

a

ε system’s QoS violation level
Others

Fu,v
a

flow of requests from users connected to node u to an
instance of app a deployed on node v

λva request arrival rate of app a on node v
µva service rate of app a on node v

Qu
a

number of requests for app a generated from users
connected to node u

Qa total number of requests for app a in the system

be replaced by an over linear estimator f∗ra(·) in the domain
interval [0, Qa], as shown in (14), where Ka,r

1 , Ka,r
2 are

constants, and Qa is equal to
∑

v∈V Q
v
a.

f∗ra(λ) = Ka,r
1 λ+Ka,r

2 (14)

Given that requests only arrive at servers running the
requested application according to (3), (7) and (8), we have:

ρvaλ
v
a = λva (15)

By applying (14) and (15) to (10), the node’s capacity
constraint can be rewritten as:

∑
a∈A

(λvaK
a,r
1 + ρvaK

a,r
2 ) ≤ Cv,r ∀r ∈ R,∀v ∈ V (16)

Queue Stability. To obtain a standard form of a MILP
problem, it must remove the strictness of inequality in (11).
For this, it is added a small constant Θ ≈ 0. Moreover, both
sides of the inequality are multiplied by ρva to ensure the queue
existence constraint. Applying (4), (14) and (15) to this result,
we further have:

λva

(
Ka,CPU

1 −Wa

)
+ ρvaK

a,CPU
2 ≥ ρvaΘ

∀a ∈ A,∀v ∈ V
(17)
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QoS Violation. Given the equations (1), (2), (4), (5)
and (14), we rewrite constraint (12) as:

(
γu,va λvaD

a,u,v
net − ελva − λvaDa

)(
Ka,CPU

1 −Wa

)
+ γu,va

(
Ka,CPU

2 Da,u,v
net +Wa

)
−Ka,CPU

2

(
Da + ε

)
≤ 0

∀a ∈ A,∀u, v ∈ V (18)

However, in (18), both γu,va λva and ελva are bilinear terms.
We can relax these terms to obtain linear terms using Mc-
Cormick’s envelopes [21]. That is, we replace these bilinear
terms with new variables (ϕu,v

a = γu,va λva and ψv
a = ελva) and

add the following new constraints in the problem:

0 ≤ γu,va ≤ 1 and 0 ≤ λva ≤ Qa and 0 ≤ ε ≤ E (19a)

0 ≤ ϕu,v
a ≤ λva and Qa (γu,va − 1)+λva ≤ ϕu,v

a ≤ γu,va (19b)

0 ≤ ψv
a ≤ λvaE and εQa + λvaE − EQa ≤ ψv

a ≤ εQa (19c)

where E is a constant specifying the maximum level of QoS
violation allowed. Then, we can rewrite (18) with the two new
variables to have a linear constraint:

(
ϕu,v
a Da,u,v

net − ψv
a − λvaDa

)(
Ka,CPU

1 −Wa

)
+ γu,va

(
Ka,CPU

2 Da,u,v
net +Wa

)
−Ka,CPU

2

(
Da + ε

)
≤ 0

∀a ∈ A,∀u, v ∈ V (20)

At last, we formulate the MILP problem as follows:

min ε

subject to (6) to (9), (16), (17), (19) and (20)
(21)

It is important to note that a solution to (21) is also feasible
for (13), but it may present a higher objective value ε when
applied to the original problem due to the bilinear relaxation.

VI. A GENETIC-BASED PROPOSAL

Although well-known solvers, such as CPLEX [22], can
solve MILP problems, these problems are generally NP-
Hard [12]. Moreover, (21) is highly time-consuming due to a
large number of integer variables. Hence, we propose a meta-
heuristic solution based on genetic algorithms. An advantage
of a genetic approach is that it is not limited to convex or
linear problems [23].

The proposed genetic algorithm uses biased random-key
chromosomes [24], which is an array of randomly generated
real numbers in the interval [0, 1]. This chromosome repre-
sentation is used not to create infeasible solutions that may
degrade the genetic algorithm performance [25]. The proposal
uses an elitist strategy, keeping elite individuals, i.e., those
with the best fitness values, to the next generation. It also
adds new random generated individuals, as mutants, in the next
generation. In addition, to complete the population, offsprings
are generated by a parameterized uniform crossover [26]
between elite and non-elite individuals.

A. Chromosome Representation

In biased random-key algorithms, a deterministic decoder
algorithm takes an individual’s chromosome and computes his
fitness value. Thus, the representation of a chromosome and
the decoder algorithm plays important rules in our proposal.

Our proposal for chromosome encoding and the description
of its parts are given below:

C =
[
O1

1, O
2
1, · · · , O

|V|
1 , · · · , O1

|A|, O
2
|A|, · · · , O

|V|
|A|,

M1,M2, · · · ,M|A|,

V 1
1 , V

2
1 , · · · , V

|V|
1 , · · · , V 1

|A|, V
2
|A|, · · · , V

|V|
|A|

]
1) O1

1, · · · , O
|V|
|A|. It is the creation order of request flows.

2) M1, · · · ,M|A|. It describes a weight used in choosing
a server to host an application.

3) V 1
1 , · · · , V

|V|
|A| . Along with the previous part, it is a

parameter to compute node’s priority to be chosen as
a place to deploy an application. This priority of a node
v for application a is given as:

Mv
aV

v
a + (1−Mv

a )
Da,u,cloud

net −Da,u,v
net

Da,u,cloud
net

(22)

B. Decoder Algorithm

A simple greedy solution to the service placement problem
deploys an application on the closest servers to users of this
application, i.e., servers with less network delay to these
users. However, the capacity limitation of nodes prevents
this deployment scheme from optimally working for a large
number of applications or users. To improve this solution, we
propose the inclusion of another parameter (part V on the
chromosome) in addition to the network delay in the node
selection procedure. Furthermore, a weight factor (part M
on the chromosome) balances these two parameters in the
decision process.

We designed Algorithm 1 based on the idea above. In its
outermost loop (line 6), there is an iteration over all possible
sources of request flow, where the first part (i.e., Ou

a part)
of the chromosome defines the loop order. Then, in line 8, it
checks for all possible flow targets ordered by the specification
in (22). In the innermost loop (lines 10 to 17), it tries to
allocate the maximum number of requests to the chosen target
node, while respecting constraints (10) and (11). It is important
to note that this loop is finite due to the assumption of
unlimited resources of a cloud node. If the number of replicas
exceeds the maximum allowed, the algorithm does a local
search optimization (line 21) by replacing surplus replicas with
the cloud. Finally, it computes the QoS violation level and
returns this level as the fitness value for the input individual.

VII. EVALUATION

In this section, we present the performance (i.e., the optimal-
ity) results of our MILP and genetic solutions by comparing
it with other algorithms over a cellular network (5G) with EC
capabilities.
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Algorithm 1 Chromosome Decoder Algorithm.
1: procedure DECODER(individual)
2: initialize ρva, γ

u,v
a , δu,va ← 0

3: O,M, V ← individual.chromosome
4: l← {(a, u),∀a ∈ A,∀u ∈ V}
5: order l according to Ou

a

6: for all (a, u) ∈ l do
7: order V according to (22)
8: for all v ∈ V do
9: q ← Qu

a −
∑

i∈V δ
u,i
a

10: while q > 0 and
∑

i∈V δ
u,i
a < Qu

a do
11: if constraints (10) and (11) are respected

when receiving more q requests for application a then
12: δu,va ← δu,va + q
13: γu,va ← 1; ρva ← 1; q ← 0
14: else
15: q ← q − 1
16: end if
17: end while
18: end for
19: x← Na −

∑
i∈V ρ

i
a

20: if x > 0 then
21: replace x replicas of a with the cloud node
22: end if
23: end for
24: return ε← compute QoS violation with ρva, γ

u,v
a , δu,va

25: end procedure

This section is structured as follows. First, the evaluated
algorithms are detailed. Second, the experiment setup is pre-
sented. Then, we analyze the obtained results.

A. Evaluated Algorithms

An overview of the compared methods is given below:
• Cloud. It simply places everything in the cloud.
• Greedy. It follows the description of a simple greedy

algorithm with the local search optimization presented in
Subsection VI-B. Also, It first chooses applications with
shortest deadlines to be placed.

• Genetic. This is our genetic proposal. To improve per-
formance, we include in the initial population an individ-
ual with chromosome encoding of the Greedy solution
(Ma = 0, V v

a = 0).
• MILP. It presents the optimal result for problem (21) by

applying the branch and cut technique in the solver.
• MILP-MINLP. It returns the results for (13) based on

the optimal solution found in MILP.
• MILP-MINLP-T. It is similar to MILP-MINLP, but it

returns the results when a timeout parameter is used to
stop the solver tool. If the solver does not find a solution
after the timeout, Cloud method is used instead.

B. Experimental Setup

We developed the experiment in Python with the CPLEX
solver [22] to compare the above mentioned methods in a

TABLE II
EXPERIMENT PARAMETERS

Parameter Value
System
Base Stations (BSs) 7, 19

Network Delay BS-BS: 1 ms, BS-Core: 1 ms
Core-Cloud: 10 ms

CPU (MIPS) Cloud: unlimited,
Core: 200000, BS: 50000

Storage (MB) Cloud: unlimited,
Core: 10000, BS: 1000

Number of Users 1000, 4000, 7000, 10000

User Proportion 70% mMTC, 20% eMBB,
10% URLLC

Number of Applications 10, 20, 30, 40, 50

Application Proportion 34% mMTC, 33% eMBB,
33% URLLC

Applications
Na [1, |V|]

Da (ms) [50, 1000] mMTC, [10, 50] eMBB,
[1, 10] URLLC

λa (requests/ms)
[0.001, 0.01] mMTC,
[0.02, 0.01] eMBB,
[0.02, 0.01] URLLC

Ka,Storage
1 ,

Ka,Storage
2 (MB)

[1, 10] mMTC, [1, 50] eMBB,
[1, 10] URLLC

Wa (MI) [1, 5] mMTC, [1, 10] eMBB, [1, 5] URLLC
Ka,CPU

1 (MIPS) Wa + 1

Ka,CPU
2 (MIPS) [0,Wa + 1]

5G network scenario. We followed the 5G Key Performance
Indicators (KPI) [27] to specify the network delays less than 1
ms. We used three types of applications as planned for 5G: (i)
enhanced Mobile Broadband (eMBB), (ii) Ultra Reliable Low
Latency Communications (URLLC) and (iii) massive Machine
Type Communications (mMTC). We also randomly defined
application’s parameters based on 5G predictions [27], [28]
and so that URLLC and mMTC demand fewer resources than
eMBB. Moreover, users are uniformly distributed between
base stations, which are arranged in a hexagonal grid. In this
grid, neighboring base stations are directly connected. Com-
putational nodes are placed in different network parts (base
stations, core network, and in the cloud), and their capacities
are reduced as they descend into the network topology (i.e.,
from cloud to base stations). Lastly, each test case is executed
30 times to obtain results with 95% confidence interval [29].

Table II summarizes the major experiment parameters used,
where an interval [a, b] means that a value is chosen randomly
within this range.

C. Results and Discussion

We first evaluated the performance of placement approaches
in a small-scale network scenario with 7 BSs (1 BS with 6
BSs around it). We used this network size due the highly time-
consuming to find the optimal solution of (21). Despite this, we
evaluated how close the approaches are to the optimal solution
of (21). Thus, MILP is a lower bound benchmark.

Fig. 2 presents the impact of increasing the number of
applications and users on the level of QoS violation in a small-
scale network scenario. In Fig. 2(a), we can see that Greedy
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(a) 4000 users (b) 20 applications (c) 30 applications

Fig. 2. Performance in a 5G network with 7 base stations

(a) 4000 users (b) 20 applications (c) 30 applications

Fig. 3. Performance in a 5G network with 19 base stations.

has the same results as Cloud, which is partially due to the
local search optimization. Considering the confidence interval,
MILP and MILP-MINLP present equal results close to zero,
which are the most desired results. Genetic shows a rise in the
violation level with an increasing number of applications. An
explanation for this behavior is that allocating the maximum
number of requests on a server is not a satisfactory strategy
in an environment with high resource demands. We can see
in Figs 2(b) and 2(c) that increasing the number of users does
not have much effect on performance.

In a second scenario, we analyzed the placement methods
in a network with 19 BSs (1 central BS, a ring of 6 BSs
around the central one and 12 BSs around the first ring). Due
to processing time, MILP and MILP-MINLP are replaced by
MILP-MINLP-T. In this scenario, Cloud, Greedy, and Genetic
have the similar behavior as in the small-scale network when
there is an increase of applications, as shown in Fig. 3(a).
Contrary to the first scenario, the timeout version for MILP-
MINLP presents a growth in the QoS violation with an
increasing number of applications. This occurs due to the
timeout parameter limiting the solver to find a better solution
and because the relaxation in (20) may result in worse values
than the optimal for the MINLP problem. Nevertheless, MILP-
MINLP-T has slightly better values than Genetic.

Figs. 3(b) and 3(c) present the performance impact of
increasing the number of users. We can observe an increase in
violation levels from 1000 to 4000 users, and then it remains

almost constant up to 10000 users, mainly for Cloud, Greedy,
and Genetic solutions. This behavior can be explained by the
placement of applications in the cloud, which increases the
network delay. On the other hand, a cloud node has unlimited
resources to receive the rise of users without greatly affecting
processing performance. Meanwhile, we can see a steady
increase in the violation level for MILP-MINLP-T method in
Fig. 3(c), but its values are smaller than the other methods.
The growth in cloud usage due to increased resource demand
is an explanation for this observed result.

VIII. CONCLUSION

In this paper, we investigated the offline placement problem
of IoT services supporting horizontal and vertical scaling in an
edge computing environment. First, we formulated this prob-
lem into a MINLP problem. Then, we proposed a linearization
and genetic-based methods to solve the problem and deal with
its high computational complexity. Through experiments, we
showed that linearization has low violation level of applica-
tion’s deadline requirement in a small-scale cellular network
scenario. In a scenario with a network larger than the small-
scale network, our two approaches (linearization and genetic-
based) have close results, and both generally had better results
than a simple greedy solution.

As a future work, we plan to investigate the online service
placement problem, which includes application migration, user
mobility, and other dynamic changes in the network.
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