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Abstract—Learning a performance model for a cloud service
is challenging since its operational environment changes during
execution, which requires re-training of the model in order
to maintain prediction accuracy. Training a new model from
scratch generally involves extensive new measurements and often
generates a data-collection overhead that negatively affects the
service performance.

In this paper, we investigate an approach for re-training
neural-network models, which is based on transfer learning.
Under this approach, a limited number of neural-network layers
are re-trained while others remain unchanged. We study the
accuracy of the re-trained model and the efficiency of the
method with respect to the number of re-trained layers and
the number of new measurements. The evaluation is performed
using traces collected from a testbed that runs a Video-on-
Demand service and a Key-Value Store under various load
conditions. We study model re-training after changes in load
pattern, infrastructure configuration, service configuration, and
target metric. We find that our method significantly reduces the
number of new measurements required to compute a new model
after a change. The reduction exceeds an order of magnitude in
most cases.

Index Terms—Service Management, Performance Prediction,
Machine Learning, Neural Networks, Transfer Learning.

I. INTRODUCTION

Telecommunication operators deliver services under strict
Service-Level Agreements (SLA), and it is well-known that
management of such systems is challenging and demanding.
One promising concept supporting service management is the
use of performance models that can predict the experienced
service quality at the client during execution, based on avail-
able observations in the infrastructure (including radio base
stations, the network, and multiple data centers; see Figure 1).
The ability to learn predictive models from observations
simplifies service on-boarding and enables anomaly detection,
bottleneck detection, as well as root-cause analysis.

In previous work we proposed and evaluated several data-
driven approaches for predicting service-level performance
metrics, as experienced by the client, from infrastructure
measurements, using the framework of statistical learning [1-
5]. The results were shown to generalize across a range of
different scenarios.

A key challenge in data-driven model creation is the diffi-
culty to maintain the accuracy of a performance model over
time, particularly in a dynamic cloud environment. Cloud

Fig. 1. Services execute in a dynamic and distributed cloud environment,
accessed by clients over a network. Measurements X are collected from the
infrastructure to predict service-level metrics Y . In the picture, one service is
assumed to be migrated from the source to the target domain.

services generally rely on a virtualization layer, enabled by
virtual machines (VMs) or containers, which allows service
components to migrate between physical execution environ-
ments. An example is illustrated in Figure 1 in which the
service is migrated from a source domain to a target domain.
Further, the resources assigned to a VM or a container are
dynamically scaled up or down based on operator policies or
user requirements. Such changes reduce the accuracy of a per-
formance model, which has been trained for a specific system
configuration and environmental condition. As a consequence,
management functions that rely on a performance model are
negatively affected, unless the model is updated.

Extensive measurements and data collection (preferably of
labeled data) is usually required for training machine-learning
models. The data collection process takes time and the over-
head associated with measurements and data collection can
adversely affect the service itself and potentially co-located
services as well. For certain services, such as short-lived
Virtual Network Functions (VNFs), there is often not enough
time to gather the data required for accurate predictions.

This paper addresses the above challenges and makes the
following contributions. First, we show how changes in the
execution environment can significantly reduce the accuracy
of a predictive model. We adopt and evaluate an approach for
re-training neural-network models based on transfer learning,
whereby a limited number of layers is re-trained. Specifi-
cally, the knowledge embedded in neural-network parame-
ters, obtained for one environment (a.k.a. source domain),978-3-903176-15-7 © 2019 IFIP
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is transferred to facilitate predictions in a changed execution
environment (a.k.a. target domain). We assess the effectiveness
of the approach by studying model re-training after changes
in load pattern, infrastructure configuration, service configu-
ration, and target metric. Our conclusions are that transfer
learning, compared with learning a new predictive model,
significantly reduces the number of required measurements in
the target domain and reduces the data-collection overhead. In
addition, it allows for faster model computation.

This work assumes that deep neural networks are used
for performance prediction. Alternative models for prediction,
such as random forest, often achieve a similar level of accuracy
at a lower cost. For certain tasks however, such as predicting
conditional distributions (e.g., [5]), deep architectures are
state-of-the-art, which makes studying transfer learning in the
context of neural networks an important topic.

The rest of the paper is organized as follows. Section II
describes the problem setting. Section III describes our transfer
learning approach. Section IV describes the testbed and traces,
and Section V provides evaluation results and discussions.
Related works are presented in Section VI, and Section VII
contains conclusions and future work.

II. PROBLEM SETTING

Figure 1 outlines the system under consideration, where a
set of clients are interacting, over a network, with services
executing in one or multiple data centers. For the purpose
of this paper we consider experiments and data traces where
clients access two networked services executing in one data
center; a Video-on-Demand service and a Key-Value Store
service. Note however that the concept developed in this paper
is not limited to these services.

In previous works [1], [2], and [3], we predicted the service-
level metrics Yt at time t on the client, based on knowing the
infrastructure metrics Xt. Using the framework of machine
learning, we developed and evaluated models M : Xt → Ŷt,
such that Ŷt closely approximated Yt for a given Xt. This
was further developed in [5] where the conditional distribution
P (Yt|Xt) was predicted using mixture-density functions. We
assume the metrics X and Y evolve over time, influenced,
e.g., by the data center and network load, and operating system
dynamics. We model the evolution of the metrics X and Y as
time series {Xt}t, {Yt}t.

The mapping between X and Y may change in a cloud envi-
ronment due to scaling of resources for the service execution
environment, service migration, changed hardware platform,
or other infrastructural dynamics. Hence, the accuracy of a
performance model may decrease over time. This challenge is
targeted by this paper.

We adopt a transfer learning definition from [6] to formalize
the problem. A domain D = {X,P (X)} consists of two
components: (1) a feature space X , and (2) a marginal
probability distribution P (X), where X corresponds to the
infrastructure metrics. Further, a task T = {Y,M} consists
of two components: a target space Y corresponding to the
service-level metrics, and an objective predictive model M .

Fig. 2. A neural network with fixed and re-trainable layers. Layers Ln−2,
Ln−1, and Ln are re-trainable. Layer L0 equals Xt, layer Ln represents Yt.

Transfer learning is then defined as follows. Given a source
domain DS and learning task TS , a target domain DT and
learning task TT , transfer learning aims at reducing the cost
of learning the predictive model M in DT using the knowledge
in DS and TS , where DS 6= DT , or TS 6= TT [6].

In this paper we specifically study the problem of how the
model accuracy of learning task TT in the target domain varies
with respect to transferred insights from the source domain DS

and the source task TS , and the number of samples obtained
at a given time t in the target domain DT . Recall that the
number of samples in the target domain may be limited due
to overhead or time constraints, as discussed in Section I.

III. A TRANSFER LEARNING APPROACH FOR SERVICE
METRIC PREDICTION

In this paper, the transfer learning approach builds upon re-
training of a machine-learning model M , based on a neural
network, inspired by the work in [15]. A neural-network
model M generally consists of an input layer, corresponding
to samples Xt, n − 1 hidden layers L1, ..., Ln−1, weights
w1, ..., wn, and an output layer (Ln) corresponding to Yt.

The weights wi for a neural-network model MS in the
source domain DS are trained using backpropagation [13]. A
transfer model configuration determines which weights of MS

should be kept intact. The remaining weights will be updated
during re-training using samples from the target domain DT .

Note that if the output type of the model in the target domain
and the source domain are different, i.e., YS 6= YT , then the
output layer of MS is replaced with a new layer, and the
weights wn are initialized randomly.

Figure 2 shows an example of a neural network and its
transfer model configuration where the weights of the first
layers, L1, ..., Ln−3, of the network are locked and will
not change during re-training, while the weights of the last
layers, Ln−2, Ln−1, Ln, will be updated during re-training.
The neural network, trained with samples from both DS and
DT , is denoted MT and is thus used for service-level metric
prediction in DT .

Note that the neural-network architecture of MS and MT

are identical in this study.
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TABLE I
TESTBED TRACES USED FOR EVALUATION.

Trace ID Service(s) Load pattern # samples

1 KVS Periodic 28962

2 KVS + VoD Periodic 26488

3 VoD Periodic 37036

4 VoD + KVS Periodic 27699

5 VoD + KVS Flashcrowd 29151

6 VoD (single server) Periodic 51043

IV. TESTBED AND TRACES

A. Testbed and services

The work presented in this paper is based on traces obtained
from executing experiments in a testbed located at KTH.
This section describes the experimental infrastructure, and the
structure of the data traces. We also describe the services
that run on the infrastructure; a Video-on-Demand (VoD)
service and a Key-Value Store (KVS) service. More details
are available in [3]. The section ends with an explanation of
the load patterns we use and the experiments we run to obtain
the traces on which this paper relies.

The testbed consists of a server cluster and a set of clients,
similar to the illustration in Figure 1. The server cluster
is deployed on a rack with ten high-performance machines
interconnected by a Gigabit Ethernet. Nine machines are Dell
PowerEdge R715 2U servers, each with 64 GB RAM, two
12-core AMD Opteron processors, a 500 GB hard disk, and
four 1 Gb network interfaces. The tenth machine is a Dell
PowerEdge R630 2U with 256 GB RAM, two 12-core Intel
Xeon E5-2680 processors, two 1.2 TB hard disks, and twelve
1 Gb network interfaces. All machines run Ubuntu Server
14.04 64 bits, and their clocks are NTP [22] synchronized.

The VoD service uses a modified VLC media player soft-
ware [7] which provides single-representation streaming with
varying frame rate. The VoD service is executed in two
configurations; (1) execution on a single PowerEdge R715
machine (referred to as VoD (single server)), and (2) execution
on six PowerEdge R715 machines.

The KVS service uses the Voldemort software [8]. It is
installed on the same machines as the VoD service, and can
execute in parallel. Six of them act as KVS nodes in a peer-
to-peer fashion and the rest act as load generators emulating
client populations.

B. Collected data and traces

This subsection provides a description of the data collected
on the testbed, namely the input feature set X as well as the
specific service-level metrics YV oD and YKV S .

Features X are extracted from the Linux kernels that
run on the machines. To access the kernel data, we use
System Activity Report (SAR), a popular open-source Linux
library [9], which provides approximately 1700 features per
server. Examples of such statistics are CPU utilization per
core, memory utilization, and disk I/O.

The YV oD service-level metrics are measured on the client.
During an experiment, we capture multiple metrics, but for the
purpose of this paper we focus on the number of displayed
video frames per second (FrameRate).

The YKV S service-level metrics are also measured on the
clients. During an experiment, we capture (1) Read Response
Time as the average read latency for obtaining responses over
a set of operations performed per second (ReadsAvg.), and
(2) Write Response Time as the average write latency for
obtaining responses over a set of operations performed per
second (WritesAvg.). These metrics are computed using a
customized benchmark tool of Voldemort.

A trace is generated by executing testbed experiments where
statistics are collected every second; specifically it includes
features X , and service-level metrics YV oD and YKV S .

C. Generating load on the testbed

Two load generators are executed in the testbed, one for
the VoD application and another for the KVS application.
The VoD load generator dynamically controls the number of
active VoD sessions, spawning and terminating VLC clients.
The KVS load generator controls the rate of KVS operations
issued per second. Both generators produce load according to
two distinct load patterns.

1) Periodic-load: the load generator produces requests fol-
lowing a Poisson process whose arrival rate is modulated
by a sinusoidal function with a starting load level,
amplitude, and period of 60 minutes;

2) Flashcrowd-load: the load generator produces requests
following a Poisson process whose arrival rate is modu-
lated by a flashcrowd model [17]. The arrival rate starts
at a low load level and peaks at flash events. At each
flash event, the arrival rate increases within a minute to
a peak load, where it stays for one minute, and then
decreases to the initial load within four minutes.

All traces we used in the considered scenarios have been
created using stochastic models in an attempt to approximate
real scenarios. That said, we plan in future studies to comple-
ment model-based traces with traces captured from operational
systems for evaluation.

D. The experiments chosen for this paper

The transfer-learning approach described in Section III is
evaluated using data traces from our experiments. Traces 1-
5 are obtained from [4] while trace 6 originates from [1].
Information about the traces is summarized in Table I.

Traces 1, 3, and 6 are based on execution of a single service,
while traces 2, 4, and 5 originate from experiments where KVS
and VoD services execute in parallel on the infrastructure. Note
that for trace 6, the experiment was configured to execute the
VoD service on a single server.

V. EXPERIMENTAL EVALUATION OF TRANSFER LEARNING

We apply and evaluate the transfer learning approach de-
scribed in Section III to 6 scenarios, summarized in Table II,
and described below. The evaluation specifically targets the
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TABLE II
THE SCENARIOS STUDIED IN THIS WORK. DS CORRESPONDS TO THE SOURCE DOMAIN AND DT TO THE TARGET DOMAIN.

Scenario DS DT

# Trace ID Service TS P (XS) Trace ID Service TT P (XT )

1 1 KVS ReadsAvg. Periodic load 2 KVS + VoD ReadsAvg. Periodic load

2 1 KVS ReadsAvg. Periodic load 2 KVS + VoD WritesAvg. Periodic load

3 3 VoD FrameRate Periodic load 4 VoD + KVS FrameRate Periodic load

4 3 VoD FrameRate Periodic load 5 VoD + KVS FrameRate FlashCrowd load

5 6 VoD (single server) FrameRate Periodic load 3 VoD FrameRate Periodic load

6 6 VoD (single server) FrameRate Periodic load 5 VoD + KVS FrameRate FlashCrowd load

need for adapting the source model, what to transfer from
source to target, and how. Finally, the benefits of using transfer
learning to shorten training time is evaluated.

The source domain DS is based on KVS or VoD executing
either on the server cluster or on a single server, whereas the
target domain DT corresponds to a change with respect to the
number of services being executed on the platform, the task
T as in scenario 2, the distribution of samples P (X) as in
scenarios 4 and 6, or the hardware platform as in scenarios 5
and 6. The scenarios, described below, have been defined
so that they correspond to changes with different degrees of
severity with respect to the service execution environment.

In Scenario 1, a model is trained in the source domain DS

to predict the response time for reads, that is ReadsAvg. (TS),
for the KVS service under Periodic load (P (XS)). The model
is then transferred to a target domain (DT ) where both KVS
and VoD services execute concurrently on the same platform
and share the same resources. The transferred model in this
scenario is then used to predict ReadsAvg. (TT ) under Periodic
load (P (XS)). That is, this scenario investigates the impact
of moving a service from a dedicated hardware platform to
a shared platform. Scenario 2 uses the same source model
as scenario 1 which is transferred to the target environment.
However, the target model is used to predict a different target
variable, namely the response time for writes, i.e., WritesAvg.
In Scenario 3, a source model is trained for prediction of
frame rate for the VoD service under periodic load on the
testbed. The model is then transferred to a target domain
where both VoD and KVS services execute concurrently, that
is changing the service execution from a dedicated platform to
a shared one. Scenario 4 shares the same source domain and
target domain with scenario 3 except that the load pattern in
the target domain has changed to Flashcrowd. In Scenario 5,
the source model is trained for the VoD service running on
a single server under periodic load. The model is transferred
to a target domain where the VoD service is scaled up and
migrated to a cluster with 6 servers. Scenario 6 shares the
same source domain with scenario 5 and the same target
domain as scenario 4. That is, a model is learned for the
VoD service running on a single server under Periodic load
which is then transferred to an environment where both VoD
and KVS services execute in parallel on 6 servers under a

Flashcrowd workload. In this case the execution environment
is scaled up and migrated, and also changed from dedicated
to shared platform.

In this paper, the Normalized Mean Absolute Error is used
as the primary evaluation metric and is defined as

NMAE =
1

ȳ
(

1

m

m∑
t=1

|yt − ŷt|)

where ŷt is the model prediction for the measured perfor-
mance metric yt, and ȳ is the average of the samples yt of the
test set of size m. In this paper, the evaluation results using
NMAE metric are presented. We chose NMAE over popular
metrics like R2 or RMSE, because it gives a better intuitive
understanding of the error in the application domain and better
mitigates outliers.

We applied a feature selection method based on feature
importance obtained from a tree-based model on each source
domain. For the traces in Table I, 62 features for KVS
and 46 for VoD were selected, respectively. For scenarios 5
and 6, where the VoD service is executing on a single server,
a slightly different feature set was obtained compared to
scenarios 3 and 4, where it executes on the cluster. As a future
work we will look into other approaches for feature selection.

After evaluating several neural-network architectures and
hyper parameters, two different architectures are selected for
the two services. For the KVS traces used in scenarios 1
and 2, a 4-layer neural network was used which consists of
an input layer with 62 nodes, 3 hidden layers with 64 nodes
each, and a single-node output layer. For the VoD traces used
in scenarios 3 to 6, a 5-layer neural network was used with
46 nodes in the input layer, 256 nodes in each hidden layer,
and a single-node output layer.

For the implementation of the neural networks, Keras li-
brary [18] running on top of TensorFlow [19] was used. We
used the rectified linear unit (ReLu) activation function for all
the layers, Adam optimizer [20] with a learning rate of 0.001,
L2 regularization of 0.001, and mean absolute error (MAE)
as the loss function. Each experiment was run for 300 epochs
with a batch size of 256.

To obtain the source model MS for each scenario, the neural
network is initialized with random weights and is trained on
samples from the source domain. For training, the samples
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Fig. 3. Prediction error in the target domain, showing the impact of re-training layers of transferred models with samples in target compared to training new
target models. The plots show results for the KVS scenarios 1 and 2.

TABLE III
PREDICTION ERROR (NMAE%) IN THE TARGET DOMAIN FOR MODELS

TRAINED IN THE TARGET DOMAIN (TARGET MODEL) AND IN THE SOURCE
DOMAIN (SOURCE MODEL). MODELS ARE CREATED WITH LASSO

REGRESSION (LR), RANDOM FOREST (RF), NEURAL NETWORK (NN).

Scenario Target model Source model

# LR RF NN LR RF NN

1 4.7 3.8 3.8 5.5 6.1 10.5

2 4.6 3.8 3.7 50.4 49.3 51.5

3 16.1 11.0 10.3 14.7 14.8 12.5

4 12.3 6.4 6.4 12.6 14.0 9.5

5 11.8 8.6 6.7 26.7 29.3 23.1

6 12.5 6.8 7.4 26.9 30.2 27.5

in the source domain is split into training (80%) and testing
(20%) sets. The model and its weights are then transferred to
be used for predictions in the target domain. Similarly, in the
target domain the samples are split into training and testing
sets where the training set is used for either re-training the
transferred source model or to train a new target model, while
the testing set is used for evaluation.

A. The need for adapting the source model

First, we investigate whether a source model can be used
without modifications for service-metric prediction in the
corresponding target domain. In addition to neural networks
(NN), we also evaluate lasso regression (LR) and random
forest (RF) models.

Table III shows the NMAE (%) in target domain by using the
source models, trained on samples from the source domains,
compared to using target models trained on the data from
the corresponding target domains as the baseline. It can be
seen that regardless of the machine-learning algorithm used, a
source model will have lower accuracy if reused without mod-
ification when the domain changes, particularly in scenario 2
where the source and target tasks are different (TS 6= TT ),
and for scenarios 5 and 6 where the hardware platform (i.e.,
execution environment) has changed. For these three scenarios
a source performance-prediction model must be re-trained,

TABLE IV
NUMBER OF WEIGHTS OF THE NEURAL NETWORK THAT ARE UPDATED

WHEN RE-TRAINING A CERTAIN NUMBER OF LAYERS.

# Re-trained # Trainable weights

layers KVS VoD

1 65 257

2 4225 66049

3 8385 131841

4 12417 197633

5 N/A 209665

due to the major change in the domain, whereas it is highly
beneficial in the other scenarios.

B. How and what to transfer from source to target domain

From the above results it is obvious that a source model has
to be adapted before it can be used for making predictions in
the target domain. For each scenario in Table II, we determine
the transfer configuration, i.e., the neural-network layers where
the weights can remain intact after transfer and the layers
where the weights need to get updated during re-training.
Table IV shows the number of weights that are updated during
re-training the different number of layers for KVS and VoD
neural-network architectures.

It is known that the weights of the last layers of a neural
network are more specific to a particular dataset/task, while the
weights of the first layers are more general [15]. We investigate
this by keeping the weights on the first layers unchanged while
re-training additional layers. For example, for the VoD traces,
re-training 3 layers means that the weights on the first 2 layers
of the network are kept unchanged while the weights of the last
3 layers (i.e. 131841 weights) are updated during re-training in
the target domain. Note that in scenario 2, since the outputs YS

and YT are different, before transfer learning can be used, the
output layer of the source neural-network model is replaced
with a new output layer initialized with random weights.

We evaluate if a source model can be transferred to the
target domain and which layers need to be re-trained. As
discussed in Section I, the number of samples from the target
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Fig. 4. Prediction error in the target domain, showing the impact of re-training layers of transferred models with samples in target compared to training new
target models. The plots show results for VoD scenarios 3 to 6.

domain can be limited due to overhead and also the time
it takes to run new measurements during service execution.
Therefore, in addition to evaluating the transferability of the
model weights, we evaluate the impact of the number of
samples in the target on the service metric predictions tasks.

Figure 3 shows the evaluation results for KVS scenarios 1
and 2, and Figure 4 shows the evaluation results for VoD
scenarios 3 to 6. In each figure, the horizontal axis show
the number of samples available in the target domain. The
bars show the model prediction error NMAE (%) for varying
number of re-trained layers using target samples. The right-
most bar in each group (colored in dark blue) shows the
prediction error when transfer learning is not used and rather a
new target model, initialized with random weights, is created
by using only the available target samples. Each experiment is
performed 5 times where the samples are selected randomly
from the target domain. The variance is indicated for each bar.

For scenario 1, as shown in Figure 3, re-training three
layers of the transferred model leads to low NMAE values,
particularly when the number of samples are low. This means
that the weights of the first layer of the source model are more
general and therefore can remain intact, while the weights of
the other layers are more specific to the source domain and
have to be re-trained after the transfer. The figure also shows
that when there are more samples available in the target, re-
training all four layers of the transferred model can further
reduce the prediction error.

In scenario 2, the task in the source and target differ (i.e.,
TS 6= TT ) and therefore, the last layer of the transferred model
is replaced with a new layer which is initiated with random
weights. It can be seen in Figure 3 that re-training only the

newly initialized layer while keeping the rest of the weights
intact leads to even higher errors compared to training a new
target model. Similar to scenario 1, re-training at least three
layers of the model reduces the NMAE values.

For scenarios 3 and 4, shown in Figure 4, a low number
of samples suggests that the weights of most of the layers
can remain intact, that is re-training only 1 layer, for example.
This means that the weights of the first layers of the network
are quite general and re-training them with small number of
samples leads to over-fitting. But as the number of samples
in the target domain grows, more layers can and should be
re-trained to further improve the model performance.

In scenarios 5 and 6, the hardware platform in the source
and target has changed, which means that the input features
XS 6= XT . In order to be able to use transfer learning,
we first aggregated the features in the target domain. In this
study the aggregation is done by calculating the mean value
for the features category collected from each server. We had
similar observations using median or maximum values for
aggregation, however the mean value is chosen for aggregation
as it leads to slightly lower NMAE values. In other words,
for each feature xS ∈ XS which is collected from a single
server, there are 6 features in XT which are collected from
the 6 servers in the target domain. These features are then
aggregated into one feature by calculating xT = 1

J

∑J
j=1 xti ,

where J in this case equals 6. As a future work we will study
other methods for feature aggregation and selection.

The results for scenarios 5 and 6 are shown in the bottom
graphs of Figure 4. Re-training two or three layers of the
transferred model in both scenarios leads to low NMAE values,
whereas re-training only one layer leads to high errors. For the
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Fig. 5. Decrease in loss function during neural-network model training in DT , using all samples, comparing a case with transferred weights from DS and
randomly initialized weights and training all layers in DT .

cases with many samples in the target even lower NMAE is
achieved when all layers of the model are re-trained.

In scenarios 4 and 6, the transferability of two different
source models, trained in different source domains using
different features, towards the same target domain is evaluated.
It can be seen that in scenario 6, in contrast to scenario 4,
re-training only the last layer of the transferred model leads
to very high errors. In scenario 4, the change from source
to target is minor, while in scenario 6 the change to target
domain is more sever, and has impacted the transferability of
the source model. Our results show that in scenarios 4 only the
last layer of the source model is specific to the source domain,
while in scenario 6 the last three layers are specific to source
domain and need re-training. Based on our evaluations, we
did not observe any significant impact in model performance
depending on the similarity of the source and target domains
if correct number of layers are re-trained. Future work will
study selection strategies for the source domain.

Overall, in all scenarios when the number of available
samples in the target domain is low (6 1000), transfer learning
improves the NMAE value with at least 20% compared to
training a new target model.

Further, it is clear that when the number of samples in
the target is low, the prediction error for a model trained
only with samples in target (i.e., the right-most bar) is high.
This observation is expected and visible for both KVS and
VoD scenarios, since training a neural network with many
parameters requires large amount of training data, otherwise
the model tends to over-fit to the relatively small data set. In
general, additional measurements reduce the NMAE.

Moreover, our results show that to reach a given predic-
tion error, transfer learning requires fewer training samples
from the target domain compared to training a new accurate
target model, in some cases less than one to two orders of

magnitude, which means fewer additional measurements, and
lower overhead, after a change in the cloud environment during
service execution. For example, in scenario 3, an NMAE of
12% is achieved by re-training the transferred source model on
500 samples, while to reach the same NMAE without transfer
learning around 5000 samples are needed to train a new target
model. As another example, in scenario 5 an NMAE of around
8% is achieved by re-training two layers of the transferred
model with as little as 100 samples from the target, but to
reach the same NMAE a randomly initialized target model has
to be trained with more than 10000 samples.

C. Transfer learning can shorten training time

It is evident from the results presented above that transfer
learning lowers the prediction error for the target model when
few samples are available in the target domain. Hence, the
approach is suggested to be used as part of a management
system to shorten the time until an accurate performance
model is available in the target. This is critical specifically for
short-lived services such as VNFs, as discussed in Section I,
but also for VMs and containers being migrated or scaled.

Transfer learning can also be used to train a source model
in a testbed environment, and then transfer the performance
model to an operational environment where it is known that
data collection overhead is costly or time consuming. This is
exemplified in scenarios 5 and 6 where the VoD service first
runs on a small infrastructure and then scales to an operational
environment with a larger number of servers.

When a large number of samples is available during ser-
vice execution (> 10000), the difference in prediction er-
ror between re-training a neural network model initialized
with transferred weights and training a neural-network model
initialized with random weights becomes negligible. This is
visible in all graphs in Figures 3 and 4, corresponding to both
KVS and VoD scenarios. However, using transfer learning is
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still beneficial since it can speed up the model training. We
elaborate on this below.

Figure 5 shows a comparison between the validation loss
(mean absolute error) over the number of epochs of a trans-
ferred model, where all the layers are re-trained in target, and
a target model initialized with random weights and trained on
samples from the target domain. Both the transferred model
and the target model are trained on all samples in the target
domain. For all 6 scenarios, when transfer learning is used,
the loss value is lower and decreases faster (fewer number
of epochs required) compared to when a new target model is
trained. In scenario 2, since the last layer of the transferred
model is replaces and also initiated with random weights, the
initial loss value is high but it is decreased after a few epochs.

VI. RELATED WORK

Transfer learning has received considerable attention in ar-
eas such as image processing and natural language processing
(NLP). This section provides a review of relevant literature.

In [15], the authors investigated the transferability of fea-
tures in a neural network for image processing and show that
the transferability decreases when the distance between source
and target tasks increases. It was also shown that transfer
learning leads to better results compared to a new model with
randomly initialized weights and that re-training all layers of
the network improves its generalizability. Further, in [16], the
authors investigate how transferable the layers of a neural-
network model in the field of NLP are and show that the
semantic similarity of the source and target tasks impacts the
transferability of the neural-network models.

Recently, transfer learning has also been used in other
areas including performance predictions in the network and
data center domains. A number of studies have looked into
using transfer learning for identifying the best application
configurations. For example, in [11], the authors present
a transfer learning approach for performance prediction of
configurable software across different hardware platforms. The
source model is built using a regression tree from a random
sample of configurations on the source hardware, then a linear
regression model transfers the results into the target domain.
Further, in [10], an empirical study was performed on four
software systems, with varying software configurations and
environmental conditions, to identify the key knowledge pieces
that can be exploited for transfer learning. Insights from the
paper include that for non-severe hardware changes, a linear
transfer model can be deployed across environments. However,
virtualization may hinder transfer learning. Further, even for
some severe environmental changes when the performance
distributions are similar there is a potential for learning a non-
linear transfer function. In comparison, this paper adopts a
more advanced transfer-learning approach, and also studies a
different use case, compared to the above mentioned works.

In [21] the authors propose a deep-learning based approach
for identifying software configurations for a high-performing
application, when limited resources are available for data
collection in the target domain by combining information

from exhaustive observations collected at a smaller scale with
limited observations collected at a larger target scale. The work
has similarities with this paper, but the neural networks are
trained given feature sets, outputs, and assumptions that do
not generalize to the domain of this paper. Rather, the work
may serve as inspiration for how to select a source domain
for the use case discussed in this paper.

In [14] the authors study the challenge of predicting server
behavior and proposed a random-forest-based transfer learning
approach. The challenge is that small data centers exhibit too
few labeled training examples to build a proper model, since
the distribution of problematic and normal server behavior is
highly skewed. The approach is to combine training examples
from several small data centers into one pool of training
samples. A model for the target domain is then built based on
samples from all small data centers that resembles the target
domain good enough.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated an approach for model re-
training based on transfer learning whereby only a limited
number of layers of a neural network are re-trained. We
evaluated our approach for multiple scenarios with realistic
datasets obtained from a testbed for two different services
under varying load.

Our results show that transferring the weights of a neural
network, trained in a source domain, and re-training them
according to a transfer configuration, using samples in a target
domain that constitutes a changed operational environment,
improves the model performance with at least 20% when the
number of available samples is low (6 1000). Further, the
paper shows that transfer learning reduces the need for data
collection in the target domain, by an order of magnitude in
several cases. In the case where a larger number of samples
(> 10000) is readily available in the target domain the transfer-
learning approach will not further improve the prediction error,
however it greatly speeds up the model training in the target
domain, for all considered scenarios.

Moreover, the results show that the number of neural-
network layers to re-train in the target domain varies with
the service type, the severity of execution-environment change,
and also the number of available samples in the target domain.
Hence, additional work is needed to provide general guidelines
for determining a transfer configuration.

In future work, we will study additional scenarios and
datasets in more complex infrastructures, investigate the im-
portance of source-domain selection on the performance of the
transferred model, and determine how transfer learning can be
deployed in operational management systems.
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