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Abstract—Accurate prediction of the future network traffic
plays an important role in various network problems (e.g. traffic
engineering, capacity planning, quality of service provisioning,
etc.). However, the modern network communication is extremely
complicated and dynamic, which makes the tasks of modeling
and predicting the network behavior very difficult. To this end,
a common approach is to apply the traditional time series
prediction techniques such as Autoregressive Integrated Moving
Average or Linear Regression. Besides that, there are some
studies exploiting Deep Learning techniques such as Restricted
Boltzmann Machine or Recurrent Neural Network (RNN) to
estimate the traffic volume. Although the prediction accuracy
largely depends on the amount of historical data, measuring
all the network traffic is impossible or impractical due to the
monitoring resources constraints as well as the dynamics of
temporal/spatial fluctuations of the traffic. Thus, the state-of-
the-art proposals reveal poor performance regarding the traffic
inference when lacking ground-truth input.

In this paper, we propose a highly accurate traffic predic-
tion algorithm by leveraging the Convolutional LSTM network
(ConvLSTM), which is the integrated model of Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM)
network, for spatiotemporal modeling and estimating the future
network traffic. We also propose a technique which exploits the
RNN to correct the imprecise data in the input. To evaluate the
proposed algorithm, we conduct extensive experiments using the
Abilene dataset which contains the real network traffic trace. The
experiment results show that our proposed approach outperforms
the existing algorithms in terms of several metrics including error
ratio, root mean square error, and coefficient of determination, in
both one-step-ahead and multi-step-ahead prediction with partial
information.

I. INTRODUCTION

In recent years, the great demand for the Internet services
(e.g. video streaming, VoIP, etc.) has led to an exponential
growth in the backbone network traffic. Having a better
knowledge about the backbone network traffic, specifically
being able in predicting future traffic, thus becomes a criti-
cally important factor to perform management tasks such as
traffic engineering, capacity planning and quality of service
provisioning. For example, in the well-known Network Utility
Maximization (NUM) [1], [2] (which usually provides a
bandwidth allocation or smart routing solution by solving
optimization problem), the future network traffic knowledge
(e.g. user demands, link usages, end-to-end latency) is used as
the input. However, due to the explosion of backbone network
traffic as well as the complexity and dynamics of network

communication behavior, modeling and estimating the future
traffic in backbone networks becomes a significant challenge.

In the literature, numerous effort has been done on pre-
dicting future traffic in data centers and cellular networks.
In the traditional approaches, regression techniques (e.g., Au-
toregressive Integrated Moving Average (ARIMA) [3]) are
exploited to obtain the predicted value. However, ARIMA
has shown a poor performance due to two main reasons: 1)
The communication behavior has become too dynamic and
complicated to be modeled by a linear system. 2) ARIMA
ignores the spatial relation between the traffic flows and
processes the flows independently. However, the recent studies
have shown that there is a strong relation between the flows,
which can be utilized to improve the prediction accuracy
[4], [5]. Recently, deep learning has been widely applied to
various application domains such as image/video processing,
natural language recognition, etc., and achieved breakthrough
results. In traffic analysis domain, deep learning algorithms
have shown superior capability in solving the modeling and
predicting non-linear time series problems. Nie et al. [6]
used Restricted Boltzmann Machine to accurately predict the
future traffic volume. Alternatively, the studies in [4] and [7]
exploited the Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) for capturing the spatial and
temporal features.

Unfortunately, all of the existing algorithms proposed so far
require precise historical data as the input. This requirement
can be easily accomplished in the context of data centers
and cellular networks since these networks are controlled
through top-of-rack switches or base stations, respectively.
However, collecting all the traffic data in backbone networks
is impractical due to the complexity of network topology, the
resource limitation of network devices and the high overhead
of monitoring high-speed network. Therefore, estimating the
future traffic in backbone networks suffers from the problem
of missing ground-truth input where some traffic flows cannot
be monitored at a particular time. A common approach to
fill into the missing data is utilizing the data generated by the
prediction model. However, this may cause a huge degradation
in the prediction’s performance.

In this paper, we address the problem of modeling and
predicting the future traffic in backbone networks under the
lack of historical traffic data. More specifically, we focus
on predicting the future traffic matrices which represent the978-3-903176-15-7 c© 2019 IFIP
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traffic volume between all the origins (i.e., sources) and
the destinations in the network. We leverage the so-called
Convolutional LSTM (ConvLSTM, for short) network [8] (i.e.,
a combination of CNN and LSTM network) in extracting
and modeling the spatiotemporal feature of the traffic matrix
data. Besides that, since the prediction accuracy of the model
strongly depends on the preciseness of feeding data, the most
challenging problem is how to correct the feeding data so
as to minimize the gap between the feeding data and the
ground-truth. To this end, we propose two techniques. First, by
constructing a backward network which processes the input in
the inverse order of time, we have more information to correct
the previous predicted data (which is usually imprecise) before
feeding it into the model to predict the future traffic. Secondly,
we construct a mechanism to sample the ground-truth at a
certain rate. Specifically, by comparing the trend and the error
in the historical prediction of each flow, we design a formula
to determine which flows should be monitored at the next
timestep. By doing so, we can balance between the monitoring
overhead (in terms of flow monitoring rate) and the prediction
accuracy. The contribution of this paper can be summarized
as follows:

• To our best knowledge, we are the first one considering
the problem of predicting future traffic in backbone
networks where the historical data may be missed. Our
approach is different from existing deep learning ap-
proaches in time series prediction where the model is
fed with only the ground-truth input.

• We exploit the ConvLSTM in handling the spatiotemporal
of the traffic matrices in backbone networks and construct
a model which combines the forward and backward
ConvLSTM networks. This model is able to correct
the input data to improve the accuracy of the future
traffic prediction. Moreover, we also design a formula to
determine which flows should be measured in the future.

• We evaluate the performance of our proposed algorithms
by conducting extensive experiments on real backbone
network traffic dataset and comparing the results with
state-of-the-art approaches.

The rest of the paper is organized as follows: we first introduce
the problem of traffic prediction under the lack of precise
input data and give a brief introduction about LSTM and
ConvLSTM network in Section 2. Section 3 presents the
motivation and the details of our proposed algorithms for
correcting the input data and determining the monitored flow
set. Section 4 shows extensive experimental results. We present
some related works in Section 5 and conclude the paper in
Section 6.

II. PRELIMINARIES

In this section, we first present the problem formulation of
traffic matrix prediction under the lack of ground-truth input.
Then, we give a brief introduction about the Long Short-Term
Memory and Convolutional LSTM networks which are used
in our approach.
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Fig. 1: A sequence of J previous traffic matrices including
both ground-truth and imprecise data.

A. Problem Description

We suppose that the traffic monitoring and predicting tasks
are executed periodically in every timestep and denote t as the
current timestep. Given a backbone network in which N is the
set of nodes (|N | = n), let Xj ∈ Rn×n be the traffic matrix at
the timestep j. Each element xjs,d ∈ Xj represents the traffic
volume of a flow from a source s to a destination d in the
network (flow (s, d), for short) at timestep j. Thus, the traffic
matrix prediction problem is to estimate the traffic matrices
of next L timesteps (denoted by X̃t+1, ..., X̃t+L), given the
previous J measurements (L, J ≥ 1):

X̃t+1, ..., X̃t+L

= argmax
Xt+1,...,Xt+L

p(Xt+1, ..., Xt+L|Xt−J+1, ..., Xt)
(1)

However, in this paper, we consider the case of backbone
networks where we cannot obtain all the J previous traffic ma-
trices by directly monitoring all the flows. Although in recent
years, advance network architectures such as Software-Defined
Networking (SDN) [9] and Network Function Virtualization
(NFV) have enabled many alternative ways to measure the
network flow information, collecting all the traffic statistics
with low overhead (in terms of computational complexity,
bandwidth, ...) still remains as a challenging task. Therefore,
to reduce the monitoring overhead, we measure only a part of
the traffic flows at each timestep and use the data generated
by the prediction model to fill into the missed historical
data. Accordingly, the traffic matrix prediction problem under
highly missing ground-truth data can be formulated as follows:

Input

xjs,d =

{
ojs,d if mj

s,d = 1

x̃js,d otherwise
∀s, d ∈ N ; j = t− J + 1, ..., t

(2)

Output

X̃t+1, ..., X̃t+L

= argmax
Xt+1,...,Xt+L

p(Xt+1, ..., Xt+L|Xt−J+1, ..., Xt)
(3)
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Fig. 2: The unfolded model of the LSTM network.

where ojs,d and x̃js,d denote the observed and predicted value of
flow (s, d) at timestep j, respectively. The binary variable mj

s,d

depends on the monitoring policy, where mj
s,d = 1 indicates

that flow (s, d) is monitored at timestep j; otherwise, the value
of traffic volume is filled up by the prediction result. Fig.1
shows the sequence of J previous traffic matrices which is
used as the input for predicting the future traffic. The green
elements are the ground-truth data obtained by monitoring the
flows directly, and the white elements represent the predicted
values.

B. LSTM and Convolutional LSTM network for spatiotempo-
ral sequence modeling

Long Short-Term Memory network is a special Recurrent
Neural Network which replaces the standard RNN units by
the LSTM units. LSTM network has been proved to be stable
and powerful for modeling long-range dependencies in various
problem domains, thus it is well-suited for processing and
making predictions based on time series or sequence data.
Indeed, LSTM has been applied in many real-life sequence
modeling problems. The unfolded model of LSTM network
(Fig.2) shows that the input is processed step-by-step and the
outputs of previous steps are used as the input for the next step.
This architecture along with the advantages of the memory
cell in LSTM units make LSTM network especially suitable
for solving the series based predictions.

However, in many problems such as precipitation now-
casting [8] or images/videos based action prediction where
the sequence data has a strong spatial relation, LSTM re-
veals many limitations. Therefore, to deal with more general
spatiotemporal sequence forecasting problems, authors in [8]
have proposed an extension of LSTM called ConvLSTM. The
ConvLSTM layer has convolutional structures in both the
input-to-state and state-to-state transitions which can exploit
both temporal and spatial features of the input sequence. To
obtain the spatiotemporal feature, the ConvLSTM network
takes a 3D tensor Xt as input in the processing step t, for
example, Xt can be a 32 × 32 × 3 image whose the last
dimension represents the color of the image (RGB). The key
equations of the ConvLSTM are shown in (4), where it, ft, ot
are the input, forget, output gates, respectively; Ct, Ht are
the cell and the final state of the LSTM unit, respectively;
‘∗’ denotes the convolution operator and ‘◦’ denotes the
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(c) 30% Ground-truth input.
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Fig. 3: The effect of ground-truth input on prediction accuracy.
(One-step-ahead prediction using the LSTM network.)

Hadamard product [8]:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)
(4)

The main difference between the LSTM unit and ConvLSTM
unit is the convolution operation (i.e., ‘∗’). While the LSTM
network only takes a 1D array as the input at each processing
step, the ConvLSTM takes a 3D tensor as the input and uses
multiple filters to extract the spatial information. The filter size
(also called as kernel size) is k× k× d, where k is an integer
number (normally, k = 3, 5, 7, etc.) and d equals to the last
dimension of the input. These filters are shifted across the 3D
input, and hence, can extract the spatial features of the data.

III. PROPOSED PREDICTION MODEL

In this section, we first describe two challenges in solving
the traffic matrix prediction problem with partial information
in Section III-A. These two challenges then are addressed in
Section III-B and III-C, respectively.

A. Motivation

In order to deploy the traffic matrix prediction model, we
face two important challenges. The first one is the accumu-
lative error in the prediction results over timesteps. We have
conducted an experiment to figure out the impact of imprecise
input data on the results of one-step-ahead prediction (i.e.,
L = 1) using the LSTM network. Fig.3 shows the one-step-
ahead prediction results with various settings of the percentage
of ground-truth data in the input. As shown, the accuracy
decreases over the timesteps between two consecutive mea-
surement points (i.e., Fig.3(a), Fig.3(b)). While in Fig.3(d),
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thanks to the higher percentage of ground-truth data in the
input, we can capture the trend of the flow and achieve a high
accuracy in forecasting the future traffic. Therefore, in order
to alleviate the accumulative error while remaining the low
monitoring overhead (which is proportional to the portion of
the ground-truth data), our idea is to add a preprocessing on
the imprecise data before feeding it into the prediction model.
Specifically, we propose a novel deep learning model based
on the bidirectional recurrent neural network (the details will
be shown in Section III-B).

The second challenge is how to determine which flows to
be measured at the next timestep. As mentioned above, in
order to reduce the monitoring overhead we do not measure
all network flows, thus choosing appropriate flows to monitor
in each timestep becomes a critical factor in reducing the
prediction error. One of the common approaches in choosing
monitored flow set is to satisfy the fairness among all the
flows. Specifically, the gaps between every two consecutive
monitored timesteps of every flow are kept to be approximately
the same. However, this method may not be effective since
the network flows are dynamic and have various temporal
fluctuation patterns. To deal with this problem, we propose a
novel scheme for selecting the next monitored flows, which
exploits the previous prediction results and the fluctuation
characteristic of all flows (see the details in Section III-C).

B. Spatiotemporal traffic matrix prediction and input data
correction

The ConvLSTM network has shown the effective capability
in processing the spatial and temporal time series data where
the inputs are 3D tensors such as images or video frames.
Therefore, to apply the ConvLSTM network in our problem,
we first consider the traffic matrices as 2D images with the
dimension of n×n, and then we transform them into 3D ten-
sors by adding extra binary matrices (called as measurement
matrices). Specifically, the measurement matrix Mj , which is
added to the traffic matrix at timestep j, is a matrix whose
each element mj

s,d ∈Mj indicates whether the corresponding
value in the traffic matrix is an observed value (i.e., mj

s,d = 1)
or a predicted value (i.e., mj

s,d = 0). Thus, the input of our
ConvLSTM network is a sequence of J 3D tensors whose
dimension is n × n × 2. In order to predict multi-step traffic
matrices, we apply the Iterated Multi-Step estimation (IMS)
approach [10]. Specifically, we first use the many-to-many
model to predict the traffic matrix of the next timestep and
then, iteratively feed the generated data into the model to get
the multi-step-ahead prediction. Fig.4 describes the many-to-
many model which takes J 3D tensors from timestep t−J+1
to t as the input and predicts the next traffic matrix X̃t+1.

Now, we describe our technique for alleviating the error
in the input data. Following the experiment in Section III-A
(Fig.3), we observe that the prediction results become more
accurate if the input sequence contains more precise data.
Besides that, the accuracy of the predicted traffic at a timestep
whose previous timestep’s data is ground-truth data is better
than the others. Based on the above observations, we propose
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Fig. 4: The many-to-many model of ConvLSTM network for
traffic matrix prediction.

an algorithm which uses the outputs from each processing step
of the ConvLSTM network (i.e., X̃t−J+2, ..., X̃t) and the mea-
surement matrices to correct the imprecise data. To be more
specific, considering an example where we predict the traffic
matrix Xt+1 by taking the sequence {Xt−J+1, ..., Xt} as the
input. As using the many-to-many model, after the prediction,
we also obtain the outputs {X̃t−J+2, ..., X̃t+1} whose each
element corresponds to one processing step of the ConvLSTM
network. Suppose that xjs,d ∈ Xj (t − J + 2 ≤ j ≤ t) is an
imprecise data and x̃js,d ∈ X̃j is its corresponding output in
the ConvLSTM network. Because of the forward direction in
the processing step of the ConvLSTM network, the output x̃js,d
is generated by taking only the input from timestep t− J +1
to j − 1. If the input sequence from timestep t − J + 1 to
j − 1 contains almost ground-truth data, we can replace xjs,d
by x̃js,d. However, we face with the problem when the input
sequence from timestep t − J + 1 to j − 1 contains only a
few ground-truth data. To this end, our idea is to leverage the
data at the next timesteps (from j+1 to t) which may include
more precise data.

In order to implement the above idea, besides the current
ConvLSTM network (which we call as the forward network),
we construct an extra network (called as the backward net-
work) in which the input data is fed in the reverse order. Our
approach is motivated by the Bidirectional Recurrent Neural
Network (BRNN) which was introduced in [11]. Thanks to
adding a backward network, BRNN can be trained by all
available input information in both the past and the future
of a specific time frame. Different from the standard BRNN,
in each processing step, instead of aggregating the outputs of
the forward and backward networks, we keep them separately
(as shown in Fig.5), and use the outputs from the backward
network to update the incorrect data in the input matrices.
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Therefore, xjs,d now can be updated by using the output of
the forward network (i.e., x̃js,d) or the output of the backward
network (i.e., x̂js,d). In order to determine the contribution
of the old value (i.e., xjs,d), the outputs of the forward and
backward networks (i.e., x̃js,d and x̂js,d) in updating imprecise
data, we define parameters αs,d,t, β

j
s,d,t and γjs,d,t which are

the confidence factors of xjs,d, x̃js,d and x̂js,d, respectively
(αs,d,t+β

j
s,d,t+ γ

j
s,d,t = 1). The details of the imprecise data

correction algorithm is described in Algorithm 1. Note that
since the outputs of the forward network are from timestep
t−J+2 to t+1 while that of the backward network are from
t− J to t− 1, we can only apply Algorithm 1 for correcting
the inputs from timestep t− J + 2 to t− 1. In what follows,
we describe the main idea behind Algorithm 1.

Obviously, the less the ground-truth data contained in the
inputs, the less precise the predicted values, thus xjs,d should
not be updated if the historical data is highly missed. Accord-
ingly, the confidence factor αs,d,t in Algorithm 1 is determined
by the portion of the flows that are not monitored (line 2).
βj
s,d,t and γjs,d,t are determined based on two terms named

forward loss and backward loss. The forward and backward
losses of a flow (s, d) (denoted as lfs,d,t and lbs,d,t, respectively)
are defined to assess the performance of the forward and
backward ConvLSTM networks after predicting the traffic at
current timestep t. Specifically, lfs,d,t and lbs,d,t are defined as
the root squared errors between the outputs and the ground-
truth elements in the input (line 4, 5). Note that, if the input
contains no ground-truth data, then the losses are assigned to ξ
which is a very large positive number (line 8). Intuitively, the
smaller lfs,d,t (resp. lbs,d,t), the smaller the gap between x̃js,d
(resp. x̂js,d) and the ground-truth. Therefore, if lfs,d,t < lbs,d,t,
then x̃js,d should contribute more than x̂js,d in correcting the
imprecise input, otherwise, x̂js,d should contribute more than
x̃js,d. Accordingly, the confidence factors βj

s,d,t is designed
so that flows with the small lfs,d,t and the large lbs,d,t will
have the large βj

s,d,t. Inversely, flows with the small lbs,d,t

Algorithm 1: Forward and backward data correction
Input : Xk: the previous traffic matrix at timestep k

X̃k: the outputs of forward network
X̂k: the outputs of backward network
Mk: the measurement matrix of Xk
(k = t− J + 2, ..., t− 1)

Output : The updated traffic matrices
1 for s, d ∈ N do

2 αs,d,t ← 1−
∑t

i=t−J+1m
i
s,d,t

J
;

3 if (
∑t
i=t−J+1m

i
s,d 6= 0) then

4 lfs,d,t ←
√∑t−1

j=t−J+2m
j
s,d × (x̃js,d − x

j
s,d)

2;

5 lbs,d,t ←
√∑t−1

j=t−J+2m
j
s,d × (x̂js,d − x

j
s,d)

2;
6 end
7 else
8 lfs,d,t ← ξ; lbs,d,t ← ξ ;
9 end

10 for j = t− J + 2 to t− 1 do

11 ρjs,d,t ←
∑j−1

i=t−J+1
mi

s,d,t

j−t+J ; µjs,d,t ←
∑t

i=j+1m
i
s,d,t

t−j ;

12 βjs,d,t ←
(lbs,d,t+ρ

j
s,d,t

)(1−αs,d,t)

l
f
s,d,t

+lb
s,d,t

+ρ
j
s,d,t

+µ
j
s,d,t

;

13 γjs,d,t ←
(l

f
s,d,t

+µ
j
s,d,t

)(1−αs,d,t)

l
f
s,d,t

+lb
s,d,t

+ρ
j
s,d,t

+µ
j
s,d,t

;

14 xjs,d ← αs,d,t × xjs,d + βjs,d,t × x̃
j
s,d + γjs,d,t × x̂

j
s,d;

15 end
16 end
17 return Xk (k = t− J + 2, ..., t− 1)

and the large lfs,d,t will have the large γjs,d,t. Moreover, with
the observation that the more ground-truth elements the inputs
contain, the more accurate the prediction result is, βj

s,d,t (resp.
γjs,d,t) is also designed so that the greater the percentage of
the ground-truth data in the input at timesteps from t− J +1
to j − 1, i.e., denoted as ρjs,d,t (resp. from j + 1 to t, i.e.,
denoted as µj

s,d,t), the greater the βj
s,d,t. Consequently, βj

s,d,t

and γjs,d,t are calculated based on both the network losses and
the percentage of ground-truth data in the input (line 12, 13).
Finally, xjs,d is updated by the formulation described in line
14.
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Fig. 6: Prediction results and actual values of a random flow.

C. Determining the monitored flow set

Our main idea is that at each timestep t, we calculate a
weight ws,d,t for each flow (s, d) and choose at most k flows
which have the lowest weights to monitor at the next timestep
(i.e., timestep t+1). The maximum number of flows that can be
monitored (i.e., k) depends on the network monitoring policy.
In the following, before going to the details of the weight’s
formula, we will first describe our theoretical basis. To ease
the presentation, we call the periods between the consecutive
measured timesteps of a flow as non-monitored periods of that
flow.

Following the experiment results shown in Section III-A,
we note that the longer the non-monitored periods, the larger
the difference between the predicted results and the actual
traffic. Thus, in order to reduce the prediction error, we
should decrease the non-monitored periods of all flows. More
specifically, the flows that have not been monitored for a long
period should be chosen to be monitored at the next timestep.
To this end, for each flow (s, d), we define a term named
consecutive missing (denoted as cs,d,t) which is the number
of the timesteps from when (s, d) was last monitored till the
current timestep t. The weight should be designed so that it
will decline when the consecutive missing gets high.

Moreover, since our imprecise data correction algorithm is
based on the outputs of the forward and backward networks,
we need to keep the losses of these networks (i.e., lfs,d,t and
lbs,d,t, respectively) as smaller as possible. Accordingly, the
flows with higher forward and backward losses should be
chosen to be monitored at the next timestep.

Finally, we see that the flows with high fluctuation tend to
have high prediction error. Therefore, these flows should be
monitored more frequently. In order to measure the unsteadi-
ness of flow (s, d), we use the standard deviation of the traffic
volume of the flow (s, t) from timestep t−J+1 to t (denoted
as ηs,d,t).

Consequently, the weight is calculated based on the flows’
consecutive missing, backward loss, forward loss, and fluctu-
ation as follows.

ws,d,t

=
1

λ1 × lfs,d,t + λ2 × lbs,d,t + λ3 × cs,d,t + λ4 × ηs,d,t
(5)

TABLE I: The configurations of ConvLSTM networks.

Convolutional layers 2 Recurrent dropout 0.2
No. of filters 8/layer J 26
Filter size (3, 3, 2) L 12
Padding ‘same’ No. of trained epoches 50
CNN dropout 0.0 Batch size 256
λ1, λ2 2.0, 1.0 λ3, λ4 5.0, 0.4

where λ1, λ2, λ3 and λ4 are hyper-parameters which are
chosen by experiments.

At the end of the timestep t, the weights of all flows are
calculated, and the first k flows with the lowest weights are
chosen to be measured at the next timestep (i.e., timestep t+
1).

IV. PERFORMANCE EVALUATION

A. Settings

We evaluated the performance of our proposed approach
by conducting extensive experiments on the Abilene dataset
(available at [12]). The dataset contains the real trace data
from the backbone network located in North America which
contains 12 nodes (n = 12). The Abilene dataset, which
includes averages over 5 minutes interval of 144 origin-
destination flows from March 1 to September 11, 2004, has
been widely used for performance evaluation in many traffic
matrix interpolation and prediction studies [13], [5]. In the
experiments, we separated the dataset into 60% for training,
20% and 20% for testing and validating, respectively. We
compared our proposal with ARIMA [3] and the standard
LSTM model. For ARIMA, we use the historical data of
one month as the input for predict future traffic at each
timestep. The performance metrics used including Error Ratio
(ER), Root Mean Square Error (RMSE) and Coefficient of
Determination (denoted as R2 score) which are defined in (6).
The ER and RMSE are used for measuring the prediction
error and the standard deviation of the differences between
predicted values and ground-truth values, respectively (the
lower values is better). The R2 score determines how well the
predicted values are generated by the model. The maximum
value of R2 is 1 and it can be a negative number. Moreover,
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Fig. 7: Performance comparison in one-step-ahead prediction.
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Fig. 8: Performance comparison in multi-step-ahead prediction.

a higher R2 is better.

ER =

√∑
s,d∈N

∑T
i=1 (1−mi

s,d)× (ois,d − xis,d)2√∑
s,d∈N

∑T
i=1 (1−mi

s,d)× (ois,d)
2

RMSE =

√√√√ 1

D

∑
s,d∈N

T∑
i=1

(ois,d − xis,d)2

R2 = 1−
∑

s,d∈N
∑T

i=1 (o
i
s,d − xis,d)2∑

s,d∈N
∑T

i=1 (o
i
s,d − o

i
s,d)

2

(6)

where T is the number of timesteps, D = T × n × n is
the size and ois,d = 1

D

∑
s,d∈N

∑T
i=1 o

i
s,d is the mean of the

testing dataset. The experiments have been conducted on a
computer which has Intel i7-6900K CPU @ 3.20GHz, 48 GB
memory and two NVIDIA GeForce GTX 1080Ti. The detail
configurations of the ConvLSTM networks (the forward and
backward networks have the same configurations) are listed in
Table I.

We conducted two experiments. First, we evaluated the
performance of all the three algorithms in one-step-ahead
traffic matrix prediction (L = 1). In the second experiment,
we conducted a multi-step-ahead traffic matrix forecasting
by predicting the traffic matrices of one hour ahead of the
current timestep (L = 12). We denote p as the percentage
of the monitored flows per timestep. In each experiment, we
conducted different scenarios in which p is varied from 10%
to 40% (i.e., the maximum number of monitored flows per
timestep is k = p× n× n).

In the following, we will show the numerical results. Note
that since the values regarding ARIMA are extremely large

and lie outside the boundaries of the figures, they are also
presented in Table II.

B. One-step-ahead traffic prediction results

In this section, we present the performance evaluation in
one-step-ahead traffic prediction. First, we evaluate how well
the algorithms can capture the traffic trend (Fig.6). The figure
shows the difference between the predicted values and the
actual values of a flow chosen randomly in about 6 hours
(with 30% flows are monitored). As shown, our algorithm
can capture the traffic trend much more smoothly compared
with the other two algorithms. Besides that, thanks to the
monitoring policy (described in Section III-C), our proposal
monitors the traffic at more spikes than ARIMA and LSTM
(which use simple random policies in deciding monitored
flows).

Fig.7 shows the performance comparison among ARIMA,
LSTM and our proposed approach in terms of the Error Ratio,
Root Mean Square Error and Coefficient of Determination. It
can be seen that our proposal achieves the best performance
regarding all the metrics. LSTM shows the second best per-
formance and ARIMA is the worst. Comparing LSTM and
our proposal, we can see that our approach achieves a high
accuracy in most of the experiment scenarios. Specifically,
in the best case (i.e., p = 35% flows are monitored), the
ER and RMSE of our algorithm are 35.0% and 40.5% less
than that of LSTM, respectively. In terms of R2 score, our
proposal achieves 26.7% better than the LSTM approach in
the best case (i.e., p = 10%). Moreover, it can be seen that
our proposal in case p = 25%, achieves better performance
(regarding all metrics) as LSTM in case p = 40%. In addition,
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TABLE II: The prediction results of ARIMA

p ER (exp1|exp2) RMSE (exp1|exp2) R2 (exp1|exp2)
10% 2.45e10 | 7.29e10 3.27e8 | 1.05e9 −5.72e20 | −5.8e21
15% 3.5e6 | 1.001e7 4.5e4 | 1.4e5 −1.1e13 | −1.09e14
20% 40220 | 158861 323.75 | 1406 −1.48e9 | −2.8e10
25% 7.27 | 17.98 0.07 | 0.21 −41.23 | −341.6
30% 2.89 | 11.5 0.032 | 0.087 −13.6 | −148.2
35% 0.77 | 2.04 0.008 | 0.03 0.62 | −3.58
40% 0.33 | 0.83 0.003 | 0.009 0.92 | 0.28

Fig.7 indicates that while the performance of our proposal is
improved gradually when increasing the number of monitored
flows, LSTM does not. The fluctuation in the results of LSTM
can be explained by the random policy in choosing flows to
be monitored after each timestep.

The ratio of ground-truth input has a massive impact on the
prediction accuracy of ARIMA. As shown in Table II, when
p < 25%, we see the dramatical increase of ER and RMSE.
Specifically, when p = 10%, ER and RMSE become
extremely large, i.e., ER = 2.45e10, RMSE = 3.27e8.
Similarly, the R2 score also makes a huge decrease from
−41.23 to −5.27e20 when reducing p from 25% to 10%.
However, when the percentage of ground-truth data in the
input is sufficiently large (i.e., p = 40%), ARIMA can
performs very well and its performance is close to that of
our algorithm. This results strongly emphasizes the advantage
of our model in predicting the future traffic with only a small
portion of ground-truth information.

C. Multi-step-ahead traffic prediction results

In this section, we present the results of multi-step-ahead
traffic prediction under various settings of the ratio of the
monitored flows. In each timestep, our proposed algorithm
and LSTM predict the traffic matrices of one hour ahead by
applying the IMS approach, while ARIMA uses the Direct
Multi-Step approach.

Fig.8 shows the performance evaluation of all the three
algorithms in terms of ER, RMSE and R2 score. In general,
similar to the first experiment, our approach achieves the best
performance in all scenarios, followed by LSTM and ARIMA.
In comparison with LSTM, in the best case (i.e., 10% of flows
are monitored), the ER, RMSE of our algorithm are about
23.0% less than that of LSTM. Moreover, our algorithm results
in the R2 score that is 41.2% less than LSTM. Similar to the
first experiment, ARIMA also shows very poor performance
compared to the other two approaches.

Comparing the results of the two experiments, it can be
seen that the performance of the three algorithms in the second
experiment is worse than that in the first experiment. However,
the degradation of ARIMA is much more larger than that of
our approach and LSTM. Specifically, in the best case (i.e.,
the percentage of the monitored flows is 10%), the prediction
errors of our approach and LSTM increase by only 17.3% and
12.5%, respectively, while that of ARIMA is 197.6%.

In summary, by applying the Convolutional LSTM network
and the forward/backward data correction technique, our pro-
posal shows the superiority in handling the missing ground-

truth in the historical data. Specifically, our proposed algorithm
reduces the ER, RMSE and increases the R2 significantly
compared to LSTM and ARIMA.

V. RELATED WORK

Traffic matrix estimation and prediction, especially in back-
bone networks, have attracted a lot of attention in the research
community. To solve the traffic matrix estimation problem,
the authors in [14] exploited the compressive sensing and
network tomography to recover the missing data in the traffic
matrices. Moreover, the studies [5] and [15] considered the
spatial and temporal features by proposing a new structure
of the traffic matrices (3-way tensor). The above methods
can reduce the monitoring overhead by using only a small
number of measurement data (under 30%). However, these
approaches focused on the traffic interpolation problem while
many network applications and management tasks require to
forecast the future traffic usage or demand.

In the traffic matrix prediction problem, originally, re-
searchers referred to some simple statistical models such
as ARIMA or Gaussian model [16]. However, such simple
models cannot handle the complexity and dynamics of the
communication behavior in modern networks. To this end,
deep learning techniques have been exploited more in predict-
ing traffic [4], [7], [6]. In [4] and [7], the authors utilized the
Long Short-Term Memory and Convolutional Neural Network
for capturing the spatiotemporal feature and predicting the net-
work traffic in data center and cellular networks, respectively.
In backbone network, Nie et al. [6] used Restricted Boltzmann
Machine to capture the dynamic features of network. The au-
thors then proposed two separated deep belief network models
for solving the traffic estimation and prediction, independently.
More recent, the results in [17] and [18] showed the superiority
of LSTM network in modeling the temporal feature and the
long-range dependencies of network traffic. Unfortunately, all
the approaches proposed so far assumed that the input contains
only the ground-truth data. To the best of our knowledge, there
is no existing work addressing the problem of traffic prediction
under missing ground-truth data in backbone network.

VI. CONCLUSION

In this paper, we addressed the traffic matrix prediction
problem in backbone networks where the future traffic is
estimated under the lack of precise historical data. We ex-
ploited the Convolutional LSTM network for extracting and
modeling the spatiotemporal feature of the traffic matrices. We
proposed a novel deep learning model and techniques which
leverage the forward and backward ConvLSTM networks to
correct input data and determine flows monitored at the next
timestep. We conducted extensive experiments for evaluating
our proposed approach. The results demonstrated that the
proposed approach outperforms other well-known methods for
time series analysis.
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