
Optimal Distributed Resource Allocation in 5G

Virtualized Networks

Hassan Halabian

Huawei Canada Research Center, 303 Terry Fox Dr., Kanata, ON, K2K 3J1, Canada

hassan.halabian@huawei.com

Abstract—The concepts of network function virtualization
(NFV) and end-to-end (E2E) network slicing are two promising
technologies empowering 5G networks for efficient, flexible and
dynamic network deployment and service management. Optimal
resource allocation is one of the challenging problems to address
in such networks. In this paper, we propose a resource allocation
model for 5G virtualized networks in a heterogeneous cloud
infrastructure. In our model, each network slice has a resource
demand vector for each of its building virtual network functions
(VNFs). We then formulate the optimal resource allocation as
a convex optimization problem maximizing the overall system
utility as a function of the slice thicknesses with the constraints
of the data centers’ resource capacities. The slice thickness
variables together with the demand vectors determine the
amount of resources allocated to each slice. We further propose a
distributed solution for the resource allocation problem based on
auction/game theory by forming a resource auction between the
slices and the data centers (DCs). It is shown that the resource
allocation game has a unique Nash equilibrium and its solution
is the same as the solution of the centralized system optimization
problem, i.e., in equilibrium the slice thicknesses maximize the
overall system utility. Numerical analysis are provided to show
the validity of the results, evaluate the convergence of the
distributed solution and also comparing the performance of the
optimal scheme with heuristic ones.

Index Terms—5G Network Function Virtualization, Network
Slicing, Resource Allocation, Algorithmic Games

I. INTRODUCTION

Network Function Virtualization (NFV) and Software-

Defined Networking (SDN) are two promissing techniques

used in 5G network architecture evolution to provide signifi-

cant capital and operational expenditure saving by immigrat-

ing the network functions and services to cloud infrastructures

[1]–[4]. NFV provides software and hardware decoupling by

virtualizing the service components and network functions and

running them on top of a virtualization system, i.e., virtual

machines or containers [5]. On the other hand, SDN provides

centralized control plane for control and management of

network services and network functions. These two techniques

together with the concept of E2E network slicing [6]–[9]

enable mobile network providers to create virtualized E2E

networks over cloud systems. Depending on the functional,

operational and performance requirements, there have been

defined a number of 5G network slices in accordance with

the concept of networks as a service (NaaS), including but

not limited to enhanced mobile broadband (eMBB), ultra-
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Fig. 1: 5G network fuction virtualization - C-RAN and mobile

backhaul architecture

reliable and low-latency communication (uRLLC) and mas-

sive machine-type communications (mMTC) [10].

A virtualized network slice consists of a number of VNFs

distributed geographically in numerous DCs. Each VNF pro-

vides certain services in its slice and all the VNFs of a

slice collectively provide wireless network access to the UEs

attached to that slice. Fig. 1 shows an illustration of network

function virtulization architecture for 5G networks which

provides RAN (Radio Access Network) and mobile back-

haul/core function virtualization in data centers. As shown

in Fig. 1, in 5G C-RAN (Cloud-Radio Access Network)

architecture, communication signals are collected from the

cell towers by the Remote Radio Heads (RRH) and after RF

(Radio Frequency) processing they are sent to the Base Band

Units (BBUs) for digital processing. BBU may itself split

into Central Unit (CU) and Distributed Unit (DU) [11]. DU

runs latency sensitive RAN functions while CU is supposed

to run latency tolerant functions. In C-RAN architecture,

some or all BBU RAN functions may be virtualized [12].

Packet level processing is done in SGW (Serving Gateway)

and PGW (Packet Gateway) and mobility services are pro-

vided by MME (Mobility Management Entity). Subscriber

related information processing, e.g., authentication, location,

etc., is done by HSS (Home Subscriber Server) [13]. In

4G technology, these functions are implemented in dedicated

hardware while in a virtulaized architecture they are placed

as virtual machines/containers in DCs promoting the concept

of Mobile Carrier Cloud [4]. For 5G networks, 3GPP de-

fines a service-based network architecture in which mobile978-3-903176-15-7 c© 2019 IFIP
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Fig. 2: A topology of ADC, MDC and CDC distribution

back-haul/core services are provided by virtualized network

functions including (but not limited to) Access and Mobility

Management Function (AMF), Session Management Function

(SMF), Authentication Server Function (AUSF), User Plane

Function (UPF), Unified Data Management (UDM) and Policy

Control Function (PCF) [14].

Due to interdependence of VNFs in each slice, there are

placement constraints for placing the VNFs in the serving

DCs. For instance, due to front-haul latency and jitter con-

straints, there is distance limitation between the radio process-

ing functions and the BBU functions. Furthermore, certain

slices, e.g., uRLLC, require to satisfy certain QoS require-

ments and therefore there exist some placement constraints

for the VNFs of those slices. There might also exist some

placement restrictions due to administration, logistics and

management concerns. In the model presented in this paper,

it is assumed that the VNFs are placed in predetermined DCs

called Access Data Center (ADC), Metro Data Center (MDC)

and Core Data Center (CDC). ADC hosts VNFs processing

L1/L2 access functions, e.g., RLC, PDCP, RRM, MAC and

PHY. ADCs are preferably located physically close to the cell

sites and RRHs due to latency considerations. MDC hosts

VNFs processing traffic forwarding, classifications, admission

and mobility management, etc. Examples of functions in

MDC are 4G functions MME, SGW, PGW and 5G functions

AMF, SMF and UPF. CDC may locate functions dealing

with subscriber related information and policy enforcement

and charging functions. HSS is an example of a 4G function

in CDC. In 5G systems, CDC may locate functions such as

UDM and AUSF. Fig. 2 shows a topology illustration of the

distribution of ADC, MDC and CDC data centers in a 5G

network architecture. Similar modeling had been captured for

5G packet core in the literature, e.g., in [8].

The VNFs of a single slice have heterogeneous resource

requirements, i.e., CPU, memory, bandwidth and storage. For

example, BBU functions are CPU intensive as they execute

heavy processing DSP functions while PGW is a bandwidth

intensive function as it passes the entire slice traffic. The

resource requirements of slices of the same type are also

different since they are serving different number of UEs.

For instance a provider might run multiple IoT (Internet of

Things) slices each one dedicated for a specific application

[15], [16]. These slices might have different resource demands

depending on the number of attached UEs to them and also the

type of IoT application. Furthermore, the serving DCs have

heterogeneous resource capacities for each of their resources.

For such a system, with heterogeneous resource capacities and

heterogeneous slice requirements, optimal resource allocation

to the network slices is a challenging problem. Each network

slice might have a different utility/revenue function not willing

to share with DCs. Moreover, the DCs might not be under

the same management. For such a model, a distributed re-

source allocation scheme is more preferable for both the slice

providers and also the DCs.

Our contributions in this paper are summarized as fol-

lows: We first propose a resource allocation model for 5G

virtualized networks in a heterogeneous cloud infrastructure

with E2E network slices having diverse requirements and

resource demands. The heterogeneity of the slice requirements

is reflected in our model by considering different resource

demand vectors for each function of each slice. The demand

vectors for each slice specify the amount of resources required

for each function to complete a network task in one unit of

time, e.g., to serve one wireless user equipment. Hence, the

resource volume of each slice can be specified by a scalar

multiplier of its demand vectors and is called slice thickness in

this paper. The resource allocation optimization is maximizing

the total network utility as a function of the slice thicknesses

with the constraints of the DCs’ resource capacities. The

utility functions are assumed to be strictly concave and thus

the resource allocation is a convex optimization problem.

Specific choices of utility functions may provide desired

fairness properties, e.g., max-min, α-proportional, etc. We

further present a distributed solution for solving the resource

allocation problem by forming a resource allocation auction

between the slices and the DCs. It is proven that the resource

allocation game has a Nash equilibrium and also the Nash

solution is the same as the solution of the centralized system

optimization problem, i.e., in equilibrium the slice thicknesses

are also maximizing the overall system utility function. Nu-

merical analysis are provided to support the validity of the

results.

The rest of the paper is organized as follows. Section II,

presents the related research work in this domain of research.

In Section III, the proposed 5G resource allocation model

is introduced. Section IV formulates the global centralized

system utility optimization problem. In Section V, we present

the distributed game-based solution and show the existence

of Nash equilibrium. We further show that the Nash solution

coincides with the optimal system utility resource allocation.

Section VI, presents the simulation and numerical results.

Section VII provides the conclusions of the paper.
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II. RELATED WORK

The concept of network slicing provides flexible and dy-

namic provisioning of network services to vertical industries

including but not limited to manufacturing, health care, me-

dia and entertainment, automotive, public safety, financial

services, etc. [17]. The research in this area resulted in

forming many joint projects over open source platforms such

as OPNFV [18] and OpenMANO [19] for management and

orchestration of wireless network functions [1], [2].

Many research activities in this area are mainly focused on

radio resource virtualization [6], [7], management and orches-

tration of network functions [8], [9] without considering the

heterogeneous demand, QoS and performance requirements

of slices. The work in [20] focuses on Evolved Packet Core

(EPC) virtualization and addresses the optimal placement of

SGW and PGW functions in cloud carrier networks without

considering the end-to-end network slice requirements.

While most of the work in VNF orchestration is dedicated

to per DC orchestration of the VNFs, service-centric slice

orchestration (with diverse E2E requirements) is studied far

less in the literature [21]. In [11], [21]–[23], there have been

proposed algorithms for optimal VNF resource allocation

problem. In [23], the authors formulate a mixed-integer linear

programming (MILP) for joint function chaining and resource

allocation problem and to solve this problem they propose

heuristic alternatives. Similarly [22] formulates the function

chaining problem as a binary NP-hard programming problem

and to solve it the authors propose heuristic approaches. In

[21], complex network theory is used to obtain topological

information of slices and infrastructure network and ranking

the nodes for mapping VNFs to the nodes. In none of these

papers, the model is comprehensive in a sense to consider the

DC models and the available resources in DCs (computation,

memory and bandwidth) in the problem formulation. More-

over, the objective in all of them misses the slice provider

utilities, fairness and also heterogeneous resource demands

of the network slices. In [24], the authors support the idea

of high-level system orchestration for dynamic management

of VNFs and propose an architectural system model with-

out proposing a technical function placement and resource

allocation solution. The work in [11] formulates a MILP to

derive the optimal number of VNFs to meet the performance

requirements of a network slice. The authors further form

a coalition game between DCs to host the slice VNFs. In

contrast to the aforementioned references, we consider the

resource allocation among a number of competing slices

with diverse resource demands on a set of heterogeneous

DCs. Moreover, we formulate the resource allocation with

the objective of maximizing the overall system utility. Our

distributed scheme forms an auction game between the slices

and the DCs (in contrast to [11] where the game is between

the DCs) to solve the system optimization problem.

III. SYSTEM MODEL

Consider a virtualized 5G system consisting of a set of

N network slices. Each slice n is composed of a number of

�������������
����������
������	���������

Fig. 3: System model for function placement and resource

allocation

VNFs denoted by Fn = {fn
1
, fn

2
, · · · , fn

M} where M is the

number of VNFs for each slice. If different network slices

have different number of VNFs, we let M be the maximum.

Fig. 3 shows an illustration of the system model for three

slices.

In our model, there are K DCs over which the VNFs are

being distributed. The available resources in each DC k are

denoted by vector Rk = (Rk,1, Rk,2, · · · , Rk,L) where Rk,ℓ

represents the amount of available resource ℓ on DC k. The

available resources in each DC are for example CPU, memory,

bandwidth and storage. Each VNF fn
m of slice n is placed

in one of the DCs. The placement of each VNF in DCs

is predetermined by the operator. However, the amount of

resources allocated to each VNF in each DC is unknown. The

goal of the resource allocation is to determine the amount of

resources allocated to each of the VNFs in each DC.

We assume that each network slice n is associated with a

set of demand vectors for each of its VNFs denoted by dk
fn

m

=

(dkfn

m
,1, d

k
fn

m
,2, · · · , d

k
fn

m
,L) for each DC k and each VNF m of

slice n, denoted by fn
m. If VNF m for slice n (i.e., fn

m) is not

defined or is not going to be placed on DC k, we set dk
fn

m

to

zero vector. The set of demand vectors of each network slice

is denoted by Dn = {dk
fn

m

|m = 1, 2, · · ·M,k = 1, 2, · · · ,K}
which reflects the amount of resources for each VNF in each

DC to complete a network task in one unit of time, e.g.,

to serve one wireless user equipment. The demand vectors

are heterogeneous across the network slices and also inside

each network slice. We now define the slice thickness variable

vn (vn > 0) for each slice n which denotes the number of

network tasks (wireless user service) that can be executed in

one unit of time. We can interpret Dn as the slice thickness

for a single task and therefore vnDn represents the amount of

resources allocated to slice n to support vn task(s) in one unit

of time. In other words, vn specifies how the network slice

expands or shrinks with respect to its demand vectors Dn.

By v = (v1, v2, · · · , vN ) we denote the vector of the slice

thicknesses. To have a visual view of the problem, consider

Fig. 3 again. In this figure, each cube represents the demand

vector for each VNF such that each side magnifies the demand

element for each resource type. The cubes of the same color

are the building VNFs of a network slice. A slice thickness

variable vn determines how the cubes of the same slice expand

or shrink with vn as the expansion coefficient.

We assume that slice operators have separate utility func-

tions as a function of the amount of resources allocated to

the slice’s functions. Since the allocations of each slice scale
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with the slice thickness vn, the slice n utility function can be

denoted by Un(vn). It is assumed that the slice utility function

is increasing, strictly concave and continuously differentiable

function of vn. These assumptions on the utility functions

are realistic assumptions as each slice utility/revenue will be

increasing with respect to its allocated resources but the slope

of utility growth decreases by increasing the allocations, e.g.,

due to limited number of UEs. The problem to address here

is to find the slice thickness variables vn such that the total

system utility is optimized.

IV. CENTRALIZED RESOURCE ALLOCATION

OPTIMIZATION

Based on the assumptions and the presented system model,

we can formulate the virtualized 5G resource allocation into

the following optimization problem.

Centralized System Optimization:

Maximize:
v

N
∑

n=1

Un(vn) (1)

Subject to:

N
∑

n=1

M
∑

m=1

vnd
k
fn

m
,ℓ ≤ Rℓ,k ∀ℓ, ∀k

vn ≥ 0 ∀n

The objective of Problem (1) is to maximize the overall sys-

tem utility defined as the sum of the slices’ utility functions.

The constraints of this problem ensure that the slice thickness

allocations will not violate the capacity limits of each resource

in each DC. The centralized system optimization problem is

a convex optimization problem in terms of the slice thickness

variables vn. This is because the objective function is concave

and the constraints are linear inequalities representing a com-

pact feasible region. Therefore, the centralized optimization

problem has a unique optimum solution [25].

By choosing a proper utility function Un(·), we can achieve

a trade-off between efficiency and fairness which depends

on the specific choice of Un(·). To capture the trade-off

between efficiency and fairness, one may choose Un(·) from

the class of α-fair utility functions [26], [27]. Specifically,

by choosing Un(·) such that U ′

n(x) = x−α, for some fixed

parameter α, the optimal solution of the centralized system

optimization satisfies α-proportional fairness in terms of slice

thicknesses. Thus, the α-proportional utility function is de-

fined by Un(vn) =
v1−α

n

1−α
for α > 0 and α 6= 1. For α = 1, we

have Un(vn) = log(vn) which is equal to the limiting value

of
v1−α

n

1−α
when α → 1. The α-proportional utility function

with α = 1 provides “proportional fair” allocation and when

α → ∞, it provides “max-min” fairness.

The centralized system problem can be solved by well-

known convex optimization methods, e.g., subgradient pro-

jection and interior-point methods by a central optimizer [25].

The main issues of centralized solutions are lack of scalability

and single-point-of-failure problem. With the growth of the

number of network slices and their VNFs and dynamic

network changes, scalability becomes an important challenge

for centralized solutions. Moreover, any failure in the central

optimizer may result in the entire resource allocation scheme

to fail. Another drawback of centralized approaches is that

the slice providers need to disclose their (possibly private)

utility functions with DCs. Finally, centralized solutions fail

to provide a global optimal resource allocation if the DCs are

not under the same management and do not want to disclose

their resource capacities to a third party optimizer.

V. DISTRIBUTED RESOURCE ALLOCATION - AUCTION

GAME APPROACH

Due to the problems with centralized approaches, we pro-

pose the following distributed scheme for 5G resource alloca-

tion problem. The distributed scheme is based on application

of auction theory by forming an auction game between the

slices and the DCs. In this scheme, the network slices bid for

each of the resources of the DCs they are placing a function

on. Based on the bids submitted by the network slices, the

price for each resource on each DC is determined and is

announced to the network slices together with their calculated

thickness values. Each slice thickness will be equal to the

minimum of the slice thicknesses received from all DCs. On

the other hand, each slice maximizes its payoff based on the

prices received from the DCs and updates its bid for the next

round of the game. It is shown that Nash equilibrium exists

for such an auction, i.e., there exists an equilibrium slice

thickness vector and an equilibrium resource price for each

of the DCs’ resources such that no network slice is willing

to change its bid and its allocation. Furthermore, it is shown

that Nash solution for the game problem is the same as the

solution of the centralized system optimization Problem (1),

i.e., the Nash equilibria of the game approach will achieve the

full efficiency of the system optimization. The benefits of the

proposed distributed scheme are the following:

• Convergence to the system optimal solution.

• No optimization third party involved and no information

sharing between the slice providers and the DCs.

• DCs do not necessarily need to be under the same man-

agement. This provides flexibility for the slice provider

to choose proper DCs for placing its functions, i.e.,

flexibility for different business models.

A. Game setup

The resource allocation game is setup in the following

items:

• Each Slice n offers an amount of wk
fn

m
,ℓ for resource

ℓ of DC k which is locating the VNF fn
m. The bid-

ding is done for all ℓ, k and m. We define w =
(wk

fn

m
,ℓ, ∀n, ∀m, ∀k, ∀ℓ) as the offer matrix.

• Each DC k calculates the price of each of its resources

by using the following equation.

pℓ,k =

∑

n,m wk
fn

m
,ℓ

Rℓ,k

(2)

We define p = (pℓ,k, ∀ℓ, ∀k) as the resource price matrix.
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• Each DC k calculates a slice thickness for each slice n

for each VNF fn
m and resource ℓ as follows.

vkfn

m
,ℓ =

wk
fn

m
,ℓ

pℓ,kd
k
fn

m
,ℓ

(3)

We call these thicknesses as the deficient thicknesses

since they are calculated just based on local and insuffi-

cient information for each resource of each DC.

• The resource price on each DC as well the deficient thick-

nesses are announced to the slices. Each slice calculates

the offered final thickness by

vn = min
m,ℓ,k

{vkfn

m
,ℓ}. (4)

• Each slice further uses the resource prices to update

its thickness by maximizing its overall payoff function

Gn(vn;p) defined as

Gn(vn;p) = Un(vn)− vn
∑

ℓ,m,k

dkfn

m
,ℓpℓ,k. (5)

Slice n Payoff Optimization:

Maximize: Gn(vn;p) (6)

Subject to: vn ≥ 0

• Each slice then updates its offer for each resource to each

DC for each of its functions by

wk
fn

m
,ℓ = v⋆nd

k
fn

m
,ℓpℓ,k, (7)

where v⋆n is the solution of the slice payoff optimization

problem in (6).

The game is considered to be converged if the distance of the

thickness allocation from the DCs derived from (4) and the

thickness derived from the slice payoff optimization problem

in (6) is less than ǫ, i.e., for all n, |vn − v⋆n| ≤ ǫ where

ǫ is a given parameter of the algorithm and establishes a

trade-off between the solution accuracy and the convergence

speed. We now formally define the Nash equilibrium for the

aforementioned game.

Definition 1. The game is in Nash equilibrium if there exists a

pair of offer matrix and resource price matrix (w,p) such that

the slice payoff defined in (6) is maximized and the equilibrium

resource price is determined according to (2), i.e.,

Gn(vn;p) ≥ Gn(v̄n;p) for any v̄n ≥ 0, ∀n (8)

pℓ,k =

∑

n,mwk
fn

m
,ℓ

Rℓ,k

∀ℓ, ∀k. (9)

In the following theorem, we show that the Nash equilib-

rium does exist for the described game and the resulting Nash

thickness vector is equal to the solution of the centralized

system optimization in (1).

Theorem 1. Assume that the slice utility functions are strictly

concave, increasing and continuously differentiable. Nash

equilibrium exists for the resource allocation game described

above, i.e., there exists a pair (w,p) such that (8) and (9)

are satisfied. Furthermore, the Nash pair (w,p) will result in

a unique thickness vector v derived from (4) such that it also

solves the centralized system optimization in (1).

Proof. The proof follows by taking the Lagrangian of the

optimization problem and showing that the Nash conditions

(8) and (9) are the same as the optimality conditions of the

centralized system optimization problem as used in [27]. Since

the centralized system optimization problem is strictly feasible

(at least v = 0 is in the feasible region) then Slater condition

guarantees that the strong duality for this problem holds [25].

Also since the objective function is strictly concave, increasing

and continuously differentiable and the feasible region is

compact, the solution is unique [25]. The Lagrangian form

for this problem is given by

L(v;λ) =

N
∑

n=1

Un(vn)−
∑

ℓ,k

λℓ,k

(

N
∑

n=1

M
∑

m=1

vnd
k
fn

m
,ℓ−Rℓ,k

)

(10)

where λ is the matrix of Lagrangian variables. Assuming that

v∗ is the optimal vector of slice thicknesses for Problem (1),

KKT (Karush-Kuhn-Tucker) conditions ensure that there exist

Lagrange multipliers λℓ,k such that the following conditions

(primal and dual feasibility, complementary slackness and

vanishing of the gradient of the Lagrangian) are hold [25].

N
∑

n=1

M
∑

m=1

v∗nd
k
fn

m
,ℓ ≤ Rℓ,k, ∀ℓ, ∀k (11)

v∗n ≥ 0, ∀n (12)

λℓ,k ≥ 0 ∀ℓ, ∀k (13)

λℓ,k

(

N
∑

n=1

M
∑

m=1

v∗nd
k
fn

m
,ℓ −Rℓ,k

)

= 0 ∀ℓ, ∀k (14)

v∗n > 0 ⇒ U ′

n(v
∗

n) =
∑

ℓ,m,k

λℓ,kd
k
fn

m
,ℓ ∀n (15)

v∗n = 0 ⇒ U ′

n(v
∗

n) ≤
∑

ℓ,m,k

λℓ,kd
k
fn

m
,ℓ ∀n (16)

The Nash equilibrium is at a point where given the resource

prices, the payoff of all the slices are maximized, i.e., for all

n,

G′

n(vn;p) = U ′

n(vn)−
∑

ℓ,m,k

pℓ,kd
k
fn

m
,ℓ ≤ 0, vn ≥ 0 (17)

vn(G
′

n(vn;p)) = 0 ⇒ vn



U ′

n(vn)−
∑

ℓ,m,k

pℓ,kd
k
fn

m
,ℓ



= 0 (18)

On the other hand, the equilibrium resource prices satisfy

either of the following equations:

N
∑

n=1

M
∑

m=1

vnd
k
fn

m
,ℓ= Rℓ,k

or

N
∑

n=1

M
∑

m=1

vnd
k
fn

m
,ℓ ≤ Rℓ,k and pℓ,k = 0 (19)

The first equation says that with the current price and thick-

nesses the capacity Rℓ,k is totally used up. The second one
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says that if the capacity is not used up (i.e., there is no

competitive demand for it in the auction) its price tends

to zero. Note that in equilibrium, since the thickness vn
is determined from (4), the overall demand for some of

resources on some DCs might not be fully demanded, i.e.,
∑N

n=1

∑M

m=1
v∗nd

k
fn

m
,ℓ ≤ Rℓ,k and thus for those resources,

the price pℓ,k tends to zero. Conditions (19) can be summa-

rized as

pℓ,k

(

N
∑

n=1

M
∑

m=1

vnd
k
fn

m
,ℓ −Rℓ,k

)

= 0,

pℓ,k ≥ 0,

N
∑

n=1

M
∑

m=1

vnd
k
fn

m
,ℓ ≤ Rℓ,k. (20)

We observe that Conditions (11) – (16) are similar to

Conditions (17) – (20). Since the primal and dual centralized

system optimization have unique solutions v∗ and λ, by letting

pℓ,k = λℓ,k, we observe that the equilibrium price matrix

p does exist and is unique. We now show that the Nash

equilibrium point in the resource allocation game is the same

as the optimal point in the centralized system optimization

problem. From (6) at the equilibrium, we know that

Un(vn)− vn
∑

ℓ,m,k

dkfn

m
,ℓpℓ,k≥Un(v

∗

n)− v∗n

∑

ℓ,m,k

dkfn

m
,ℓpℓ,k (21)

By summing over all slices,
∑

n

Un(vn) ≥
∑

n

Un(v
∗

n)

+
∑

n,ℓ,m,k

vnd
k
fn

m
,ℓpℓ,k −

∑

n,ℓ,m,k

v∗nd
k
fn

m
,ℓpℓ,k (22)

From (20), we have
∑

n,ℓ,m,k

vnd
k
fn

m
,ℓpℓ,k =

∑

ℓ,k

pℓ,kRℓ,k (23)

From the constraints of Problem (1), we also have
∑

n,ℓ,m,k

v∗nd
k
fn

m
,ℓpℓ,k ≤

∑

ℓ,k

pℓ,kRℓ,k (24)

Using (22) – (24), we observe that
∑

n

Un(vn) ≥
∑

n

Un(v
∗

n) (25)

Since, v∗ is the global optimal point for the centralized system

Problem (1), we must have
∑

n Un(vn) =
∑

n Un(v
∗

n) and

since the solution is unique, we have v = v∗.

In summary, Theorem 1 proves the following statements:

• A unique Nash equilibrium exists for the proposed auc-

tion game, i.e., there exist an equilibrium slice thickness

vector and an equilibrium resource price for each of the

DCs’ resources such that no network slice is willing to

change its bid and its allocation.

• Nash solution for the game problem is equal to the

solution of the centralized system optimization problem

in (1), i.e., the gap between the game result in Nash

TABLE I: Data centers resource settings

DC CPU (cores) RAM(GB) BW(Gbps) Storage(TB)

1 5000 10000 1000 2000

2 5000 5000 2000 5000

3 5000 5000 2000 10000

10-4 10-3 10-2 10-1 100

 (Error Precision)

0

50

100

150

200

250

300

350

400

N
u
m

b
e
r 

o
f 

G
a
m

e
 I

te
ra

ti
o
n
s

Fig. 4: Convergence of the distributed scheme

equilibrium and the solution of Problem (1) is zero.

Hence, the game approach achieves the full efficiency

of the system optimization.

VI. SIMULATION RESULTS

In this section, we present our simulation/numerical results

in which we first confirm the convergence of the distributed

scheme to the optimal thickness vector via numerical analysis

over sample system setups. We then compare the performance

of different α-proportional fairness utility functions in terms

of resource allocation efficiency. Finally, we compare the

optimal solution with the solution of two heuristic schemes in

terms of system utility and resource utilization. Recall that the

α-proportional utility function is defined by Un(vn) =
v1−α

n

1−α

for α > 0, α 6= 1 and Un(vn) = log(vn) for α = 1.

We consider a system consisting of three DCs and 100

network slices. Each network slice is composed of 5 VNFs.

VNF 1 is placed at DC 1, VNFs 2 and 3 are placed at DC

2 and VNFs 4 and 5 are placed at DC 3 for all slices. Each

DC contains 4 types of resources, CPU, memory, network

bandwidth and storage. Table I shows the amount of available

resources in each DC. The elements of demand vectors of all

network slices, for all the functions are randomly selected as

follows: for CPU, from the interval [1 10] cores; for RAM,

from the interval [1 10] GB; for storage, from the interval

[1 10] TB and for network bandwidth, from the interval

[0.25 2.5] Gbps.

A. Convergence of the Distributed Scheme

To show the convergence of the distributed algorithm, we

consider a system in which each slice has an α-proportional

fair utility function where α is chosen randomly for each

slice from the interval 1 to 10. Recall that we introduced ǫ in

Section V-A as the precision parameter for the convergence of
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Fig. 5: Slice thickness for α-proportional fair utility functions

(α = 1, 3, 10)
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Fig. 6: Resource utilization for α-proportional fair utility

functions (α = 1, 3, 10)

the resource allocation game. In Fig. 4, we have measured the

number of game iterations required for the system to converge

with precision ǫ for sample values of ǫ ranging from 0.5 to

10−4. It is observed that for precision ǫ = 0.1 which is a

reasonable precision value, less than 50 iterations is enough

for the system to converge. Moreover, it is observed that the

required number of iterations is decreasing linearly as the

precision error grows logarithmically meaning that we can

achieve sophisticated precision errors efficiently by linearly

increasing the number of iterations.

B. Resource Efficiency for Different α-proportional Utilities

In this section, we compare the allocation and resource

utilization under 3 different α-proportional fairness utility

functions. We assume all the the network slices have the

same α-proportional fairness utility with α = 1, 3, 10. Fig.

5 shows the slice thickness values for each slice for different

values of α. With α = 1, allocations are proportionally fair,

i.e., the system tries to maintain a balance between fairness

and resource utilization. By increasing the α parameter, the

fairness behavior of the system tends to max-min fair alloca-

tion where resource utilization is ignored and the objective is

only maximizing the minimum allocation among the network

slices. Fig. 6 shows the resource utilization for each α. Note
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Fig. 7: Objective values - optimal and heuristic schemes
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Fig. 8: Resource utilization comparison for the optimal and

the heuristic schemes

that the resource utilization is measured for each resource

per DC as the ratio of the total allocation of each resource

and the available amount of that resource in the DC and

then it is averaged over the three DCs. It is observed that

with α = 10, the thickness allocations are almost equal for

every slice while the resource utilization efficiency is the least.

However, with α = 1 there are fluctuations in the thickness

allocations and the resource utilization is the maximum for

all types of resources.

C. Comparison with Heuristic Sub-optimal Schemes

In this section, we compare the performance of the optimal

distributed scheme with two heuristic schemes. The first

scheme allocates the resources of each DC uniformly among

its VNFs. In this scheme, not all resources allocated to a

network slice are useful for it. The effective utilized resources

for each slice depends on its allocations as well as its demand

vectors. We call this allocation as the uniform allocation.

The second scheme allocates the available resources to the

VNFs based on the demand vectors of the VNFs, i.e., the

allocations are weighted based on the elements of the demand

vectors of the VNFs for each resource type and for each

DC. The resultant allocation for this scheme is such that

all network slices will get the same slice thickness. This

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)34



allocation is called the demand-weighted scheme. Note that in

both heuristic schemes, the maximal information needed for

resource allocation is the demand vectors and they operate

independently of the utility functions. This assumption is due

to the fact that slice providers are reluctant to share their

private information with DCs.

For this scenario, we again assume that each network slice

has an α-proportional utility function with a randomly selected

α from 1 to 10 for each network slice. Fig. 7 compares

the objective value of the resource optimization Problem (1)

for the optimal distributed scheme and the two heuristics.

Fig. 8 shows the resource utilization comparison among the

optimal and the heuristic approaches. It is observed that the

optimal allocation results in the maximum overall system

utility and also outperforms the heuristic ones in terms of

resource utilization.

VII. CONCLUSIONS

We have introduced a model of resource allocation for

5G networks incorporating the notions of network function

virtualization and end-to-end network slicing. We formulated

the optimal resource allocation as a convex problem with

the objective to maximize the overall system utility function

as a function of the slice resource allocations indicated by

slice thickness variables. We introduced a distributed auction-

based approach to solve the system optimization problem and

showed theoretically that the auction game has a unique Nash

equilibrium and also it converges to the global optimal system

solution. Simulation results were provided to evaluate the

performance of the distributed scheme in terms of convergence

and resource utilization for different utility functions. We also

compared its performance with two heuristic approaches.
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