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Abstract—The Domain Name System (DNS) is an essential
component of every interaction on the Internet. DNS translates
human-readable names into machine readable IP addresses.
Conversely, DNS requests provide a wealth of information about
what goes on in the network. Malicious activity — such as
phishing, malware and botnets — also makes use of the DNS.
Thus, monitoring DNS traffic is essential for the security team’s
toolbox. Yet because DNS is so essential to Internet services,
tracking DNS is also highly privacy-invasive, as what domain
names a user requests reveals their Internet use. Therefore, in
an age of comprehensive privacy legislation, such as Europe’s
GDPR, simply logging every DNS request is not acceptable.

In this paper we present DNSBLOOM, a system that uses
Bloom Filters as a privacy-enhancing technology to store DNS
requests. Bloom Filters act as a probabilistic set, where a mem-
bership test either returns probable membership (with a small
false positive probability), or certain non-membership. Because
Bloom Filters do not store original information, and because
DNSBLOOM aggregates queries from multiple users over fixed
time periods, the system offers strong privacy guarantees while
enabling security professionals to check with a high degree of
confidence whether certain DNS queries associated with malicious
activity have occurred. We validate DNSBLOOM through three
case studies performed on the production DNS infrastructure of a
major global research network, and release a working prototype,
that integrates with popular DNS resolvers, in open source.

Index Terms—DNS; privacy; measurement; GDPR; threat
detection; indicator-of-compromise

I. INTRODUCTION

In modern networks, there is a constant arms race between
network managers and miscreants that want to infiltrate the
network, to deploy botnets, to infect users with malware
or to phish their credentials. Consequently, network security
professionals need to have a well-stocked toolbox to combat
such adversaries. A well-known approach to threat detection
is to monitor Domain Name System (DNS) queries. The DNS
fulfills a key role for Internet services: it maps human-readable
names to machine-readable IP addresses. Because DNS is so
essential, malicious activity on a network oftentimes relies
on the DNS in some way. This can be either just to map
names to addresses, e.g., for URLs included in phishing e-
mails, or more active abuse of the DNS, for instance as a
command-and-control (C&C) channel for botnets.

A major problem with monitoring DNS queries on a network
is that this is also extremely privacy-invasive [1], [2]. Because
almost all network services rely on the DNS in some way,
recording what DNS queries a user performs is highly revealing
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of their Internet use. In the age of ever stricter privacy
legislation — think, for example, of Europe’s General Data
Protection Regulation (GDPR) [3] — simply recording all DNS
traffic on a network is not considered proportional to the goal
of safeguarding network security. Given, however, how valuable
DNS query logs can be for network security, the following
question is worth asking: Can we track information about DNS
queries without compromising on user privacy?

In this paper we present DNSBLOOM, a system that uses
Bloom Filters [4] as a privacy enhancing technology to track
DNS queries. Bloom Filters were invented in the 1970s as a
time- and space-efficient means to index databases. They act
as a probabilistic set, where a membership test either confirms
certain non-membership, or indicates probable membership
with a low probability of false positives. Bloom Filters rely
on hash functions to store information; as such, they never
store the original information. DNSBLOOM leverages this
property to protect user privacy while retaining useful detection
properties. In essence, when using DNSBLOOM, a security
professional can ask if a specific query for a known (malicious)
domain name has occurred, but cannot obtain a set of all
queries that occurred in the network. While this does not
allow for real-time monitoring of threats, it does allow for
tactical and strategic assessment of threats on a network: upon
observation of threats (known as indicators-of-compromise —
IoCs) using DNSBLOOM, security professionals can decide to
deploy targeted monitoring for specific threats, thus achieving
a proportional (e.g., in the sense of the GDPR) collection of
data. Moreover, DNSBLOOM allows operators to keep track of
DNS queries over time — in a privacy-conscious manner — and
to look back in time to see if emerging threats have already
occurred in their network.

To demonstrate its practical value, we validate the use
of DNSBLOOM in three real-world scenarios at a major
global research network. Furthermore, we implement a working
prototype that seamlessly integrates with all major open source
DNS resolver implementations. This prototype is released in
open source, to foster reproducibility and future research.
Paper organization — the remainder of this paper is organised
as follows. Section II provides background information on
Bloom Filters and IoCs. Section III introduces the approach
behind DNSBLOOM. In Section IV, we report on the evaluation
of the DNSBLOOM prototype. Section V reflects on the results
of our validation, and Section VI, discusses conclusions and
provides an outlook on future research.
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Fig. 1. Mapping an element to a Bloom Filter

II. BACKGROUND

A. Bloom Filters

Bloom Filters — named after their inventor, B.H. Bloom —
were devised in the 1970s as a space-saving way to speed up
lookups in databases [4]. The essential goal of a Bloom Filter
is to function as a fail-fast lookup function that can quickly
determine that an element is not in a set. This is useful, for
example, in database indexes, where a Bloom Filter can quickly
determine whether an element is in an index.

A Bloom Filter is implemented as an array of m bits, initially
set to zero, which are set based on the output of k independent
hash functions. To add an element to the filter, an element
x is passed through each of the k hash functions, producing
k hash values hq(z)...hg(z). Each of these hash values is
then treated as an index into the bit array m; this means that
each value h,,(z) must likely be mapped to the space [0, m)
to become a valid index. Every bit at index hq(z)...hg(x) is
then set to 1. Figure 1 shows an example of this process. In
the figure, rather than using & independent hash functions, a
SHA256 hash is used and split up into 8 separate offsets. This
is equivalent to using 8 independent hash functions as SHA256
is a cryptographic hash function with uniform output [5].

To perform a lookup in a Bloom Filter, the same process
is repeated. To look up element y, it is passed through the
hash functions to produce & hashes hi(y)...hg(y). Then, the
values in the bit array m are checked based on the offsets
derived from each hash value h, (y). If any of the bit values
in m at an offset h,,(y) is set to 0, then y is guaranteed not to
be in the set described by the Bloom Filter. If all of the bits
at offset hq(y)...hr(y) are set to 1, then y is likely part of
the set described by the filter, although there is a probability
pe of a false positive. Figure 2 shows how element setting
(left) and lookups (right) work. For the purpose of exposition,
the reported example considers values £k = 3 and m = §;
the arrows indicate the indices in m that hy 3 map an input
value to. The figure shows three properties of Bloom Filters.
First, independent elements may hit the same bits in the filter
during insertion (purple field). Second, if an element is not
a member (top-right example), this is a true negative. Third,
false positives are caused by the element mapping by chance
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Fig. 2. Setting and looking up elements in a Bloom Filter

to indices in m that were previously set to 1 by the insertion
of one or more other elements.

The values for m and k are selected based on n, the expected
number of elements to be inserted into the Bloom Filter, and
on the desired false positive probability. In essence, there is a
trade-off between the size of the filter m and the false positive
probability p.. For a given k, m, n, the false positive probability
has been shown in [6] to correspond to:

_kn\ ¥
pem (1-e7) ()
Furthermore, given a chosen m and an expected n, the
optimal number of hash functions that minimises p. is:

E="1m2
n

2

The actual false positive probability depends on the actual
number of bits set to 1 in the filter (s), and is computed as:

pe=(2) 3)

Bloom Filters have a number of attractive properties, two
of which are relevant to this work. First, provided that two
Bloom Filters A and B use the same parameters (that is: the
same hash function(s), and the same values for k and m),
then the union of the two filter states A U B can trivially be
computed using the bit-wise OR operation. Second, update and
lookup operations on Bloom Filters execute in constant time,
in particular they are constant in k& and have complexity O(k).

B. Collecting DNS queries

Monitoring of the DNS for security purposes has many
angles. In this paper, we focus on DNS traffic that is collected
near or on DNS resolvers. Figure 3 shows the vantage points
surrounding a DNS resolver. For this work, we focus on
data collected at vantage points A and B. Data collected at
vantage point C is typically of interest for large-scale passive
DNS (pDNS) deployments [7], which have far fewer privacy
concerns [8]. We consider pDNS as out of scope for this work.

To detect threats on a network, the simplest approach to
collecting DNS traffic is to perform packet captures on the
link on which incoming traffic from clients reaches the DNS
resolver (vantage point A). The vast majority of DNS traffic
is still plaintext, and such monitoring can be deployed using
standard software that is independent of the DNS resolver
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Fig. 3. Monitoring vantage points around a DNS resolver

implementation. This is changing with the standardization of
DNS-over-TLS [9], that would make data collection from
vantage point A impossible'. On the other hand, many DNS
resolver implementations support direct collection of DNS
query data from the running resolver software through the
so-called dnstap interface? (vantage point B). This interface
always outputs packets in cleartext.

Inspection of DNS queries from clients for security purposes
roughly has two purposes. First, the detection of new types of
threats, such as new botnets. The second purpose is signature-
based detection of pre-identified threats. The work in this paper
focuses on the second; based on pre-identified indicators of
compromise (IoCs) in the form of domain names, DNSBLOOM
identifies past and ongoing threats in a network.

C. Related Work

Numerous commercial solutions exist in the domain of
signature-based threat detection from DNS data; academic
work in this space almost exclusively focuses on the detection
of new types of threats based on DNS traffic [10].

Focusing on the use of Bloom Filters in the network space,
early work by Broder and Mitzenmacher [11] provides a
survey of the use of Bloom Filters, focusing on performance
improvements in network applications. A more recent survey
by Geravand and Ahmadi [12] looks at the application of
Bloom Filters for network security purposes. Much of the
work surveyed in their paper focuses on the use of Bloom
Filters to perform efficient data lookups. Some work, though,
specifically uses Bloom Filters as a privacy-enhancing method,
for example in the context of anonymous routing and packet-
based attack attribution. A representative example is work by
Zhu and Mutka [13], that uses Bloom Filters to enhance privacy
for instant messaging notification.

With respect to attack detection, Bloom Filters have been
used as a means to more efficiently detect DNS amplification
DDoS attacks. Sun et al. [14] propose a system that uses
Bloom Filters to efficiently match DNS queries to responses.
Their approach leverages the assumption that valid DNS traffic
consists of matching query/response pairs, and that traffic that
only contains responses is anomalous and indicative of an attack.

!For public DNS-over-TLS services, see https:/dnsprivacy.org/.
Zhttp://dnstap.info/
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Di Paola and Lombardo [15] propose a simplified approach
(compared to Sun et al.) for detecting DNS amplification
attacks, with a lower false positive rate, due to the use of
different filter parameters. Bloom Filters have also been used
to enhance the performance and memory footprint of signature-
based spam filtering, for example by Yan and Cho [16].

More specific to DNS, the popular open source PowerDNS
Recursor resolver implementation uses a Bloom Filter to track
newly observed domains?. Tracking such domains can, for
example, help detect phishing and spam e-mails, as these often
use “fresh” domains directly after they have been registered in
the DNS (and thus have likely not been observed on resolvers
before they are used for a spam run) [17].

Finally, as we will also discuss later on, Bloom Filters are
not themselves immune to attacks. Gerbet et al. [5] describe
various types of attacks on Bloom Filters that aim, for example,
to oversaturate filters to artificially raise the probability of a
false positive. Their work also explains how implementers can
design their systems to be more resilient against the attacks
discussed in the paper.

III. APPROACH
A. Goals and Challenges

With DNSBLOOM we want to operationalise tracking of
DNS query information without compromising on user security
by infringing the confidentiality of highly privacy-sensitive
user information [1], [18]. Before specifying this goal in more
detail, we should first consider why we wish to track this
information over time. As stated above, knowledge of DNS
queries that occurred in the past can prove useful if a new
indicator of compromise is discovered (in other words: a new
domain name is associated with malicious activity). A query
log can be used to see if this query name has already been
observed on the network, indicating, for example, that some
host has been infected, or some users clicked on suspicious
links in a phishing e-mail. Consider, for example, the outbreak
of the WannaCry ransomware in 2017 [19]. Months after
this ransomware was first observed, and only after a massive
outbreak, a security researcher discovered that a very specific
DNS query that the ransomware performed was actually a so-
called ‘kill switch’ [20]. Using a log of past queries, network
administrators could have detected past activity related to this
ransomware by looking for the kill-switch domain in their logs.

The question we ask is how can we do this without collecting
massive amounts of otherwise privacy-sensitive data from the
users? Ideally, we would still like to retain useful information
to make strategic and tactical decisions such as: should network
administrators search for, or start monitoring for a particular
new threat? Or: when was an IoC associated with a high profile
threat first observed, and in which parts of the network?

More specifically, we identify the following six goals:

GI Log DNS queries over potentially long periods of time.
G2 Avoid storing personally identifiable information (PII).

3See https://doc.powerdns.com/recursor/settings.html under

new-domaintracking.
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Fig. 4. Overview of DNSBLOOM’s architecture

G3 Efficiently store and query logged data.
G4 Determine the approximate time a query was observed.

G5 Distinguish between queries made by clients from different
network segments.

G6 Aggregate historic data.

Bloom Filters provide a natural fit to match these goals. In
particular, Bloom Filters can help us achieve most of the goals
stated above because they:

« Can efficiently store an arbitrary number of items if their

parameters are dimensioned correctly (Goals GI and G3).

e Are not trivially enumerable, and do not store any

recoverable version of the original data (Goal G2).

¢ Can be updated and queried in constant time (Goal G3).

« Can trivially be aggregated provided that the filters to be

aggregated share the same parameters (Goal G6).

The other two goals (G4 and G5) can trivially be imple-
mented on top of Bloom Filters as discussed in Section III-B.

B. Prototype

To test our approach, we designed and implemented a
prototype to meet the goals specified in the previous section.
We called this prototype “DNSBLOOM”. The prototype is
based on an open source application to collect DNS queries in
a Bloom Filter, called “HONAS”. This application was initially
internally developed at Tesorion* as a means to gather telemetry
on threats for malware research purposes in a privacy-friendly
way. The application was converted to open source with funding
from SURFnet®, the National Research and Education Network
in the Netherlands [21]. DNSBLOOM is based on HONAS and
extends it to make it ready for deployment in an ISP context.
In the remainder of this section, we discuss the design and
implementation of DNSBLOOM.

Figure 4 shows an overview of the entire prototype. As
the figure shows, the system consists of multiple applications.
From left-to-right and top-to-bottom, the applications shown
perform the following functions: honas—gather receives
DNS queries from a running DNS resolver using the dnstap?
interface, and records these in a Bloom Filter. A more

“https://tesorion.nl/en/
Shttps://www.surf.nl/en/about-surf/subsidiaries/surfnet
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detailed description of this application is provided below. The
honas—search application can be used to query stored
Bloom Filters. As input, it takes a query formatted as a JSON
object, the results of this query are also output as a JSON
object. This makes the application simple to integrate in a
web service or application. The honas—combine application
can aggregate two stored Bloom Filters into a new filter
that combines the data from both. Before performing the
aggregation, it checks whether the filters have the same
parameters so they can safely be combined. Finally, the
honas—-info application provides descriptive information
about a filter, including the actual false positive rate p,, based
on the fill rate of the filter (see Equation 3).

The collector application honas—-gather forms the core
of DNSBLOOM. It implements a configurable Bloom Filter
implementation, that allows the user to specify the filter
parameters k and m. Rather than implementing k independent
hash functions, honas—gather uses a SHA256 hash, from
which it extracts k array indices. As mentioned before, this is
functionally equivalent to using k different hash functions [5].

To assist in determining the correct parameters,
honas-gather implements a dry-run mode, during
which it monitors the number of distinct elements n
inserted into the filter. To estimate this number, we use the
HyperLoglog++ algorithm [22]. The application has been
designed to start a new Bloom Filter at regular, configurable
intervals. By default, it will start a new filter every hour. The
dry-run process determines n on an hourly basis. In addition
to this, to facilitate goal G6 (aggregating historic data), it also
determines n on a daily basis. Recall that Bloom Filters can
only be aggregated into a single filter if all filters use the same
parameters. Given that aggregation increases the probability of
a false positive, the dry-run also reports the daily count for n.
Thus, if we aggregate hourly filters into a single daily filter,
we can still guarantee a reasonable false positive probability if
we configure k& and m based on the aggregate value for n over
an entire day. During the dry-run process honas—-gather
outputs the hourly and daily maximum values for n, and
provides recommendations for configuring m and k for p.
values of 1073, 107 and 107°. In the prototype, these
recommendations are based on the observed n, rounded up to
the nearest 100,000 and with an added 10% extra margin.

Once the application is configured, it can start collecting
data. Rather than just storing the query names observed in DNS
queries, honas—gather also stores the individual labels in
a DNS query name (except for the top-level domain) and
stores the full second-level domain name. The reason we
do this is to facilitate detection of more complex indicators
of compromise. For example: take malware that uses a so-
called Domain Generation Algorithm (DGA), that generates
seemingly random domain names for command-and-control
servers. The DGA-generated parts of the domain name may
occur in different places in a domain name [23]. If we want
to be able to detect these, we also need to be able to search
for individual labels of a domain name in the Bloom Filter.

Finally, to satisfy goal G5 our prototype implementation has
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TABLE I
EXAMPLE OF DATA INSERTED INTO A BLOOM FILTER

Description Value |Description Value

FQDN evil.domain.com|/FQDN Organisation ARevil.domain.com
21 Jevel domain.com 20 Jevel Organisation A@domain.com

Label 1 evil Label 1 Organisation A@evil

Label 2 domain Label 2 Organisation A@domain

o
FS

Queries per Second
N £
X sy

Jul'o1 Jul'08 Jul 15 Jul22

Fig. 5. SURFnet DNS resolver traffic during validation

functionality to map queries from certain IPv4 or IPv6 network
prefixes to organisational entities. It does this by matching
source IP addresses in incoming queries. The entity that a query
is mapped to is then pre-pended to all of the data that is inserted
into the filter. For example, Table I shows what information is
added to the Bloom Filter if a query for evil.domain.com
arrives from a prefix that is mapped to ‘Organisation A’. As the
table shows, the fully qualified domain name (FQDN), second-
level domain (SLD) and labels are added directly, and with the
entity name prefixed. The direct entry can be used to perform a
fail-fast lookup, for instance, if many different entities exist in
the network, to prevent having to perform a lookup for every
entity all the time. To meet goal G4, our prototype cannot
simply link queries with timestamps as this association is lost
in the Bloom filter; instead, DNSBLOOM aggregates queries
in time slots of predefined length that provide an approximate
indication of time of occurrence.

IV. VALIDATION

In order to validate our approach, we deployed the DNS-
BLOOM prototype at SURFnet, which operates production
DNS resolvers for the higher education and research sector
in the Netherlands. Our prototype relied on data from all of
SURFnet’s production resolvers, which on average see in the
order of 5,000 to 10,000 queries per second at peak times
and roughly 200,000 unique client IPs per day. Thus, our
validation environment is likely comparable to a medium-size
ISP. We evaluated the performance of the prototype over a
period spanning three weeks, from July 1% to July 23", 2018.
Figure 5 shows the average query load over the validation
period. Note that the academic summer holiday starts in early
July, hence the slow decline in query load.

As discussed in Section III-B, we first needed to determine
suitable parameters k and m to configure our Bloom Filter. In
order to do this, we ran the prototype in dry-run mode for one
week. We ended up picking k£ = 10 and m ~ 491 Mbits to
get an estimated p. of 1072 (in other words: a false positive
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probability of 1 in 1,000). We used the daily estimate for n,
because as Figure 6 shows, the number of distinct queries is
significantly higher when aggregated over a whole day.

A. Scenarios

In order to evaluate the performance of the prototype, we
defined three test scenarios. Ethical and privacy implications
of the data collection are discussed in Section V. All three sce-
narios reflect common threat detection situations encountered
by security personnel at SURFnet.

Scenario 1: Booters — Our first scenario concerns so-
called Booters. These are websites that provide DDoS attack
capabilities on demand, allegedly to enable their users to ‘stress-
test’ their own network [24]. Since 2012, SURFnet observes
an increasing trend of (often young) students using Booters
to attack their schools, for example to disrupt online teaching
or exams. Because of the severity of this problem, SURFnet
is interested in learning more about Booter attacks. As they
suspect these attacks to be inside jobs, SURFnet’s privacy
officer gave permission to monitor for DNS queries specific to
Booter websites, based on a blacklist of Booters [25]. Then,
if an (attempted) attack is observed, the query logs could be
consulted to check if a DNS query for a Booter was observed
on the school under attack around the time of said attack.

Scenario 2: Spam filtering — The second scenario looks at
spam filtering. SURFnet runs a spam filtering service for its
constituency, which processes roughly 10 million mails per
day. One of the key functions of this service is to check the
IP addresses of mail-sending hosts against IP blacklists. These
blacklists contain IPs that in some form have been associated
with spam operations. As ground truth, we receive a daily list
of blacklist hits (that is: sending IP addresses that appeared
on one or more blacklists), and check for DNS queries of the
reverse DNS names associated with these IPs. Since SURFnet’s
mail filtering service uses the same DNS resolvers used by
DNSBLOOM, we expect to observe these queries. In addition
to this, we also expect to observe queries for these blacklisted
IPs from other clients on the network, e.g., from universities
or other institutions that run their own mail service and do not
rely on SURFnet’s spam filtering.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)
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Scenario 3: National Detection Network — Our third,
and final scenario concerns the so-called National Detection
Network (NDN) [26]. This is a collaboration between the Dutch
National Cyber Security Centre and key players in important
sectors of Dutch society. The goal of NDN is sharing of
high-profile indicators-of-compromise. In the NDN, these IoCs
are shared through a Malware Information Sharing Platform
(MISP) [27]. Many of the [0oCs in the MISP contain threats
that can be identified based on domain names. Up until now,
SURFnet has not been able to use this information, though,
as recording all DNS traffic to its resolvers simply to detect

potential IoCs from the NDN was deemed too privacy-invasive.

In this final scenario, we use DNSBLOOM to detect threats
shared through the NDN MISP. To also collect ground truth in
this scenario, we use a simple process. We first look for threats
that re-occur in multiple Bloom Filters (over multiple hours).
Then, we check the associated threat in the MISP, to see if
the threat is serious. If it is, we then start specific monitoring
for queries associated with this threat, as SURFnet’s privacy
policy allows such monitoring for network security purposes.

B. Results

We first focus on the performance of the Bloom Filters. Starting
with CPU workload, during the validation phase our prototype
collected data from three operational DNS resolvers and never
exceeded a single-core CPU load of 10%. Based on this, we
argue that it is perfectly feasible to run DNSBLOOM as a side
process directly on the DNS resolver. Recall that — just like
insertions — lookups can be performed in constant time O(k),
this means that we expect lookup performance to be similar
to insertion performance. Indeed, an unoptimised test run that
loads the Bloom filter from disk for every run takes an average
of 1.3 seconds to perform 230,000 lookups over 1,000 runs.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019)
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We also checked the actual false positive rate for Bloom
Filters aggregated per day. Recall our target p. was 1073 for
daily aggregate filters. As Figure 7 shows, during the validation
the expected false positive rate for daily aggregate Bloom
Filters stayed well below this target. Given that the hourly
filters need to use the same parameters in order for aggregation
to be possible, the p, is much lower for the individual hourly
filters, as illustrated by Figure 8. This means that the estimation
process during the dry-run of the prototype performed well
and accurately suggested values for £ and m. We do observe a
gradual decrease in the actual false positive probability p, over
time. This is likely due to the decrease in query volume, also
observed in Figure 5. While this implies a lower probability
of a false positive, thus increasing the reliability of lookups, a
pe that is far below the target can also lead to wasteful use of
storage space, as the filter size m could have been smaller.

Scenario 1 — To evaluate how the Bloom Filters performed
in the Booter scenario, we systematically checked every Bloom
Filter collected over the validation period for queries to domain
names on the Booter blacklist [25]. Then, to verify that
DNSBLOOM performed as expected, we used the separate
query log that directly recorded DNS queries containing names
on the Booter blacklist against the detections made using
DNSBLOOM. Over the validation period, we observed 103
queries for Booter domains, both in the ground truth and in the
Bloom Filters. Moreover, we did not observe any false positives
when querying the Bloom Filters. That is: even though we
queried the Bloom Filters for the presence of queries for the
full Booter blacklist, the hits reported exactly matched the
ground truth. This is likely due to the very low false positive
probability of the hourly Bloom Filters (Figure 8).

To illustrate what more can be done with the query data from
the Bloom Filters, we mapped the Booter queries observed
during the validation window to specific types of connected
institutions® on the SURFnet network. Figure 9 shows the
result of this mapping. It is clear that the majority of Booter
queries chiefly come from one type (A) of institution on the
network. Because of the sensitive nature of this information,
we have chosen not to identify specific sectors of SURFnet’s
constituency in this paper.

6E.g. universities, research institutes, vocational education, etc.
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Scenario 2 — In the spam filtering case, the number of IP
blacklist hits received from the mail filtering service varied
between ten and fifteen thousand IPs per day. For each address
on this list, we checked if the corresponding reverse DNS name
was present in the Bloom Filters. We were surprised to find a
slight discrepancy, with up to 4% of IPs not showing up in the
Bloom Filters. Further investigation showed that this was likely
due to two reasons. First, the mail filtering service uses one
additional DNS resolver for which we were not storing data in
the Bloom Filters; this means we likely missed some reverse
DNS queries. Second, each processing host of the mail filtering
service also runs a local DNS resolver with a local cache, thus,
some reverse DNS queries may have been answered from the
local cache, and did not end up in the Bloom Filters. This
limitation is something that needs to be considered especially
in larger networks, where a setup with local DNS resolvers
forwarding queries to more centralised systems is common.

We used the stored Bloom Filters to check if network
segments belonging to connected institutions on the SURFnet
network also sent reverse DNS requests for blacklisted IP
addresses. This yielded a long list of hits, to which we applied
the Pareto principle and examined those network segments
responsible for 80% of the total number of observed hits.
The institutions on those network segments run their own
mail services, rather than relying on SURFnet’s mail filtering
service. Each of these institutions performed reverse DNS
queries for between 2.4% and 13.1% of the IP blacklist hits
from the mail filtering service. This suggests that there is a
reasonable suspicion that the mail services for these institutions
also interacted with the blacklisted IPs on the same day. While
this is not necessarily directly useful information, the fact that
it was possible to perform this analysis opens up other options
that we will discuss in Section V.

Scenario 3 — For the final scenario, monitoring threats from
the MISP belonging to the National Detection Network (NDN),
we used a two-stage process: we regularly exported the set
of domain names associated with threats from the MISP and
checked these domains against the Bloom Filter. Then, we
inspected the set of hits and selected those that regularly occur
in filters for different time periods. For those hits, we looked up
the associated threat in the MISP, and if the threat was deemed
to be sufficiently serious, we installed specific monitoring to
look for actual DNS queries for these threats, to obtain ground
truth. Over the validation period, we did this for five different
threats. Comparison of the ground truth to the Bloom Filters
showed that the detection works as expected and that the
queries we observe in the ground truth also show up in the
filters. We observed no false positives for the domains for
which we had ground truth, again, likely because of the very
low false positive rate for the hourly filters (Figure 8).

We want to highlight two particular aspects of this scenario.

First, using the DNSBLOOM prototype, SURFnet was able to
use the threat information from the NDN MISP for the first
time to perform detections. This had previously not been done
because inspecting and storing all DNS traffic to monitor for
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Fig. 10. Daily number of unique threats detected based on NDN IoCs

these threats was deemed too large an invasion of user privacy.
The fact that this is useful is illustrated by the number of
unique threats we detected on a daily basis during the validation
period, as shown in Figure 10. Second, during our validation
the detection also proved to be directly operationally useful.
One of the five threats we detected was the apparent presence
of the WannaCry malware [19]. After we had installed specific
monitoring for this threat, we found a single host querying the
kill-switch domain at regular intervals. We notified SURFnet’s
incident response team, SURFcert, about this threat.

V. DISCUSSION

The evaluation of the scenarios in the previous section
demonstrates that DNSBLOOM performs well in practice. Our
prototype was easily able to handle a production workload
on a major research network, while requiring only modest
resources. While performance was not a primary goal, it
certainly makes the system more attractive for operators. The
system also reliably performed detections matching the ground
truth, without evidence of false positives. This does, of course,
not guarantee that false positives will never occur in the future.

Our primary goal was to provide privacy-friendly threat
intelligence based on DNS query data. We have demonstrated
that using Bloom Filters, we can achieve this goal. This
can make DNSBLOOM a valuable new tool for security
professionals, especially considering increasingly strict privacy
legislation, such as the European Union’s GDPR [3]. While a
full discussion of DNSBLOOM in the context of the GDPR is
out of scope for this paper, we note that in informal discussions
with SURFnet’s legal and privacy department we learned that
they believe the system provides sufficient privacy guarantees
to be able to say that it does not store personally identifiable
information (PII). As a consequence, restrictions on how long
data can be stored — stemming from the GDPR - do not apply,
and there is, in principle, no time limit to how long data can be
retained. For threat intelligence, this can be incredibly valuable,
as it allows security professionals to look back in time for
recently discovered threats. We note that another benefit may
be that the Bloom Filter data can be used for other purposes as
well, such as for academic research. In times of the GDPR, it is
becoming increasingly hard for network operators to share data
with researchers. The Bloom Filters collected by DNSBLOOM,
at least can be shared.
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Limitations — We note that our approach has limitations, that
stem from our use of Bloom Filters. First, we have to deal
with a small false positive probability when we check whether
a query has been performed. Given that a hit in the Bloom
Filter implies that an IoC has been triggered, and follow-up
measures may be put in place based on such an observation,
it is important to consider the possible adverse impact of a
false positive. For example: a false positive for a serious IoC
may cause an unwarranted wild goose chase that consumes
valuable time of security staff. Second, while the use of Bloom
Filters provides a significant privacy benefit, there is still a
small privacy risk. If an operator has knowledge of a highly
specific DNS query that is likely only performed by a specific
person (for example, for a personal page that no one else visits),
then it is still possible to track presence of this person on the
network at certain time periods, based on this query being
present in a Bloom Filter. We note though, that — under the
condition that the filter contains data from multiple users — it is
still impossible to then correlate this identifying query with any
other queries performed by the user, as the Bloom Filters are
not trivially enumerable. Third, in our current prototype, we use
a single filter to store queries from all network segments. This
introduces a risk that an attacker in a single network segment
can perform a pollution or saturation attack [5] on the filter
that then makes the entire filter unusable. If this is a real risk in
a network in which DNSBLOOM is deployed, then a possible
mitigation is to use separate Bloom Filters for different network
segments. Effectively, this trades efficiency and storage space
for the risk that a single user in a single network segment
can render filters unusable. Finally, a current limitation of the
prototype is that while it can confirm that a certain query was
observed, it is not possible to say or estimate how many times
that query was observed from a specific Bloom Filter. This
issue can be overcome, though, for example through the use
of a counting Bloom Filter [28].

Ethical Considerations — The goal of the DNSBLOOM
system discussed in this paper is, of course, to obtain threat
intelligence in a privacy-friendly manner. Yet to validate that
our system works as designed, we needed ground truth in the
form of direct logs of actual DNS queries. In order to do
this in an ethical manner, we: 1) minimised the amount of
ground truth we collected, 2) only collected ground truth if the
existing privacy policy of the network where we collected data
allowed such collection and 3) we deleted the privacy-sensitive
query logs as soon as we completed our validation. We note
that in actual operation, the standard formula (Equation 3) for
estimating the false positive rate of a Bloom filter suffices. Thus,
the performance in terms of false positive rate can be estimated
in a GDPR-compliant manner when using DNSBLOOM in a
production environment.

Open Source — In order for others to experiment with

DNSBLOOM and to foster reproducibility of our research, we
7

release our prototype under a permissive open source license’.

7https://github.com/SURFnet/honas
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VI. CONCLUSIONS AND FUTURE WORK

Keeping track of the DNS queries performed by clients in a
network is a valuable tool for security professionals to gain
threat intelligence about the network. Yet simply logging all
DNS queries is highly privacy-invasive, and it is highly doubtful
if this is an acceptable practice in the age of increasingly strict
privacy legislation, such as Europe’s GDPR. Therefore, at the
start of this work we asked ourselves: can we track information
about DNS queries without compromising on user privacy?
To answer this question, we presented DNSBLOOM, a system
that leverages key properties of Bloom Filters, such as the fact
the data entered into a Bloom Filter is not trivially enumerable,
to provide privacy-friendly DNS-based threat intelligence. In
addition to this, the attractive performance characteristics of
Bloom Filters make DNSBLOOM fast and lightweight. Using
three real-world scenarios that are examples of typical threat
intelligence tasks performed by security professionals, we tested
DNSBLOOM in practice, in a production setting on data from
the DNS resolvers of a major global NREN. These tests show
that DNSBLOOM is a promising approach that enables threat
detection that could otherwise not be performed, because the
alternative — directly logging DNS queries — is considered too
great a violation of user privacy.

Future Work — a key next step for DNSBLOOM is to
further develop the code to a production quality level, and
to deploy it in production. This will allow for a longer period
of evaluation, and will likely yield new applications of the
technology. Possible future applications are, for example, to use
the collected data in filters to study co-occurrence of queries, an
approach that has already been used in other work (e.g. [29]) to
detect entirely new threats. In terms of improving our prototype,
one of the key features we are considering is automated tuning
of filter parameters. As query loads change over time, it is
hard to choose good filter parameters that guarantee a low false
positive rate over long periods (unless a gross over-estimation
is applied). While updates to filter parameters limit aggregation
options, if they are not too frequent, a good balance can be
struck between re-calibrating filter parameters and maintaining
a sufficient capability to aggregate filters over hours or days.
Finally, we note that while this work and previous work has
shown the promising privacy-preserving properties of Bloom
Filters, there is a need for a more formal analysis of the privacy
guarantees that Bloom Filters can offer. Work by Bianchi et
al. [30] provides a good starting point, but further study is
warranted for systems such as DNSBLOOM.
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